
AUTOMATING THE SUPPORT OF

HIGHLY-CONFIGURABLE SERVICES

JESÚS GARCÍA GALÁN

PhD dissertation

Supervised by

Dr. Antonio Ruiz Cortés

and

Dr. Pablo Trinidad Martı́n-Arroyo

Universidad de Sevilla

June 2015



First published in May 2015 by
Jesús Garcı́a Galán
Copyright © MMXV
http://www.isa.us.es/members/jesus.garcia

jegalan@us.es

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by Jesús Garcı́a Galán. All persons
copying this information are expected to adhere to the terms and constraints invoked
by each author’s or holders’ copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright holder.

Support: PhD dissertation granted by the University of Seville, the European
Commission (FEDER) and Spanish Government under CICYT project SETI
(TIN2009-07366) and TAPAS (TIN2012-32273), and the Andalusian Government
projects COPAS (P12-TIC-1867) and THEOS (TIC-5906)

http://www.isa.us.es/members/jesus.garcia
mailto:jegalan@us.es


A mi familia





AGRADECIMIENTOS

i

Bernardo de Chartres dijo una vez que “si he logrado ver más lejos, ha sido porque
he subido a hombros de gigantes”. Aunque esta cita se utiliza con frecuencia en el
contexto cientı́fico, no es menos real en la vida diaria. Ninguno de nosotros serı́a lo
que somos hoy dı́a sin la ayuda de esos “gigantes” que tenemos alrededor.

En primer lugar, quiero acordarme de los magnı́ficos compañeros de los que he
disfrutado estos años, ya casi 7 desde que comencé a trabajar en la Universidad de
Sevilla. Toda esta aventura comenzó incluso antes, en el aõ 2007, cuando conocı́ a
Pablo Trinidad y Carlos Muller como profesores en la asignatura ISG2. Poco después,
tras terminar el proyecto de la ingenierı́a técnica con Pablo, empecé a trabajar para el
grupo ISA como desarrollador. En ese periodo tuve la suerte de conocer a grandes
compañeros y amigos como José Galindo, Ana Belén o Guti entre otros, con los que
he compartido un camino casi paralelo y he vivido muy buenos ratos profesionales y
personales. Poco a poco también tuve la ocasión de conocer a esos que antes habı́an
sido mis profesores, y de los que hoy dı́a sigo aprendiendo como compañeros: Sergio,
Carlos, Jose, Jose Mari, David... la lista es larga, siento si me olvido algún nombre.
Tampoco quiero olvidarme de los amigos que fui conociendo durante la carrera, y de
Andrés, mi compañero de despacho, con el que aún queda pendiente un partido de
futbol.

También debo dar especialmente las gracias a aquellos con los que he trabajado
mas de cerca durante el doctorado. Y debo empezar por Pablo y Antonio, mis tu-
tores de tesis. Gracias por todo lo que he aprendido de vosotros, por el tiempo y el
esfuerzo dedicado, por la confianza puesta en mı́ y por las posibilidades que también
habéis puesto en mis manos. Esta tesis no hubiera sido la misma sin vosotros. Como
tampoco lo hubiera sido sin las estancias que he disfrutado en Valencia, Cardiff y Lim-
erick. Gracias a Vicente Pelechano, Omer Rana y Mike Hinchey por brindarme esas
oportunidades, y a toda la gente conocı́ en la Universidad Politécnica de Valencia (y
concretamente en el grupo PROS: Marı́a, Miriam, Mario, Pablo, Joan...), en la Univer-
sidad de Cardiff y en Lero. Gracias especialmente a Omer, con el que desde entonces
mantengo fructı́feras colaboraciones, y cuya idea de analizar los servicios de Amazon
es una de las principales patas de esta tesis; y a Liliana, no solo como una excelente



compañera profesional sino tambien como una gran amiga con la que he pasado ratos
realmente divertidos.

Y finalmente, quiero acordarme de mi familia. De esa familia que uno va haciendo
a medida que va avanzando en la vida. Gracias a todos esos amigos que han estado
dispuestos a darme un apoyo en estos años, con los que he compartido tantas buenas
experiencias, y con los que espero seguir compartiéndolas. Especialmente gracias a
Ale, a Sergio, a Alejandro, a Jose y a Tagua, y también a tantos otros con los que las
paginas de esta tesis podrı́an aumentar considerablemente. Y por supuesto, gracias a
mi madre, por inculcarme su espı́ritu de lucha y superación, y por haber puesto todo
su esfuerzo en que pueda valerme por mı́ mismo.

De todo corazón, gracias.

Jesús.

ii



RESUMEN

iii

Las crecientes capacidades de configuración de los servicios, especialmente en el cloud,
han dado lugar a los ası́ llamados Servicios Altamente Configurables (HCSs). Dichas
capacidades de configuración están aumentando la demanda y complejidad de las
aplicaciones basadas en HCS y de las necesidades de infraestructura para soportar-
las, soluciones guiadas por HCS de aquı́ en adelante. Tras un estudio del estado del
arte, concluimos que dichas soluciones guiadas por HCSs pueden ser mejoradas signi-
ficativamente en 1) los lenguajes para describir las configuraciones, también conocidas
como el espacio de decisión del servicio, y 2) en las técnicas para extraer información
de utilidad del espacio de decisión, técnicas de análisis en adelante.

Por un lado, no existen Lenguajes Especı́ficos de Dominio (DSLs) para describir
el espacio de decisión, aunque hay algunas aproximaciones cercanas. En esta tesis
creemos que es posible mejorar el actual panorama diseñando un DSL: i) en conformi-
dad con los principales proveedores de HCSs, ii) que soporte múltiples ı́tems, iii) su-
ficientemente expresivo para facilitar la descripción de relaciones lógicas y aritméticas
en los términos del servicio y iv) independiente del dominio. Adicionalmente, este
DSL debe definir criterios de validez para asegurar que el espacio de decisión satisface
propiedades básidas como la consistencia y la configurabilidad. Más allá, se deben
ofrecen explicaciones cuando el espacio de decisión del servicio no satisfaga dichas
propiedades.

Por otro lado, la mayor parte de las actuales técnicas de análisis, como aquellas
encargadas de encontrar configuraciones óptimas o de reconfigurar servicios multi-
tenant, llevan consigo algunos inconvenientes propios de técnicas emergentes. Para
superar estos inconvenientes, se debe desarrollar: a) implementaciones de referencia
totalmente funcionales, b) técnicas reusables, c) mecanismos de extensión efectivos y
d) interfaces amigables.

El principal objetivo de esta disertación es mejorar el soporte existente para el de-
sarrollo de soluciones guiadas por HCS, considerando las recomendaciones anteriores.
Las principales contribuciones de esta tesis son un DSL (llamado SYNOPSIS) para es-
pecificar el espacio de decisión de los HCS, y un nuevo catálogo de operaciones para



comprobar y explicar los criterios de validez ası́ como para encontrar configuraciones
óptimas para uno o más usuarios. Como contribuciones menores, también presenta-
mos dos soluciones que han sido desarrolladas para mejorar el existente soporte para
la migración de infraestructuras a Amazon EC2 y para reconfigurar servicios multi-
tenant.

La piedra angular de nuestra propuesta para mejorar las técnicas de especificación
ha sido definir un DSL, SYNOPSIS, y dotarlo con semántica formal basada en Modelos
de Caracterı́sticas con Estados. Acerca de nuestra propuesta para mejorar las técnicas
de análisis, la clave ha sido la organización de dichas técnicas en un catálogo de opera-
ciones básicas que pueden ser combinadas para dar lugar a soluciones guiaadas por
HCS más avanzadas. La aplicabilidad de nuestros resultados está limitada a aquellos
espacios de decisión que pueden ser transformados en Modelos de Caracterı́sticas con
Estados, que por nuestra experiencia es suficiente para soportar HCSs reales.

iv



ABSTRACT

v

The growing customisation capabilities of services, especially in Cloud scenarios, have
led to the so-named Highly-configurable Services (HCSs). Such capabilities are boost-
ing the demand and complexity of HCS-based applications and the infrastructure need
to support them, HCS-driven solutions from now on. After a study of the existing lit-
erature we conclude that these HCS-driven solutions can be significantly enhanced in
both 1) the languages to describe the configurations, a.k.a. the decision space of HCSs
and 2) the techniques to extract useful information from the decision space, analysis
techniques, in advance.

On the one hand, there are no Domain Specific Languages (DSLs) to describe the
decision space, although there exist some very close approaches. We suggest that it
is possible to improve the current landscape by designing a DSL: i) Compliant with
big HCS vendors, ii) multi-item aware, iii) expressive-enough to ease the description
of arithmetic-logical relationships on configurable description terms, and iv) domain-
independent. In addition, this DSL must define validity criteria for checking that the
decision space satisfies some basic properties such as the consistency, and the config-
urability. Furthermore, explanations must be provided when the decision space do not
satisfy such basic properties.

On the other hand, most of the current analysis techniques such as those relate to
find optimal configurations or reconfigure a multi-tenant service includes some draw-
backs that can be found in emerging techniques. To overcome such drawbacks there
must be developed: a) fully-functional reference implementations, b) techniques with
a reuse-oriented design, c) effective extension mechanisms, and d) user-friendly inter-
faces.

The main goal of this dissertation is to enhance the existing support to develop
HCS-driven solutions considering the aforementioned suggestions for improvement.
The main thesis contributions are a DSL to specify the decision space of HCSs called
SYNOPSIS, and a novel catalogue of analysis operations to check and explain validity
criteria as well as to find optimal configurations for one or many users. As minor con-
tributions, two solutions have been developed to improve the existing tooling support



to migrate on-premise infrastructure to Amazon EC2 and to reconfigure multi-tenant
service.

The cornerstone of our proposal to improve the specification techniques has been
to define a DSL, SYNOPSIS, and endow it with a formal semantics based on Stateful
Feature Models. Regarding our proposal to improve the analysis techniques, the key
has been the organization of such techniques in a catalogue of basic analysis operations
that can be combined to support more advanced HCS-driven solutions. The applicabil-
ity of our results is limited to those decision spaces that can be translated to a Stateful
Feature Model, that is enough to support real-world HCSs, in our experience.

vi



CONTENTS

vii

List of Figures xiv

List of Tables xvi

I Introduction 1

1 Introduction 3

1.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Contributions Regarding HCS Specification . . . . . . . . . . . . . 7

1.3.2 Contributions Regarding Automated Analysis . . . . . . . . . . . 9

1.3.3 Contributions Regarding HCS-driven Solutions . . . . . . . . . . 9

1.4 Thesis Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Structure of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II Background 13

2 HCS Modelling 15

2.1 Highly-configurable Services . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Dropbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Amazon EC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Decision Space Representation Techniques . . . . . . . . . . . . . . . . . 19

2.2.1 Structured Natural Language . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Variability Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 21



CONTENTS

2.3 User Needs Representation Techniques . . . . . . . . . . . . . . . . . . . 30

2.3.1 Configuration Models in Variability . . . . . . . . . . . . . . . . . 30

2.3.2 Stateful Feature Models . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 SOUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 HCS-driven Solutions Automated Support 39

3.1 Search of the Best Configuration . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Cloud Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Automated Service Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Automated Support of Variability Models . . . . . . . . . . . . . . . . . . 42

3.4.1 Automated Analysis of Feature Models . . . . . . . . . . . . . . . 42

3.4.2 Automated Analysis of Stateful Feature Models . . . . . . . . . . 45

3.4.3 Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

III Contribution 49

4 Highly-configurable Services 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Abstract Model for Highly-configurable Services . . . . . . . . . . . . . . 52

4.2.1 Configurable Services . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 User Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Highly-Configurable Services . . . . . . . . . . . . . . . . . . . . . 55

4.2.4 Conceptual Metamodel . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 SYNOPSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Configurable and Highly-configurable Services . . . . . . . . . . 58

4.3.2 Decision Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Validity Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



CONTENTS

4.4.1 Warning Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.2 Term Error Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.3 Service Error Level . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 User Configuration Language . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.1 Service and Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.2 User Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.3 User Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 HCS Automated Analysis 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Formal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Primary Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2 Mapping CSs to SFMs . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.3 Mapping HCSs to SFMs . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Configurable Service Analysis operations . . . . . . . . . . . . . . . . . . 79

5.3.1 Core operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.2 Compound operations . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 HCS Analysis operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Core operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.2 Compound operations . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

IV Validation 87

6 Automated Configuration Support for Infrastructure Migration to the Cloud 89

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Feature Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ix



CONTENTS

6.3.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.1 IaaS Configuration Options . . . . . . . . . . . . . . . . . . . . . . 96

6.4.2 Modelling Methodology . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Modelling Case Study: Amazon EC2 . . . . . . . . . . . . . . . . . . . . . 98

6.5.1 AWS Elastic Compute Cloud . . . . . . . . . . . . . . . . . . . . . 99

6.5.2 EC2 Feature Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5.3 Customer Requirements on EC2 FM . . . . . . . . . . . . . . . . . 101

6.6 FM Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6.1 Error Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6.2 Configurations Listing . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6.3 Most Suitable Configuration . . . . . . . . . . . . . . . . . . . . . 106

6.7 Implementation and Verification . . . . . . . . . . . . . . . . . . . . . . . 106

6.7.1 Analysis Operations Implementation . . . . . . . . . . . . . . . . 106

6.7.2 EC2 Web Scraper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.7.3 EC2 FM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.8.1 Comparison to Other Approaches . . . . . . . . . . . . . . . . . . 110

6.8.2 Performance Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.9 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.9.1 Cloud Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.9.2 Variability, Ontologies and Cloud Services . . . . . . . . . . . . . 115

6.9.3 Commercial Approaches . . . . . . . . . . . . . . . . . . . . . . . . 116

6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 User-centric Adaptation Analysis of Multi-tenant Services 119

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.1 Multi-tenancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.2 Desktop as a Service Delivery Models . . . . . . . . . . . . . . . . 122

x



CONTENTS

7.2.3 Feature Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.1 DaaS Configuration Space . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.2 Infrastructural Constraints . . . . . . . . . . . . . . . . . . . . . . 125

7.3.3 Users, Preferences and Conflicts . . . . . . . . . . . . . . . . . . . 126

7.4 Towards User-centric Adaptation of Multi-tenant Services . . . . . . . . 128

7.4.1 User-Centric Adaptation Problem . . . . . . . . . . . . . . . . . . 128

7.4.2 Adaptation Analysis for Service Reconfiguration . . . . . . . . . . 131

7.5 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.5.1 Service Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.5.2 User Preferences Modelling . . . . . . . . . . . . . . . . . . . . . . 136

7.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.6.1 Automated Analysis of Feature Models . . . . . . . . . . . . . . . 137

7.6.2 Preference-based Optimisation . . . . . . . . . . . . . . . . . . . . 137

7.6.3 Obtrusiveness-aware Optimisation . . . . . . . . . . . . . . . . . . 140

7.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.7.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.7.3 Experimental Results and Discussion . . . . . . . . . . . . . . . . 144

7.8 Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.9 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

V Final Considerations 153

8 Conclusions and Discussion 155

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.2 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

xi



CONTENTS

Bibliography 161

xii



LIST OF FIGURES

xiii

1.1 Contributions of this Dissertation. . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Cloud Service Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Excerpt of Dropbox description. . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Excerpt of Amazon EC2 description. . . . . . . . . . . . . . . . . . . . . . 20

2.4 Feature diagram representing a smart home. . . . . . . . . . . . . . . . . 23

2.5 Excerpt of a feature diagram representing an extended FM . . . . . . . . 25

2.6 Feature cardinalities may lead to ambiguous situations . . . . . . . . . . 25

2.7 An IaaS described using TVL. . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 The main four types of variability configurations processes. . . . . . . . 31

2.9 A visual metaphore of FMs, CMs and SFMs . . . . . . . . . . . . . . . . . 35

2.10 An example of a Stateful Feature Diagram . . . . . . . . . . . . . . . . . . 36

2.11 SOUP preferences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Screenshot of the Amazon Calculator. . . . . . . . . . . . . . . . . . . . . 40

3.2 Process for the Automated Analysis of Feature Models. . . . . . . . . . . 43

4.1 Highly-configurable Service Conceptual Metamodel. . . . . . . . . . . . 57

4.2 Simple Block Storage Service in SYNOPSIS. . . . . . . . . . . . . . . . . . 58

4.3 Volume Storage HCS in SYNOPSIS. . . . . . . . . . . . . . . . . . . . . . 59

4.4 Simple Computing Service in SYNOPSIS. . . . . . . . . . . . . . . . . . . 62

4.5 Example of Redundant Dependency. . . . . . . . . . . . . . . . . . . . . . 63

4.6 Example of Dead Value and False Decision Term. . . . . . . . . . . . . . . 64

4.7 Example of False Configurable Service. . . . . . . . . . . . . . . . . . . . 65

4.8 Example of an Inconsistent Service. . . . . . . . . . . . . . . . . . . . . . . 66

4.9 User needs on the Simple Block Storage Service. . . . . . . . . . . . . . . 67



LIST OF FIGURES

5.1 Overview of our approach for the automated analysis of HCSS. . . . . . 73

5.2 Dropbox SFM resulting from the mapping algorithm . . . . . . . . . . . 76

6.1 Example of a FM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 IaaS Configuration Space Description and Analysis as a FM. . . . . . . . 93

6.3 Feature Model of EC2 and EBS . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 AAFM operations support for EC2 configuration . . . . . . . . . . . . . . 103

6.5 Instance types distribution in terms of RAM and ECU (log10 scale). Each
coloured rectangle denotes a different area of test cases. . . . . . . . . . . 113

7.1 a) DaaS delivery models b) Example of a FM. . . . . . . . . . . . . . . . . 123

7.2 User-Centric Adaptation MAPE (Monitoring, Analysis, Planning, Exe-
cution) Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3 a) Service modelling. b) Analysis inputs and outputs. . . . . . . . . . . . 132

7.4 DaaS configuration space expressed as a Feature Diagram – a FM graph-
ical notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.5 Average satisfaction improvement with respect to the previous configu-
ration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xiv



LIST OF TABLES

xv

2.1 Comparison of main variability modelling approaches. . . . . . . . . . . 28

4.1 Expression Types for SYNOPSIS . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Traceability table between HCS and SFM elements for the Dropbox ex-
ample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Mapping configurable services into SFMs . . . . . . . . . . . . . . . . . . 77

5.3 Traceability table between HCS and SFM elements for the Dropbox ex-
ample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Mapping HCSs into SFMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Migration case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Iaas mapping to EFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Elastic Compute Cloud (EC2) instance categories and specific types . . . . 101

6.4 Customer requirements for the case study . . . . . . . . . . . . . . . . . . 102

6.5 Expressiveness comparison among EC2 FM, Amazon TCO and Cloud-
Screener. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6 Comparison of results with CloudScreener. m3.large instances present
7.5 GB of RAM, while c3.xlarge instances present 14 ECU. . . . . . . . . 111

6.7 Experimental settings groups and ranges. . . . . . . . . . . . . . . . . . . 112

6.8 Comparison between FaMa based impl and our alternative impl in terms
of performance and output . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1 Impact of the user profiles on the required infrastructural resources for
different DaaS delivery models [33]. . . . . . . . . . . . . . . . . . . . . . 124

7.2 Shared Desktop as a Service (DaaS) configuration options depending on
the delivery model and their workload peaks. . . . . . . . . . . . . . . . 126



LIST OF TABLES

7.3 Tenants’ usage profile and preferences. Potential conflicting preferences
are associated with the same number. . . . . . . . . . . . . . . . . . . . . 127

7.4 Preferences satisfaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.5 Preferences reconfiguration scenario* for a hosted shared delivery model
(changes in bold). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.6 Enabled features and attribute values for configurations c1 and c2. . . . . 139

7.7 Estimation of the workload impact on the infrastructure. . . . . . . . . . 140

7.8 Amount of changes between two consecutive snapshots at t− 1 and t. . 143

7.9 Characteristics of the FMs used for the experimental study. . . . . . . . . 143

7.10 Results of the preference-based analysis for FastPGA, NSGAII and ran-
dom search (RS) algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xvi



INTRODUCTION

PART I





1

INTRODUCTION

3

“Which road do I take?” Alicia asked. “Where do you want to go?” responded the Cheshire Cat.

Alice in Wonderland (1865),
Lewis Caroll

I n this chapter we introduce and motivate this dissertation. Section §1.1 presents the
research context. Section §1.2 briefly describes the goals of the dissertation, while contri-
butions are summarised in Section §1.3. Section §1.4 describes the context of the thesis,

and finally Section §1.5 shows the structure of the rest of the document.



CHAPTER 1. INTRODUCTION

1.1 RESEARCH CONTEXT

During the last years, the use of services has been generalised thanks to cloud com-
puting [104], which has provided the necessary momentum to make software services
a major business [8, 27]. Up to date, there exist a plethora of cloud providers that offer
services that go from an infrastructure level – such computing or storage services – to
end-user software – such as music streaming or office apps. Most of these services are
configurable services, i.e. services where one or more terms present different alternatives
to be chosen by the consumer.

The goal of configurable services is to the adaptation of services to the specific needs
of their consumers, covering wider market segments, and consequently increasing the
number of potential clients. An example of a configurable service is Dropbox [50],
which can be contracted on different plans. Each plan determines specific values for
the storage limit and the file sharing options. While the basic plan is free, offering a
storage limit of 2 GB and simple file sharing options; the pro plan costs 10 dollars per
month, but provides a 1000 GB limit and advanced file sharing control.

The advanced configuration capabilities of some of these configurable services lead
us to employ the term Highly-configurable Service (HCS). A HCS can be intuitively de-
fined as a service whose configuration support is not properly handled by the current
technology. Besides decision terms, HCSs enable the configuration of multiple service
items and may be even related to additional services. This is the case of Amazon EC2
[5], which enables the hiring of multiple customisable computing instances and addi-
tional instance storage through the Elastic Block Store (EBS) service.

Although the configuration capabilities of HCSs suppose a clear advantage to the
service clients, such capabilities may also hinder the decision making. The selection of
the best configuration may not be a trivial task, especially if performed manually. First,
it is necessary to fully understand the different service configurations, a.k.a. the service
decision space, and then to navigate through the different decision terms to discard the
values which do not satisfy the required requirements. Finally, we have to evaluate the
remaining configurations in order to choose the most suitable. Although for a service
like Dropbox this decision making may seem trivial, for services such as Amazon EC2,
which almost 17’000 configurations and thousands of dependencies [73], it is clearly
not.

As the increasing use of commercial HCSs in which the wrong configuration and

4



1.1. RESEARCH CONTEXT

selection may imply an economic lost for clients and providers, the complexity and de-
mand of systems supporting the HCS lifecycle also increase. We refer to such systems
as HCS-driven solutions from now on. Our study of the different approaches reveals
that there is a lack of specific techniques to develop HCS-driven solutions, especially
for the specification languages; the techniques to extract useful information from the
HCSs, analysis techniques from now on; and the tooling support.

In this dissertation we focus on some issues related to the specification, the analysis
and the tooling support for HCSs. Regarding specification, as far as we know there
is no specific proposals to describe the configuration capabilities 1 of HCSs. In this
sense, some general approaches have been employed – with drawbacks – to describe
the decision terms of services in real-world scenarios:

• Commercial service providers, such as Amazon [4], Dropbox [50] or Rackspace
[129] describe the configuration capabilities of their services for marketing or
legal purposes. In order to examine the whole decision space, the potential
clients have to navigate through multiple documentation pages which describe
the terms and their values in heterogeneous ways. While some values and terms
are structured in tables, some others are presented in natural language at the end
of large descriptions. This kind of description not only hardens the examina-
tion of the service, but also the automated processing required to enable analysis
techniques and tooling support.

• Approaches from the services field, such as WS-Agreement [115] or USDL [14],
are employed to describe a service by means of their terms – such as guarantee
terms or service description terms. However, these approaches do not provide
mechanisms to specify the decision terms and their values in a succinct way. For
this purpose, we have to describe the configurations one by one.

• Some authors have proposed variability modelling techniques [21, 88] to describe
the configuration capabilities of HCSs in the cloud [69, 177]. These techniques
have been widely used to represent the variability of software-intensive systems
in the academia and the industry. Furthermore, they enable automated analysis
techniques [19] to extract useful information from the models. However, the high
configuration capabilities of HCSs exceed the modelling mechanisms provided
by actual variability modelling.

1In this dissertation, we employ decision space and configuration capabilities as synonyms.

5



CHAPTER 1. INTRODUCTION

Regarding analysis, existing research proposals overlook the analysis techniques of
HCSs [95]. As far as we know, there is no operations catalogue to automate the support
of HCSs. The configuration of HCSs in the cloud has received some attention, although
most of the times is not considered as a problem by its own [90, 97], and others the
proposed approaches deal only with a small subset of the provider’s decision space
[55, 58, 109].

Finally, there is also room for improvement regarding the tool support. On the one
side, the lack of automated support from the academia has been highlighted in the liter-
ature [86]. From the approaches which propose analysis techniques, only a few of them
provide tool support and are still in their infancy, or are tied to particular cases or sce-
narios. On the other side, the support provided by the industry is insufficient. While
the support offered by service providers is limited to the cost estimation of given con-
figurations [3, 7, 130], commercial applications [38] often return false positives when
searching for optimal configurations [73].

1.2 THESIS GOALS

We have studied the state of the art with regard to all the issues described in the
previous section, and we have identified a set of problems that constitute the goals to
be achieved in this thesis, namely:

1. Analyse to what extent current proposals support the specification of HCSs con-
figuration capabilities.

2. Provide a fully-fledged language to specify configurations of services (SYNOP-
SIS. SimplY a NOtation to sPecify Service configuratIonS ).

3. Define a set of validity criteria for SYNOPSIS documents.

4. Analyse the analysis techniques currently used in HCSs-driven solutions.

5. Design and develop a set of analysis operations on SYNOPSIS documents.

6. Identify the usefulness of analysis operations for supporting real scenarios in the
cloud.

These goals can be summarised in a main goal stated as follows:

6



1.3. CONTRIBUTIONS

Dissertation Goal

Improve the current support to develop HCS-driven solutions.

1.3 CONTRIBUTIONS

Our approach to address the aforementioned goals is highly inspired in the solu-
tions proposed for the automated analysis in SLAs [101, 115, 138], and Business Process
Management (BPM) [28, 47], and in particular for the description and automated anal-
ysis of variability models [17, 60, 154]. In these cases, the general approach was to
extend existing models; to propose highly expressive notations, in order to represent
such extensions; and to interpret analysis operations as queries on a formal represen-
tation of such models and their instances. The specific contributions of this thesis are
depicted in Figure §1.1 and summarized in the following.

1.3.1 Contributions Regarding HCS Specification

Our first contribution (C1 in Figure §1.1) is the definition of a language to spec-
ify the decision space of a HCS (SYNOPSIS). As far as we know, we are pioneers at
defining a Domain Specific Language to identify the decision space of HCSs. The main
features of SYNOPSIS are:

1. Compliant with big HCS vendors: SYNOPSIS supports all the elements required
to describe the decision space of HCSs provided by Amazon, Dropbox and Mi-
crosoft. Terms, dependencies, multi-items and and succinct mechanisms to de-
scribe pricing policies are the key elements in this point.

2. High and extensible expressiveness: SYNOPSIS allows specifying logical, rela-
tional and arithmetic relationships; and enumerated, boolean, integer and real
terms by using a very expressive expression language. SYNOPSIS has been de-
signed following the Semantics Priority Principle by [82], thus SYNOPSIS seman-
tics assumes the existence of an ideal underlying variability analysis engine able
to deal with any kind of variability element (feature, cardinality, attributes and

7



CHAPTER 1. INTRODUCTION

45#/#75#

HCS#Validity#Criteria#

SYNOPSIS#Formal#Seman;cs#

Tool#Support#(IDEAS#extension)#

C2#

C3#

C6#

Contribu)ons+on+HCS+specifica)on+ Contribu)ons+on+HCS+analysis+

Contribu)ons+on+HCS5driven+solu)ons+

Exis)ng+support+

HCS#Ops.# User#Ops.#

Service#Ranking#

C4#

Preference#Models#

Cloud#Migra;on# Mul;Rtenant#
Service#Adapta;on#

C5#

Textual#Variability#Languages# Variability#Analysis#

SYNOPSIS#C1#

Figure 1.1: Contributions of this Dissertation.

multi-features). Current version of SYNOPSIS uses FAMA solver [158] – a tool
for the automated analysis of feature models – and according to the criteria we
have used to evaluate similar approaches from literature, we can claim that it is
very expressive.

3. Domain-independent: the aforementioned extensibility and expressiveness en-
dows SYNOPSIS with a very-high domain-independence.

4. Human-readable: SYNOPSIS provides a human-readable syntax.

The second contribution of this thesis (C2 in Figure §1.1) is the identification of
a set of validity criteria for SYNOPSIS documents, which allows us to identify up to
five kind of errors: redundant dependencies, dead values, false decision terms, false
configurable service and inconsistent service.

8



1.3. CONTRIBUTIONS

1.3.2 Contributions Regarding Automated Analysis

The first contribution (C3 in Figure §1.1) aimed at providing support for automated
analysis, consists of the definition of formal semantics for SYNOPSIS. This provides the
SYNOPSIS constructions with precise meaning, and eases the automated extraction of
information from documents written in SYNOPSIS (a.k.a. SYNOPSIS Documents or
simply documents for short). In particular, SYNOPSIS semantics is based on Stateful
Feature Models (SFMs) [154, 162].

Next, relying on SYNOPSIS semantics, we have defined and developed a catalogue
of analysis operations, which are categorised in two groups (C4 in Figure §1.1): 1) oper-
ations for HCS providers to check and explain violations of SYNOPSIS validity criteria,
and 2) operations for users to assist the decision making on HCSs. A reference imple-
mentation based on SFMs and their automated analysis tools [158] has been developed
to support the execution of all the operations. Both groups of operations are ready to
be used in HSC-driven solutions.

1.3.3 Contributions Regarding HCS-driven Solutions

The first contribution aimed at solving two well known problems in the HCS do-
main. On the one side, the migration of an on-premise infrastructure to the cloud,
which has been interpreted as the search of the optimal cloud infrastructure configu-
ration for given user requirements. And on the other side, the adaptation of a multi-
tenant service to meet the changing preferences of the tenants, where the adaptation
space of the service has been interpreted as the decision space of an HCS and the adap-
tation analysis is performed by means of user-side analysis operations.

The second contribution aimed at providing support for both human and soft-
ware clients that are involved in the development of HSC-driven solutions (C6 in Fig-
ure §1.1). In this case, our solutions have been designed to be integrated in IDEAS
(Integrated Development Environment for Service-driven Solutions (IDEAS). IDEAS
provides a publicly-available user-friendly front-end which makes possible: 1) to edit
SYNOPSIS documents assuring they comply the validity criteria, 2) to analyse some
properties appealing for final and technical users. Such an environment is also avail-
able to be used by software clients both as a Java library, and a web service.

9



CHAPTER 1. INTRODUCTION

1.4 THESIS CONTEXT

This thesis has been developed in the context of the research group Applied Soft-
ware Engineering (Ingenierı́a del Software Aplicada-ISA) of the University of Seville,
and specifically on the context of Software Product Lines and Automated Analysis re-
search area. As a holder of a pre-doctoral research scholarship from the SETI (reSearch-
ing on intElligent Tools for the Internet of services) national research project, the research
has been developed in the scope of this project. Besides SETI project, there is a number
of research projects that have made this dissertation possible:

• THEOS, Tecnologı́as Habilitadoras para EcOsistemas Software: In the context of this
regional project, we propose the description and analysis of HCS as variability
models

• COPAS, eCosystems for Optimized Process As a Service: In the context of this re-
gional project, we propose the support of multi-stakeholder HCS configuration
processes.

• TAPAS, Tecnologı́as Avanzadas para Procesos como Servicios: In the context of this
national project, we propose the definition of Configurable Service Models (CSMs)
to describe the configuration capabilities of HCSs.

Additionally, the PhD candidate has completed three research stays:

1. A two-month research stay in Universidad Politécnica de Valencia, under the supervi-
sion of professor Vicente Pelechano. June - July 2012.

2. A three-month research stay in Cardiff University, under the supervision of professor
Omer F. Rana. September - December 2012.

3. A three-month research stay in Lero, the Irish Software Engineering Research Centre,
invited by professor Mike Hinchey. September - December 2013.

1.5 STRUCTURE OF THIS DISSERTATION

Part I. Introduction. This chapter provides an overview of the contributions of this
dissertation.

10



1.5. STRUCTURE OF THIS DISSERTATION

Part II. Background. Chapter §2 summarises the background concepts for HCS de-
scriptions. Chapter §3 details the background concepts for HCS and variability
automated support.

Part III. Our contribution. Chapter §4 defines HCSs and our support for their specifi-
cation. Chapter §5 describes our proposal for the automated analysis of HCSs.

Part IV. Validation. Chapter §6 presents our first validation scenario, in particular a
migration to the cloud assisted by means of modelling and automated analysis
techniques. Chapter §7 presents our second validation scenario, in particular a re-
configuration scenario in a multi-tenant service, assisted by means of automated
analysis techniques.

Part V. Final Considerations. Chapter §8 briefly revises the contributions in this dis-
sertation and explores the opportunities that arise from this work.

11



CHAPTER 1. INTRODUCTION

12



BACKGROUND

PART II





2

HCS MODELLING

15

Description is what makes the reader a sensory participant in the story.

Stephen King (1947),
Writer

I n this chapter, we detail the foundations of Highly-configurable Services. Section §2.1
describes the concept of Highly-configurable Service and illustrates it with a couple of
examples. In Section §2.2 we analyse the state of art for the representation of the decision

space of services, while in Section §2.3 we do the same for the user needs. Section §2.4 ends the
chapter.



CHAPTER 2. HCS MODELLING

2.1 HIGHLY-CONFIGURABLE SERVICES

The concept of HCS was firstly introduced by Lamparter et al. [94] for web ser-
vices. They consider an HCS as a web service with multiple configurations C, where
each configuration Cj ⊆ C is mapped to a real number Pj that represents the price.
This HCS concept has several shortcomings to be employed for a wider scope. First,
the different configurations of the service are represented as attribute-value pairs, but
the authors do not present the way to define the attribute domains. Second, there is
no way to define dependencies among the different attributes, so the different service
configurations must be defined in an extensive form. And finally, the proposed repre-
sentation directly relies on the OWL formalism instead of a Domain Specific Language
(DSL), coupling to a particular resolution paradigm.

While Lamparter et al. [94] HCSs are related to web services, nowadays most of
the existing HCSs are in the cloud. NIST [104] defines cloud computing as “a model
for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider interac-
tion” . Usually, cloud computing refers to both the applications and resources delivered
as services over the Internet and the hardware and systems software in the datacenters
that provide those services [8].

PaaS$

SaaS$

IaaS$

Figure 2.1: Cloud Service Models.

Cloud computing has given providers an enabling paradigm to massively deliver
and customise different services. There are many cloud providers, such as Amazon,

16



2.1. HIGHLY-CONFIGURABLE SERVICES

IBM, Microsoft or Google, which offer a broad range of configurable services that are
categorised in three service models (Figure §2.1): 1) Infrastructure as a Service (IaaS)
provides processing, storage, networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary software (e.g. Amazon EC2 [5]
or Rackspace servers [131]); 2) Platform as a Service (PaaS) provides capabilities to de-
ploy onto the cloud infrastructure consumer-created or acquired applications created
using programming languages, libraries, services, and tools supported by the provider
(e.g. AppEngine [74] or Heroku [81]). 3) Software as a Service (SaaS) provides applica-
tions running on a cloud infrastructure, which are accessible from various client de-
vices through either a thin client interface, such as a web browser (e.g., web-based
email), or a program interface (e.g. Wordpress [178], Citrix’s DaaS [33] or Dropbox
[50]).

In the following, we present two examples of configurable services in the cloud:
Dropbox as a configurable Storage as a Service, and Amazon EC2 as a Highly-configurable
Computing as a Service.

2.1.1 Dropbox

Dropbox [50] is a file hosting SaaS that offers cloud storage, file synchronization,
personal cloud, and client software. Dropbox allows users to create a special folder on
their computers, which Dropbox then synchronizes so that it appears to be the same
folder (with the same contents) regardless of which computer is used to view it. Files
placed in this folder are also accessible via the Dropbox website and mobile apps.

Dropbox provides fewer configuration capabilities than other services. Dropbox
users can choose among three different plans (basic, professional and business). Addi-
tionally, there are official and unofficial add-ons, mostly created by the Dropbox com-
munity. These add-ons are both in the form of web services such as SendToDropbox
(which allows users to email files to their Dropboxes), or Mover (which facilitates on-
line backup of FTP, Git, MySQL, and other services to Dropbox accounts).

However, the configuration capabilities of Dropbox have a strong impact on the
delivered service. This is especially so in the case of the plans. While the basic plan
provides reduced storage, backup and sharing options at no cost, professional and
business plans increasingly improve these capabilities together with the service price.

17



CHAPTER 2. HCS MODELLING

Figure 2.2: Excerpt of Dropbox description.

2.1.2 Amazon EC2

Amazon is one of the main cloud commercial providers. In particular, the Amazon
Web Services division [4] provides services for computation [5], storage [6], databases
or content delivery among others. Due to the wide range of services, several PaaS
and SaaS providers like Heroku or Netflix run on top of the Amazon services. The
service offering of Amazon is continuously evolving, and for this reason we work in
this dissertation with a specific snapshot of the provided services from 12th June 2014.

We focus in particular on Amazon EC2, the computing cloud service of Amazon,
to illustrate the configuration capabilities of an IaaS. Amazon EC2 provides “provides
resizeable compute capacity in the cloud” [5] on pay-per-use basis, with different op-
tions to configure the aspects of the computing instances. Additionally, we can add
extra storage to such instances with the EBS service. On the aforementioned date,
Amazon provides six main configuration options for EC2:

• Instance type. EC2 offers 32 different instance types, grouped under different cat-
egories, depending on the purpose: General Purpose, Compute Optimized, GPU
Instances, Memory Optimized and Storage Optimized, distinguishing also be-
tween current and previous generations. Each instance type has a specific RAM

18



2.2. DECISION SPACE REPRESENTATION TECHNIQUES

size, a number of cores and disk storage 1.

• Operating system. Three different Linux distributions (Amazon Linux, Suse and
Red Hat) and a Windows version (Windows Server) with an optional SQL Server
in different flavours (Express, Web and Standard) are available.

• Storage. Amazon provides a fixed disk size for EC2 instances, depending on each
instance type. If the default storage needs to be extended, the EBS service pro-
vides additional storage.

• Geographic location. Amazon offers 8 geographic locations, distributed among
different areas of America, Europe, Asia and Oceania.

• Purchasing mode. EC2 instances may be purchased on demand or in a reservation
way. While users pay per use in both modes, cost hour is lower for reserved
instances in exchange for an upfront payment. In total, there are seven different
purchasing modes.

• Dedication. Additionally, an EC2 instance may run on a dedicated machine, guar-
anteeing an additional isolation in exchange of an additional cost.

All these configuration options and values lead to 68544 potential different con-
figurations. However, there are constraints that bound the number of available con-
figurations. For instance, some instance types are not available for given geographic
locations. In the same way, not all the instances can be reserved or dedicated. Consid-
ering all these constraints EC2 presents 16991 available configurations – this number
will be explained during the next chapters.

2.2 DECISION SPACE REPRESENTATION TECHNIQUES

2.2.1 Structured Natural Language

Natural language is the most common way of representation by commercial pro-
viders such as Dropbox [50], Amazon [5] or Microsoft [112]. Figure §2.2 and Figure §2.3
show examples of the description of some instances of Amazon EC2 and Dropbox

1We ignore micro instances, since they are intended for short CPU burst purposes and their perfor-
mance is highly variable and unpredictable.

19



CHAPTER 2. HCS MODELLING

Figure 2.3: Excerpt of Amazon EC2 description.

capabilities, respectively. The lower the level of the service in the service model, the
more detailed the configuration capabilities are in the description. On the opposite
side, the higher the level of the service, the more oriented to marketing the description
is.

Dropbox [50] is described by means of natural language. Although this service has
only one main configuration option with three values – basic, professional and busi-
ness plans –, the decision space is not really well described. In order to understand the
exact impact of each plan in the rest of configurable terms – storage, sharing options or
backup – it is necessary to carefully read and navigate through the whole documenta-
tion (an excerpt is shown in Figure §2.2).

Amazon EC2 is described in its website [5] by means of natural language and ta-
bles. They use text for describing the big picture and marketing aspects, but also some
constraints; and tables to show the specific configuration options, a.k.a. decision terms,
values and details. In this sense, the different decision terms and values are scattered
among several pages – for instance Amazon groups instance types in two categories
named new generation and previous generation, each in a different page.

20



2.2. DECISION SPACE REPRESENTATION TECHNIQUES

Most of the decision space of EC2 is exhaustively described, but the use of natural
language leads to some ambiguities and unclear aspects. While some non available
configurations are explicit, by means of a N/A mark in the tables – for example, a
cc2.8xlarge light reserved instance in Sao Paulo – , others non available configurations
simply are excluded from the tables – for example, a i2.8xlarge light reserved instance
for the same location. Besides, there are other constraints that are described using
natural language. For example, if we contract a heavy reserved instance we are forced
to pay for a 24x7 usage for he contracted period.

As far as we know, neither providers nor academia propose specific DSLs to de-
scribe the decision space of HCSs. While, as we have seen, providers employ natural
language, in the literature the work of Lamparter et al. [94] is the closest approach to
a DSL. Although natural language is flexible, highly expressive and comprehensible
by most of the consumers, it also present serious drawbacks. Its intrinsic ambiguity, a
lack of structure and exhaustiveness and the heterogeneous descriptions made by ser-
vice providers harden the fully understanding of the service and a posterior automated
processing.

2.2.2 Variability Modelling

Variability is a property of software systems that provides them with the ability
of being customized according to the specific user needs. Operating systems like De-
bian OS or Android, or Software Product Lines (SPLs) are examples of the so-named
variability-intensive systems. While some authors prefer to use the term “highly-configurable
systems”, others prefer the aforementioned variability-intensive systems. Variability
Models (VMs) are used to describe the common and variable aspects of variability-
intensive systems. They represent all the possible configurations of the system, often
in terms of functional features [88], although they can also describe extra functional
properties [18].

In the same way that VMs are used to represent the configurations of variability-
intensive systems, they can be employed also to describe the configuration capabilities
of HCSs. In general terms, a VM is composed by a set of features – or elements –
which are interrelated among them by means of relationships. While VMs represent
the functional features of SPLs and their relationships, they can describe the decision
terms of HCSs and their dependencies.

21



CHAPTER 2. HCS MODELLING

Feature Models

One of the most used VMs are the so-called Feature Models (FMs). FMs represent the
commonalities and variabilities of a system in terms of features, which are distinctive
characteristics a user can observe [88]. A FM can de defined as follows:

Definition 2.1 - Feature Model.
A FM is a tuple (F, P) such that F is the set of features of the system and P the set of
available configurations defined as a subset of the powerset of features, i.e. P ⊆ P(F),
such that a configuration is defined by a set of features in F.

Let us take a Smart Home Systems (SHSs) as an example. Its set of features F and a
possible configuration C1 (see Figure §2.4) can be defined as follows:

F = {SmartHome, Lighting,ControlSystem,CellPhone,ControlPanel,
Antithe f tAlarm, Internet, Ethernet,3G,WiFi− b/g,WiFi− n, MoviePlayers,
HDTV42, HDTV32, PCPlayer,Contents,VideoOnDemand, Providers,
Cache, DMS}

C1 = {SmartHome, Lighting,CellPhone, Alarm, HDTV42,
HDTV32, DMS,VideoOnDemand}

In order to define the set of configurations, a FM comprises a set relationships that
limits the allowed feature combinations, so that a configuration must satisfy all the
relationships. Relationships in a FM are mainly hierarchical. Any FM has a root feature
that represents the whole functionality of any configuration. The root feature is refined
in child features, which decompose the behaviour or functionality of the root feature
into subfeatures, which describe the scope of the root feature in more detail. This
refinement process is repeated for the child features to conform a tree-like structure.
Although the hierarchical structure helps to represent the feature refinement, it can
hinder the representation of restrictions that affect features in different branches of
the tree. In these circumstances, cross-tree constraints can be used. Feature diagrams
[133, 142] are probably the most used graphical representation of FMs. Figure §2.4
presents a feature diagram for a SHSs.

FMs have evolved in time adding new elements to the set of features and relation-
ships. So Czarnecki et al. [42] and Riebisch et al. [133] propose Cardinality-Based Feature
Models (CBFMs) as an evolution of basic FMs that introduce cardinalities. They allow

22



2.2. DECISION SPACE REPRESENTATION TECHNIQUES

!"#$%&'(")&

*+,-./,& 0(/%$(1&
!23%)"&

4(5+)&
61#2)$3&

7/.8%-)9&
71#$"& 0(/%)/%3&

0)11&:-(/)& 0(/%$(1&
:#/)1&

;<==>?&

@+A)(&(/&
B)"#/A&

B+,+%#1&4)A+#&
!)$5)$&

;<==>?&
'BC@&D>E& 'BC@&F>E&

;<==F?&

G%-)$/)%&

FH&

;<==D?&

I+J+8KL,&

I+J+8/&

:$(5+A)$3& 0#M-)&

:$(5+A)$&7& :$(5+A)$&N&

;<==>?&

:0:1#2)$&

*),)/A&

4#/A#%($2&

O6.(/#1&

B)6)/A3&

!)%&

GPM1QA)3&

R/%)$/)%&

Figure 2.4: Feature diagram representing a smart home.

to group a set of features and assign them a cardinality that denotes the number of fea-
tures (cardinal) that can be selected at the same time. CBFMs increase the succinctness
of the model, and they are as expressive as basic FMs, as Schobbens et al. [142] proved.

CBFMs use the following kinds of hierarchical relationships in FMs:

• Mandatory: a mandatory relationship affects a parent and child feature. It forces
the child feature to appear in a configuration whenever its parent feature does.
For example, any SHS must have lighting and controlSystem features. If a
videoOnDemand feature is selected, then providers must also be selected.

• Optional: a child feature connected to a parent feature by means of an optional
relationship may be optionally selected whenever its parent feature is. For ex-
ample, the antitheftAlarm and Internet connection are optional features in a
SHS.

• Set relationship: set relationships affect a parent feature and a set of two or more
child features. It contains a set of natural numbers or cardinality that constraints

23



CHAPTER 2. HCS MODELLING

the number of child features to be selected in a configuration whenever its parent
feature is selected. For example, if the Internet feature is selected, then 1 to 4
features must be selected from Ethernet, 3G, WiFi-b/g and WiFi-n features.

Alternative relationships can be interpreted as a particular case of set-relationship
with a [1..1] cardinality, where only one child feature may be selected in a config-
uration at the same time if the parent feature is selected. In turn, or-relationships
are those set relationships whose cardinality is [1..N] such that N is the number
of child features. For example, the InternetConnection feature is the parent in
an or-relationship.

Besides hierarchical relationships, cross-tree constraints break the tree-like structure
to represent non-hierarchical relationships. The most used cross-tree constraints are:

• Dependency: a feature depends on another feature if the second one must be part
of a configuration whenever first one is selected. For example, the cache feature
requires for a digitalMediaServer feature to store video and the antitheftA-

larm requires a controlPanel for de/activation.

• Exclusion: two features exclude themselves if both of them cannot be part of
a configuration at the same time. For example the antitheftAlarm feature is
incompatible with a cellPhone feature for security reasons.

Besides features, FMs can collect additional information by using the so-called at-
tributes. An attribute represents relevant information such as feature development cost,
versions, RAM consumption, performance or technological requirements. FMs that
use attributes are known as Extended Feature Models (EFMs) [18]. Figure §2.5 shows an
example of a FM with attributes. It adds information regarding Internet bandwidth
to an excerpt of the FM in Figure §2.4. Each kind of connection provides a different
bandwidth. Since more than one connection can be chosen, the maximum available
Internet bandwidth in the SHS is the maximum bandwidth provided by each chosen
connection.

An EFM may contain constraints that affect attributes which reduce even more the
set of configurations an EFM describes. So for example, if a constraint sets the In-

ternet max bandwidth to at least 80 Mbps then it forces any SHS to have at least an
Ethernet or Wifi-n connection since they are the only features providing such band-
width. Along this dissertation, we will refer using the term FM to FMs, CBFMs and

24



2.2. DECISION SPACE REPRESENTATION TECHNIQUES

!"#$%"$#&

'#($%"$#&

)*&

+,--./&

01213456&

01213"&

789:8";<1;#(=&>?8#&
@$%?3A8BC$&D&E-E&
&

48";<1;#(=&>?8#&

F$%?3A8BC$&D&E-E&

48";<1;#(&G&H.&I&48";<1;#(&J&KEE&

&

48";<1;#(=&>?8#&

F$%?3A8BC$&D&E-E&

48";<1;#(&1"&LKMNM,OM,PMO.M)KM.PMH.Q&

&

48";<1;#(=&>?8#&

F$%?3A8BC$&D&E-E&

:8";<1;#(&JD&O-.&

&

48";<1;#(=&>?8#&

F$%?3A8BC$&D&E-E&

:8";<1;#(&JD&,EE&

&

!"#$%"$#-789:8";<1;#(&D&
R89S'#($%"$#-48";<1;#(M&

)*-48";<1;#(M&
01213456-48";<1;#(M&
01213"-48";<1;#(T&

Figure 2.5: Excerpt of a feature diagram representing an extended FM

EFMs indistinctly. Since the latter is an extension of the former, we consider both the
same kind of model for the sake of simplicity, as in the same way many authors do
[9, 141, 146].

Multi-features

The concept of multi-feature – a.k.a. cloneable feature – is common in variability-
intensive systems. Features in a FM are unique, which means that no other feature can
refer to the the same functionality. However, with multi-features, it is possible to create
more than one feature instance, although the concept of instance still has an ambiguous
interpretation. The FM in Figure §2.6 shows an example where the ambiguity arises.
A car must have 4 tires, each of which can be hard or soft. Must all the tires be either
soft or hard? Or is it possible to combine them anyhow?

!"#$

%&#'$

("#)$ *+,$

-.//.0$

-1//10$

Figure 2.6: Feature cardinalities may lead to ambiguous situations

Several authors have made proposals to represent multi-features. Riebisch et al.

25



CHAPTER 2. HCS MODELLING

[133] proposed a feature cardinality relationship, where a parent and a child feature
are linked by a cardinality which indicates the number of valid instances of the child
features that can be selected in a configuration. The cardinality [0..1] is equivalent to an
optional relationship and [1..1] to a mandatory relationship. Later, Czarnecki et al. [43]
proposed cardinalities both for group relationships and also for single features. How-
ever, the multi-level configuration process that they present in this work lack support
for the latter cardinalities.

Michel et al. [110] formalised the concept of clone in feature diagrams, and dif-
ferentiated between group cardinalities and feature cardinalities. While the former
describes the number of children that can be selected in a group relationship, the latter
refers to how many times a given feature can be repeated. In view of the clones, they
redefine the concept of product, since a feature can be included more than once in a
product.

Cordy et al. [39] introduced the current term – multi-feature – and approach this
using their TVL language. The authors identify the ambiguities introduced by cardi-
nalities, that can be defined on group relationships or single features, and propose an
array-based syntax to refer to multi-features. They also introduce the notion of con-
text, i.e. a subtree of the model that may include multi-features, and the existential and
universal quantification operators for the definition of constraints.

Textual Variability Languages

Besides FMs as general representations, there are specific languages to realise the
variability modelling capabilities of these models. We describe the main textual vari-
ability languages identified and compared in the work of Eichelberger and Schmid
[53]. Most of the following descriptions are extracted from that paper:

• The Feature Description Language (FDL) [48] was constructed by applying de-
sign principles of Domain-Specific Languages (DSLs). In addition to the syntax,
the authors specify a feature diagram algebra.

• The tree-grammar approach [15] represents cardinality-based feature diagrams
using (iterative) tree grammars. In particular, Batory represents constraints in
terms of propositional formulae.

• The Variability Specification Language (VSL) [132] aims for the integration of
prominent feature modeling approaches with configuration links and variable

26



2.2. DECISION SPACE REPRESENTATION TECHNIQUES

entities. In VSL, configuration links are a specific form of references. Variable en-
tities enable the modelling of predefined chains and networks of configurations
interrelated by configuration links.

• The Simple XML Feature Model (SXFM) is a XML based language which enables
its automated analysis. SXFM is used in the feature model repository Software
Product Lines Online Tools (S.P.L.O.T) [105].

• FAMILIAR [1] aims for defining, combining, analysing and manipulating feature
models. Due to the scope of the dissertation, we focus on the variability mod-
elling concepts rather than on the scripting language capabilities.

• The Textual Variability Language (TVL) [35] is intended to overcome the short-
comings of graphical notations like feature diagrams, which are usually inferior
to text formats in terms of tool support and syntax richness. TVL allows to de-
fine attributes and complex constraints, and provides different syntactic sugars to
ease the definition of FMs. TVL*, an extended version of TVL, provides support
for real attributes and multi-features [39].

• µTVL (micro TVL) [34] is a subset of TVL which aims at core feature modeling.
Basically, µTVL drops some types and changes some semantics. Further, µTVL
enables multiple feature trees in one model.

• The CLAss, FEature, Reference approach (Clafer) [12] combines meta-modeling
(of classes) with first-class support for feature modelling. Clafer aims at a mini-
mal number of concepts with a uniform semantics. Clafer provides specialization
and extension layers via constraints and inheritance, explicit containment, cardi-
nalities, multiple instances and (object) references.

• VELVET [137] aims for support for separation of multi-dimensional concerns in
feature-based variability modeling. Some basic concepts in VELVET are inspired
by TVL. VELVET provides several mechanisms to combine the individual mod-
els, i.e., concerns, into a common variability model.

• The INDENICA Variability Modeling Language (IVML) [127] is developed in the
EU-funded project INDENICA on customization and integration of service plat-
forms. IVML is designed as a scalable, textual variability modeling language,
which supports the variability modelling requirements that are relevant to sup-
port the customization of complex service platform ecosystems.

27



CHAPTER 2. HCS MODELLING

Variability Modelling Approaches

Expressiveness

Elements Constraints Language Support

Basic FMs [88] f b -
CB FMs [42] f,c,m b -

FDL [48] f,(c),m b 3

Batory [15] f,m l ∼
VSL [132] f,c,a,m b,(l),t 3

SXFM [105] f,c (l) 3

FAMILIAR [1] f l 3

TVL [35, 39] f,c,a,m l,r,t,(m) 3

µTVL [34] f,c,a,m b,l,r,t 3

Clafer [12] f,c,m l,r 3

VELVET [137] f,(c),a l,r 3

IVML [127] f,c,a,m l,r,t 3

FAMA [84, 158] f,c,a b,l,r,t 3

SFMs [154, 162] f,c,a b,l,(r),(t) -

f=features, c=cardinalities, a=attributes, m=multi-features, b=basic cross-tree constraints, l= logical constraints, r=relational
constraints, t=arithmetic constraints, (x)= implicitly supported, 3=support, ∼ =partial support, - =no support

Table 2.1: Comparison of main variability modelling approaches.

• FaMa Framework [158] provides a text language for the definition of cardinality-
based FMs. FaMa is a tool for the automated analysis of FMs, so the input models
for the analysis are defined in this format.

In Table §2.1 we compare the presented variability modelling approaches . This
comparison is based on the work of Eichelberger and Schmid [53], but we focus in par-
ticular on the expressiveness. The expressiveness is measured in terms of elements and
constraints. Four different types of elements – features (f), cardinalities (c), attribute
(a)s and multi-features (m) – and constraints – basic cross-tree constraints (b), logical
constraints (l), relational constraints (r), arithmetic constraints (t) and constraints on
multi-features (m) – are identified. While most of the times these elements are sup-
ported explicitly, sometimes their support is implicit. If such support is implicit we
employ parentheses surrounding the element, and in the case it is explicit we avoid
the parentheses.

As Table §2.1 shows, there is no comprehensive approach which successfully deals
with all the presented aspects. In terms of modelling and expressiveness, TVL [34] can
be considered the most complete approach. However, it presents lacks for describing

28



2.2. DECISION SPACE REPRESENTATION TECHNIQUES

relationships among different instances. We have tried to model with TVL a simple
computing HCS with a discount calculated on the total cost of all the hired instances.
The resulting model (Listing §2.7) shows that there is no way to aggregate the total cost.
SFMs [154, 162] are specialised in the variability configuration and provide support
for automated analysis, although they do not provide specific textual languages to
describe the variability and make decisions on it.

Figure 2.7: An IaaS described using TVL.
1root ComputingHCS{
2ComputingInstance [ * . . * ] {
3OperatingSystem group [ 1 . . 1 ] {
4Windows , Linux
5} ,
6InstanceType group [ 1 . . 1 ] {
7Small , Medium, Large
8} ,
9Region group [ 1 . . 1 ] {
10US, Europe
11}
12/ / I n s t a n c e a t t r i b u t e s
13i n t cost , hours , costHour ;
14}
15/ / HCS a t t r i b u t e s
16i n t discount ;
17i n t t o t a l C o s t ;
18/ / R e q u i r e s c o n s t r a i n t
19Windows −> US ;
20/ / Discount c o n s t r a i n t
21( f o r A l l ( ComputingInstance ){Region . US} | | f o r A l l ( ComputingInstance ){Region . Europe} )}
22&& ( ComputingInstance [ 1 ] . c o s t + ComputingInstance [ 2 ] . c o s t + . . . > 10 000)
23−>
24ComputingHCS . discount == t o t a l C o s t * 0 . 0 5 ;
25}

Variability Modelling of HCSs

VMs are trending for the representation of cloud HCS during the last years [69,
128, 176]. HCS descriptions based on variability modelling present several benefits.
First, VMs provide a succinct way to represent – and to depict graphically – the deci-
sion terms of services. Second, these descriptions are unambiguous, since VMs often
present a clear notation – as shown with variability languages in Section §2.2 – and
have been formalised. And third, VMs enable automated analysis techniques that can
be employed to automate the validation and configuration, as in the case of FMs [18],
which provide a catalogue of analysis operations in the Automated Analysis of Feature
Models (AAFM) [19].

29



CHAPTER 2. HCS MODELLING

Several of the most relevant works about VMs and cloud HCSs employ FMs for the
modelling. Quinton et al. [128] propose FMs for the configuration process of cloud en-
vironments, considering features as deployable artefacts and automating the deploy-
ment of the configurations. Schroeter et al. [144] also propose the use of FMs for the
configuration of cloud services, together with the definition of a configuration process
model based on staged configurations.

The approach of Wittern et al. is particularly related to this dissertation. Wittern
et al. [177] identify the need to assist the configuration of cloud services, proposing
the so-named Cloud Feature Models (CFMs, based on EFMs) and a Cloud Service Se-
lection Process. CFMs, which incorporate the aggregation of attributes, are used for
representing abstract relevant decisions and concrete cloud offers, and for describing
the specific requirements of decision-makers. For the selection, they propose a pro-
cess, using Business Process Model Notation notation, composed of several tasks, go-
ing from the service modelling to the ranking of different configurations. In a later
approach, Wittern and Zirpins [176] present a similar proposal, the Service Feature
Modelling. However, this work is more oriented to general services and focuses on the
preferences-based ranking of the alternatives.

2.3 USER NEEDS REPRESENTATION TECHNIQUES

2.3.1 Configuration Models in Variability

The process by which one or more users define the configuration that best fits their
needs by making successive decisions on a particular FM is called a configuration pro-
cess. The decisions made by users in a configuration process are collected in a configu-
ration. Users usually express their decisions in terms of feature selections or removals,
i.e. which features must be part of a configuration or left aside. In EFMs, users can
also make decisions on attributes, restricting the domain by means of arithmetic and
logical constraints. Four main types of configurations are considered in the literature,
as shown in Figure §2.8:

• Individual: in this case – firstly considered by Kang [88] – only one user partici-
pates in the configuration process. A new decision cannot contradict any decision
that has been previously made by the same user. Thus, a feature that is already
selected cannot be removed later.

30



2.3. USER NEEDS REPRESENTATION TECHNIQUES

1"

2" 2"

Collabora*ve"

Staged"

Parallel"

1" 2" 3"
✓!
✗

…"✓!
✗

✓!

…"

✓!
✗

…"

✓!

…"✓!
✗

✓!
✗

…"✓!
✗

✓!
✗

…"
✓!
✗

✓!

✗…"
✗

✓!

…"

✓!

…"

✗Individual"
✓!

…"

Figure 2.8: The main four types of variability configurations processes.

• Staged: in this case, proposed by Czarnecki et al. [42], two or more users perform
the configuration process in stages. At each stage one user makes decisions, up-
dating the configuration of the model. It is possible that a user wants to change a
decision on a feature that has already been selected or removed by another user
in a previous stage. In this sense, the contradiction must be annotated so that
the user that selected or removed the features previously is informed so that the
conflict can be solved among users.

• Parallel: in this case, considered by White et al. [174], two or more users make
decisions at the same time and in any order, enabling users to contradict each
other. So for example, a user might remove a feature that is being selected by
another user at the same time.

• Collaborative configuration: this process, proposed by Mendonça et al. [106],
lies halfway between staged and parallel configuration processes. Multiple users
are allowed to make decisions in parallel but only on a specific part of the FM.
These parts are previously calculated so that conflicts among decisions are avoided.

31



CHAPTER 2. HCS MODELLING

Both staged [41] and and collaborative [107] configuration enable mutual exclusion
mechanisms to avoid conflicts. While staged configurations avoid potential conflicts
by a sequential process, where a users only can make decisions on the undecided el-
ements of the system; collaborative configuration propose a refinement on the staged
configuration: multiple users can configure at the same time if they do it in disjoint
areas with no dependencies among them.

However, the parallel configuration of FMs is a non tackled challenge. The usual
way to deal with multi-user configuration scenarios is by means of mutual exclusion
mechanisms, in order to avoid conflicts. However, for scenarios where there are shared
resources in real time, a mutual exclusion approach is not possible. This kind of sce-
narios are usual for smart or pervasive systems, or even in multi-tenant services.

Configuration Models

Users usually express their decisions in terms of feature selections or removals, i.e.
which features must be part of a product or left aside. In order to collect these decisions
Configuration Models (CMs) are structured as follows:

Definition 2.2 - Configuration model.
Given a FM as a tuple (F, P), a configuration for this FM, denoted as γFM is a three-
tuple of the form (S, R,U) in which S, R and U denote three disjoint finite sets of se-
lected, removed and undecided features respectively in such a way that all the features
of F must belong to one and only one of these three sets, i.e.

γFM = (S, R,U)⇔ F = S ∪ R ∪U and S ∩ R ∩U = ∅

When a configuration process starts, all the features are in the undecided set to
indicate that no decision has been made about them. Whenever a user selects a feature,
it is moved from the undecided set to the selected set. If a feature is discarded then it
is moved from the undecided set to the removed set. Depending on the distribution of
features among the three sets, we can define a configuration state as follows:

Definition 2.3 - Configuration states.
A configuration γFM is partial if there are still decisions to be made, otherwise it is said
to be a full configuration. Both states are denoted as partial(γFM) and f ull(γFM).

partial(γFM) ⇔U , ∅
f ull(γFM) ⇔U = ∅

32



2.3. USER NEEDS REPRESENTATION TECHNIQUES

Whether partial or full, a configuration is said to be valid if there is at least one
product in the corresponding FM that contains all the features in the selected set and
no feature in the removed set; otherwise it is said to be an invalid configuration. Both
states are denoted as valid(γFM) and invalid(γFM).

valid(γFM)⇔ ∃p ∈ P · S ⊆ p ∧ R ∩ p = ∅
invalid(γFM)⇔¬∃p ∈ P · S ⊆ p ∧ R ∩ p = ∅

For example, the following configuration for a SHS is partial since some features
have already been selected, some others have been removed and others are still to be
decided what to do with them:

S = {SmartHome, Lighting,ControlSystem,CellPhone, Internet, Ethernet}
R = {ControlPanel, MoviePlayers}
U = {Antithe f t,Contents,VideoOnDemand, DMS, ...}

Full configurations are the result of a completed configuration process. For the SHS
example, the following configuration is full:

S = {SmartHome, Ligthing,ControlSystem,CellPhone, Internet, Ethernet}
R = {ControlPanel, MoviePlayers, Antithe f t,Contents,Videoondemand, ...}
U = ∅

The following example describes a valid partial configuration for the SHS SPL since
there exists at least one product with the selected features and without the removed
features:

S = {SmartHome, Lighting,ControlSystem,Cellphone, Internet, Ethernet}
R = {ControlPanel, Antithe f talarm,Contents, ...}
U = ∅

The following example describes an invalid configuration since anti-theft alarm de-
pends on a control panel feature, which is removed:

S = {SmartHome, Lighting,ControlSystem,Cellphone, Antithe f tAlarm}
R = {ControlPanel}
U = {Contents, Internet, ...}

Both, valid and invalid configurations can be defined in terms of relationships sat-
isfiability. A relationship is said to be satisfied by a configuration if the selected and

33



CHAPTER 2. HCS MODELLING

removed features correspond to the relationship expected behaviour. In those terms, a
valid configuration is the one that satisfies all the constraints, while an invalid config-
uration violates at least one configuration in the FM.

It is frequent in staged and parallel configuration processes to allow users to con-
tradict previous decisions. In this case, features can be selected and removed at the
same time, i.e. the set of features in conflict (C) is C = S ∩ R. These conflicts must be
solved in order to accomplish the configuration process, existing several proposals to
repair them [122, 174].

There are proposals of configuration models in the literature. Some of them are in-
tegrated with variability modelling mechanisms [1, 41, 132, 137] previously described
in Section §2.2, and others are related to configuration processes [41, 107]. Additionally,
some other proposals not originally intended only for configuration can be considered,
such as White et al. [173] which present a technique for selecting highly optimal feature
sets, or Roos-Frantz et al. [135] which present a similar approach for the optimisation
of attributes, but in this case for orthogonal variability models.

Of particular interest are the approach from Zhang et al. [180] and Asadi et al. [9].
Zhang et al. [180] propose to extend the decision making in variability configuration to
quality attributes. And Asadi et al. [9] detail a novel configuration approach, based on
preferences about the user requirements. Users can define their requirements on func-
tional features and attributes, and can also define an order for their constraints, which
will establish the relative importance if it is not feasible to satisfy all the requirements.

2.3.2 Stateful Feature Models

Trinidad [154, 162] proposes incorporating FMs and CMs together in a single model,
the SFM. The resulting model stores together the set of elements E – features, attributes
and cardinalities –, and two sets of constraints, one for FM relationships and another
one for user decisions (see Figure §2.9). SFMs can be considered as fully-configurable
FMs, able to represent user decisions on features, attributes and cardinalities, and dis-
tinguishing also between user and automatic decisions.

SFMs rely on a new vision of configurations as an assignment of states to elements.
In FMs, each configuration is described as a different subset of features. In SFMs, all
the configurations share the same set of elements, denoted by a non-empty set E =

{E1, ..., En} where each Ei is an element in that model, either features or cardinalities.
A configuration is defined as an assignment of states to every element in E such that

34



2.3. USER NEEDS REPRESENTATION TECHNIQUES

!!

!"#$%&'()

*+)

*,)

!!P!"#$!

*-)

*.)

!"#$%&'()

!P (E) 
!

!!
!
!

!"#$%&'()

/01)234)25.45,45-66)

5,)5-)

301)234)2*.4*,4*-4*+66) 7301)284)2*.4*,4*-4*+64)25.45,45-66)

P!"#$!

5.)

(a) Feature model! (b) Configuration model! (c) Stateful feature model!

Figure 2.9: A visual metaphore of FMs, CMs and SFMs

each element has a set of available states that depends on the kind of element. This
way, features have selected or removed states to indicate their presence or absence in
a configuration; attributes have allowed or removed ranges; and a cardinality has a
cardinal value as state to indicate the number of features that are in a selected state
within a set relationship.

The SFMs takes extensibility as a major concern through a metamodel described in
[154]. Such metamodel proposes three main abstract aspects, which are the basis of the
approach:

• Elements: any feature or attribute of an SFM, and, in general, any aspect on which
users can make decisions. It is denoted by a non-empty set E = {E1, ..., En}.

• States: an SFM has a set of available state sets AS1, ..., ASn such that ASj is the set
of available states for an element Ej.

• Constraints: an SFM stores both the relationships of the model and the user deci-
sions. It has a set of relationships R = {R1, ..., Ri} that sets the conditions a poten-
tial configuration must necessarily fulfil to be a configuration of the SFM. It also
contains the decisions made by one or more users in a given moment in a set of
constraints U = {U1, ...,Uj}.

Figure §2.10 shows an example of SFM depicted as a stateful feature diagram. State-
ful feature diagrams are a graphical notation of SFMs based on feature diagrams [142].
The representation of elements and relationship constraints is the same that FMs: a

35



CHAPTER 2. HCS MODELLING

tree-like structure where features are boxes linked by different kinds of lines that rep-
resent the relationships among features. Cardinalities are also drawn together with the
corresponding set relationship.

!"#$%&'(")&

*+,-./,&
0(/%$(1&
!23%)"&

4/%)$/)%&

5(6+)&
71#2)$3&

8/.9%-):&
81#$"&

0(/%)/%3&

0)11&;-(/)&
0(/%$(1&
;#/)1&

<=>>?@&

A+B)(&(/&
C)"#/B&

C+,+%#1&

5)B+#&!)$6)$&

<=>>?@&!8D?E&
&&'CFA&G?H& 'CFA&I?H&

<=>>I@&

J%-)$/)%&

IK&

<=>>G@&!&D=L?LIE&

M+N+9OP,&

M+N+9/&

;$(6+B)$3& 0#Q-)&&

;$(6+B)$&8& ;$(6+B)$&R&

<=>>?@&

;0;1#2)$&

S)1#.(/3-+73&

5#/B#%($2&

T7.(/#1&

C)7)/B3&

!)%&

JUQ1VB)3&

!&!&

!&

!& !&

!& !&

!&

!&

!&

"&

& &&&&C)Q+3+(/3&

&

!)1)Q%)B&

S)"(6)B&

0#$B+/#1+%2&

W/B)Q+B)B&

<=>>?@&!&D?E&

"&

!& !&

"&

<=>>?@&!8&D?E&

0(/%$#B+Q%($2&

W3)$& 8V%("#.Q&

!"

Figure 2.10: An example of a Stateful Feature Diagram

2.3.3 SOUP

Semantic Ontology of User Preferences (SOUP) is a highly expressive, intuitive model
of user preferences [65]. A preference can be intuitively expressed as“I prefer y rather
than x”, where x and y are instances of domain concepts that represent term values
such as the OS or desired storage. This relation between concept instances can be
mathematically interpreted as a strict partial order.

Figure §2.11 presents a UML representation of the upper ontology of SOUP pref-
erence model, where the user basically can express atomic preferences using differ-
ent preference terms that are handled internally by the corresponding ranking mecha-
nism. Then, composite preferences can be used to compose those terms, defining the
relationship between previously expressed atomic preferences. Note that composite
preferences are also handled by a ranking mechanism that offers facilities to combine

36



2.3. USER NEEDS REPRESENTATION TECHNIQUES

simpler atomic preferences.

Priority-Based Human Resource Allocation in Business Processes 379

Fig. 2 shows a UML representation of SOUP preference terms. Atomic pref-
erences can be expressed using different preference terms, whereas composite
preferences can be used to compose those terms, defining the relation between
previously expressed atomic preferences. Both atomic and composite preferences
are handled by ranking mechanisms that implement the ranking process accord-
ing to the corresponding term definition.

Fig. 2. UML representation of SOUP

In particular, atomic preferences are related to a domain-specific concept that
usually represents a property that should be optimized to fulfill the user pref-
erence over it. SOUP supports both qualitative and quantitative preferences,
depending on the nature of the property referred by the concrete preference.
On the one hand, if the property is qualitative, e.g. the skills of a resource,
one can use a Favorites preference to state that certain values of that prop-
erty are favored against the rest (e.g., skills on a concrete software application).
Conversely, a Dislikes preference can be used to enumerate the values that
should not be provided for the referred property. A FavoritesAlternative al-
lows defining a favorite and an alternative set of property values, meaning that
values contained in the former set are the most preferred, but if there is none
then values from the latter set can also be considered. A FavoritesDislikes

preference is a combination of a Favorites and a Dislikes preference, where
preferred values are the ones in the favored set or at least not in the disfavored
set. Finally, an Explicit preference simply states the preference between two
concrete values of a property (e.g. skills on LibreOffice are more preferred than
skills on Microsoft Office).

On the other hand, quantitative preferences compare numerical values of the
related properties. Thus, a Highest (Lowest) preference means the user prefers
higher (lower) values for the referred property. Around and Between preferences

Figure 2.11: SOUP preferences.

In particular, atomic preferences are related to a domain-specific concept that usu-
ally represents a non-functional property (NFP) that should be optimized to fulfill the
user preference over it. Figure §2.11 outlines the available preference terms from SOUP.
In this dissertation we focus on some specific quantitative and qualitative preferences:
Favorites, Dislikes, Around, Highest and Lowest. A Favourites (a Dislikes) prefer-
ence means that the users prefers (dislikes) a specific value for a NFP, A Lowest (a
Highest) preference means that the user prefers a lower (higher) NFP value, while
an Around preference favours values close to a particular one. The preference model
supports other facilities to express additional qualitative, quantitative and composite
preferences. A formal description of both atomic and composite preferences of this
model model is presented in [64].

The adaptation of this common preference model to a concrete service selection
scenario enables interoperability between ranking mechanisms, using it as a preference
meta-model, which provides a higher expressiveness compared to each mechanism
isolated.

37



CHAPTER 2. HCS MODELLING

2.4 SUMMARY

From the results of this chapter, we obtain several conclusions that motivate our
thesis work presented in this dissertation. First, HCSs are common in the cloud. The
growing configuration options and alternatives offered by cloud providers make cloud
services difficult to understand and configure – even “simple” services such as Drop-
box. It is remarkable that the lower the level in the service model, the higher the num-
ber of configuration options and values – closer to IaaS, higher the number of options.

Second, the current approaches to describe the decision space of HCSs present
lacks. As far as we know, there are no specific proposals or DSLs for their specification,
so their representation mainly relies on natural language and models. While natural
language is expressive and comprehensible by most of the consumers, it may be also
ambiguous, and hardens a posterior automated processing. On the other side, VM
approaches are unambiguous and succinct, and enable automated analysis techniques
(as we will see in Section §3.4), but less expressive and comprehensible.

And third, both commercial and research approaches on cloud HCSs neglect user
preferences. While the provided expressiveness to make decisions varies from one
approach to another, the support to user preferences is null. However, for that aspect
we can go to service discovery and ranking area, where there are preference models
such as SOUP.

38



3

HCS-DRIVEN SOLUTIONS

AUTOMATED SUPPORT

39

The first rule of any technology used in a business is that automation applied to an efficient
operation will magnify the efficiency. The second is that automation applied to an inefficient operation will
magnify the inefficiency.

Bill Gates (1955),
Businessman

I n this chapter, we describe the state of the art for the automation of Highly-configurable
Services. Section §3.1 presents the existing support for the search of the best service
configuration. In Section §3.2 we describe the particular scenario of the cloud migration,

while in Section §3.3 we do the same for the automated reconfiguration of services. Section §3.4
discusses the existing approaches to analyse the variability. Finally, Section §3.5 ends the
chapter.



CHAPTER 3. HCS-DRIVEN SOLUTIONS AUTOMATED SUPPORT

3.1 SEARCH OF THE BEST CONFIGURATION

Most of the HCS providers offer web-based apps to configure or simulate a con-
figuration of their services. Amazon provides a calculator for their cloud services [7],
including EC2, EBS, S3 and many others (see Figure §3.1). The services can be con-
figured assigning values to their configurable terms – such as OS or instance type for
EC2. Other providers, such as Rackspace [130] or Azure [111] also provide this kind of
calculators. However, with this tools we cannot search or at least filter configurations
for given user needs. Besides, the kinds of decision we can make are simple – selection
of particular values for the terms – but not complex logical/arithmetic constraints or
preferences.

Additionally, Amazon provides the Total Cost of Ownership (TCO) tool to suggest
the best configuration given user needs [3]. This tool let users “describe on-premises or
colocation configuration to produce a detailed cost comparison with AWS”. Although
we can specify the value of terms such as the memory, datacenter location or cpu cores,
some others are not available – OS for example. Besides, we cannot choose a range of
satisfactory values for the terms: the only way to make decisions is selecting a particu-
lar value.

Figure 3.1: Screenshot of the Amazon Calculator.

There are also several web – and independent – applications to assist the search of
the most suitable service configuration, mostly on cloud services. CloudScreener [38]
let search and compare for cloud infrastructure services among multiple providers.

40



3.2. CLOUD MIGRATION

This application enables the decision making on terms such as cpu, ram or storage for
the search. In a similar way, Cloudorado [37] also provides a cloud services price com-
parison engine. Although both applications enable a higher degree of expressiveness
to declare user needs than Amazon TCO, some works have detected false positives
in the results – in particular for Cloudscreener [73]. We cannot be sure if they keep
updated with the last changes of each provider, since the internal models they use to
describe the decision space are not available.

3.2 CLOUD MIGRATION

Due to the benefits of cloud environments, during the last years the literature presents
significant research on techniques to facilitate the migration of legacy on-premise soft-
ware to the cloud. Cloud benefits, such cost savings, scalability and on-demand fea-
tures, make large companies and Small and Medium Enterprises (SMEs) want to embrace
the cloud. However, this process requires facing a number of issues, such as the need
to carry out feasibility studies, provider selection or code/application modifications.

As a proof of the arisen interest, some secondary studies have emerged recently
to review the works on cloud migration [86, 95]. In particular, Jamshidi et al. [86] pro-
poses a Cloud Reference Migration Model to address such issues. This reference model
encompasses three main phases: planning, execution and evaluation. In particular, this
dissertation is concerned about selecting the most suitable provider and its configura-
tion [95] for the migration. For further approaches and related work, we refer to the
related work presented in Section §6.9.

3.3 AUTOMATED SERVICE ADAPTATION

The operational environment of services is prone to change. These changes may
occur in the required infrastructure resources, for instance due to a partial outage; in
the user’s side, for instance due to changing needs or users leaving and joining the
service; or in other services in which the delivered service relies and which are not
under our control. All these cases require a service adaptation in order to make the
most of the service under the new circumstances. The kind of adaptation to carry out
will depend on the nature of the service and their changes.

For instance, the users of an HCSs and their needs may change at runtime, making

41



CHAPTER 3. HCS-DRIVEN SOLUTIONS AUTOMATED SUPPORT

necessary an adaptation process. This seems to make more sense in multi-tenant ser-
vices, where hardware and software resources and even some configuration capabili-
ties may be shared among multiple users. As an specific example, Wordpress supports
multisites, which aggregate several Wordpress 1 [178] sites into a single installation. In
this case, the global configuration options, such as the default language, the upgrad-
ing policy or the available plugins and themes are shared. Changes in the needs of the
users may require to install or remove some plugins or change the upgrading policy.

Service adaptation is a well-known topic in the literature, so several authors have
put their focus on it. Cardellini et al. [30] present a reference framework for self-
adaptation of service-oriented systems, where the user satisfaction is considered as an
adaptation driver. Caton and Rana [31] propose an approach for cloud infrastructure
provisioning through volunteered resources, relying on autonomic fault management
techniques. In a similar way, Maurer et al. [103] propose an adaptive resource con-
figuration in the cloud for infrastructure management. Nallur and Bahsoon [119] also
propose an adaptive mechanism for cloud services, but in this case for applications
built on top of different services. The adaptation dynamically selects the best value-
for-money services, based on market-based control techniques.

3.4 AUTOMATED SUPPORT OF VARIABILITY MODELS

3.4.1 Automated Analysis of Feature Models

The automated analysis of variability models is about extracting information from
FMs using automated mechanisms [18, 19]. Analysing FMs– and VMs in general – is
an error-prone and tedious task, and it is infeasible to do manually with large-scale
FMs. It is an active area of research and is gaining importance in both practitioners
and researchers in the SPL community. Since the introduction of FMs, the literature has
contributed with a number of operations of analysis, tools, paradigms and algorithms
to support the analysis process.

Benavides et al. [19] describe the most complete catalogue of operations up to now.
From this catalogue we select the most representative operations to illustrate the pur-
pose of the AAFM, and its relationship with the configuration process. These opera-
tions can be sorted into two main categories: model related operations and configura-

1http://codex.wordpress.org/Create_A_Network

42

http://codex.wordpress.org/Create_A_Network


3.4. AUTOMATED SUPPORT OF VARIABILITY MODELS

tion related operations.

!"#$
%&&$
'!($

!)*+,-$#-./0*.1)-$

!"#$%&'(&)

*+%,&-).)*+%,&-).)/0))

*+%,&-) 1#+')

/0-) 2+3,)

4&5')

6)

7&"&-5%)1+&$)#8),9&)::*;)

<=&-5>#")
?&%&@>#")

Figure 3.2: Process for the Automated Analysis of Feature Models.

Model-related Operations

• Void FM: this operation takes a FM as input and returns a value informing whether
such feature model is void or not. A FM is void if it represents no products. The
reasons that may make a FM void are related with a wrong usage of cross-tree
constraints, i.e. FMs without cross-tree constraints cannot be void.

• All valid configurations: this operation takes a FM as input and returns all the valid
configurations represented by the model.

• Number of valid configurations: this operation returns the number of valid config-
urations represented by the FM received as input. Note that a FM is void if the
number of valid configurations represented by the model is zero.

• Anomalies detection: A number of analysis operations address the detection of
anomalies in FMs, i.e. undesirable properties such as redundant or contradictory

43



CHAPTER 3. HCS-DRIVEN SOLUTIONS AUTOMATED SUPPORT

information. These operations take a feature model as input and return informa-
tion about the anomalies detected.

– Dead features: A feature is dead if it cannot appear in any of the configura-
tions of the FM. Dead features are caused by a wrong usage of cross-tree
constraints.

– False optional features: a feature is false optional if it is included in all the
configurations of the FM despite not being modelled as mandatory.

– Wrong cardinalities: a group cardinality is wrong if it cannot be instantiated.
These appear in cardinality- based FMs where cross-tree constraints are in-
volved.

• Explanations: this operation takes a FM and an analysis operation as inputs and
returns information (so-called explanations) about the reasons of why or why not
the corresponding response of the operation [155].

Configuration-related operations:

• Valid configuration: this operation takes a FM and a configuration (i.e. set of fea-
tures) as input and returns a value that determines whether the configuration
belongs to the set of configurations represented by the FM or not. This operation
is sometimes referred as Valid product [19].

• Valid partial configuration: this operation takes a FM and a partial configuration as
input and returns a value informing whether the partial configuration is valid or
not, i.e. a partial configuration is valid if it does not include any contradiction.

• Filter: this operation takes as input a FM and a partial configuration and returns
the set of valid configurations including the input partial configuration that can
be derived from the model.

• Optimisation: this operation takes a FM and a so-called objective function as in-
puts and returns the configuration fulfilling the criteria established by the func-
tion. An objective function is a function associated with an optimization problem
that determines how good a solution is. This operation is chiefly useful when
dealing with EFMs where attributes are added to features. In this context, opti-
mization operations may be used to select a set of features maximizing or mini-
mizing the value of a given feature attribute.

44



3.4. AUTOMATED SUPPORT OF VARIABILITY MODELS

Some new operations have been identified after the work of Benavides et al. [19].
This is the case of Henard et al. [80], who propose an operation to fix a FM for support-
ing a given configuration, or White et al. [175], who present a tailored optimisation
operation for spatial deployment.

3.4.2 Automated Analysis of Stateful Feature Models

Recently, Trinidad [154], Trinidad et al. [161] presented a simplified version of the
AAFM for the SFMs, the so named Automated Analysis of Stateful Feature Models (AASFM).
The AASFM proposes a taxonomy of operations that reduces the operations needed to
formalise to a subset of basic operations, while remaining operations are defined on
top of them. In this way, the AASFM provides all the AAFM operations and new ones,
but relying on a small set of basic operations. Although the AASFM identifies de-
ductive and abductive operations, in this dissertation we focus only on the deductive
operations.

AASFM Basic Deductive Operations

• Products listing: this operation lists all the products in a SFM that satisfy the cur-
rent decisions and relationships.

• Validation: a validation operation checks if a SFM is valid or not. It means to
check if the decisions within the SFM satisfies all the relationships.

• Propagation: the propagation operation receives an input SFM and obtains as a
result another SFM where the conclusions that are obtained about the states of all
the elements are added to the set of automatic decisions.

The rest of operations of the AAFM, except the ones about explanations – which
require the abductive operations – can be composed using this three basic ones [154].

3.4.3 Analysis Techniques

The general approach to perform the the automated analysis of both FMs and SFMs
is translating the model into a declarative knowledge representation that can be used
by existing tools or solvers for the extraction of information by automatic means (Figure
§3.2). The most used representations are:

• Propositional logic: a FM is mapped into a propositional formula that can be evalu-

45



CHAPTER 3. HCS-DRIVEN SOLUTIONS AUTOMATED SUPPORT

ated if it is true or false using SAT solvers [23]. Binary Decision Diagrams (BDD)
[172] are tree-like structures built from a propositional formula that represent
the decisions that can be made by users in a configuration process. SAT and
BDD solvers have been used for the AAFM by Batory [15], Czarnecki and Kim
[40], Mendonça et al. [108] and Zhang et al. [183].

• Constraint programming: a FM is mapped into a Constraint Satisfaction Problem
(CSP) so a constraint solver can be used to perform different analysis opera-
tions. We pioneered this approach in 2005 [18] due to its ability to work with
non-boolean attributes. Our efforts in the last years have focused on contributing
to the use of constraint programming for the AAFM [157, 158, 174].

• Description logic: a FM is mapped into a description logic, which is a represen-
tation that describes the knowledge in terms of concepts, roles and individuals
[10]. Wang et al. [170] map a FM into a OWL-DL[16], a realisation of description
logic in terms of ontologies that are analysed by means of RACER tool [77].

• Clausal logic: a FM is maped into a clausal logic. the most used tool to reason on
clausal logics [56] is Prolog [85]. Kang [88] proposed using Prolog for some basic
AAFM operations 22 years ago, which is considered the first contribution for the
AAFM.

• Others: a minority of works have proposed other mappings such as Zhang et al.
[181, 182] that map FMs into SMV model checker. Some authors have also pro-
posed ad-hoc algorithms to solve specific analysis operations [11, 79, 156, 168,
169].

Each representation enables a subset of analysis operations, each of which having a
different performance. So for example a representation can be more suitable for prod-
uct counting while its performance decreases for product listing – which is the case for
BDD.

3.5 SUMMARY

This chapter motivates the need of automated support for HCS-driven solutions.
As we have seen, there is a lack of support, from researcher and practitioners, for the
search of the best configuration. On the one side, the existing commercial configurators
present deficiencies to describe user needs or even false positives in their results. On

46



3.5. SUMMARY

the other side, research approaches, in particular in the area of cloud migration, neglect
tool support. Thus, we need to rely on other existing disciplines that can provide such
automated support. In this sense, the AAFM and their variants – such as the AASFM–
offer a catalogue of operations and analysis techniques which seem to be useful for the
support of HCSs.

47



CHAPTER 3. HCS-DRIVEN SOLUTIONS AUTOMATED SUPPORT

48



CONTRIBUTION

PART III





4

HIGHLY-CONFIGURABLE SERVICES

51

You never change things by fighting the existing reality. To change something, build a new model that makes
the existing model obsolete.

Buckminster Fuller (1895 - 1983),
Architect

I n this chapter we present the foundations of HCSs and our proposal for the description
of their decision space. Section §4.1 introduces the chapter. In Section §4.2 we define
the main concepts of HCSs, while in Section §4.3 we present SYNOPSIS, a DSL for

the specification of HCSs. Section §4.4 describes the validity criteria for HCSs in SYNOPSIS
notation. In Section §4.5 presents UCL, a SYNOPSIS-based notation to describe user needs on
HCSs. Finally, Section §4.6 ends the chapter.



CHAPTER 4. HIGHLY-CONFIGURABLE SERVICES

4.1 INTRODUCTION

4.2 ABSTRACT MODEL FOR HIGHLY-CONFIGURABLE SER-
VICES

Although the concept of Highly-configurable Service (HCS) has been previously em-
ployed in the literature, as far as we know there is not a clear definition of what means.
Intuitively, we can think of a service with multiple configuration options. However,
the difference between a configurable and a highly-configurable service is ambigu-
ous. Consequently, there neither are specific mechanisms to support the description of
HCSs and their configuration options.

The purpose of this chapter is to precisely define what an HCSs are, and to provide
mechanisms to support the specification of their decision space. For the former goal,
first we clearly define our concept of HCSs, including different examples and notations.
For the latter one, we propose a notation (SYNOPSIS) to specify the decision space of
HCSs– together with validity criteria – and also the user needs on them.

4.2.1 Configurable Services

We consider a service as a resource or functionality delivered by a provider to one
or more consumers. The service is described by a number of terms, in which the con-
sumers can have interest. Traditional human-powered services, as electricity or public
transport, present terms such as the kWh (kilowatt hour) cost for the former or the
transport timetable and the ticket price for the latter. In the same way, web-based ser-
vices also present terms, such as the provider, the maximum number of requests or the
service price.

If some of the service terms have two or more possible values, i.e. they are config-
urable – or decision terms – , we say the service is configurable. For example, Dropbox –
the storage service – and Spotify – the music streaming service – are both configurable
services. These services can be hired with different plans, each providing specific val-
ues for the rest of decision terms. In the case of Dropbox the storage limit or the backup
options depend on the plan, which may be basic, pro or business. The plan is presented
by the provider as a direct choice – or selectable term –, while storage and backup op-
tions depends on the plan, so they are derived terms.

52



4.2. ABSTRACT MODEL FOR HIGHLY-CONFIGURABLE SERVICES

In this context, we define a configurable services as follows:

Definition 4.1 - Configurable Service.
A configurable service CS is a tuple (S,C, D,V, RS) where S is the set of selectable
terms, C is the set of selectable term values, D is the set of derived terms, V is the set
of derived terms values and RS is a set of constraints that describe the dependencies
among terms.

The selectable terms are defined in a set S = {S1, ...,Sn} such that each element Si ∈
S is linked to a set of term values Ci ∈ C where Ci = {ci,1, ..., ci,j}. A user must choose
one and only one term value for each selectable term to define a configuration. This way,
the set of all the potential service configurations can be defined as the cartesian product
C = C1 × ...× Cn. So for example in Dropbox, a user can only choose a plan among
three options: basic, pro and business. We can represent this scenario as follows:

S = {plan}
C = {Cplan}, s.t. Cplan = {basic, pro,business}

The derived terms that affect a configurable service can be modelled as a set D =

{D1, ..., Dm}where each Di ∈ D can take any value in a set Vi = {vi,1, ...,vi,k}. Following
with the Dropbox example, the cost and maximum storage are derived terms that are
not configurable but their value changes depending on the chosen plan. They can be
modelled as follows:

D = {cost, storage}
Vcost = {c ∈R|c ≥ 0}

Vstorage = {s ∈N|s > 0}
V = Vcost ×Vstorage

With C and V defining all the values that selectable and derived terms can take, C×
V defines the space of values that terms in a configurable service can take. However,
not any combination of them is allowed and values can be bound in different forms,
affecting to the way a service can be configured. For example, cost and storage values
depend on the plan a user chooses. In order to represent such dependencies, we define
a set of constraints RS = {RS

1 , ..., RS
m} in the space C×V that define the decision space

as follows:

53



CHAPTER 4. HIGHLY-CONFIGURABLE SERVICES

Definition 4.2 - Decision space.
Let RS = {RS

1 ∧ ... ∧ RS
m} be a set of constraints on C× V. The decision space (dspace)

of a configurable service is defined as:

dspace(CS) = {(c1, ..., cn,v1, ...,vn) ∈ C×V|RS
1 ∧ ...∧ RS

m}

The decision space of the Dropbox service can be defined adding the following
constraints to the configurable service description:

RS
1 = {c1 = basic⇒ vcost = 0.00∧ vstorage = 5}

RS
2 = {c1 = pro⇒ vcost = 5.00∧ vstorage = 1000}

RS
3 = {c1 = business⇒ vcost = 10.00∧ vstorage = ∞}

These constraints generate the following decision space:

dspace(CSDropbox) = { {basic,0.00,5},
{pro,5.00,1000},
{business,10.00,∞}}

In order to be able to refer to the set of configurations of a configurable service inde-
pendently of the values of derived terms, we define a configuration space as follows:

Definition 4.3 - Configuration space.
Let projC : C×V→ C be a projection function that binds each element in the decision
space to a configuration in C. The configuration space of a configurable service is
defined as:

cspace(CS) ≡ projC(dspace(CS))

The configuration space of Dropbox – which in this case coincides with the potential
set of configurations C – is {basic, pro,business}.

4.2.2 User Configurations

A configurable service requires consumers to choose a configuration in order to be
delivered. In most of the cases, the consumer only has to assign a value to a subset of

54



4.2. ABSTRACT MODEL FOR HIGHLY-CONFIGURABLE SERVICES

these terms, the selectable ones. In the case of Dropbox the plan determines the con-
figuration of the service; or in Amazon EC2, the region, instance type, OS, purchasing
plan, dedication and extra storage are the selectable terms to be decided. The remain-
ing terms depend on them, but are an important source of information in order to make
a decision about the configuration that best suits the consumer needs. So for example
a consumer may make a decision about Dropbox based on the cost and the storage.

The consumer needs can be defined as a set of constraints RU = {RU
1 ∧ ...∧ RU

k } that
helps to reduce the decision space to those values that satisfy the provided constraints.
We define the filtered decision space as follows:

Definition 4.4 - Filtered decision space.
Let RU be a set of constraints on the decision space that represents a set of consumer
needs. The filtered configuration ( f ilter) of a given service CS = (S,C, D,V, R) and set
of requirements RU is defined as:

f ilter(CS, RU) = {(c1, ..., cn,v1, ...,vn) ∈ dspace(CS)|RU}
≡ {(c1, ..., cn,v1, ...,vn) ∈ C×V|R ∧ RU}

For example, if a consumer needs a storage service that costs less than 6$ a month,
and provides more than 20GB of storage, the user needs constraints can be defined as
follows:

RU
1 = {vcost < 6.00}

RU
2 = {vstorage > 20}

In this case, the filtered decision space just contained one tuple in the form (pro,5,1000),
that corresponds to a service configuration {pro}.

4.2.3 Highly-Configurable Services

The configuration capabilities of a service may go further, with the contract of mul-
tiple items – a.k.a. instances – of the service that may have different configurations, or
even additional linked services. This leads to the so-named Highly-configurable Ser-
vices. While some configurable services do not allow this – e.g. Dropbox or Spotify –
others do, such as EC2 or Heroku. In the case of EC2, we can contract different com-
puting instances of different types and in different regions, and even additional storage
through the EBS service, all of them related to the same Amazon account. In the case of

55



CHAPTER 4. HIGHLY-CONFIGURABLE SERVICES

Heroku, we can also contract different Dynos and Postgres of different types. Different
items of the same service may be interrelated by means of dependencies. For instance,
Amazon – and other similar providers such as Rackspace – provides a volume-based
discount which depends on the total cost of all the items contracted.

We propose the following definition to capture the particularities of HCSs:

Definition 4.5 - Highly-configurable service.
Let CS = S1, ...,Sk be a set of configurable services; let T = {T1, ..., To} be a set of HCS-
specific terms whose values are defined in V = {V1, ...,Vo}; let I = {I1, ..., Ik} be a set
of service items such that each Ii ∈ I is a set Ii = {RU

i,1, ..., RU
i,n} of consumer constraints

that define the requirements for each item of the configurable service CSi; let N be a
set of invariants in I that limits the number of items for each service; and let RM be a
set of constraints among instances in the set I.

HCS = (CS, T,V, I, N, RM)

If we consider Amazon as an HCS that permits the configuration of multiple in-
stances of EC2 and EBS, having a 10% discount for orders greater than 1,000 $, it could
be modelled as follows:

CS = { CSec2,CSebs}
T = { total, subtotal}
V = { R,R}
I = { ∅,∅}

N = { |Iebs| > 0⇒ |Iec2| > 0}
RM = { subtotal = ∑ij costij,

subtotal > 1,000⇒ total = 0.9 · subtotal,
subtotal ≤ 1,000⇒ total = subtotal}

In an HCS the consumer needs are expressed by means of the I set, where each con-
figurable service that comprises an HCS can be configured as many times as needed,
on the condition that the invariants in N must be always satisfied.

4.2.4 Conceptual Metamodel

Figure §4.1 shows a conceptual model that organises and binds all the concepts
presented in this Section. A service is described by a set of terms. In the case of a

56



4.3. SYNOPSIS

Service

ConfigurableService

HighlyConfigurableService

Term

DecisionTerm

SelectableTerm

TermValue

Configuration

Item

DecisionSpace

Dependency

DerivedTerm

1

1

1..*1

1 1

1*

1..*

*

2..*1

*

1

1..*1

*

1..*

1..*

1

{disjoint}

Figure 4.1: Highly-configurable Service Conceptual Metamodel.

configurable service, some of these terms are configurable terms with at least two pos-
sible values. If the provider offer different alternatives for a configurable term, we say
the term is selectable – and derived in other case. The different configurable terms
and their dependencies makes up the so-named decision space of the service. Such
decision space encompasses all the available configurations – valid combinations of
configurable term values. In the case a configurable service let hire multiple and con-
figurable items – or instances –, we say the service is a Highly-configurable Service.
Each of the service items can have different configurations.

4.3 SYNOPSIS

SYNOPSIS (SimplY a NOtation to sPecify Service configuratIonS) is a text-based,
human-readable notation to describe the decision space of services. It supports the
specification of the configuration capabilities described in Section §4.2, common to the
services of big providers such as Amazon, Rackspace or Microsoft, while remaining
provider-agnostic. Figure §4.2 shows the SYNOPSIS description of a simple block stor-
age service, which we will use as running example to explain notation.

57



CHAPTER 4. HIGHLY-CONFIGURABLE SERVICES

Figure 4.2: Simple Block Storage Service in SYNOPSIS.

1Service SimpleBlockStorage{

2
3%Terms

4## Selectable terms

5SSD: boolean;

6Size: int [1,1000];

7Region: {"USA", "EU", "JP"};

8## Derived terms

9costGBMonth: real [0.00,0.15]; ## euros/GB per month

10volumeCostMonth: real [0.00,150]; ## euros per month

11
12%Dependencies

13## pricing

14TABLE

15Region SSD -> costGBMonth;

16"USA" true -> 0.1;

17"EU" true -> 0.12;

18"JP" true -> 0.15;

19"USA" false -> 0.05;

20"EU" false -> 0.06;

21"JP" false -> 0.08;

22ENDTABLE

23
24volumeCostMonth == costGBMonth * Size;

25}

4.3.1 Configurable and Highly-configurable Services

SYNOPSIS notation let define the decision space of configurable services and HCSs–
the latter is an aggregation of the former. A SYNOPSIS document starts with the def-
inition of the service type – Service keyword for configurable services, and Highly-

configurable Service for HCSs. While Figure §4.2 shows a configurable storage ser-
vice, Figure §4.3 shows an aggregation of block storages, giving rise to a storage HCSs.

A configurable service in SYNOPSIS has two sections, to declare terms and de-
pendencies. In the terms section we declare the different terms – both selectable and
derived – and their values, while in the dependencies section we describe the relation-
ships among the different terms.

An HCS in SYNOPSIS has three sections to declare the component services and

58



4.3. SYNOPSIS

Figure 4.3: Volume Storage HCS in SYNOPSIS.

1Highly-configurable Service VolumeStorage{

2
3%Services

4SimpleBlockStorage[1,*] storage;

5
6%Terms

7totalCostMonth: real [0.00,10000.00];

8discount: real [0.00,1000.00];

9
10%Dependencies

11## cost aggregation

12totalCostMonth == SUM(storage.volumeCostMonth);

13## discount policy

14totalCostMonth > 3000 -> discount == totalCostMonth*0.1;

15}

their cardinality, global terms and global dependencies. For the two latter sections,
the syntax is the same than for configurable services, and is describe in the following
subsections. In the %Services section we declare the service that compose the HCS,
their cardinality – lower and upper bounds for the items – and an alias to be referred.

4.3.2 Decision Terms

Decision terms are declared in SYNOPSIS in the terms section, denoted by the tag
%Terms. As shown in Section §4.2, terms can be classified into two disjoint categories:
selectable terms and derived terms. In this sense, both term types are described in this
section and treated in the same way. The only requirements is that each term should
have at least two different term values.

The declaration syntax in shown in Figure §4.2. First, we define the term’s name,
and after a colon we declare its domain. Such domain can be enumerated, boolean,
integer or real. In the case it is enumerated, the values are surrounded by quotation
marks, separated by commas and enclosed by brackets. In the case of integer or real
values, we have to use the keyword int or real and define the domain by means of the
upper and lower bounds. For real domains, we can specify the float using as positions
as necessary in the declaration.

In Figure §4.2, we can see the four different types of decision terms. We have also

59



CHAPTER 4. HIGHLY-CONFIGURABLE SERVICES

used comments to separate selectable terms and derived terms. For example, SSD is
a boolean selectable term that indicates if the storage is ssd-based, Size is an integer
selectable term that indicates the storage capacity, Region is an enumerated selectable
term that declares the available regions of the service, and costGBMonth is a real de-
rived term to describe the cost hour of the different configurations.

HCS Terms

As we have said before, an HCS can define global terms that affect the whole ag-
gregation of its configurable services This kind of term is necessary to describe, for
instance, the total cost or the discount of an HCS, which depends on all the aggregated
services. These terms are declared the terms section of the HCS in the same way than
the rest of terms. Besides the standard operators for dependencies, order terms have
available especial types – described in Section §4.3.3.

Figure §4.2 shows a couple of HCS terms: the total cost and the discount. The value
of totalCostMonth is calculated based on the aggregation of the volumeCostMonth of
each storage item, while the discount is calculated as a 10% of the total cost when it
exceeds 3000 euros.

4.3.3 Dependencies

SYNOPSIS provides a set of expressions and operators in order to define the de-
pendencies in the decision space. They include the classic logical, relational and arith-
metic operators, and also aggregation functions to relate HCS terms to standard terms.
There are four main expression types: logical, integer, real and enumerated. Every de-
pendency declared in SYNOPSIS should be logical, although it may be composed by
other expression types. Table §4.1 summarises such expressions 1 2

Additionally, SYNOPSIS provides tables to declare groups of dependencies which
involve the same terms with different values. Figure §4.2 and Figure §4.4 show some
examples of these tables, which are useful to describe, for instance, the characteristics
of given values of a term – as the case of computing instances – or the pricing policies.
The way the work is simple: in the first row, we declare the header of the table, i.e. the
configurable terms, and the dependency relationship – from the left to the right, split
by the implication -> symbol. Each additional row provides the values for each term.

1E represents the set of all enumerated values of the document.
2sum, min and max functions aggregate standard terms into order terms.

60



4.4. VALIDITY CRITERIA

Dependency expressions

Type Expressions

Boolean B ::= b | tb | B&&B | B ‖ B |!B | B-> B | B <-> B | I >
I | I >= I | I < I | I <= I | I == I | I! = I | R > R |
R >= R | R < R | R <= R | R == R | R! = R | E ==

E | E! = E

Integer I ::= i | ti | I + I | I − I | I ∗ I | I/I | −I | I I | sum(ti) |
max(ti) | min(ti)

Real R ::= r | tr | R + R | R − R | R ∗ R | R/R | −R |
sum(tr) | max(tr) | min(tr)

Enumerated E ::= e | te

tb any boolean term, ti any integer term, tr any real term, te any enumerated term.

b ∈ {true, f alse}, i ∈Z,r ∈R, e ∈ E

Table 4.1: Expression Types for SYNOPSIS

4.4 VALIDITY CRITERIA

A configurable service may present different anomalies regarding its configuration
capabilities. For example, it is possible that some values of a configurable term are
no selectable under any circumstance, or that a configurable term is not such config-
urable. In this section, we define the validity criteria for configurable services, which
is composed by three levels and five anomaly types. In particular, the levels are as
follows:

1. Warning level: this level encompasses anomalies that do not damage the config-
uration capabilities of the service.

2. Term error level: this level encompasses anomalies that damage the configura-
tions capabilities of the service, and in particular of given values and terms.

3. Service error level: the errors of this level makes the service no configurable or
directly inconsistent.

In order to illustrate the anomalies, we use in the following a running example
of a Simple Computing Service defined in SYNOPSIS notation (Figure §4.4). This ex-
ample is a simplified version of typical computing services, such as Amazon EC2 or

61



CHAPTER 4. HIGHLY-CONFIGURABLE SERVICES

Rackspace Servers. We have specified three different configurable terms – instance
type, OS and Region – and the memory, virtual CPU and cost of the service. We also
describe their characteristics and pricing policy by means of two tables, and additional
constraints.

Figure 4.4: Simple Computing Service in SYNOPSIS.

1Service SimpleComputingService{

2
3%Terms

4## Selectable terms

5InstanceType: {"S", "M", "L", "XL"};

6OS: {"Debian","Windows"};

7Region: {"USA", "EU", "JP"};

8## Derived terms

9InstanceMemory: int [1,8]; ## GB

10InstancevCPU: int [1,4]; ## cores

11costHour: real [0.0,1.0]; ## euros/hour

12
13%Dependencies

14Region == "JP" -> InstanceType != "XL";

15InstanceType == "Windows" -> InstanceMemory >= 2

16
17TABLE ## instance characteristics

18InstanceType -> InstanceMemory InstancevCPU;

19"S" -> 1 1;

20"M" -> 2 2;

21"L" -> 4 3;

22"XL" -> 6 4;

23ENDTABLE

24
25TABLE ## pricing

26InstanceType OS -> costHour;

27"S" "Debian" -> 0.1;

28"M" "Debian" -> 0.2;

29"L" "Debian" -> 0.4;

30"XL" "Debian" -> 0.8;

31"S" "Windows" -> 0.15;

32"M" "Windows" -> 0.3;

33"L" "Windows" -> 0.5;

34"XL" "Windows" -> 1;

35ENDTABLE

36}

62



4.4. VALIDITY CRITERIA

4.4.1 Warning Level

We name this first validity level as the warning level. As the name denotes, the
warning of this category does not affect the configuration capabilities of the service, but
may harden the understanding of the decision space. In particular, we have identified
one anomaly in the warning level: the redundant dependency.

A redundant dependency has no effect on the decision space of the service. If such
dependency is removed, the resultant decision space remains unaltered, what can be
defined as follows;

Definition 4.6 - Redundant dependency.

redundant((S,C, D,V, RS), RS
i ) ≡ dspace(S,C, D,V, RS) = dspace(S,C, D,V, RS − {RS

i })

In Figure §4.5 we see an example of redundant decision space for the computing
service of Figure §4.4. The dependency says “if instance is XL, the instance memory
should be greater than 5”, while at the same time we say in the first table of Figure §4.4
that the memory of an XL instance is 6. In this way, such dependency does not modify
the decision space, and can be classified as redundant.

Figure 4.5: Example of Redundant Dependency.

1...

2## a redundant dependency

3InstanceType == "XL" -> InstanceMemory > 5;

4...

4.4.2 Term Error Level

We name this second validity level as the term error level. Although in this level the
service still presents multiple configurations, these two errors damage its configuration
capabilities. We identify two types of errors that affect single values and terms: dead
values and false decision terms.

A dead value in a selectable term is a value which cannot be selected under any
circumstances. In this way, although the value can be apparently chosen, existing de-
pendencies make it non selectable. A dead value can be defined as follows:

63



CHAPTER 4. HIGHLY-CONFIGURABLE SERVICES

Definition 4.7 - Dead value.
A value of a selectable term is dead if there is no configuration in the decision space
where that value can be chosen:

dead(CS,Ci,j) ≡ @(c1, ..., cn,v1, ...,vm) ∈ dspace(CS) · ci = Ci,j

In Figure §4.6 we see an example of a dead value for the computing service of Fig-
ure §4.4. Since there is no any instance type whose memory is more than 5 GB, the
‘‘Debian’’ value for the OS selectable term cannot be selected under any circum-
stance and consequently is dead.

Figure 4.6: Example of Dead Value and False Decision Term.

1...

2## a constraint that generates a dead value

3## and a false configurable term

4OS == "Debian" -> InstanceMemory > 5;

5...

If all the term values but one of a given decision term are dead, we say the term is
a false decision term. Although the term shows an appearance of configurable, there
is no possible decision: the consumer is forced to select a single value. We define false
decision terms as follows:

Definition 4.8 - False decision term.
A decision term is false if it must be chosen in every configuration in the decision space.
A false decision term makes all the remaining alternatives for its configuration option
to be dead.

f alseDecision(CS,Ci,j) ≡ ∀(c1, ..., cn,v1, ...,vm) ∈ dspace(CS) · ci = Ci,j

In the same Figure §4.6 we also see an example of a false decision term for the
computing service of Figure §4.4. Given that the term OS only has two values, the dead
of one of them makes the term a false decision term. In this case, the consumer cannot
choose among two OS: she has to select ‘‘Windows’’ always.

64



4.4. VALIDITY CRITERIA

4.4.3 Service Error Level

We name this third validity level as the service error level. In this level, the service
presents one or none configurations, so consequently these errors are the most critical
ones. We identify two types of service errors: false configurable service and inconsis-
tent service.

A service is a false configurable service when there is only a single available config-
uration. In other words, all the decision terms of a false configurable service are false
decision terms, i.e. there is no real choices:

Definition 4.9 - False configurable service.
A service is false configurable if its decision space contains only one possible configu-
ration.

f alseCon f igurable(CS) ≡ |cspace(CS)| = 1

In Figure §4.7 we see a set of dependencies that make the service of Figure §4.4 a
false configurable service. In this way, only one configuration can be selected: OS ==

‘‘Windows’’, Region == ‘‘EU’’, InstanceType = ‘‘S’’.

Figure 4.7: Example of False Configurable Service.

1...

2## constraints that makes the service

3## non-configurable (only 1 configuration)

4OS == "Debian" -> InstanceMemory > 5;

5Region == "USA" -> OS == "Debian";

6!Region=="JP";

7Region =="EU" -> costHour < 0.3;

8...

In the case all the values of a decision term are dead, we say that the service is an
inconsistent service. This means that there is no available configuration for the ser-
vice, and consequently it cannot be delivered to the consumer. We define inconsistent
configurable services as follows:

65



CHAPTER 4. HIGHLY-CONFIGURABLE SERVICES

Definition 4.10 - Inconsistent configurable service.
A configurable service is inconsistent if its decision space is empty.

inconsistent(CS) ≡ dspace(CS) = ∅

In Figure §4.8 we see the dependencies of the previous examples with an additional
one, which makes the service of Figure §4.4 inconsistent. There is no available config-
uration which satisfies all these dependencies.

Figure 4.8: Example of an Inconsistent Service.

1...

2## constraints that makes the service

3## non-configurable (only 1 configuration)

4OS == "Debian" -> InstanceMemory > 5;

5Region == "USA" -> OS == "Debian";

6!Region=="JP";

7Region =="EU" -> costHour < 0.3;

8OS == "Windows" -> Region != "EU";

9...

4.4.4 Discussion

All the aforementioned errors but the warnings can be interpreted in terms of a
single, basic error type: the dead value. Particular combinations of dead values over
one or more terms lead to the rest of errors. In this sense, a false decision term is a term
whose all its values but one are dead. A false configurable service is a service whose
all its terms are false decision terms. i.e. all the values but one of all these terms are
dead. And an inconsistent term is a service where one or more terms have not available
values, i.e. all the values of such term/s are dead.

Furthermore, variants of the presented errors may appear depending on the con-
sumer. For example, there may be conditional dead values, which are restricted to
particular consumers. This is the case of Amazon EC2 and the GovCloud 3 area, which
is “an isolated Region designed to allow US government agencies and customers to
move sensitive workloads into the cloud”.

3http://aws.amazon.com/es/govcloud-us/

66

http://aws.amazon.com/es/govcloud-us/


4.5. USER CONFIGURATION LANGUAGE

4.5 USER CONFIGURATION LANGUAGE

We propose the User Configuration Language (UCL), a notation based on SYNOPSIS
to describe the needs of the consumers of a service. Figure §4.9 presents an example
that includes most of the constructions of the language. While SYNOPSIS is oriented
for providers to declare the decision space of a service, UCL is oriented to consumers
to express what they need on the service. In a UCL document, a consumer can express
needs in terms of service items, requirements and preferences. In the following, we
describe these three aspects.

Figure 4.9: User needs on the Simple Block Storage Service.

1Needs on VolumeStorage{

2
3%Items

4storage["vol1","vol2"];

5
6%Requirements

7storage["vol1"].Size == 500;

8storage["vol1"].Region == "USA";

9storage["vol2"].Size >= 200;

10
11
12%Preferences

13Favorites(storage["vol2"].SSD);

14Dislikes(storage["vol2"].Region, "JP");

15Lowest(SimpleBlockStorage.totalCostMonth);

16}

4.5.1 Service and Items

In the header of a UCL file, we declare on which configurable service or HCS we
declare our needs. In the case of an HCS, we must define in section %Items how many
items we want of each component service, together with their alias, using an associa-
tive array syntax. After that, we use these aliases to express our needs on the services.
For instance, in Figure §4.9 we declare two SimpleBlockStorage items, vol1 and vol2.

67



CHAPTER 4. HIGHLY-CONFIGURABLE SERVICES

4.5.2 User Requirements

In the second section of a UCL document, we declare our requirements on the pre-
viously defined items. A requirement can be defined as a constraint which must be
satisfied by a given configuration. The available operators and expressions to define
requirements are the same than for the Dependencies section of SYNOPSIS (see Ta-
ble §4.1). In Figure §4.9 we can see three requirements for the two items previously
declared. We employ an object-oriented notation, where a dot separates the alias of the
service item (left side) from the term (right side).

4.5.3 User Preferences

In the third and last section of a UCL document, we declare our preferences on the
items. These preferences are a subset of the SOUP user preferences [65], employed
for the ranking of services. For our case, we have adapted five SOUP preferences in
order to describe fuzzy user preferences on the configurable terms of a service. We
employ a prefix syntax, where the preference operator receives one or two arguments
depending on the specific preference. To refer to the service items, we employ the
previously defined aliases. The preference operators are as follows:

• Favorites defines a boolean or enumerated term value desired by the user. It re-
ceives the term and specific value as inputs – in the case of a boolean term, only
the term is required. For example, Favorites(storage["vol1"].Region,"US").

• Dislikes defines a boolean or enumerated term value not desired by the user. It
receives the term and specific value as inputs – in the case of a boolean term, only
the term is required. For example, Dislikes(storage["vol1"].SSD).

• Highest defines a preference on the highest possible value for a given real or inte-
ger term. It receives the term as input. For example, Highest(storage["vol1"]-
.Size).

• Lowest defines a preference on the lowest possible value for a given real or in-
teger term. It receives the term as input. For example, Lowest(SimpleBlock-
Storage.totalCostMonth).

• Around defines a preference on a real or integer term to be around a specific value
defined by the user. It receives the term and the specific value as inputs. For
example, Around(storage["vol1"].costGBMonth,0.1).

68



4.6. SUMMARY

In Figure §4.9 we can see some user preferences. While the two first preferences are
expressed on item level terms, the last one refers to an HCS term. For that case, we
employ the name of the service – as the static attributes in java – as alias.

4.6 SUMMARY

In this chapter, we have provided intuitive and formal definitions of what a config-
urable and Highly-configurable services are. As far as we know, this is the first time
that a precise definition of a HCS is proposed. We have also proposed a set of validity
criteria to determine if HCSs present anomalies in their configuration space, or even if
they are such configurable.

The lacks found in the literature has motivated us to propose SYNOPSIS, a DSL
to describe the decision space of HCSs. SYNOPSIS makes possible the textual spec-
ification of configurable services and their composition – HCSs. This specification is
heavily inspired in textual variability languages, and in particular in TVL (see Sec-
tion §2.2). Additionally, we have defined UCL, a DSL for the description of user needs
which takes inspiration from the syntax and structure of SYNOPSIS. In UCL, users can
define the items, requirements and preferences they need on HCSs.

69



CHAPTER 4. HIGHLY-CONFIGURABLE SERVICES

70



5

HCS AUTOMATED ANALYSIS

71

He who would search for pearls must dive below.

John Dryden (1631 - 1700),
Poet

I n this chapter, we detail our approach for the automated analysis of HCSs. In Section
§5.1 we introduce the chapter. Section §5.2 describes the mapping of HCSs to SFMs. In
Section §5.3 we present the analysis operations for configurable, while in Section §5.4 we

do the same for the HCSs. Finally, a brief summary is presented in Section §5.5.



CHAPTER 5. HCS AUTOMATED ANALYSIS

5.1 INTRODUCTION

Although SYNOPSIS provides a way to specify HCSs and a set of validity crite-
ria, analysis techniques are still required to enable automated support. For this aim,
we need first to provide SYNOPSIS with formal semantics. In this sense, if the target
domain of the formalisation enables analysis operations, we could compose the oper-
ations of HCSs on top of them. For this reasons, we choose SFMs as the target domain:
we can take advantage of the AASFM operations for the analysis of HCSs.

After the formalisation, we should design a set of analysis operations to, at least,
1) automate the checking of the validity criteria and 2) assist consumers in their de-
cision making on HCSs. Each validity criterion leads to an analysis operation, while
users may require several operations for the decision making, e.g. to check if their re-
quirements on a HCS are feasible or to search for the best configuration. Additionally,
more analysis operations can make sense for explaining detected anomalies or for the
verification of the decision space.

5.2 FORMAL SEMANTICS

5.2.1 Primary Goal

Our primary formalisation goal is to provide HCSs with automated analysis tech-
niques. Therefore, according to Hofstede and Proper [82], we should choose the for-
malisation style accordingly – Primary goal principle. Our choice is to follow a transla-
tional style, i.e. give the semantics to HCSs by the definition of a mapping to another
model – a target domain. In this case, we assign formal semantics to HCSs through a
mapping to SFMs, presented in Section §2.3.

The main strong point of mapping HCSs to SFMs is taking advantage of the anal-
ysis operations of the AASFM. SFMs are intended to describe all the possible configu-
rations of variability-intensive systems and assist their configuration, while providing
a catalogue of analysis operations. As shown in Figure §5.1, the translation of HCSs
to SFMs enables the use of the AASFM analysis operations, so we can build the HCSs
analysis operations on top of them.

Hofstede and Proper [82] also state with the semantic priority principle that the for-
malisation focus should be on semantics, not on syntax. Therefore, for a translational

72



5.2. FORMAL SEMANTICS

products)
op*mise)
whyNotConf)
whyNotRels)

%Terms)
999999999999999)
999999999999999)
%Dependencies)
999999999999999)

SYNOPSIS'

lis*ng)
configRanking)
explainService)
explainConfig)

HCS)(σ))
User)needs)(ν))ρ)R)

HCS)(s))
User)needs)(n))

✓) ✓)✗)
Map(R))

CO
RE

)O
ps
.)

explainDeadValue)
)
explainInvalidRequirements)
)

Ex
pl
ai
ni
ng
)

O
ps
.)

validRequirements)
)
bestConfig)
)

U
se
r))

O
ps
.)

inconsistentService)
deadValues)
falseDecisionTerms)
falseConfigService)
redundantDeps.)

Se
rv
ic
e)

O
ps
.)

Figure 5.1: Overview of our approach for the automated analysis of HCSS.

semantics style, the semantic distance between the two models should be short. This
also makes SFM suitable as target domain, since SFMs are employed for the descrip-
tion and configuration of variability, in a similar way than our purpose of describing
and configuring HCSs.

5.2.2 Mapping CSs to SFMs

Let us assume that we have an algorithm map : CS× RU 7→ SFM that generates an
SFM from a given configurable service. This algorithm creates an abstract feature for
each selectable term in the HCS, linking them together with an abstract root feature
by means of mandatory relationships. Every term value for each selectable term also
corresponds to a leaf feature, that is linked with the parent feature that corresponds to
its selectable term. So for example, the Dropbox example selectable terms generate the
following elements and relationships as a result of the mapping:

S = {plan}
C = {Cplan}, s.t. Cplan = {basic, pro,business}

73



CHAPTER 5. HCS AUTOMATED ANALYSIS

E× D = {FRoot, Fplan, Fbasic, Fpro, Fbusiness : {sel,rem}}
R = {mandatory(FRoot, Fplan), alternative(Fplan, Fbasic, Fpro, Fbusiness)}

Derived terms are mapped into attributes whose respective domains are defined by
the set of term values. The derived terms in the Dropbox example are:

D = {cost, storage}
V = {{c ∈R|c ≥ 0},{s ∈N|s > 0}}

In this example, two attributes are created, one for each derived term. The domain
is taken from the set of values and the constraints that reduce them are mapped into
relationships on their respective attributes:

E× D = ...∪ {FRoot.cost : R, FRoot.storage : N}
R = ...∪ {FRoot.cost ≥ 0, FRoot.storage > 0}

The dependencies among terms defined in the set of constraints RS are mapped into
relationships in the same form that refer to the corresponding feature and/or attributes
instead of the terms. The following constraints are defined in the Dropbox example:

RS
1 = {c1 = basic⇒ vcost = 0.00∧ vstorage = 5}

RS
2 = {c1 = pro⇒ vcost = 5.00∧ vstorage = 1000}

RS
3 = {c1 = business⇒ vcost = 10.00∧ vstorage = ∞}

In order to keep track of the relationships between terms in the HCS and elements
in the SFM, a traceability table is built across the mapping process. Table §5.1 presents
the traceability table for this example. The following relationships are obtained when
terms in RS are substituted by the corresponding elements in the SFM:

R = ...∪ { Fbasic = sel⇒ FRoot.cost = 0∧ FRoot.storage = 5,
Fpro = sel⇒ FRoot.cost = 5∧ FRoot.storage = 1000,
Fbusiness = sel⇒ FRoot..cost = 10∧ FRoot.storage = ∞}

User needs describe the requirements and preferences. For the Dropbox example
we have the following requirements:

RU
1 = {vcost < 6.00}

RU
2 = {vstorage > 20}

74



5.2. FORMAL SEMANTICS

Dropbox Traceability Table

Selectable Term Feature
plan ∈ S Fplan

basic ∈ Cplan Fbasic

pro ∈ Cplan Fpro

business ∈ Cplan Fbusiness

Derived Term Attribute
cost ∈ D FRoot.cost
storage ∈ D FRoot.storage

Table 5.1: Traceability table between HCS and SFM elements for the Dropbox example

Every user need in RU is mapped onto SFMs the same manner than the service
constraints, but they are added to the user decisions structure U in the SFM.

U = {FRoot.cost < 6, FRoot.storage > 20}

In order to take user preferences into account, each element in the SFM is assigned
a p attribute that takes values in [0,1] that remarks the interest of a user in a feature or
attribute. p = 1 indicates the highest possible interest, while p = 0 indicates the low-
est. The overall interest in a configuration is reflexed by the global preference attribute
FRoot.p, which is the average value of all the p attributes in the SFM. So one configura-
tion is preferred to another when the p value of the first is greater that the p value of
the second.

E× D = { FRoot.p, Fbasic.p, Fpro.p, Fbusiness.p : [0,1],
FRoot.pcost, FRoot.pstorage : [0,1]}

R = ...∪ { FRoot.p = (Fbasic.p + Fpro.p + Fbusiness.p + FRoot.pcost + FRoot.pstorage)/5}

This way, we create a simple preference structure on top of which user preferences
can be defined in quantifiable terms. Table §5.2 shows how preferences are mapped
onto preference attributes.

Following we present the SFM generated for the Dropbox example, which is shown
in Figure §5.2 using a simplified stateful feature diagram:

75



CHAPTER 5. HCS AUTOMATED ANALYSIS

storage:"int"[1,∞]"GBs"
cost:"[0,12]"€"per"month"

Dropbox"

Plan"

Basic"
Pro"

Business"

1..1"

Basic→ storage = 5&&cost = 0
Pro→ storage =1000&&cost =10
Business→ storage ==∞&&cost =12

Figure 5.2: Dropbox SFM resulting from the mapping algorithm

E× D = { FRoot, Fplan, Fbasic, Fpro, Fbusiness : {sel,rem},
FRoot.cost : R, FRoot.storage : N,
FRoot.p, Fbasic.p, Fpro.p, Fbusiness.p : [0,1],
FRoot.pcost, FRoot.pstorage : [0,1]}

R = { mandatory(FRoot, Fplan), alternative(Fplan, Fbasic, Fpro, Fbusiness)

FRoot.cost ≥ 0, FRoot.storage > 0,
Fbasic = 1⇒ FRoot.cost = 0∧ FRoot.storage = 5,
Fpro = 1⇒ FRoot.cost = 5∧ FRoot.storage = 1000,
Fbusiness = 1⇒ FRoot..cost = 10∧ FRoot.storage = ∞,
FRoot.p = (Fbasic.p + Fpro.p + Fbusiness.p + FRoot.pcost + FRoot.pstorage)/5}

U = { FRoot.cost < 6, FRoot.storage > 20}

Table §5.2 summarises the rules to be applied in the mapping process.

5.2.3 Mapping HCSs to SFMs

An HCS is an aggregation of Configurable Service (CS) that are linked together by
global terms and constraints. Mapping an HCS into an SFM implies at first mapping
all the CSs within into separate SFMs. Specifically, a separate SFM is created for each
instance or item of the CS, enabling a different set of user needs for each instance,
according to the I set. Let us consider the Amazon example, with a configuration of
two EC2 instances and one EBS instance as follows:

76



5.2. FORMAL SEMANTICS

mapCS : CS× RU 7→ SFM

Common elements

Root feature
E = E ∪ FRoot : {sel}

Preference attribute
E = E ∪ FRoot.p : [0,1]

Configuration space

Selectable terms Abstract features
S = {S1, ...,Sn} FS = {FS,1, ..., FS,n}, E = E ∪ FS

∀FS,i ∈ FS · R = R ∪mandatory(FRoot, FS,i)

Selectable terms values Leaf features
C = {{c1,1, ..., c1,j}, ...,{cn,1, ..., cn,j}} FC = {FS1,1, ..., FSn,j}, E = E ∪ FC

Relationships
∀FS,i ∈ FS · R = R ∪ alternative(FS,i, FSi ,1, ..., FSi ,j)

Attributes
∀FS,i ∈ FS · {FS,i.p : [0,1]}, E = E ∪ pSi

Derived terms

Terms and values Attributes
D = {D1, ..., Dm} A = {FRoot.attD1 : V1, ..., FRoot.attDm : Vm}, E = E ∪ A
V = {V1, ...,Vm} ∀Di ∈ D · {FRoot.pDi : [0,1]}, E = E ∪ pDi

Service constraints

Service constraints Relationships
RS in C×V Constraints on FS and/or A

Consumer needs

Requirements User decisions
RU in C×V Constraints on FS and/or A

Preferences User decisions
Favorites(Si) f = sel⇔ f .pSi = 1∧ f = rem⇔ f .pSi = 0
Dislikes(Si) f = rem⇔ f .pSi = 1∧ f = sel⇔ f .pSi = 0

Highest(Di) Froot.pDi =
Aij−Amin

ij

Amax
ij −Amin

ij

Lowest(Di) Froot.pDi =
pmax−Aij

Amax
ij −Amin

ij

Around(Di,v) Froot.pDi =
max(v−Aminij,Amaxij−v)−|Aij−v|

max(v−Aminij,Amaxij−v)

Preference structure Relationship

〈C×V,&〉 FRoot.p =
∑Fi∈F Fi .pSi+∑Di∈D FRoot.pDi

|F|+|D|

Table 5.2: Mapping configurable services into SFMs

77



CHAPTER 5. HCS AUTOMATED ANALYSIS

CS = { CSec2,CSebs}
I = { {RU

ec2,1, RU
ec2,2},{RU

ebs,1}}

In this case, each configurable service instance generates a SFM that joins the CS
together with a set of user needs. The so-obtained SFMs are joined together with a
unique SFM as follows:

SFM = mapCS(CSec2, RU
ec2,1) + mapCS(CSec2, RU

ec2,2) + mapCS(CSebs, RU
ebs,1)

Where + : SFM× SFM→ SFM is a function that joins any two SFMs as follows:

(E1, D1, R1,U1) + (E2, D2, R2,U2) = (E1 ∪ E2, D1 ∪ D2, R1 ∪ R2,U1 ∪U2)

The resulting SFM has three different roots, that must be joined by means of a
unique root feature. For that sake, we create a FHCS root feature that is linked to the
root of each instance by means of a mandatory relationship. It results as follows:

E× D = ...∪ { FHCS, Fec2,1
Root , Fec2,2

Root , Febs,1
Root : {sel,rem},

R = ...∪ { mandatory(FHCS, Fec2,1
Root ),

mandatory(FHCS, Fec2,2
Root ),

mandatory(FHCS, Febs,1
Root )}

Let us consider an example where a term subtotal is defined as the sum of the cost
of all the instances in I and total is a term that helps to define a discount policy, that
applies a 10% discount for orders higher than 1,000$. This information is described in
the HCS as follows:

T = { total, subtotal}
V = { R,R}

RM = { subtotal = ∑ij costij,
subtotal > 1,000⇒ total = 0.9 · subtotal,
subtotal ≤ 1,000⇒ total = subtotal}

The terms in the HCS are mapped into attributes in their corresponding domain.
As in for CSs, a traceability table must be constructed in order to keep track on the
elements in the SFM that corresponds to elements in the HCS. It would help in tracing
the results of AASFM operations back into HCS terms. Table §5.3 shows an example

78



5.3. CONFIGURABLE SERVICE ANALYSIS OPERATIONS

Dropbox Traceability Table

Selectable Term Feature
HCS FHCS

RU
ec2,1 ∈ Iec2 Fec2,1

Root

RU
ec2,2 ∈ Iec2 Fec2,2

Root

RU
ecs,1 ∈ Iebs Febs,1

Root

Derived Term Attribute
subtotal ∈ T FHCS.subtotal
total ∈ T FHCS.subtotal

Table 5.3: Traceability table between HCS and SFM elements for the Dropbox example

of traceability table for our example. The following elements and relationships are
created from the above information:

E× D = ...∪ { FHCS.total : R, FHCS.subtotal : R}
R = ...∪ { FHCS.subtotal = Fec2,1

Root .cost + Fec2,2
Root .cost + Febs,1

Root .cost,
FHCS.subtotal > 1,000⇒ FHCS.total = 0.9 · FHCS.subtotal,
FHCS.subtotal ≤ 1,000⇒ FHCS.total = FHCS.subtotal}

Last, an overall preference variable is created and assigned to the FHCS feature. Its
value is the average of the p factor of each instance in the HCS:

E× D = ...∪ { FHCS.p : [0,1]}
R = ...∪ { FHCS.p = Fec2,1

Root .p + Fec2,2
Root .p + Febs,1

Root .p

Table §5.4 summarises and generalises the rules to be applied in the mapping pro-
cess.

5.3 CONFIGURABLE SERVICE ANALYSIS OPERATIONS

Mapping a configurable service into a SFM enables the use of analysis operations
in the AASFM catalogue to extract relevant information from a configurable service. In
this Section we present a catalogue of CS analysis operations, distinguishing between
core and compound operations. A core operation cannot be defined in terms of any
other operation. Each of the proposed core operations is solved relying on AASFM
operations as shown in the following subsection.

79



CHAPTER 5. HCS AUTOMATED ANALYSIS

5.3.1 Core operations

Configurations Listing

Finding all the configurations that can be made for a configurable service can also
be defined in terms of an AASFM operation. Finding all the products in the SFM, we
could obtain all the configurations in a CS. But the result of this operations is a set
of products, each of which is an assignment of states for each element in the model
(sel or rem for a feature, a value in the domain for an attribute, ...). So we need a
map−1 : P(E)→ C×V function that maps products in the SFM with configurations in
the configurable service. The implementation of this function relies on the traceabil-
ity table created across de mapping process. The all configurations operation can be
defined as follows:

Operation 1 - Listing.
Let CS be a configurable service and RU a set of user needs. Let products : SFM→ D
be an operation defined in the basic catalogue of the AASFM, which obtains all the
products for a given SFM. The listing operation is defined as follows1

listing(CS, RU)
 products(mapCS(CS, RU))

Configuration Ranking

Searching for the best configurations given a set of user needs is a very important
operation. User requirements and preferences help a consumer to describe their needs
in qualitative and quantitative terms. The proposed mapping provides a semantics for
the preferences that enable the ranking of all the products in terms of its p attribute.
The AASFM has an optimisation operation that ranks all the products according to
a given criterion. In our case, the optimisation criterion is the maximisation of the p
value, since p = 1 represents the top most preference. According to this, we can define
the configuration ranking operation as follows:

Operation 2 - Configuration Ranking.
Let CS be a configurable service and RU a set of user needs. Let optimise : SFM× 〈D,&
〉 → D be an operation defined in the basic catalogue of the AASFM, which ranks all
the products for a given SFM according to a 〈D,&〉 criterion. The configuration ranking

1Tracing the results from the AASFM back to terms in the CS domain is a recurring operation. For
the sake of simplicity, we use the
 symbol to avoid any reference to mapping functions.

80



5.3. CONFIGURABLE SERVICE ANALYSIS OPERATIONS

operation is defined as follows:

con f igRanking(CS, RU)
 optimise(mapCS(CS, RU))

Inconsistent Configuration Explanation

When a configuration is detected to be invalid or no product at all is obtained when
performing the listing or configuration ranking operations, we still need an explana-
tion why is it not possible to find any valid configuration. The AASFM catalogue
provides an operation to obtain explanations why a given set of user decisions is not
valid, providing a set of minimal (and therefore most possible) explanations that could
help the consumer in the correction of the configuration. An inconsistent configuration
explanation can be defined in the following terms:

Operation 3 - Inconsistent configuration explanation.
Let CS be a configurable service and RU a set of user needs. Let whyNotCon f : SFM→
U be an operation defined in the basic catalogue of the AASFM, which obtains the
minimal explanations why a configuration is not valid. The wrong configuration ex-
planation is defined as follows:

explainCon f ig(CS, RU)
 whyNotCon f (mapCS(CS, RU))

Inconsistent Service Explanation

In this last operation, the explanation is obtained in terms of the user needs that
must be relaxed or removed to be able to find any solution to an invalid configuration.
Sometimes the CS defines no configuration at all due to contradicting dependencies.
These erroneous dependencies must be detected in order to repair the CS model. The
AASFM catalogue also provides an operation to explain why an SFM is void due to
contradicting relationships. Since relationships correspond to dependencies in the CS,
this operation can be used to obtain the minimal explanations why a CS is invalid in
terms of the conflicting dependencies. This operation can be defined in the following
terms:

Operation 4 - Wrong service explanation.
Let CS be a configurable service. Let whyNotRels : SFM→ R be an operation defined
in the basic catalogue of the AASFM, which obtains the minimal explanations why an
SFM is not valid. The wrong service explanation is defined as follows: map−1

S : R→ RS

explainService(CS)
 whyNotRels(mapCS(CS,∅))

81



CHAPTER 5. HCS AUTOMATED ANALYSIS

5.3.2 Compound operations

The CS core operations are implemented relying on AASFM operations. However,
there exist many other useful operations that can be defined on top of core operations.
Next we present a non-exhaustive list with some examples of compound operations:

Operation 5 - Redundant dependency.
Let CS be a configurable service and RS

i ∈ RS a service constraint defined in CS. Let
remove : CS × R → CS be a function that removes a constraint from the appropriate
configurable service in an HCS. The redundant dependency operation can be defined
in terms of the AASFM as follows.

redundant(CS, RS
i ) ≡ con f igurations(MS,∅) = con f igurations(remove(CS, RS

i ),∅)

Operation 6 - Dead value.
Let CS be a configurable service and Ci,j ∈ Ci be a value for the Si selectable term,
both of them defined in CS. The term Ci,j is dead if it is not possible to select it in a
configuration, so this operation can be solved simulating a consumer that demands
such value, being defined as follows:

dead(CS,Ci,j) ≡ ¬valid(CS,{Si = Ci,j})

Operation 7 - False decision term.
Let CS be a configurable service and Ci,j ∈ Ci be a value for the Si selectable term, both
of them defined in CS. The term Ci,j is false if it must be chosen in every configura-
tion in the decision space, so this operation can be solved simulating a consumer that
demands any value other than the false one. This operation is therefore defined as
follows:

f alseDecision(CS,Ci,j) ≡ ¬valid(CS,{Si , Ci,j})

Operation 8 - Inconsistent service.
Let CS be a configurable service. This CS is not configurable if it defines no configura-
tion at all due to contradictory constraints, which can be detected as follows:

inconsistent(CS) ≡ count(CS,∅) = 0

82



5.4. HCS ANALYSIS OPERATIONS

Operation 9 - False configurable service.
A configurable service is false configurable if it only defines one possible configuration.
In other words, the cardinal of the configuration space is exactly one. This operation
can be defined as follows:

f alseCon f igurable(CS) ≡ count(CS,∅) = 1

Operation 10 - Configurations counting.
Let CS be a configurable service. This operation returns the total number of configura-
tions existing in the decision space of the CS.

count(CS) ≡ |con f igurations(CS,∅)|

Operation 11 - Valid requirements.
Let CS be a configurable service and RU a set of user requirements to be validated. This
operation checks if the given user requirements are valid for the CS.

validReqs(CS, RU) ≡ |con f igurations(CS, RU)| > 0

Operation 12 - Best configuration.

best(CS, RU) ≡ con f igRanking((CS, RU),max{FRoot.p})

Operation 13 - Explain dead value.
Let CS be a configurable service with a dead value Ci,k for the term Di. This operation
returns the minimal set of explanations which makes Ci,k a dead value.

explainDeadValue(CS,Ci,k) ≡ explainCon f ig(CS,Si = Ci,k)

5.4 HCS ANALYSIS OPERATIONS

5.4.1 Core operations

Operation 1 - Valid configuration.
We can define the valid configuration operation relying on the valid : SFM→ {true, f alse}
operation defined in the basic catalogue of the AASFM as follows:

validCon f iguration(HCS) ≡ valid(mapHCS(HCS))

83



CHAPTER 5. HCS AUTOMATED ANALYSIS

Operation 2 - All configurations.
We can define the valid configuration operation relying on the products : SFM → D
operation defined in the basic catalogue of the AASFM, which obtains all the products
for a given SFM, as follows:

con f igurations(HCS)
 products(mapHCS(HCS))

Operation 3 - Best configurations.
... optimise : SFM×〈D,&〉 → D operation defined in the basic catalogue of the AASFM,
which ranks all the products for a given SFM according to a 〈D,&〉 criterion, as follows:

best(HCS)
 optimise(mapHCS(HCS),max{FHCS.p})

Operation 4 - Wrong configuration explanation.
... whyNotCon f : SFM → U operation defined in the basic catalogue of the AASFM,
which obtains the minimal explanations why a configuration is not valid, as follows:

explainCon f ig(HCS)
 whyNotCon f (mapHCS(HCS))

5.4.2 Compound operations

Suppose we have a reset : HCS→ HCS function that empties all the elements in I,
removing any configuration.

Operation 5 - Valid HCS.

validHCS(HCS) ≡ validCon f iguration(reset(HCS))

5.5 SUMMARY

In this chapter, we have presented our approach to automate the analysis of con-
figurable and highly-configurable services. For this purpose, we have provided HCSs
with formal semantics through a mapping to SFMs, which enable the use of the AASFM
as a basis for the automated analysis of HCSs. A set of core operations for the HCSs–

84



5.5. SUMMARY

operations that cannot be expressed in other way than in terms of the AASFM– have
been defined on top of the core operations of the AASFM. And later, a set of compound
analysis operations have been built on top of the core HCS operations. In this way, we
assist the HCS validity criteria described in Section §4.4, the decision making of users
on HCSs. The automated analysis also provides explaining operations for the errors
found in both tasks and algebraic operations for the verification and comparison of
HCSs.

85



CHAPTER 5. HCS AUTOMATED ANALYSIS

mapHCS : HCS 7→ SFM

Common elements

Root feature
E = E ∪ FHCS : {sel}

Preference attribute
E = E ∪ FHCS.p : [0,1]

Configurable services

Items SFM
CS = {CS1, ...,Ck} ∀Ii ∈ I,∀RU

j ∈ Ii ·mapCS(CSi, RU
j )I = {I1, ...Ik}

Items Constraints
I = {I1, ...Ik} ∀Ii ∈ I,∀RU

j ∈ Ii · R = R ∪ {mandatory(FHCS, Fij
Root)}

HCS Terms

Terms and values Attributes
T = {T1, ..., Tm} A = {FHCS.attD1 : V1, ..., FHCS.attDm : Vm}, E = E ∪ A

V = {V1, ...,Vm} ∀Di ∈ D · {FHCS.pDi : [0,1]}, E = E ∪ pDi

HCS Constraints

Dependencies Relationships
RM Constraints on A

Consumer needs

Preference structure Relationship

〈C×V,&〉 FHCS.p =
∑Ii,j∈I F

Ii,j
Root.p

|Ii,j|

Table 5.4: Mapping HCSs into SFMs

86



VALIDATION

PART IV





6

AUTOMATED CONFIGURATION

SUPPORT FOR INFRASTRUCTURE

MIGRATION TO THE CLOUD

89

The measure of intelligence is the ability to change.

Albert Einstein (1879 - 1955),
Theoretical physicist

I n this chapter, we present the content of the paper accepted for publication in the Fu-
ture Generation Computer Systems of Elsevier. Section §6.1 introduces the paper, while
Section §6.2 briefly describes the state of the art in variability modelling and analysis.

Section §6.3 states the problem we tackle in this work. Section §6.4 describes our modelling
methodology for the configuration space of an IaaS, while Section §6.5 presents a modelling
case study with Amazon EC2. Section §6.6 presents our analysis approach for the search of
the optimal configuration, and explains the details of the analysis operations. We present an
implementation of our approach in Section §6.7, and we evaluate it in Section §6.8. Related
work is described in Section §6.9. Finally, Section §6.10 discusses our proposal and proposes
future directions in our research.



CHAPTER 6. FGCS 2015

6.1 INTRODUCTION

The clear benefits of cloud-based infrastructures are increasing the number of com-
panies that are migrating their private and expensive data centers to the cloud. An
IaaS enables the dynamic provisioning of computational & data resources (often on-
demand), reducing costs (for short term workloads), speeding up the start-up process
for many companies, and decreasing resource and power consumption (among other
benefits).

Deciding the most suitable provider is often challenging, as each provides a number
of possible configurations. As an example of the dimension of this problem, there are
over 100 public cloud providers [36], and just for EC2 [5], the Amazon Web Services
(AWS) computing service, we have identified 16,991 different configurations1. As each
user/company that plans to use a cloud computing infrastructure is likely to have their
own specific requirements, it is necessary to identify the most relevant provider and
subsequently the most suitable configuration. Identifying such configuration within
a large potential search space is a tedious and error-prone task that requires for an
automated support.

In recent times, software tools and research contributions have emerged to support
this decision process, but we have found these to have limitations, providing either
incomplete configuration spaces or/and imprecise results. On the commercial side,
providers such as Amazon or Rackspace provide tools that suggest specific configu-
rations for migrating an on-premise infrastructure [3, 130]. However, such tools ig-
nore some configuration options, forcing for example in the case of Amazon to choose
Linux as the only operating system. Other companies, like CloudScreener [38], pro-
vide their own comparators to decide which provider and configuration best fit user
needs. Nonetheless, such tools lack information about the configuration space they
work with, and some tests have revealed false positives in their optimal results. Re-
cent academic work [58, 151] also suffers from similar concerns, as they generally only
consider a small subset of the available configurations of services like EC2 or Azure
virtual machines. In order to overcome these limitations, any approach must ensure
for each provider to model its complete configuration space.

In this work, we assist the customer in determining the most suitable configuration
of an IaaS. For that purpose, we present the case study of AWS EC2. As outlined pre-
viously by us [69], AWS is one of the most variable and complex providers in terms of

1The basis for this number is explained further in this paper.

90



6.1. INTRODUCTION

configuration options and pricing. Indeed, understanding EC2 configuration space can
be challenging, as it is scattered across several pages, tables and paragraphs. We be-
lieve that modelling a complex provider eases the task of modelling simpler providers.
Additionally, AWS is one of the most widely used IaaS providers, being present in all
the current configuration tools. For focusing on one provider, enables us to check their
precision and compare to our approach. Among all the different services AWS offers,
we focus on EC2 and EBS– additional disk for computing instances, which are consid-
ered as core infrastructure services.

We interpret an IaaS as a variability-intensive system, so we can rely on variability
modelling and analysis techniques to support the configuration process. In particu-
lar, we propose the modelling of IaaS– and EC2 in concrete – as FMs, a kind of model
widely used for variability-intensive systems. In this way, first we represent the config-
uration space in a complete, structured and compact manner, and second we provide
the user with a model to ease the configuration process. This modelling enables the use
of the so-named AAFM, a set of analysis operations that extracts information from the
models, which we subsequently use to assist decision-making. We use some of them to
verify the validity and completeness of the FM with respect to the service configuration
space, and to determine which configuration is the most suitable for any given require-
ments. We interpret the most suitable configuration as the one that meets customer’s
requirements and optimises the cost. Our approach presents two main benefits: first,
we consider the complete configuration space, so that the real optimal solution is ob-
tained for given customer requirements; second, assisting the configuration process
for such a highly-configurable service like AWS EC2 enables the same approach to be
used for other providers, such as Azure or Rackspace.

For evaluation purposes, we (i) verify our proposed model, (ii) compare our ap-
proach to existing commercial applications in term of expressiveness and accuracy, and
(iii) check and improve the performance of our approach. To verify our model, we de-
scribe the EC2 FM using a plain-text language, extract the list of configurations within
our model, and check that it matches exactly the available configurations of EC22. The
validation of the analysis is performed by means of two different implementations:
FaMa Framework – a well-known tool for the AAFM– and a reasoner based on the
IBM CPLEX solver. We compare the performance of both approaches, where the later
implementation shows improved and negligible execution times when calculating the
most suitable configuration. We also compare the obtained results with the output of

2We exclude spot instances and micro instances since they are not intended to be persistent, and EBS
optimised instances because we do not consider IOPS provisioning for EBS.

91



CHAPTER 6. FGCS 2015

CloudScreener, which can be improved by the use of our approach.

This paper extends our previous work [69] in several ways. In particular, we pro-
vide i) an explicit description of the configuration problem, ii) a modelling method-
ology to describe the configuration space of an IaaS as a FM, iii) a verification of the
configuration space represented by the FM by means of analysis operations and iv) an
evaluation of the expressiveness, accuracy and performance of our approach.

The rest of the paper is structured as follows: Section §6.2 briefly describes the state
of the art in variability modelling and analysis. Section §6.3 states the problem we
tackle in this work. Section §6.4 describes our modelling methodology for the con-
figuration space of an IaaS, while Section §6.5 presents a modelling case study with
Amazon EC2. Section §6.6 presents our analysis approach for the search of the opti-
mal configuration, and explains the details of the analysis operations. We present an
implementation of our approach in Section §6.7, and we evaluate it in Section §6.8. Re-
lated work is described in Section §6.9. Finally, Section §6.10 discusses our proposal
and proposes future directions in our research.

6.2 FEATURE MODELS

Feature Models (FMs) [88] are used to represent all the possible products that can be
built in variability-intensive systems such as SPLs. FMs are tree-like data structures
where each node represents a product feature. Figure §6.1 shows a FM that represents
general features of a fictional IaaS provider. Features are bound by means of hierar-
chical (mandatory, optional and set) and cross-tree relationships. These relationships
define how features can be combined in a product, defining the configuration space of
the system. In a FM, a feature does not necessarily represent a specific functionality but
can be used as abstract features [153] which represent domain decisions such as Linux
based feature (Figure §6.1). IaaS is the root feature that represents the overall func-
tionality of the system. It has two children, an optional feature (white circle) named
Storage, and a mandatory feature (black circle) named OS. Both features present set re-
lationships whose cardinality indicates the number of child features that can be chosen
at the same time.

FMs can also have attributes that represent non-functional properties, leading to
attributed FMs. These attributes are linked to a specific feature. In the FM sample,
the size attribute is linked to the Storage feature, and monthly cost attribute is linked

92



6.2. FEATURE MODELS

IaaS$

Storage$

SSD$
Standard$

1..1$

costMonth:$$$$

OS$

Windows$Linux$
based$

1..1$

size:$GB$

C1:$SDD$IMPLIES$NOT$WindowsBased$

RedHat$ Suse$

1..1$

Figure 6.1: Example of a FM

Analysis(
VA,$r3.large,$$
Public,$On$Demand,$
Linux$
$

IaaS$

Storage$

SSD$
Standar$

1..1$

costMonth:$$$

OS$

Windows$$Linux$

1..1$

size:GB$

C1:$SDD$IMPLIES$NOT$WindowsBased$

RAM$>$8$Gb$
ecu$>$12$units$
usage$=$400$h$

PPPPPPPPP$
PPPPPPPPP$
PPPPPPPPP$
…$

IaaS((
Configura8on((
Space(

Modelling(

IaaS(FM(

User(Needs(

Configura8on(

1$ 2$

Figure 6.2: IaaS Configuration Space Description and Analysis as a FM.

to the root feature. Optionally, it is possible to define constraints that describe the
relationships among attributes.

FMs contain valuable information about all the possible configurations and their
properties. From a FM we can deduce a number of possible outcomes, such as the total
list of possible products, the set of common features among products, the set of prod-
ucts that meet a given criterion and the product with a minimum cost. Analysing the
FM manually is a tedious and error-prone task. Many researchers have focused on the
AAFM [18, 19], that currently offers over 30 different analysis operations, each of them
solved by means of different declarative approaches such as constraint programming,
SAT problems or binary decision diagrams.

93



CHAPTER 6. FGCS 2015

6.3 PROBLEM

Migrating existing applications to the cloud has received significant interest re-
cently. Cloud benefits, like cost savings, scalability and on-demand features, make
large companies and SME want to embrace the cloud. However, this process requires
facing a number of issues, such as the need to carry out feasibility studies, provider se-
lection or code/ application modifications. Recently, a Cloud Reference Migration Model
has been proposed [86] to address such issues. This reference model encompasses three
main phases: planning, execution and evaluation.

Selecting the most suitable provider and its configuration are relevant decisions in
the migration planning process. Each provider offers several configuration options,
each with up to dozens configuration values, which may be slightly or very differ-
ent from one vendor to another. Moreover, the information and constraints about the
configuration space are often poorly organised. For instance, the configuration options
and values of EC2 are scattered among three different pages, making it difficult to man-
ually search for suitable configurations. Rackspace presents the configuration space of
its servers also in a similar way. The size, interconnections and organisation of the con-
figuration space makes configuration a tedious and error-prone process requiring an
automated solution.

In this work, we identify and tackle two challenges, as depicted in Figure §6.2

1. Model the configuration space of a cloud provider in a structured and compact way.
Configuration information is commonly described in an unstructured way us-
ing natural language, and therefore subject to ambiguity. It is necessary to model
and structure it to enable ease of use and understanding of the services by an
end-user, and to enable automated support. Most of the academic works that
have approached migration issues [24, 58, 128, 150, 151, 163, 165] deal with re-
duced subsets of the providers’ configuration spaces. However, when we plan
for cloud adoption (or migration), we have to address the whole configuration
space to find the most suitable configuration.

2. Assist the search of the most suitable configuration. Even with a well-structured con-
figuration space, most of the providers offer thousands of different configura-
tions. Assisting the search for the most suitable configuration would save time
and effort for the users, and could ensure that the selected configuration really
fits customer needs. In this paper, we define the most suitable configuration as

94



6.4. MODELLING

Servers and characteristics

Purpose Instances Cores RAM Disk Location OS Hours / Months

Production 2 2 4 2 TB Europe Linux-based 730 / 12
Pre-production 1 2 4 250 GB - Linux-based 160 / 12
Perf. testing 1 8 4 1 TB - RedHat 40 / 12

Table 6.1: Migration case study

the one that fulfils the customer requirements and minimises the total cost.

6.3.1 Scenario

We present a migration scenario of a SME, which has multiple application servers
and a server for pre-production tasks. They plan to migrate to the the AWS cloud,
and they look for servers with the characteristics shown in Table §6.1. In addition to
the the two application and one pre-production servers, they are currently involved
in new developments that require performance testing. Therefore, they also need a
large compute-intensive instance for testing. The application instances must be run-
ning 24/7, while the pre-production instance is needed 40 hours per week. The perfor-
mance testing instance will be used around 40 hours per month.

We have chosen AWS and EC2 as the provider and service under study for several
reasons. First, AWS is one of the most widely used providers of infrastructure services.
Second, the number of configuration options and values of EC2 leads to thousands of
different configurations that necessitates automated assistance. Finally, the complex
price policy turns the modelling into an even more challenging task.

6.4 MODELLING

In this section, we describe our approach to model an IaaS configuration space as a
FM. First, we present a brief taxonomy of the typical IaaS configuration options offered
by commercial providers. We then propose a modelling methodology to describe such
configuration options as a FM.

95



CHAPTER 6. FGCS 2015

6.4.1 IaaS Configuration Options

IaaS commercial providers aim to address the needs of different kinds of customers.
From those looking for on-demand virtual machines to big companies such as Netflix
requiring massive computation and storage, IaaS providers offer them multiple config-
uration options to meet their requirements. For this taxonomy of the IaaS configuration
space, we have studied four main providers: Google [75], Amazon [5], Microsoft [112]
and Rackspace [131]. Most of the providers enable configuration options based on the
following factors:

• Instance type. Each instance type determines the basic characteristics of the com-
puting instance – RAM and number of cores. Depending on the provider, a de-
fault storage, linked to the instance, is also offered. The instance type range is
usually broad, from small instances with a single core to large clusters.

• Operating system. Most of the providers offer different flavours of Windows and
Linux OS.

• Storage. Although some providers offer a default storage depending on the in-
stance type, all of them allow to hire additional storage linked to the instance.
This storage is usually limited to a number of GBs per instance, and can be based
on Solid State Disks (SSDs).

• Geographic location. The infrastructure services offered by IaaS providers are de-
livered through different datacenters, spread across multiple geographic loca-
tions around the world.

• Purchasing mode. While all the providers offer their services on-demand, usually
billing the use per hour, most of them also provide additional commitment plans
or purchasing modes to hold their customers while they get significant savings.

6.4.2 Modelling Methodology

In order to describe the aforementioned configuration options as a FM, we provide
a description about the method we follow. Lee et al. [96] propose some guidelines to
identify and organise features that we extend to support attribute modelling as follows:

1. Tree definition. The tree structure of the FM, i.e. the features and their relation-
ships, is defined at first.

96



6.4. MODELLING

Mapping

EC2 Example FM

Config point Location Abstract feature
Config value US Virginia Leaf feature

Usage data Months Attribute
Service att. Cost hour Attribute

Table 6.2: Iaas mapping to EFM

(a) Features definition. A feature [88] is a tree node which can be selected or
removed. Traditionally, two types of features have been considered: leaf
features to express the configuration values that define the configuration
space, and abstract features to organise semantically related features. We
interpret all the values that make any two IaaS configurations to be different
as leaf features in the FM. We also identify a number of abstract features,
that we will define as the configuration options. These features may also be
grouped, such OS, geographical location, or instance type – see Table §6.2.

(b) Relationships definition. Once we have defined the leaf features and the con-
figuration options and its possible values from the provider documentation,
we create the tree like structure by means of relationships. The root feature
is placed at the top representing the whole configuration space of the IaaS.
At a second level, all configuration options are placed as children of the root
feature, having either a mandatory or an optional relationship depending on
the optional character of the feature. At a third level, all the leaf features are
placed as child of the corresponding configuration option. Since only one
leaf feature can be selected at a time for each configuration option, they are
grouped by means of a set relationships with a 1..1 cardinality. Once all the
leaf features are placed in the model, we introduce some intermediate ab-
stract features to ease configuration and to represent higher-level decisions.

2. Attributes definition. At this point, there exist elements that cannot be modelled
as features, because their domain is not boolean and/or because their values is
the result of a calculation from other attributes or features. For example, an in-
stance cost per hour is clearly a non-boolean value that depends on the cost of
the selected features. Such elements are modelled as attributes – with units and
domain – and are linked to their related feature. We also identify two kinds of
attributes, as shown in Table §6.2:

97



CHAPTER 6. FGCS 2015

• Usage data: information about the usage which is provided by the customer,
e.g. instance hours per month.

• Service derived attributes: attributes whose values are obtained from other de-
cisions, like the RAM size or number of cores of an instance, which depend
on the instance type.

3. Constraints definition. Finally, we define constrains on the features and attributes
of the FM to adequately represent the IaaS configuration space. These constraints
encompass the instance cost hour, availability, characteristics and additional de-
pendencies. For most of the cases, the only source to obtain constraints associated
with the configuration space is the cloud provider’s website. While the extraction
of some constraints is trivial, others have to be inferred from the description of
the service in natural language. An example of the former is the pricing of the in-
stances, usually structured in tables, such as in Amazon, Rackspace or Microsoft
Azure. For instance, consider the following constraint:

(M3.large AND OneYear AND Sydney AND RedHat AND Public) IMPLIES

(upfrontCost==249 AND costHour==0.235)

In order to automate the extraction of this kind of constraints, we can use web
scraping techniques. It is important to note that the configuration space of com-
mercial providers evolves often, so manual adjustments in the scraper or ad-
vanced scraping techniques may be required in such cases. However, the ex-
traction of other constraints, such the total cost per year of the infrastructure

Total Cost = Cost Hour × Hours Per Month × Number Of Months +

Upfront Cost + EBS cost

cannot be automated, and must be formulated manually.

6.5 MODELLING CASE STUDY: AMAZON EC2

In this section, we exemplify our modelling approach by means of a case study: the
description of Amazon EC2 as a FM. First, we briefly describe the main aspects and
configuration options of EC2. Second, we present the EC2 FM, result of the method-
ology described in the previous section. Finally, we suggest some guidelines for the
configuration of an EC2 instance using the EC2 FM.

98



6.5. MODELLING CASE STUDY: AMAZON EC2

EC2$

OS$

Windows$
Based$ Linux$$

Based$

1..1$

usage:$hours$per$month$
period:$months$

cores:$units$
ram:$GB$
ecu:$units$
costHour:$$$$
storage:0GB$
ssdBacked:$boolean$

totalCost:$$$
costMonth:$$$$
upfrontCost:$$$
totalStorage:$GB$

extraStorage:$GB$
costGB:$$$$
costMonth:$$$$

EBS$ Purchase$

Linux$

RedHat$

Suse$
Windows
Server$

Std$

SQL$
Server$

LocaFon$

Sao$
Paulo$

1..1$

North$
America$

IR$

Asia$
Oceania$

Web$

OR$

Sin$
JP$

Aus$
CA$

VA$

1..1$

1..1$

1..1$

1..1$ 1..1$

SSD$ Reserved$On$
Demand$

1..1$

Years$

Mode$
1Year$ 3Years$

Light$ Med$

Heavy$

Instance$Type$

General$

Memory$
Opt$

Compute$
Opt$

Storage$
Opt$

GPU$

Mgn.$

1..1$

DedicaFon$

fee:0$$

Public$ Ded.$
1..1$

1..1$

Figure 6.3: Feature Model of EC2 and EBS

6.5.1 AWS Elastic Compute Cloud

AWS provides services for computation, storage, databases, clusters or content
delivery among others. Due to the wide range of services, several PaaS and SaaS
providers like Heroku or Netflix run over AWS. As defined by Amazon, EC2 “pro-
vides resizable compute capacity in the cloud” [5] on pay-per-use basis. In this paper,
we work with the AWS snapshot for EC2 and EBS of 12th June 2014. On this date,
Amazon provides five main configuration options for EC2, which match the general
configuration options of IaaS providers depicted in the previous section:

• Instance type. EC2 offers 32 different instance types, grouped under different cat-
egories, depending on the purpose: General Purpose, Compute Optimized, GPU
Instances, Memory Optimized and Storage Optimized, distinguishing also be-
tween current and previous generations. Each instance type has a specific RAM
size, a number of cores and disk storage. In this point, we ignore micro instances,
since they are intended for short CPU burst purposes. Consequently, they lack
disk storage, and their performance is highly variable and unpredictable.

• Operating system. Three different Linux distributions (Amazon Linux, Suse and
Red Hat) and a Windows version (Windows Server) with an optional SQL Server
in different flavours (Express, Web and Standard) are available.

99



CHAPTER 6. FGCS 2015

• Storage. AWS provides a fixed disk size for EC2 instances, depending on each
instance type. If the default storage needs to be extended, the EBS service pro-
vides additional storage. In this sense, we must say that we do not consider
provisioned IOPS (input/output operations per second) EBS, and neither EBS
optimised instances, that “enable EC2 instances to fully use the provisioned on an
EBS volume’’.

• Geographic location. Amazon offers 8 geographic locations, distributed among
different areas of North America, Europe, Asia and South America.

• Purchasing mode. EC2 instances may be purchased on demand or in a reserva-
tion way. While users pay per use in both modes, cost hour is lower for reserved
instances in exchange for an upfront payment. In total, there are seven differ-
ent purchasing modes. We exclude here spot instances, because Amazon de-
termines their price and availability dynamically based on supply and demand.
Indeed, AWS recommend the use of spot instances only for time-flexible and
fault-tolerant tasks.

Additionally, an EC2 instance may run on a dedicated machine, guaranteeing an
additional isolation in exchange of an additional cost.

6.5.2 EC2 Feature Model

The resulting EC2 FM is defined in a plain-text language and presents 81 features,
17 attributes and more than 20 000 constraints 3. It is based on the description of EC2 of
the day 12 June 2014 [5]. The huge amount of constraints needed to represent pricing
and instances availability makes necessary to automate their extraction by means of
a web scraper, whose details are explained in Section §6.7. Due to the difficulty of
representing the complete model using feature diagrams, only an excerpt is shown in
Figure §6.3.

The root feature, EC2 Instance, groups the configuration options and defines 4 at-
tributes: totalCost, costMonth, upfrontCost and totalStorage. There are 6 configuration op-
tions where only one leaf feature can be selected at the same time: (i) OS is composed
by Linux and Windows variants. We include some abstract features and SQL Server
options for more flexibility in the decisions. Since SQL Sever Express is included by
default in any Windows variant, we exclude it from the FM. (ii) The additional Block

3Available at https://dl.dropboxusercontent.com/u/1019151/EC2FM.pdf

100



6.5. MODELLING CASE STUDY: AMAZON EC2

Storage is defined as optional, and can be SSD or magnetic based. It has three attributes:
extraStorage for the size, costGB for the GB cost per month, and costMonth, which value
is calculated as extraStorage × costGB. (iii) Instance contains general purpose, high
mem, high CPU, high IO and GPU features. Due to spatial constraints the specific
instances types are shown separately in Table §6.3. We define 6 attributes for this con-
figuration option: cores for the number of cores of the instance, ram for the memory,
ecu for the EC2 Compute Units, costHour, defaultStorage for the default storage of the
instance, and ssdBacked to show if the instance storage is SSD backed. (iv) Dedication
determines if the EC2 instance is based on shared or dedicated hardware resources.
This kind of isolation implies additional cost, so we have defined an attribute, named
fee, to represent it. (v) Location groups all the available locations for EC2 instances
by continent and state/country. Finally, (vi) Purchase represents the purchasing op-
tions, and also defines use hours and number of months, by means of usage and period
attributes.

Instance types

Category Specific types

General purpose M3.medium, M3.larg. M3.xlarge, M3.2xlarge,
M1.small, M1.medium, M1.large, M1.xlarge

Compute opt C3.large, C3.xlarge, C3.2xlarge, C3.4xlarge,
C3.8xlarge, C1.medium, C1.xlarge, CC2.8xlarge

Memory Opt M2.xlarge, M2.2xlarge, M2.4xlarge, CR1.8xlarge,
R3.large, R3.xlarge, R3.2xlarge, R3.4xlarge,
R3.8xlarge

Storage Opt I2.xlarge, I2.2xlarge, I2.4xlarge, I2.8xlarge,
HS1.8xlarge, HI1.4xlarge

GPU G2.2xlarge, CG1.4xlarge

Table 6.3: EC2 instance categories and specific types

6.5.3 Customer Requirements on EC2 FM

Representing the EC2 configuration space as a FM has several benefits. Our model
represents the EC2 configuration space in a compact and well-structured way, so it is
easy for the customer to see the big picture. Abstract features let users make high-

101



CHAPTER 6. FGCS 2015

Requirements

Instance Location OS Dedic. Cores RAM Storage Usage Period

Production IR LinuxBased Public 2 4 2,000 730 12
Pre-production - LinuxBased Public 2 4 250 160 12

Testing - RedHat Public 8 4 1,000 40 12

Table 6.4: Customer requirements for the case study

level decisions, and attributes like RAM, storage and period add the ability to make
decisions about user terms besides EC2 configuration terms. Moreover, FMs enable
the use of the AAFM analysis operations to assist the decision-making.

We propose to represent customers’ infrastructure requirements relying on the EC2
FM. Customers can make decisions on the different configurations points of our model.
They can decide whether to select a feature or not, and specify preferences about at-
tributes. At least, customers should make the next mandatory decisions:

• Assign values to attributes period and usage.

Optionally, we recommend costumers to make decisions on the following elements:

• Select a child feature of OS, Dedication and Location.

• Remove or select a child feature of EBS.

• Assign values to ram, cores/ecu (one of them) and ssdBacked.

We take the case study of Section §6.3.1 and Table §6.1 as an example. Table §6.4
shows the decision making we propose for each server. As we can see, we select ab-
stract feature for some cases, which give us higher-level decisions, and specific features
in others. For attributes, the value is constrained with a greater or equal relational con-
straint (≥), since it is possible that EC2 cannot match exactly the value.

6.6 FM ANALYSIS

Modelling the configuration space of an IaaS as a FM enables the extraction of infor-
mation by means of AAFM operations. Benavides et al. [19] define the AAFM as “the

102



6.6. FM ANALYSIS

process of extracting information from FMs using automated mechanisms”. The AAFM pro-
vides a catalogue of analysis operations, where each operation retrieves different kinds
of data from the model. An analysis operation can be interpreted as a black-box proce-
dure that receives a FM and any operation-specific parameter as inputs and retrieves
a different kind of output data depending on the operation. Examples of AAFM oper-
ations are products listing (that enumerates all the products described by a FM), valid
configuration (that checks whether it is possible to find at least one product given user
requirements), or error checking (that searches for different kinds of semantic errors).

The main goal of this work is to automate the search of the most suitable config-
uration of a given IaaS provider – AWS EC2 in our case – that meets a set of user
requirements. Prior to configuration search, we need verify that the FM correctly rep-
resents the configuration space of service. For that purpose, we identify two tasks to
perform that can be solved relying on AAFM capabilities: (1) error checking, to ensure
the absence of semantic errors [157] in the FM and (2) product listing, to obtain a list of
all the possible configurations. In this section we detail the use of AAFM operations in
order to accomplish these tasks.

A"ributes*
Removal*

AACSM*

costMonth:""
$"

size:"
GB"

All**
configs*

1.  VA,"m1.small"
2.  VA,"m1.medium"
3.  VA,"m1.large"
4.  VA,"m1.xlarge"
5.  …"
"

AACSM*

VA,"r3.large,"Public,""
On"Demand,"Linux"
"

RAM">"8"Gb"
ecu">"12"units"
usage"="400"h"

b.#Configura,on#
Lis,ng#

c.#Most#suitable#
configura,on#

Op<misa<on*
Valid*

Configura<on*

AACSM*

*

CSM*Error*
Checking*

a.#Error#
checking#

Valid*
config*

costMonth:""
$"

size:"
GB"

costMonth:""
$"size:"

GB"

costMonth:""
$"

size:"
GB"

Figure 6.4: AAFM operations support for EC2 configuration

103



CHAPTER 6. FGCS 2015

6.6.1 Error Checking

As Trinidad et al. propose [157, 174], it is a good practice to check that a FM is
free of errors prior to perform any further analysis operation. When cross-tree con-
straints and attributes are used, contradictory information can be introduced in a FM
provoking undesirable effects and making the FM not to represent the configuration
space correctly. The AAFM provides the Error Checking operation (Figure §6.4.a) that
determines if a FM has any of four kinds of errors:

1. Void FM: a FM that describes no product at all due to contradictory relationships
or constraints.

2. Dead features: a feature that cannot be selected and therefore appears in no prod-
uct.

3. False-optional features: a feature that despite of being modelled as optional, must
be selected as far as its parent feature is selected being a de facto mandatory fea-
ture.

4. Wrong cardinals: any number of child features in a set relationship that cannot
be selected at the same time.

Just in case any error were found, the AAFM provide an error explanation opera-
tion that proposes different reasons why the errors appear in a model. These explana-
tions can be used to identify the source of the errors and repair them manually.

6.6.2 Configurations Listing

Despite error checking is a good practice that increases the confidence in the correct-
ness of a FM, it does not guarantee that the FM represents all and just all the products
in a configuration space. We need to list all the available configurations in the IaaS
FM and check each of them against the retrieved information of the IaaS provider. We
explain how we check them or the particular case of EC2 in Section §6.7.

Throughout this paper, we have been referring to the enormous size of the EC2
configuration space. In particular, we have referred to the potential number of config-
urations (22,848 for EC2), i.e. all the possible combinations of the different values of
its configuration points, and to the available configurations (16,991). The reason is that
not all the potential configurations are really available. For example, some locations

104



6.6. FM ANALYSIS

and purchasing modes exclude the availability of several instance types. In order to
obtain the list of available configurations, we use the All Products operation [19]. This
operation, as its name denotes, returns the list of products that a FM represents. But
first we still need to match the concepts of IaaS configuration and FM product.

We consider a configuration as the set of required decisions to make in order to run a
cloud service instance. In the case of an IaaS computing instance, such decisions match
the configuration points previously defined: OS, instance type, dedication, location
and purchasing mode. Additionally, for EC2 we have to decide also on the dedication.
In a FM, a product is a set of selected features that satisfies all the relationships and
constraints [19]. It is necessary to remark that this definition matches for basic FMs
that contain no attributes. This makes necessary to review the product concept for
attributed FMs.

In an attributed FM, users can not only make any decision about features, but also
about attribute values. A product is defined when a decision is made about all the
features and yet all the relationships and constraints are satisfied. Due to the reasoning
techniques used to perform the AAFM, it is not possible to list the products defined
by an attributed FM with precision. An approximated way to perform this operation
consists of removing attributes and their constraints from the model to obtain a basic
FM just with features and relationships. Using this basic FM, we can perform the All
Products operation to get the list of the available products of an attributed FM.

In an attributed FM, attribute constraints could discard certain combinations of fea-
tures because of the values of their linked attributes. When attributes and constraints
are removed from the FM, these combinations are available again, so we cannot expect
that the set of basic products coincides with the set of attributed products. In order
to check if a basic product is also a valid attributed product, the Valid Configuration
operation can be used to check if it satisfies all the constraints in the attributed FM. Re-
peating this operation for each basic product in the list, we obtain the list of attributed
products that satisfies all the relationships and constraints in an IaaS FM.

Figure §6.4.b depicts the process to obtain the list of IaaS configurations. First, the
IaaS FM is transformed into a basic FM, removing all the attributes and their related
constraints. In the specific case of EC2, EBS feature is also removed, since in this point
we are only interested in EC2 configurations. Afterwards, we invoke All Products
operation, which returns the list of available basic products, and for each of them, we
check if it is valid for the attributed model. In this way, we obtain the number of total
EC2 configuration: 16,991.

105



CHAPTER 6. FGCS 2015

6.6.3 Most Suitable Configuration

Once the FM is checked to define the IaaS configuration space correctly, we can per-
form any analysis operation with confidence. The main goal of this work is assisting
the users in the search of the most suitable configuration. Previously, we have defined
the most suitable configuration as the one that satisfies customer requirements while
the cost is minimised. This problem can be interpreted as an optimisation problem,
where user requirements are hard constraints and the optimisation criterion is min-
imising the cost.

Prior to solving any optimisation problem, we should check that the user require-
ments are valid and define at least one configuration in the configuration space. The
AAFM provides the Valid Partial Configuration operation that takes a FM and a set of
user decisions as inputs, and returns a boolean value indicating if these decisions are
consistent with the FM and therefore it is possible to find at least one product for such
requirements.

Once the requirements are checked for validity, an optimisation problem can be de-
fined and solved using the Optimisation operation. The optimisation operation takes
as inputs a FM, a set of user decisions and an objective function and returns a configu-
ration that satisfies the decisions and optimises the function. In our case, the objective
function refers to the minimal TotalCost attribute value. Figure §6.4.c shows our pro-
posed approach.

6.7 IMPLEMENTATION AND VERIFICATION

In this section, we describe the implementation and verification details of our ap-
proach. First, present the implementation of the analysis operations of Section §6.6.
Second, we briefly motivate and describe the web scraper we employ to build the EC2
FM. And finally, we detail the implementation and verification of the EC2 FM.

6.7.1 Analysis Operations Implementation

The analysis operations proposed in Section §6.6 are implemented in the FaMa
Framework. FaMa Framework4 [158] is an AAFM open-source tool that supports more

4www.isa.us.es/fama

106



6.7. IMPLEMENTATION AND VERIFICATION

than 20 different analysis operations with 4 different reasoners. What we had to de-
velop was the proposed transformation from attributed FMs to basic FMs in Section §6.6,
in order to obtain the number of configurations of an IaaS FM.

FaMa employs different logical paradigms, such as propositional logic or CSP, to
perform the AAFM. This means that the FM is translated to logic variables and con-
straints, which are interpreted and resolved by off-the-shelf solvers. Features and at-
tributes are mapped as variables, while relationships and constraints are mapped as
different kinds of constraints. Depending on the AAFM operation, additional inputs
can be mapped, and different operations are invoked on the solver. More details about
the AAFM and its mappings, and details about the operations are available in [19].

However, the traditional mapping of the AAFM– and consequently FaMa – presents
performance issues for specific operations, and especially for the Optimisation oper-
ation. For this reason, we have decided to add a new reasoner to FaMa, based on
the CPLEX CP Optimizer solver 5, to tackle these performance problems. This new
reasoner implements the Optimisation operation, and present three main changes:

• Alternative FM mapping. Traditionally, the default mapping to CSP that solvers
proposed in the literature maps each feature to a boolean variable [18]. This is
the mapping that all the FaMa reasoners adopt. In our alternative implementa-
tion, however, we have mapped each of the six configuration options of the EC2
FM as an integer variable. Each variable has as many values as leaf features the
configuration option has.

• CPLEX tuples. By default, every FM constraint is translated to a solver constraint
by the FaMa reasoners. Nonetheless, in models with thousands of constraints
this may lead to an overhead in the solvers. For this kind of models, CPLEX pro-
vides tuples, which improve dramatically the performance by describing all the
elements within a set one by one. Our alternative implementation represents the
availability and pricing constraints using CPLEX tuples. We also modelled at-
tributes internally as integers, since CPLEX tuples lack support for real numbers.
Anyway, the impact in the accuracy of the total cost is negligible, as Table §6.8
shows.

• Search strategy. We use a customised search strategy, defining the configuration
options of EC2 as the decision variables of the problem.

5http://www-01.ibm.com/software/commerce/optimization/cplex-cp-optimizer/

107

http://www-01.ibm.com/software/commerce/optimization/cplex-cp-optimizer/


CHAPTER 6. FGCS 2015

6.7.2 EC2 Web Scraper

As stated in Section §6.5, the EC2 FM presents more than 20,000 constraints. Most
of such constraints determine the exact cost hour of each configuration, and the config-
urations that are not available for different reasons. The constraints are presented by
AWS in tables in its EC2 website, but its number make its manual processing tedious
and error-prone.

The retrieval of the pricing and availability constraints from Amazon EC2 can be
considered as an additional challenge. There is no standard interface to retrieve this
information directly from the provider. This requires the use of automated techniques,
such as web scraping [124] on the provider’s website, to get the data. Although we
perform this technique to build the model, it is an implementation aspect to verify
our proposal – it is a means to our end but not the end itself. Another issue related
to the information retrieval is the evolution or variation of the configuration space.
This happens often in commercial cloud services, and requires manual work to adjust
the scraper and or update manually the model. We are aware of this limitation, and
therefore in this paper we work with a snapshot of Amazon EC2 from 12th June 2014.

We have developed a web scraper to automatically extract the constraints from the
EC2 website. We have to remark that this is a basic and non-adaptable scraper, i.e. it
is not intended to adapt itself for the changes and evolution of the EC2 website, but to
automate the constraints extraction. The scraper is developed in Java using the jSoup
library 6 and takes as input the FM tree and attributes, and their correspondence with
the elements in the EC2 website. It processes the characteristics and pricing tables, and
produces as output the characteristics of each instance type – RAM, ecu and cores –
and the pricing tables of EC2 as FM constraints in the FaMa plain text format – see
next subsection for this format. In the case that a configuration does not appear in
the pricing tables it means that is unavailable, so the scraper generates a constraint to
remove such configuration from the EC2 FM.

This scraper only extracts instance characteristics, pricing and availability constraints.
Changes in the instance pricing or availability are supported by our EC2 scraper. How-
ever, any change in the configuration options or their values, or in the presentation or
format of the EC2 website would require manual fixes on the scraper. Indeed, during
the realisation of this paper, we have made adjustments on the scraper two times due
to changes in the website format and the addition of new instances.

6http://jsoup.org/

108

http://jsoup.org/


6.7. IMPLEMENTATION AND VERIFICATION

6.7.3 EC2 FM

Although there are several formats to define FMs, we have chosen the FaMa plain
text format [84, 158]. The most well known notation is the so-named feature diagram,
employed for the excerpt of Figure §6.3. This format is adequate for illustration pur-
poses and simple FMs. However, in our case, our EC2 FM is large and complex enough
to use a text format. There are different alternatives for FM text formats [53], but only
a few of them provide automated analysis support. Since we take advantage of the
analysis operations already provided by FaMa, we use the FaMa notation to define the
EC2 FM in plain text.

The proposed methodology to build an IaaS FM relies on a deep understanding of
the service and on automated information retrieval mechanisms. While in this paper
we have implemented a basic scraper for the latter, some errors may appear due to
the former during the definition of the tree, the attributes or some constraints. Con-
sequently, we find useful to employ some of the analysis operations of Section §6.6 to
verify the model. On the one side, we want to calculate the completeness and correct-
ness of the EC2 FM with respect to the retrieved configuration space information. On
the other side, we want to ensure that the EC2 FM is free of FM errors, as described
also in Section §6.6. Note that finding errors in the FM may not imply that there are
errors on the building on the model, but on the configuration space of the service.

Completeness and Correctness

We need to ensure that the EC2 FM gathers all the available EC2 configurations, but
no more. That is, we need to check the completeness and correctness of the EC2 FM.
For this purpose, we employ several of the operations explained in Section §6.6 and
Figure §6.4. First, we parse the tables of the EC2 website to get the EC2 available con-
figurations. Then, we check that each and every retrieved configuration is contained in
the EC2 FM, by means of the Valid Configuration operation. In this way, we measure
the completeness of the EC2 FM. If all the valid EC2 configurations are represented in
the FM, we get the number of configurations of the FM, and compare with the number
of configurations retrieved from the tables. If the number is the same, we can say that
our EC2 FM is correct and complete.

The EC2 FM required several iterations to correctly represent the configuration
space. Initially, the model represented several spurious configurations, due to some
unavailable configurations are just excluded from the EC2 pricing tables instead of
be marked as “N/A”. After three rounds of fixes, we made the necessary changes to

109



CHAPTER 6. FGCS 2015

Expressiveness Comparison

EC2 FM AWS TCO CS

Multi-provider No No Yes
OS Generic & specific Linux Generic

Location State & Continent AWS areas Area
Dedication Yes No No
Usage data hours/ month % of 3 years 4 values

Period 1 to 48 months % of 3 years 1, 3, 6, 12, 24, 36 months
RAM GB GB GB

Comp. unit ecu, cores processors, cores CS units
Storage GB GB GB

Table 6.5: Expressiveness comparison among EC2 FM, Amazon TCO and Cloud-
Screener.

remove the fake configurations and consider all the available ones.

Error Checking

In this step, we verify, using FaMa and its analysis operations, the validity of the
EC2 FM. As stated in Section §6.6.1, the error checking operation detects behaviours
that suggest a wrong modelling, or errors in the configuration space. The execution of
this operation in FaMa detects no errors.

6.8 EVALUATION

In this section we compare, in terms of optimal cost and expressiveness, the results
obtained by our approach with the results obtained in commercial tools, in particular
CloudScreener (CS) and Amazon TCO. Besides, we present an experimental study to
check the performance of our prototype.

6.8.1 Comparison to Other Approaches

Our first comparison study shows that, in terms of expressiveness, our EC2 FM
provides the users more freedom to express decisions than two “competitors”: AWS
TCO tool and CloudScreener. AWS TCO [3] is a tool provided by Amazon to “compare

110



6.8. EVALUATION

Comparison of Results

ECU/ Cloud Screener Our approach

OS Area CSPU RAM Config Cost/h Reqs. Config Cost/h

C1 Linux US East (VA) 12/6 8 m3.large 0.14 $ No m3.xlarge 0.28 $
C2 Linux South Am. 4/2 9 m3.xlarge 0.381 $ Yes m2.xlarge 0.323 $
C3 Win Singapore 8/4 40 hs1.8xlarge 5.901 $ Yes r3.2xlarge 1.292 $
C4 Linux US West (CA) 68/34 160 r3.8xlarge 3.12 $ Yes r3.8xlarge 3.12 $
C5 Win Europe 16/8 5 c3.xlarge 0.376 $ No c3.2xlarge 0.752 $

Table 6.6: Comparison of results with CloudScreener. m3.large instances present 7.5
GB of RAM, while c3.xlarge instances present 14 ECU.

the cost of running your applications in an on-premises or collocation environment to
AWS”. CloudScreener [38] is a web application to “easily identify your need in terms of
infrastructure and compare available offers upon many criteria”. While both of them provide
web interfaces, we use the EC2 FM for expressing user requirements. Table §6.5 shows
a comparison about the main elements of the three approaches. Except for choosing
among different providers, our approach presents more configuration options for the
measured configuration aspects. For instance, AWS TCO ignores all the OS but Linux.
About CloudScreener, for example, they only offer four fixed values to express hours
per month information.

The second comparison study, about the optimality of the results, shows how our
analysis approach improves the results of CloudScreener, which sometimes even vio-
lates the user requirements. For this comparison, we have taken 5 test cases. We have
used them as input for our analysis, and also for the web application of CloudScreener
using the “expert mode”. The inputs and results of the comparison are shown in Ta-
ble §6.6, and a record of the process is also available 7. In order to facilitate the com-
parison, we have even set as constant the following properties: Storage ≥ 0, period =
1, usage = 24 h/day = 730 hours/month, and dedication = public, since CloudScreener
ignores dedicated instances. CloudScreener uses an own unit, CSPU, to define the
computing power, as “an equivalent to EC2 unit (ECU)”. Therefore, we divide by 2
the ECU of our inputs when translating to CloudScreener. As Table §6.6 shows, our
approach improves CloudScreener results for four of the five test cases. CloudScreener
results for C1 and C5 are not even valid, since they violate customer requirements –
RAM for C1 and ECU for C5 –. For C2, and specially for C3, our analysis improves the

7http://youtu.be/apQmFV5ilUA

111

http://youtu.be/apQmFV5ilUA


CHAPTER 6. FGCS 2015

instance selection, obtaining a cheaper instance that still satisfies user needs.

Experimental settings

Cases ECU RAM Disk Usage Period SSD OS Loc. Dedicated

Group 1 [1,20] [1,10]
[1, 1 000]

[1, 730] [1, 36] bool enum enum boolGroup 2 [6,60] [10,40]
Group 3 [20,108] [40,244] [1 000, 10 000]

Table 6.7: Experimental settings groups and ranges.

6.8.2 Performance Study

Although the migration is not a real-time task, we want to ensure that our approach
performs the analysis in a reasonable time.

With the intention of testing our analysis approach and its performance, we have
implemented an automated generator of user requirements for EC2. This generator
produces decisions about the main configuration options described at the end of Sec-
tion §6.5, that is, location, OS, dedication, instance characteristics and usage data. Most
of the decisions are randomised on the domain of the configuration option, as Ta-
ble §6.7 shows. For instance, location value may be a specific area like Virginia, or
a group of areas like NorthAmerica. In contrast, we have managed in a different way
RAM, ECU and storage values. Such properties have large domains, but instance types
are distributed exponentially along the domain, as Figure §6.5 shows with its logarith-
mic scale. Consequently, we have defined three different groups of test cases, in order
to aim for areas where different instances can satisfy customer requirements. We have
generated 200 test cases for area, for a total of 600 test cases.

Both analysis approaches – FaMa and CPLEX-based reasoner – produce the same
output configurations, but in terms of performance, our CPLEX-based reasoner out-
performs FaMa up to several orders of magnitude. While FaMa lasts for minutes in
most of the cases, the alternative implementation outputs the same result in less than
a second. As shown in Table §6.8, the average difference in the analysis time is three
orders of magnitude (103), while the standard deviation follows the same scale. Total
cost errors, due to the round of real variables to integer variables, are negligible, since
average and standard deviation values are around cents of dollars.

112



6.9. RELATED WORK

1"

10"

100"

1" 10" 100"

RA
M
$(G

B)
$

ECU$(Units)$
General"*"Prev"Gen" Compute"Opt" GPU" Mem"Opt" Storage"Opt"
General"*"Current"Gen" Compute"Opt" GPU" Mem"Opt" Storage"Opt"

Figure 6.5: Instance types distribution in terms of RAM and ECU (log10 scale). Each
coloured rectangle denotes a different area of test cases.

Implementation Comparison

Performance (ms) Total cost diff.($)

Impl. Avg. (µ) SD (σ) Avg. (µ) SD (σ)

FaMa 1.73× 105 1.9× 105
0.4 0.33

Alternative 5.19× 102 2.15× 102

Table 6.8: Comparison between FaMa based impl and our alternative impl in terms of
performance and output

6.9 RELATED WORK

6.9.1 Cloud Migration

Jamshidi et al. [86] present a systematic literature review of existing research works
(up to 23) about planning, executing and validating migration of legacy systems to-
wards cloud-based software. The authors identify a reference model for the migration

113



CHAPTER 6. FGCS 2015

process, where they classify the different works depending on their scope. They also
identify a general lack of tool support for the migration process, which we try to palli-
ate in this paper. Frey et al. [55, 57, 58] propose an overall migration approach, based
on the concept of CDO (Cloud Deployment Option). A CDO represents “a combination
of a specific cloud environment, deployment architecture, and runtime reconfiguration
rules for dynamic resource scaling”. This approach provides CDOSim [55], a simula-
tor to evaluate CDOs costs and response times, and CDOXplorer [58], an evolutionary
algorithm to search for well-suited CDOs in terms of response time, cost and SLA vio-
lations. Both approaches are integrated in CloudMig [57], a suite to assist the migration
of applications to the cloud. Differently from our work, which is focused on infrastruc-
ture migration, they are concerned about migrating applications. Khajeh-Hosseini et
al. [90, 91] describe the challenges the users face when they plan to adopt the cloud.
They introduce the cloud adoption toolkit to tackle such challenges, which provides
a framework to assist the users in the decision process. This tool provides support to
analyse, among others, technology suitability, energy consumption and cost predic-
tion of providers and configurations. However, they provide exhaustive information
rather than automating the search for the most suitable configuration. CloudGenius
framework, an approach by Menzel and Ranjan [109], provides a process and decision
support for migrating to the cloud. Their approach comprises a formal mathematical
model and a migration process, whose goal is to lead to a VM image and cloud infras-
tructure selections. However, the tool support is still in a preliminary stage. Beserra
et al. [24] present CloudStep, a decision process to support the migration of legacy
applications to the cloud. CloudStep relies on template-based profiles of the migrating
company, its legacy application and the candidate providers. Such profiles are cross
analysed to identify and solve constraints, and to create a migration strategy. Kwon
and Tilevich [93] propose an automated transitioning for applications to use cloud-
based services. This approach can be seen as a crosscutting concern of the migration to
the cloud, and in particular of our proposal to assist the configuration.

There is a number of works that focus on algorithms to automatically evaluate or
rank cloud services configurations. Truong and Dustdar [164] present a service for
estimating, monitoring and analysing costs associated with scientific applications in
the cloud. They rely on cost models and experiment with real-world applications.
Trummer et al. [163] interpret the outsourcing of part of the IT-stack as a constraint
optimisation problem, that they solve using existing solvers. Tsai et al. [165] consider a
similar approach, choosing between different cloud providers using data mining and
trend analysis techniques, and looking for minimising cost. In a related research, Sun-

114



6.9. RELATED WORK

dareswaran et al [150] propose indexing and ranking cloud providers using a set of
algorithms based on user preferences. Venticinque et al. [167] describe an approach to
collect cloud resources from different providers that continuously meet requirements
of user applications. The related work of Borgetto et al. [26] is oriented to software
reallocation in different virtual machines in order to decrease energy consumption.

Some other works propose processes and methodologies to assist the migration,
and identify factors and tasks. The work of Mohagheghi and Sather [114] presents
some software engineering challenges related to migrating legacy systems to cloud
services. They identify application modernization and understanding cloud technolo-
gies as the main issues. Tak et al. [151] identify cost key factors when migrating to
the cloud. Different deployment alternatives, based in Azure and Amazon services,
are benchmarked and detailed in terms of cost. Lloyd et al. [97] discuss which factors
should be accounted when deploying to a cloud. The authors focus on bottlenecks
which appear when scaling applications, and the impact of provisioning variation.
Zardari and Bahsoon [179] rely on goal oriented requirements engineering (GORE)
and specific tasks to assist users in the adoption of cloud services.

6.9.2 Variability, Ontologies and Cloud Services

Applying Software Product Lines and variability techniques to cloud services is
attracting attention. Quinton et al. [128] propose a software product lines based ap-
proach that supports stakeholders while configuring a cloud environment and auto-
mates the deployment of such configurations. They also use FMs for the configura-
tion process, but while they consider features as deployable artefacts of cloud environ-
ments, we consider features as configuration points and specific values of commercial
cloud services. In the same line, Schroeter et al. [144] use FMs to configure IaaS, PaaS
and SaaS, and also present a process to manage the configuration of several stakehold-
ers at the same time. Dougherty et al. [49] also uses FMs to model IaaS, but the goal in
this case is reducing energy cost and energy consumption, towards the development
of a “green cloud”. In a different way, Cavalcante et al. [32] proposes the extension
of traditional software product lines with cloud computing aspects. Our work differs
from these approaches in a key way: while they focus on deployable cloud environ-
ments, and consider features as deployable artefacts, we focus on commercial cloud
services, and consider features as configuration points and specific values of the ser-
vices. Wittern et al. [176, 177] present the so-named service feature modelling, for the
representation of service design concerns, and to capture their potential combinations.

115



CHAPTER 6. FGCS 2015

They also also provides a method [176] to rank service design alternatives based on
stakeholder preferences. While they focus on capturing diverse aspects of cloud ser-
vices in a general way, we focus on the complete modelling and analysis of a particular
service, EC2, and compare our approach against commercial applications.

The use of ontologies has been proposed by several authors to assist the modelling
and selection of cloud services. Han et al. [78] construct a cloud ontology consist-
ing of a taxonomy of concepts of Cloud services, in order to support a cloud ser-
vice discovery system. Dastjerdi et al. [45] propose an ontology-based discovery to
provide QoS aware deployment of appliances on Cloud service providers. Ngan et
al. [121] also present a semantic cloud service discovery and selection system, based
on OWL-S. The proposed system supports dynamic semantic matching of cloud ser-
vices described with complex constraints. Garcia-Rodriguez et al. [134] propose a
semantically-enhanced platform to assist the process of discovering the cloud services,
stored in a semantic repository, that best match user needs. While ontologies are an
excellent option for a modelling approach, they present performance issues and rea-
soning lacks on integer and real variables, which are inherent to the problem we tackle
in this paper.

6.9.3 Commercial Approaches

Configuring and analysing cloud platforms/providers is continuing to receive sig-
nificant attention also from the business community. Besides previously referred Cloud-
Screener [38], there are a number of companies and start-ups providing comparisons,
benchmarks and configuration support for cloud services. Cloudorado [37] also pro-
vides a cloud services price comparison engine. CloudHarmony [36] is a startup which
looks for obtaining metrics about cloud providers performance, and provides a com-
parison framework for many services providers. PlanForCloud [126] is another start-
up, focused on configuring and simulating cost of several cloud platforms, like Ama-
zon, Azure or Rackspace. They provide interesting options, like creating elastic de-
mand patterns, and filtering by options like OS or computing needs.

As shown in the evaluation section, our proposal improves the expressiveness and
configuration results returned by some of these approaches. In particular, Cloud-
Screener returned false positives for the search of the best configuration that we im-
proved with our analysis. However, we still lack cross-provider support. In future
works, where we will consider different cloud providers and metrics, we may extend
our evaluation with some of these approaches.

116



6.10. SUMMARY

6.10 SUMMARY

We have presented an approach to assist the configuration selection when migrat-
ing an in-house computing infrastructure to the cloud. In terms of expressiveness,
our modelling approach provides greater degree of freedom for the customer when
making decisions about such configuration, compared to commercial applications like
AWS TCO and CloudScreener. In terms of accuracy, we have proved that our analysis
approach improves results compared to CloudScreener, which sometimes even vio-
lates user requirements. In terms of performance, we have implemented an analysis
prototype to obtain the most suitable configuration whose execution times are negligi-
ble, being most of the times less than a second.

For such purposes, we have presented a modelling methodology to describe an
IaaS as a FM. Modelling the configuration space of a large cloud provider, such as
AWS, as a FM provides a well-structured and compact representation to express user
infrastructure requirements. The resulting model still contains, for the particular case
of EC2, lots of information, with a huge number of constraints – more than 20,000. The
addition of abstract features and attributes eases the decision making, since informa-
tion like RAM, period of commitment or total storage is closer to the user than specific
instance types, purchasing options or EBS extra storage.

We have also proposed the use of the AAFM to assist the configuration when mi-
grating to an IaaS. With the support of the AAFM operations, user requirements can
be validated and employed to obtain suitable EC2 configurations. From the variabil-
ity management perspective, we have (1) demonstrated the applicability of the AAFM
for the configuration cloud services, (2) defined the product listing for attributed FMs,
and (3) proved that off-the-shelf AAFM mappings, such as the one provided by FaMa
framework, can be improved to dramatically reduce execution times.

Our approach can be generalised to other scenarios – including those considered
in this work, primarily focusing on a migration to the cloud. In a recent work [71],
we propose the adaptation of a multi-tenant service to satisfy the changing needs of
the users. In this sense, our analysis approach could be applied to IaaS reconfigura-
tion scenarios where the user needs to change and the current configuration becomes
unsuitable. Our analysis approach could also be integrated with existing tools. An
integration, for instance with the AWS calculator, would provide us with a reliable
way to get the exact pricing of EC2, and it would provide the calculator with capabil-
ities for the automated search of the most suitable configuration for given needs. The

117



CHAPTER 6. FGCS 2015

modelling methodology has also the potential for a cross-provider analysis. However,
in this case, we would have to propose a common IaaS FM, and also address issues
related to ontology alignment between the concepts of different providers.

However, our approach still has limitations and room for improvement, that may
motivate new works in this area. In addition to a cross-provider analysis, we think that
FMs and our modelling methodology could be employed for different cloud services.
We also consider defining a metamodel for the configuration of cloud services, based
on FMs, but with specific mechanisms to get beyond some limitations of FMs and the
current language. For instance, there should be a better and more compact way to
define price policies and temporal-aware requirements [102, 116]. It is also necessary
to enable a way to express constraints over several instances of the same services, such
as the discount policies for multiple hired services, which is a current limitation of FMs.
On the customer’s side, FMs lack mechanisms to express fuzzy needs or preferences
[63] as well as requirements. An extension would provide users with greater capability
to specify their needs. The aforementioned AWS calculator could be used also to verify
that we have described the EC2 pricing policy correctly. Finally, we think that we
can derive additional benefits from the AAFM. It is necessary to analyse in depth the
applicability of all the existing operations of AAFM to the services field.

118



7

USER-CENTRIC ADAPTATION

ANALYSIS OF MULTI-TENANT

SERVICES

119

Everything changes and nothing stands still.

Heraclitus (535 - 475 BC),
Philosopher

I n this chapter, we present the content of the paper submitted (and currently in the second
round of revision) to the Transactions of Autonomous and Adaptive Systems of ACM.
In Section §7.1 we introduce the paper, while Section §7.2 provides some background on

multi-tenancy, DaaS and feature modelling. Section §7.3 illustrates our DaaS case study and
Section §7.4 introduces the user-centric adaptation problem and, in particular, the adaptation
analysis. Section §7.5 describes how multi-tenant services and preferences are modelled to
support the analysis, which in turn is presented in Section §7.6. Section §7.7 discusses our
experimental results and Section §7.8 points out the open issues that will be addressed in future
work. Section §7.9 compares our approach with relevant related work, and finally Section §7.10
concludes.



CHAPTER 7. TAAS 2015

7.1 INTRODUCTION

Multi-tenancy allows cloud providers to deliver the same service to different cus-
tomers, which share physical and/or virtual resources transparently [25, 120]. De-
pending on the adopted cloud service model, users can share resources at different
levels, from hardware resources (e.g., CPU, storage) to software applications. Multi-
tenancy can support different degrees of isolation. In particular, the lower the degree of
isolation, the bigger the resources and cost savings, but the smaller the configurability.
Limited configurability [113] is a major drawback, especially when user preferences are
not known in advance. Several approaches [13, 92, 113, 143, 144] have been proposed
to support dynamic configuration management of multi-tenant services. Nonetheless,
these contributions consider an isolated multi-tenant model (i.e. each user is assigned
to a different service instance), and focus on deploying different isolated variants of a
service instance at runtime.

Social adaptation [2] considers changes in the user collective judgement as a new
adaptation driver. Other approaches [30, 98] consider conflicting users preferences
and limited infrastructural resources in the construction of adaptive software systems.
These approaches identify a system architecture [98] or configure a service-oriented
application that maximises QoS preferences [30] when changes in the operational en-
vironment take place. However, as far as we are aware, a user-centric approach has
not been previously proposed for the adaptation of multi-tenant services in cloud sce-
narios. To achieve this aim, additional challenges have to be addressed. First, it is nec-
essary to provide users with high-level mechanisms to define and change their prefer-
ences on the possible service configurations. Second, the adoption of a pay-as-you-go
business model allows users to join and leave a cloud service dynamically, which can
have an impact on the consumption of the infrastructural resources and may reduce
the satisfaction of the user preferences. Therefore, changes in the number of users and
modifications of their preferences have to be considered as a main adaptation trigger
for the reconfiguration of multi-tenant services.

In this paper, we characterise the user-centric adaptation of multi-tenant services
problem, focusing on the adaptation analysis. In our previous work [71] we high-
lighted the challenges to be addressed for engineering the activities of the MAPE (Mon-
itoring, Analysis, Planning, Execution) loop [89] necessary to support user-centric adap-
tation and proposed a preference-based analysis that maximises in a balanced way the
satisfaction of user preferences, which are expressed on the possible service config-

120



7.2. BACKGROUND

urations. In this paper we extend our analysis by incorporating infrastructural and
obtrusiveness aspects. Infrastructural aspects are necessary to guarantee that available
infrastructural resources can handle the workload generated by the selected service
configuration and the tenants of the service. Obtrusiveness aspects are taken into ac-
count to reduce the nuisance produced by a service reconfiguration. Our adaptation
analysis can be triggered when the users or the operational environment (including
available service configurations and infrastructural resources) change at runtime.

We illustrate and motivate our approach by utilising different cases of virtualised
desktops. Compared to our previous proposal, which focused on a hosted shared
DaaS, this paper extends the applicability of our analysis to different DaaS delivery
models and, more generally, to different multi-tenant services. We model the avail-
able service configurations, also referred as configuration space, the infrastructural re-
sources and the workload by using FMs [88]. We represent the user preferences by
adopting an existing preference model [65]. Our adaptation analysis is interpreted as a
multi-objective constrained optimisation problem built on top of the AAFM [19]. The
optimisation problem is solved by using metaheuristic algorithms [99], which have
been proved suitable for FM optimisation in existing work [76, 140]. We evaluate the
effectiveness of the analysis on simulated scenarios where different tenants – and their
users – join and leave a DaaS and change their preferences. The results obtained from
our experimental evaluation are encouraging as they demonstrate that our adaptation
analysis is able to calculate reconfigurations that improve and balance the satisfaction
of users preferences in a few seconds.

The rest of the paper is organised as follows. Section §7.2 provides some back-
ground on multi-tenancy, DaaS and feature modelling. Section §7.3 illustrates our
DaaS case study and Section §7.4 introduces the user-centric adaptation problem and,
in particular, the adaptation analysis. Section §7.5 describes how multi-tenant services
and preferences are modelled to support the analysis, which in turn is presented in
Section §7.6. Section §7.7 discusses our experimental results and Section §7.8 points
out the open issues that will be addressed in future work. Section §7.9 compares our
approach with relevant related work, and finally Section §7.10 concludes.

7.2 BACKGROUND

This section provides some background on multi-tenancy, Desktop as a Service de-
livery models, and feature models.

121



CHAPTER 7. TAAS 2015

7.2.1 Multi-tenancy

Multi-tenancy is defined as multiple customers, organizations or processes (tenants)
sharing common physical or virtual computing resources while remaining logically indepen-
dent [120]. Typically, a tenant groups a number of users, which are the stakeholders in the or-
ganization [25]. Shared resources can vary depending on the cloud service model; each
model provides resources belonging to different levels of abstraction. The IaaS model
offers computer - physical or virtual machines - and other resources, such as raw block
storage, file or object storage, virtual local area networks (VLANs), IP addresses, and
firewalls. To deploy their applications, users install operating system images and their
application software on the cloud infrastructure. In the PaaS model, providers deliver
a computing platform, typically including operating system and a solution stack with
database management systems (DBMS) and/or application servers. Cloud users can
run their software solutions without managing the underlying hardware and software
layers. In the SaaS model, users can access applications and data. The more resources
are managed by cloud providers, the more resources are shared by multiple different
users.

A Desktop as a Service (DaaS) is a specific case of SaaS providing a virtual desktop
and a set of applications as a service to a single or multiple tenants. Providers like Cit-
rix1, VMWare2, and Amazon3 are increasingly offering a wide range of DaaS solutions.
In this paper we focus on the case of multi-tenant DaaS relying on the delivery models
provided by Citrix [33].

7.2.2 Desktop as a Service Delivery Models

DaaS delivery models differ depending on the specific provider. In particular, as
shown in Figure §7.1a, Citrix provides two main delivery models for DaaS: Hosted
Shared and Virtual Desktop Infrastructure (VDI).

The hosted shared model consists of multiple user desktops shared among different
tenants and hosted on a single server-based operating system. Although it provides
a low-cost, high-density solution, applications must be compatible with a multi-user
server based operating system. In addition, because multiple users are sharing a single
operating system, they are prevented from performing actions that may negatively

1http://www.citrix.com/solutions/desktop-as-a-service/
2http://www.vmware.com/products/desktop-virtualization
3http://aws.amazon.com/workspaces/

122



7.2. BACKGROUND

affect other users, such as installing new applications or changing system settings.

VDI Model

OS Image

Desktop A

Desktop B

Desktop C

Tenant A

Tenant B

Tenant C

Desktop

Tenant C

Tenant B

Tenant A

Hosted Shared Model

(a)

DaaS$

vDisk$
Delivery$
Model$

VDI$
Hosted$
Shared$

Pooled$
Assigned$

1..1$

1..1$

costMonth:$$$

Rela?onships$

Mandatory$

Op?onal$

Depends$

Excludes$

Cardinality$
n..m$

(b)

Figure 7.1: a) DaaS delivery models b) Example of a FM.

The VDI model hosts custom desktop instances on remote servers. Each desktop
instance is associated with a different tenant and relies on a centralised master im-
age. VDI supports more customisation than the hosted shared model since each tenant
uses a different desktop instance. However, the specific shared and exclusive aspects
depend on the concrete VDI implementation and its options. For example, Citrix sup-
ports pooled VDI and assigned VDI (with personal vDisk) [33]. A pooled VDI provides
a clean random virtual desktop each time a user accesses the service. An assigned VDI
allows the users to customise the desktop, save applied changes after logging out, and
connect to the same virtual machine at each login.

The choice of a delivery model depends on the number of users, their profile (i.e.
intensity of desktop usage) and diversity, the applications adopted more often, and
the available infrastructural resources. In the case of a hosted shared model, all the
features are shared among all the tenants, while in the case of a VDI model, the shared
aspects depend on the concrete VDI configuration. Table §7.14 shows the impact of
different user profiles on the required infrastructural resources (CPU and RAM) for
different DaaS delivery models. CPU requirements determine the maximum number
of users of a specific type that can be allocated for each core. While RAM requirements
indicate the amount of RAM (in MB or GB) necessary to serve the requests of each
user. In the next section we present a DaaS case study for the aforementioned delivery
models.

4We assume to use Windows Server 2012 and Windows 8 for VDI and hosted shared models, respec-
tively, and a processor speed of 2.7 GHz and Intel Westmere processor architecture.

123



CHAPTER 7. TAAS 2015

Impact of user profiles

CPU: users per core (MIPS per user) RAM per user

Profile Apps Pooled VDI Assigned VDI Shared VDI Shared
Light 1-2 office apps 15 (1340) 13 (1546) 21 (957) 1 GB 340 MB

Normal 2-10 office apps. light
multimedia use

11 (1827) 10 (2010) 14 (1435) 2 GB 500 MB

Heavy Multimedia or app de-
velopment

6 (3350) 5 (4020) 7 (2871) 4 GB 1 GB

Table 7.1: Impact of the user profiles on the required infrastructural resources for dif-
ferent DaaS delivery models [33].

7.2.3 Feature Models

Feature Models (FMs) [88] are used to represent all the possible products that can be
built in variability-intensive systems such as SPLs. FMs are tree-like data structures
where each node represents a product feature. Features are bound by means of hierar-
chical (mandatory, optional, and set) and cross-tree relationships. These relationships
define how features can be combined in a product, defining the configuration space
of the system. Figure §7.1b shows an example of a FM diagram that represents the
variability of DaaS delivery models. DaaS is the root feature that represents the over-
all functionality of the system. It has two children, an optional feature (white circle)
named vDisk, and a mandatory feature (black circle) named Delivery Model. The
latter feature is decomposed by a set relationship whose cardinality indicates the num-
ber of child features that can be chosen at the same time. Note that in a FM, non-leaf
features [153] can be used to represent high-level decisions and group lower-level deci-
sions. For example, the VDI feature is used to group two possible VDI implementations
(Pooled and Assigned).

FMs also represent cross-tree constraints, attributes and complex constraints. Cross-
tree constraints are constraints between features belonging to different branches of the
model, such as the dependency between features vDisk and Assigned, indicating that
the adoption of a personal vDisk requires the selection of an assigned VDI implemen-
tation. Attributes are additional properties associated with a feature. For example,
the totalCost attribute of the DaaS feature is a real number describing the cost of a
specific DaaS configuration. Finally, complex constraints describe arithmetic, logical,
and relational constraints on features and attributes. They can be used, for example, to
bound the possible values that attributes can assume.

124



7.3. CASE STUDY

7.3 CASE STUDY

In this section, we present a Windows-based DaaS case study that we use to mo-
tivate and illustrate our work. First, we describe the configuration space of the DaaS
that can be delivered by using a hosted shared or a VDI model. Second, we illustrate
how different user profiles and DaaS configuration options impact on the infrastruc-
ture (CPU and RAM). Finally, we show a multi-tenant scenario, where each tenant
groups users having compatible DaaS configuration preferences.

7.3.1 DaaS Configuration Space

We present a Windows-based DaaS example where each instance uses different
delivery models: hosted shared (HS), pooled (PVDI) and assigned VDI (AVDI). We
assume that every DaaS instance provides several applications: 1. a LaTex compiler
and editor, 2. MS-Office, 3. a PDF reader, 4. GIMP as image editor, 5. Eclipse as IDE,
and 6. SPSS for statistical analysis. An instance setup is defined by four configuration
options: regional settings, gadgets (desktop widgets), maintenance tasks, and updates
frequency. Tenants can indicate their preferred configuration options, and the satis-
faction of such preferences depends on the delivery model. Table §7.2 indicates the
configuration options that are shared in the different delivery models. If a configura-
tion option is shared by multiple tenants, conflicts among different preferences may
arise. For example, in a hosted shared model, different tenants may have different up-
date frequency preferences for Eclipse and MS-Office; while in an assigned VDI model
such option can be customised for each tenant, avoiding any possible conflict.

7.3.2 Infrastructural Constraints

In this section we characterise the workload generated by the service users and its
configuration in order to assess whether the infrastructural resources available at the
service provider are satisfactory to provision a DaaS instance, while avoiding service
outages. The workload generated by the activity of each user depends on the applica-
tions s/he executes more often. We profile users along the three categories identified
by [33]: light, normal and heavy. The delivery model has an impact on the number
of users per core a DaaS is able to handle and on the required RAM size. Table §7.1
shows an estimation of the workload generated by each user profile depending on the
DaaS delivery model and expressed in terms of Million Instructions Per Second (MIPS)

125



CHAPTER 7. TAAS 2015

DaaS configuration options

Shared options Workload Peaks

HS PVDI AVDI DaaS configuration options Values MIPS RAM

! % % Regional Settings { UK, US, ES } - -

! % % Gadgets
Weather

{On, Off}
- -

Calendar - -

! ! % Maintenance
Defragmenter

{On, Off}
10 000 3 GB

Indexing 15 000 4 GB

Backup {Daily, Weekly, Monthly} 7 000 1 GB

! !

%

Updates

Java

{Daily, Weekly, Monthly}

3 000 0.2 GB
% Eclipse 2 000 0.1 GB
% MS-Office * 3 000 0.4 GB
! OS * 5 000 1 GB

* MS-Office updates period should be smaller than that used for OS updates.

Table 7.2: Shared DaaS configuration options depending on the delivery model and
their workload peaks.

and memory size 5. Beside the workload generated by the users, the current service
configuration also has an impact on the workload. Although this impact is not pub-
licly described by providers, it can be easily profiled in a system. For the possible DaaS
configuration options envisaged in our example scenario, we assume to have the peak
workloads shown in the last two columns of Table §7.2. Note that a peak workload
represents the maximum workload that can be reached at a given time instant.

7.3.3 Users, Preferences and Conflicts

In our example scenario we assume to have three different tenants sharing the same
DaaS instance. Each tenant groups a given number of similar users whose preferences,
used applications and profiles are presented in Table §7.3. Preferences expressed on
the same configuration options may lead to conflicts. For example, tenants 1 and 2
have different – but equivalent – preferences for the regional settings that do not create
conflicts. Tenants 2 and 3 have contradicting preferences for the indexing feature, mak-
ing it impossible to satisfy both preferences at the same time. Tenant 1 prefers weekly

5While the RAM and users per core calculations are provided by Citrix, the MIPS are estimated based
on the MIPS of an Intel Westmere Core i7 980X (hex-core) 3.3 Ghz processor. We have to adjust the clock
frequency to the Westmere 2.7 Ghz of Table §7.1. The MIPS for a single core are 147,600∗2.7

6∗3.3 ≈ 20100.

126



7.3. CASE STUDY

Tenants profile and preferences

# Users Apps Profile Preferences

Tenant 1 45 Medium

- US reg. settings (1)
- MS-Office - Office updates (3)
- GIMP - Weekly backups

- Weekly OS Updates (3)

Tenant 2 60
- Latex

Light
- No UK regional settings (1)

- MS-Office - Indexing (2)
- Defragmentation

Tenant 3 31
- Eclipse

Heavy
- Monthly office updates (3)

- MS-Office - No Indexing (2)
- PDF Reader - Calendar Gadget

Table 7.3: Tenants’ usage profile and preferences. Potential conflicting preferences are
associated with the same number.

OS updates, while tenant 3 favours monthly office updates causing a potential conflict.
Indeed, the satisfaction of both preferences may cause a violation of the constraint that
requires that office updates period must be smaller than the OS update period (Ta-
ble §7.2). Note that the complete satisfaction of all the preferences is infeasible in most
of the cases, and therefore it is necessary to trade-off conflicting preferences.

Similarly to other cloud service models, a multi-tenant DaaS satisfies the requests
of its tenants elastically. This means that the tenants may join and leave the service
or change their preferences or number of users at runtime. For example, the users
in tenant 3 work at fixed times, and therefore they join and leave the DaaS almost
at the same time in the workdays. While the users of the rest of the tenants access
the desktop at different times (including weekends), especially when project deadlines
are close. Similarly, the current service configuration may become sub-optimal because
tenant preferences vary during the system life-time. For example, users of tenant 3 may
prefer to deactivate Eclipse updates while finishing a development sprint. In all these
cases, the current users and their preferences have a direct influence on the selection
of a specific service configuration. Furthermore, modifications of the available service
configurations might lead to changes in the tenant preferences. For example, if some
of the backup features are removed, the users might change their preferences w.r.t. the
new configuration space.

127



CHAPTER 7. TAAS 2015

7.4 TOWARDS USER-CENTRIC ADAPTATION OF MULTI-
TENANT SERVICES

In this section, we present the foundations of our user-centric adaptation approach
for multi-tenant services. In particular we provide a big picture of the user-centric
adaptation problem and focus on the analysis for supporting service reconfiguration.

7.4.1 User-Centric Adaptation Problem

We consider the user-centric adaptation as the process that reconfigures a system
when the users or the operational environment change, in order to maximise user sat-
isfaction. The adaptation actions perform a system reconfiguration by changing the
values of the configuration options. We propose to perform the adaptation when any
event that may have an impact on the users satisfaction is detected, such as changes
in the user preferences, in the available system configurations or in the computational
resources. However, system adaptations can in turn reduce the system usability. There-
fore it is necessary to balance the trade-off between the preferences satisfaction and the
obtrusiveness of the adaptation actions.

As shown in Figure §7.2, the activities of the MAPE loop can support user-centric
adaptation as follows:

(a) Monitoring (M) has the objective to capture user related changes, modifications
of the available system configurations, and variations of computational resources.
Any of these changes can trigger a new adaptation. User related changes include
modifications of the users preferences on the available system configurations or
variations of the number of users per tenant, which in turn can affect the global
preferences of a tenant. Monitoring users preferences can be performed, for ex-
ample, by asking for explicit users feedback [2]. Modifications of the configura-
tion space may be due to, for example, new applications supported by the DaaS
or system updates. Infrastructure changes are related to modifications of allo-
cated resources or changes of the constraints on the maximum resources that can
be allocated. Note that all these changes can have an impact on how the users
preferences are satisfied. Additionally, the monitoring also has to keep track of
the adaptation frequency, which may affect the performance of tasks performed
by the users [148] and, therefore, preclude the execution of a reconfiguration.

128



7.4. TOWARDS USER-CENTRIC ADAPTATION OF MULTI-TENANT SERVICES

M

A

P

E

Users

Infrastructure

Configuration

- Maximise users' preferences

- Satisfy 
  Infrastructure
  Constraints

Candidate
Reconfiguration(s)

Current
Configuration

Re-Configuration
Strategy

- Decision Making   

- Apply reconfiguration 
  in the running system

- Minimise adaptation cost

Adaptation
Time

Figure 7.2: User-Centric Adaptation MAPE (Monitoring, Analysis, Planning, Execu-
tion) Loop.

(b) Analysis (A) has the objective to identify the best system configuration(s), which
optimises a set of metrics. In particular, a reconfiguration should maximise the
satisfaction of the user preferences by taking into account the available infras-
tructural resources. As changes from one configuration to another can have a
negative impact on the usability of the system [59], the reconfiguration should
also minimise the adaptation cost a.k.a “obtrusiveness”. For example, a reconfig-
uration that modifies the look and feel or the regional settings in a DaaS is more
obtrusive than another one that modifies the backup frequency. Frequent adap-
tations can also increase the obtrusiveness. This issue is further discussed and
parametrised in sections §7.5.1 and §7.6.3, respectively.

(c) Planning (P) receives as input a candidate reconfiguration identified during anal-
ysis and identifies an adaptation strategy indicating how this reconfiguration
should be applied at runtime. For example, changes in the application look and
feel might not be applied until specific users terminate the interaction with the
system. A reconfiguration that modifies the backup frequency can only be ap-
plied after the next scheduled backup.

129



CHAPTER 7. TAAS 2015

(d) Execution (E) has the objective to apply an adaptation at runtime. For example,
in the case of a VDI DaaS, a variant of existing application instances should be
deployed dynamically, as proposed in [13, 144]. While, for a hosted shared DaaS
model the single application instance should be modified when possible.

For our DaaS case study, depending on the chosen delivery model, the value of a
configuration option can be tenant-specific, i.e. enabling a different configuration for
each tenant, or tenant-shared, i.e. common to all the tenants. However, as a multi-
tenant service, all the delivery models present a – higher or lower – number of shared
configuration options. We propose to adapt the shared configuration options dynami-
cally. In this way, our approach can be applied to different delivery models by chang-
ing the options that are included in the configuration space considered during the anal-
ysis. Note that admin aspects that are common to all the tenants, such as security con-
figurations (e.g., firewall, antivirus), are out of the scope of our adaptation problem.
Indeed, given their criticality, their configuration can only be performed by the admin
staff at the provider organisation.

Our user-centric adaptation approach can be applied to other multi-tenant service
models, such as SaaS, PaaS, and IaaS. An example of multi-tenant SaaS is Wordpress6,
which is an open source blogging tool and a content management system providing
different customisation options and plugins. Similarly to a DaaS, Wordpress supports
multisites7, which aggregate several Wordpress sites into a single installation. In this
case, the shared resources among tenants are the global configuration options, such
as the default language, the upgrading policy, and the available plugins, themes, and
blog entries. In a PaaS model the deployment environment (e.g., DBMSs, web servers)
can be reconfigured to adequately host multiple applications – representing the tenants
in this case – having different needs. Virtualised computing instances and storage ser-
vices are examples of multi-tenant IaaS. Such services rely on the underlying hardware
resources that are shared among different tenants. For example, Amazon offers micro
instances to increase CPU capacity for a short time in order to handle load peaks. Since
micro instances do not have fixed performance requirements, in this scenario our ap-
proach can be used to decide which micro instance receives additional computational
cycles. This choice depends on the current and changing needs of the tenants and on
the available computational capacity of the physical CPU instance shared among the
tenants.

6https://wordpress.org/
7http://codex.wordpress.org/Create%20A%20Network

130



7.5. MODELLING

7.4.2 Adaptation Analysis for Service Reconfiguration

In this paper we focus on the analysis activity of the MAPE loop. In particular, we
define the analysis problem as a tuple of the form

(C, I, T, fC, fT, (u1, . . . ,un),ρ),

such that C represents the set of configurations that are available in the service; I char-
acterises the infrastructural resources; T represents the set of tenants, fC : C → I and
fT : T→ I are the functions that identify the impact (workload) that each configuration
and each tenant has on the required infrastructural resources, respectively; ui : C→ R

are utility functions for each tenant in T defining the tenant satisfaction for any given
configuration in C; and ρ : C × C → R is a function that quantifies the obtrusiveness
that a change from one configuration to another produces.

Assuming that it is possible to define a function U : C → R that computes the
global satisfaction of all the tenants for a given configuration, a candidate reconfigura-
tion ct+1 ∈ C can only be enforced if it outperforms the current one (ct), i.e. U(ct+1) ≥
U(ct) + ρ. Note that we assume that a tenant groups different users who share com-
patible preferences and the same profile. The clustering of the user preferences into
different tenants is performed during the monitoring phase and is an open issue that
will be addressed in future work.

7.5 MODELLING

In this section we describe how the multi-tenant service (Section §7.5.1) and the user
preferences (Section §7.5.2) are modelled to support the analysis. We use FMs to repre-
sent the multi-tenant service including the configuration space (C), the infrastructural
resources (I), the workload generated by a service configuration and the users ( fC, fT),
and the obtrusiveness of a service reconfiguration (ρ). We adopt the SOUP preference
model [65] to represent the user preferences.

7.5.1 Service Modelling

Service modelling usually involves multiple and interrelated configuration options.
For example, Amazon EC2 features present more than 20,000 constraints defining 16,991
different configurations [69]. Our choice to use FMs to model multi-tenant services is

131



CHAPTER 7. TAAS 2015

Service 

Modelling

Configuration space

Infrastructure

Workload

Obtrusiveness

Feature Model

(a)

Analysis

✓!
✗!

…"

✓!
3.0!
LOW!

Configuration space

Infrastructure

Workload

Obtrusiveness

Preferences

Reconfiguration

(b)

Figure 7.3: a) Service modelling. b) Analysis inputs and outputs.

motivated by the fact that FMs are expressive enough to represent increasingly com-
plex systems such as cloud services [69], and content-management frameworks [139].
This section leverages our DaaS case study to describe how we use FMs to model multi-
tenant services.

Configuration Space

Figure §7.4 shows a FM for the DaaS case study. Each configuration option is mod-
elled either as a feature or as an attribute. Features represent boolean options that can
be selected or removed. Attributes can assume values in an integer, real or enumerated
domain, being suitable to represent non-boolean options. In our case study, the main
configuration options are represented by five features: Gadgets, Regional Settings,
AppUpdates, Maintenance and OSUpdates. These features are in turn decomposed by
sub-features representing possible configuration options. For example, if the Gadgets

feature is selected, it is necessary to specify whether the Weather forecast gadget, the
Calendar gadget or both of them are selected. Since the Maintenance feature must
be selected mandatorily due to its relationship with the root feature, the Backup fea-
ture must also be selected, while features Indexing and Defragmenter are optional.
For the Backup feature, a daily, weekly, or monthly backup period must be chosen as
indicated by the period attribute.

Infrastructure and Workload

In real-world contexts, services have limited infrastructural resources which should
be satisfactory to handle the workload determined by the current service configuration
and users. We propose to incorporate infrastructure and workload information into the
FM by means of attributes and complex constraints. In our example, infrastructure and

132



7.5. MODELLING

Dev$

WindowsDaaS$

Maintenance$

Indexing$

Defragmenter$

Backup$

Constraints)
Firewall.level$=$“complete”$$IMPLIES$NOT$AppUpdates$

Security$

Firewall$

EncrypJon$

AnJvirus$

level:${low,$
medium,$high,$
complete}$

frequency:$
[0,7]$days$per$
week$

OSUpdt$

Updates$

AppUpdates$

JavaUpdt$EclipseUpdt$

OfficeUpdt$

1..3$

period:$
{daily,weekly
,monthly}$

Office$
Apps$

Latex$
MSXOffice$

Eclipse$

1..3$

Apps$Regional$
SeZngs$

UK$

US$

ES$

1..1$

Acrobat$

SPSS$

GIMP$
1..2$

Figure 7.4: DaaS configuration space expressed as a Feature Diagram – a FM graphical
notation.

workload are defined in terms of CPU speed (in MIPS) and RAM size, although other
indicators such as incoming and outgoing bandwidth or storage could also be consid-
ered. Listing 7.1 shows an excerpt of the infrastructure and workload definition in the
FM using the FaMa plain text notation [158]. In particular, the syntax for an attribute
definition is Feature.attributeName : Domain[range], zero-value;. This indi-
cates the value an attribute assumes when the corresponding feature is removed.

Available infrastructural resources are defined by attributes cores, availableCPU
and availableMemory associated with the WindowsDaas feature. They represent the
number of CPU cores, and the available CPU and memory, and are assigned a fixed
value that could only be modified if the infrastructure changes. The attributes repre-
senting the overall workload are CPUWorkload and memoryWorkload and are also as-
sociated with the WindowsDaas feature. The value of these attributes must always be
smaller than the CPU and the RAM available; this is represented in terms of constraints
in the FM (first two constraints in Listing 7.1). The value of these attributes may also
vary at runtime depending on the current service configuration and on the number of
users.

The overall CPU and RAM workload determined by a service configuration is ex-
pressed the by the WindowsDaas feature attributes configCPUWL and configMemoryWL,
respectively. The value of such attributes is computed as the sum of the CPU and RAM

133



CHAPTER 7. TAAS 2015

workload determined by each selected leaf feature. This operation is expressed by two
constraints in the feature diagram (last two constraints in Listing 7.1). Each leaf feature
is associated with attributes feature.configCPUWL and feature.configMemoryWL rep-
resenting its CPU and RAM workload respectively. For example, as shown in List-
ing 7.1, the Weather and Indexing features require 30MB and 0.5GB of RAM, respec-
tively, when they are selected. When a feature is removed from a configuration, it
does not require resources and zero-values in the attribute definitions are used for this
purpose. The workload values associated with each leaf feature can be obtained from
real-time data collected while the feature is selected, or from estimations, when the
feature is currently removed.

The CPU and RAM workload determined by the users is represented by the Win-

dowsDaas feature attributes userMemoryWL and userCPUWL, respectively. This workload
is usually variable and non-linear, and depends on the user number and profile. Ide-
ally, during the monitoring phase upper bounds for userMemoryWL and userCPUWL can
be predicted. However, since the scope of the solution of this paper is on the analysis
phase, we use simulated workloads for the example described in Section §7.6.2.

Listing 7.1: Excerpt of DaaS infrastructure, workload and obtrusiveness modelling for
memory using FaMa plain text format

1%Attributes

2# Available infrastructure and workload attributes

3WindowsDaaS . availableMemory : Real [ 2 5 6 ] ; ## in GBs

4WindowsDaaS . availableCPU : Real [ 4 0 0 0 0 0 . 0 ] ; ## in MIPS

5WindowsDaaS . memoryWorkload : Real [0 to 5 1 2 ] ;
6WindowsDaaS . CPUWorkload : Real [0 to 1 0 0 0 0 0 0 . 0 ] ;
7
8# Attributes to compute the current memory workload

9WindowsDaaS . userMemoryWL : Real [0 to 2 5 6 ] ;
10WindowsDaaS . configMemoryWL Real [0 to 2 5 6 ] ;
11Weather . configMemoryWL : Real [ 0 . 0 3 ] , 0 ;
12Indexing . configMemoryWL : Real [ 0 . 5 ] , 0 ;
13. . .
14# Attributes to compute the obtrusiveness

15Gadgets . obtrusiveness : [ 3 ] ; ## high obtrusiveness value

16Indexing . obtrusiveness : [ 2 ] ; ## medium obtrusiveness

17JavaUpdt . obtrusiveness : [ 1 ] ; ## low obtrusiveness

18. . .
19%Constraints

134



7.5. MODELLING

20WindowsDaaS . CPUWorkload < WindowsDaaS . availableCPU ;
21WindowsDaaS . memoryWorkload < WindowsDaaS . availableMemory ;
22WindowsDaaS . memoryWorkload == WindowsDaaS . configMemoryWL
23+ WindowsDaaS . userMemoryWL ;
24WindowsDaaS . configMemoryWL == Weather . configMemoryWL
25+ Calendar . configMemoryWL + Defragmenter . configMemoryWL
26+ Indexing . configMemoryWL + Backup . configMemoryWL + . . . ;
27. . .

Obtrusiveness

To model the obtrusiveness of a service configuration we leverage the conceptual
framework proposed by Ju and Leifer [87]. This framework determines the obtrusive-
ness level of each interaction of the system with the user by considering the attention
dimension, i.e. whether an interaction takes place in the background (the user is un-
aware of the interaction with the system) or in the foreground (the user is fully con-
scious of the interaction). Taking inspiration from this work, we consider user aware-
ness about changes as a factor that affects the obtrusiveness level of a reconfiguration.
In our case, a change is performed when a selected feature is removed, a removed fea-
ture is selected, or a configuration option attribute – such as update period – changes
value. In this context, the obtrusiveness level produced by changes is the sum of the
obtrusiveness level produced by each modified feature. For this reason, we associate
an obtrusiveness attribute with each feature in the FM. The higher the user aware-
ness about a change in a feature, the higher the obtrusiveness of the feature. In par-
ticular, the features whose changes affect the graphical user interface, such as Gad-

gets and Regional Settings have high obtrusiveness (3). Features that might cause
a slight degradation in the system performance, such as Maintenance, have medium
obtrusiveness (2). For example, Indexing is a background task that consumes some
CPU and has medium obtrusiveness. Finally features that are almost transparent to
the users such as AppUpdates and OSUpdates have low obtrusiveness (1). Listing 7.1
shows an example of the obtrusiveness definition for the Gadgets and Indexing fea-
tures. In Section §7.6.3 we explain how these values are used to include obtrusiveness
information in the adaptation analysis.

135



CHAPTER 7. TAAS 2015

7.5.2 User Preferences Modelling

In FMs, users can describe their preferences in terms of hard requirements, where
a feature must be either selected or removed and attributes must only assume one
specific value in their domains. This approach hinders the negotiation process among
different users, making it harder to find a relaxation of conflicting requirements.

Although a service cannot satisfy conflicting hard requirements, it can provide a
balance between conflicting preferences. We adapt five preference terms of the SOUP
model [65] to express fuzzy user preferences on a given service. SOUP is a highly in-
tuitive and expressive preference model, which was initially designed to express pref-
erences for service discovery and ranking. However, it has been adapted to different
scenarios, such as resources allocation in business processes [29]. We detail the adapted
preferences as follows:

• Favorites expresses a preference on a selected feature. For example, a user may
prefer the Indexing feature to be selected.

• Dislikes expresses a preference on a removed feature. For example, a user may
dislike the JavaUpdate feature.

• Highest expresses a preference on maximising the value of a given attribute. For
example, a user may prefer the highest value for the OSUpdate.period attribute.

• Lowest expresses a preference on minimising the value of a given attribute. For
example, a user may want the lowest value for the JavaUpdate.period attribute.

• Around expresses a preference on a specific attribute value. The closer the at-
tribute value to a target value, the higher the preference satisfaction. For exam-
ple, a user may want the OfficeUpdate.period attribute to be close to “weekly”
value.

In this way, the different users – grouped by tenants – can employ fuzzy operators
to define their satisfaction. Initially, described preference terms were intended to define
a partial ranking between a set of services [65]. In our work we compute the satisfaction
of each tenant (i) for each configuration option (j) as a real number pij ∈ [0,1]. This
choice allows us to measure the preference satisfaction of each tenant i in terms of a
fitness function (ui) described in the next section.

136



7.6. ANALYSIS

7.6 ANALYSIS

The goal of our analysis is to identify a service reconfiguration that improves the
satisfaction of the users preferences compared to the current configuration. The anal-
ysis takes as input the service model, including the configuration space, the infras-
tructure and workload, and the features obtrusiveness, the users preferences model,
and the current service configuration, as shown in Figure §7.3b. The analysis problem
is interpreted as an operation of the Automated Analysis of Feature Models (AAFM), as
described in Section §7.6.1. A candidate configuration is computed by taking into ac-
count the preferences satisfaction and the obtrusiveness determined by its application
at runtime. These aspects are considered in the preference-based optimisation (Sec-
tion §7.6.2) and the obtrusiveness-aware optimisation (Section §7.6.3), respectively.

7.6.1 Automated Analysis of Feature Models

AAFM is a discipline that deals with “the automated extraction of information from
FMs using automated mechanisms” [19]. We leverage existing mappings from FMs to
logic paradigms and off-the-shelf solvers to to implement our adaptation analysis. In
particular, in this paper we use the optimisation operation provided by the AAFM
framework to perform our adaptation analysis. This operation takes a FM and an ob-
jective function as input, and returns the configuration fulfilling the criteria established
by the function. To optimise the value of the attributes defined in the FMs, relative or-
der preferences have been considered in previous work [9]. However, as far as we are
aware, no approach has considered how to optimise fuzzy, high-level user preferences
expressed in a similarly to those described in Section §7.5.2. Therefore, we have tai-
lored the objective function of the optimisation operation of the AAFM framework to
support our preference-based optimisation.

7.6.2 Preference-based Optimisation

We interpret our preference-based optimisation as a multi-objective constrained op-
timisation problem. From all the available combinations of configuration values, only a
subset satisfies all the configuration space, infrastructure and obtrusiveness constraints
for a given time lapse. The set of preferences associated with each tenant is considered
as a different objective function; from that subset it is possible to obtain a Pareto front
with solutions that are equally efficient. Table §7.4 shows how preference satisfaction is
computed for the analysis. Each preference defines a satisfaction degree pij comprised

137



CHAPTER 7. TAAS 2015

Preferences satisfaction

Preference Element Satisfaction Measure Example

Favorites(f) Feature f = selected =⇒ pij = 1 Favorites(Indexing)
Dislikes(f) Feature f = removed =⇒ pij = 1 Dislikes(JavaUpdate)

Highest(att) Attribute pij =
value−lowerBound

upperBound−lowerBound Highest(OSUpdate.period)

Lowest(att) Attribute pij =
upperBound−value

upperBound−lowerBound Lowest(JavaUpdate.period)

Around(att,d) Attribute pij = inverseDistance(value,d) Around(OfficeUpdate, Weekly)

Table 7.4: Preferences satisfaction.

between 0 and 1, depending on the value of the element referred by the preference.
The fitness function of each tenant, ui = ∑j pij , aggregates its preferences. Since the
Pareto front may be composed of a number of equally efficient solutions, we need to
rank them in order to choose a single one. Since we aim to identify an egalitarian
solution, we take inspiration from cooperative game theory and the concept of an im-
partial arbitrator: from two optimal solutions, an impartial arbitrator chooses the most
equitable one [118]. We define a variation of the Nash product (∏i ui), the so-named
Normalised Nash Product, to compare the different solutions belonging to the Pareto
front, as follows:

NNP = ∏
ui · wi

UiMAX

where wi is the number of users of tenant i, and UiMAX is the maximum possible pref-
erence satisfaction of each tenant ui. If different configurations have the same NNP
value, we select the one minimising the resources usage. The rest of the section illus-
trates our analysis approach through the scenario presented in Section §7.3.

We consider a hosted shared delivery model, where all the resources are shared
among the tenants, as shown in Figure §7.4. We also consider the preferences of each
tenant, their number of users for two subsequent time instants (t and t+ 1) as shown in
Table §7.5. At time t there are three tenants and the DaaS is running configuration c1,
described in Table §7.6, which provides the satisfaction ui for each tenant i (Table §7.5).

In the next time instant, a new tenant is added, and the preferences and the number
of users associated with each tenant also change. Consequently, the utility value of the
current configuration (ui(c1)) changes accordingly, becoming sub-optimal. Therefore,
the analysis is triggered, returning a new configuration, c2 (Table §7.6), which delivers
improved utility values ui(c2). The most remarkable improvements are for tenant2 and

138



7.6. ANALYSIS

Preferences reconfiguration scenario

t t+1

Preferences wi ui(c1) Preferences wi ui(c1) ui(c2)

t1

√
US

45 4

√
US

49 4 4
√

OfficeUpdt
√

OfficeUpdt
Backup.period ≈Weekly Backup.period ≈Weekly
OSUpdt.period ≈Weekly OSUpdt.period ≈Weekly

t2

¬ UK

60 2

¬ UK

53 2.66 3.66
√

Indexing
√

Indexing√
Defragmenter

√
Defragmenter

OfficeUpdt ≈Monthly

t3

⇑ OfficeUpdt.period
31 2.5

⇑ OfficeUpdt.period
40 2.5 2.5¬ Indexing

√
Defragmenter√

Calendar
√

Calendar

t4 0 -

√
UK

23 0.5 1.5JavaUpdt.period ≈Monthly
⇓ OfficeUpdt.period

NNP (105) 2.2 9.1

*Legend. ti : Tenanti ,
√

: Favorites, ¬ : Dislikes, ⇑ : Highest, ⇓ : Lowest, ≈ : Around

Table 7.5: Preferences reconfiguration scenario* for a hosted shared delivery model
(changes in bold).

Sample configurations

Gadgets Reg. Set. App. Updates Maintenance OS Update

c1 Calendar US OfficeUpdt.period =
Weekly

Defragmenter,
Backup.period =
Weekly

OSUpdate.period
= Weekly

c2 Calendar US OfficeUpdt.period
= Weekly,
JavaUpdt.period
= Monthly

Defragmenter,
Indexing,
Backup.period =
Weekly

OSUpdate.period
= Weekly

Table 7.6: Enabled features and attribute values for configurations c1 and c2.

tenant4, whose preference satisfaction increases from 2.66 to 3.66 and from 0.5 to 1.5,
respectively. The improvement of the global satisfaction is also indicated by the NNP
value increasing from 2.2 to 9.1.

139



CHAPTER 7. TAAS 2015

Workload impact

c1 c2

Workload Workload

Tenant Profile wi MIPS RAM (MB) wi MIPS RAM (MB)

T1 Medium 45 114213 17098 49 71647 28352
T2 Light 60 74507 10127 53 33953 24303
T3 Heavy 31 84249 84249 40 154094 37511
T4 Heavy - - - 23 57136 31316

Configuration workload 25000 5520 43000 9816

Total workload 297969 72505 359830 131298

Table 7.7: Estimation of the workload impact on the infrastructure.

As described previously, the available infrastructural resources must be satisfactory
to handle the workload generated by the users at each tenant and by the candidate re-
configuration. The workload determined by the users is not linear and peak MIPS and
RAM workloads should be estimated based on the monitored data. For our DaaS sce-
nario, we generate artificial user workload by means of a Gaussian distribution, simi-
larly to [103]. For each tenant, we generate a number from a Gaussian distribution, tak-
ing µCPU = wi ∗ AvgCPUWorkload and µRAM = wi ∗ AvgRAMWorkload – where the
average workloads for the CPU and the RAM are extracted from Table §7.1, given the
profile and delivery model – and σCPU = µCPU

4 , σRAM = µRAM
4 . The workload generated

by the candidate reconfiguration is calculated as the sum of the peak workloads (Ta-
ble §7.2) of each selected configuration options indicated in the last row of Table §7.6.
The total estimated workload is shown in Table §7.7, as the sum of the tenants work-
load and the configuration workload. In this case, we assume that the required CPU
and memory can be provisioned by the available infrastructural resources depicted in
Listing 7.1.

7.6.3 Obtrusiveness-aware Optimisation

We characterise the obtrusiveness level of each service reconfiguration as

ρ(Ct+1,Ct,∆t) = ∑
m∈di f f (Ct+1,Ct)

ρm + max{δ0 − ∆t,0}

140



7.7. EVALUATION

where Ct+1 ∈ C is the candidate configuration; Ct is the current configuration; di f f is a
function that obtains the set of features whose state (selected or removed) or attributes
differ between two configurations; ρm is the obtrusiveness level assigned for a given
feature (defined through the obtrusiveness attributes in the FM); ∆t is the time elapsed
since the last reconfiguration; and δ0 is the minimum time interval that must pass be-
tween two subsequent reconfigurations in order not to disrupt the service usability. δ0

can be estimated from monitored data.

In this scenario, we add the constraint ρ < ρMAX to the analysis problem, in order
to ensure that the obtrusiveness of the reconfigurations from the Pareto front is below
a certain threshold. ρ is also set as an additional objective to compute the Pareto front.

For our example scenario, the di f f function between c1 and c2 (Table §7.6) returns
the set {Indexing, JavaUpdt}. According to the model excerpt of Listing 7.1, ρm =

Indexing.obtrusiveness+ JavaUpdt.obtrusiveness= 2+ 1 = 3. Considering δ0 =

24 hours, and ρMAX = 4 hours, at least 20 hours should pass between two subsequent
reconfigurations. If ∆t = 28 hours, ρ = 3+max{−4,0} = 3 < ρMAX, and, therefore, the
obtrusiveness of the candidate reconfiguration is below the maximum threshold.

7.7 EVALUATION

In this section we illustrate the evaluation of our approach. We describe the imple-
mentation of our analysis (Section §7.7.1) and explain the experiments we conducted
to assess its effectiveness and performance (Section §7.7.2). Finally, we present and
discuss our results (Section §7.7.3).

7.7.1 Implementation

We have implemented a prototype to perform our preference-based optimisation
that uses jMetal, a Java-based metaheuristics framework to solve multi-objective op-
timisation problems [51]. jMetal provides a number of metaheuristic algorithms to
compute a Pareto front of the problem. Among all the algorithms that jMetal provides,
we have chosen two genetic algorithms which are widely used for the analysis of FMs
[76, 140]. Genetic algorithms are search algorithms that work via the process of natu-
ral selection. They begin with an initial population of potential solutions, which then
evolves through different generations – via mutations and crossovers – toward a set of
more optimal solutions. In particular, we employ FastPGA [54] and NSGAII [46]. Al-

141



CHAPTER 7. TAAS 2015

though both algorithms are elitist, NSGAII establishes different non-domination levels
when ranking the – fixed sized – population, while FastPGA merges and ranks the
previous and current generation into a single – and adaptive sized – population. Due
to their complementarity we decided to compare the behaviour of the two algorithms
for our analysis. Since the notation we used to describe the configuration space (FaMa
plain text notation [158]) only supports integer attributes at the moment, we model
enumerated domains as an integer range. For the genetic algorithms, the FMs are
encoded as an array of boolean variables to represent features selection and integer
variables to represent attributes values.

Metaheuristics are partial-search algorithms and for this reason they may consider
solutions which violate some constraints of the FM. To avoid this problem we set the
correctness of the solution as an additional objective, by taking inspiration from [140].
We measure the violated constraints of a configuration using Choco8, a Java CSP solver.
The current configuration of the service is taken as input and seeded among the initial
population. For the first execution, we seed a random valid configuration of the ser-
vice. The intention is twofold: speed up the generation of valid solutions and generate
some solutions close to the current one. The resulting Pareto front is ranked by the
NNP value (Section §7.6). If all the returned points of the Pareto front have a NNP = 0
– due to each ui = 0, our analysis chooses the solution that maximises the average
satisfaction of the tenants.

7.7.2 Experiments

Our goal in this experimentation is checking the effectiveness of our analysis. We
compare the results obtained by using FastPGA and NSGAII with those obtained by
using a random search algorithm. We measure analysis effectiveness in terms of per-
formed reconfigurations and achieved satisfaction. Performed reconfigurations are
measured as the percentage of times the analysis finds a candidate configuration im-
proving the NNP value compared to the current one. Achieved satisfaction is mea-
sured as the weighted average of the user preferences satisfaction.

For the experiments, we consider a scenario where tenants change, i.e. they join and
leave the system, and their preferences and number of users vary between different
system snapshots, as described in Table §7.5. We define a snapshot as the state of the
tenants and their preferences for a specific time instant (t). For every snapshot, we run

8http://www.emn.fr/z-info/choco-solver/

142

http://www.emn.fr/z-info/choco-solver/


7.7. EVALUATION

Changes

Change t-1 t

#Tenants T = n T ∈ {n− 1,n + 1}
#Pre f s Pi = mi Pi ∈ {mi − 1,mi,mi + 1}
#Users Wi = wi Wi ∈ [WMIN,WMAX]

Table 7.8: Amount of changes between two consecutive snapshots at t− 1 and t.

Experimental study characteristics

Features Atts. CTC

FM1 18 7 1
FM2 20 14 6
FM3 28 18 9
FM4 29 21 9
FM5 30 21 9

Table 7.9: Characteristics of the FMs used for the experimental study.

the analysis to reconfigure the service. We compare the satisfaction achieved by each
reconfiguration for the time t to the satisfaction achieved by the previous configuration
at the same time.

For our experiments, we define a set of tenants T, each of them is associated with
a set of preferences Pi and users Wi. The number of tenants T is defined in the integer
range [TMIN, TMAX], the number of preferences per tenant i Pi is defined in the inte-
ger range [PMIN, PMAX], and the number of users Wi is defined in the integer range
[WMIN,WMAX], considering also that ∑Wi ≤ WTOTAL. For each snapshot (see Ta-
ble §7.8) either one tenant leaves or a new tenant joins the service, but the rest of the
tenants may experience changes in their preferences. In particular, if an existing tenant
is affected by a change, this can indicate that a new preference is added or an old one
is removed. The number of users associated with each tenant (determining its weight)
may vary between WMAX and WMIN values. To simulate the changes between con-
secutive snapshots, we implemented a random generator of tenants and preferences.
Given a FM and an integer k ∈ [PMIN, PMAX], this generator creates T different tenants,
each one with a set of different k preferences over features and attributes of the FM.
Once a preference has been defined on an element, such element is excluded for future

143



CHAPTER 7. TAAS 2015

preferences of the same tenant to avoid contradictions. After the initial snapshopt is
generated, the generator takes as input the set of current tenants, and returns a new
set of tenants by adding/removing new/existing ones as shown in Table §7.8. It also
performs changes in the preferences of the tenants Pi and their number of users wi.

We consider the configuration space of five services, represented as FMs having
increasing complexity. The first FM represents our DaaS scenario in its hosted shared
version, and we have employed BeTTy [145], a well-known FM generator, to create
the remaining FMs. For our evaluation, we assume that the estimated workload can
be provisioned by the available infrastructural resources. For instance, the service
provider may rely on a third-party infrastructure provider, such as Amazon, which ef-
fectively handles elastic provisioning. Table §7.9 shows the characteristics of the gener-
ated FMs, where CTC identifies the number of cross-tree constraints (non-hierarchical
constraints) of each model. For each FM, we simulated 25 different change scenarios.
We randomised the number of snapshots per scenario n in the integer range [5,10]. Ini-
tial values and ranges for the remaining parameters are as follows: Tmin = 2, Tmax = 5,
Pmin = 2, Pmax = 10, WMIN = 10 and WMAX = 80. Since each different tenant im-
plies a new objective, we select the same upper limit (Tmax = 5) chosen in related
papers on multi-objective optimisation for FMs [140]. We consider WTOTAL = 200,
since such value is close to the maximum number of users supported by a single real
hosted shared DaaS9. For the FastPGA and NSGAII algorithms, we rely on the de-
fault parameters suggested by jMetal: Evaluations = 25000, PopulationSize = 100,
CrossoverProbability = 0.9, and MutationProbability = 0.05. For the Random Search
algorithm – provided by jMetal – we have increased the default number of evaluations
(25000) to Evaluations = 100000.

7.7.3 Experimental Results and Discussion

Table §7.10 shows the average satisfaction of the tenant preferences obtained for our
experiments, how often a reconfiguration (Ct) improves the NNP value of the previous
one (Ct−1), and the average execution time for FastPGA, NSGAII and random search
algorithms. We can see that the average satisfaction achieved by the genetic algorithms
ranges between 45% and around 70%. Although such satisfaction might not seem to
be a good result, it is necessary to take into account that the preferences of the different

9Using 2xE5-2470 2.3 GHz processors, IBM was able to support 206 users:
http://blogs.citrix.com/2013/10/29/extreme-density-5768-hosted-shared-desktops-in-a-single-blade-
chassis/

144



7.8. OPEN ISSUES

tenants may conflict most of the times, making infeasible to achieve full satisfaction
for such cases. However, genetic algorithms clearly outperform the random search,
especially w.r.t the achieved average satisfaction.

The percentage of improved reconfigurations – NNP(Ct) > NNP(Ct−1) – ranges be-
tween 25% and 65% for FastPGA and between 30% and 62% for NSGAII. Although at
a first glance this may seem a poor result, it is necessary to consider that this number
highly depends on the changes between consecutive system snapshots. The more the
changes, the more the chances to decrease the satisfaction of the previous configura-
tion, and the more the chances to find an improved reconfiguration. Besides, since we
look for egalitarian solutions, our algorithms discard solutions that may have a bet-
ter average satisfaction but ignore the preferences of particular tenants, i.e. one of the
tenants has 0 satisfaction, which leads to NNP = 0. Both genetic algorithms perform
better than the random search, which cannot return any improved reconfiguration in
most of the cases and whose execution time is about four time higher. This is because
in a constrained optimisation problem we need to consider the constraints in order to
return valid solutions. While we could add the correctness to the solution as an addi-
tional objective for the genetic algorithms, this was not possible for the random search.
The execution time for the genetic algorithms is between 6 and 19 seconds, suggesting
that the our analysis can be performed at runtime.

Figure §7.5 indicates the average satisfaction improvement for the successful re-
configurations, which range between 8% and 12% in absolute terms, i.e. the worst
result returns 0% satisfaction, and the perfect result in a conflict-free scenario returns
100% satisfaction. In general terms, NSGAII algorithm performs better than FastPGA,
especially with larger models: except for FM1, NSGAII outperforms the rate of im-
provements obtained by using FastPGA. For the first FM, the random search algorithm
performs worse than the genetic algorithms, but better than its own behaviour for the
rest of the FMs. This is due to the fact that the configuration space of the first model
is smaller than the other FMs and allows the random search to find some acceptable
solutions.

7.8 OPEN ISSUES

In this paper we do not address all the challenges necessary to support user-centric
adaptation of multi-tenant services. In this section we describe the open issues by
grouping them depending on the activities of the MAPE loop they belong to.

145



CHAPTER 7. TAAS 2015

Analysis results

Avg. satisfaction NNP(Ct) > NNP(Ct−1) Avg. execution time (ms)

FM FastPGA NSGAII RS FastPGA NSGAII RS FastPGA NSGAII RS

FM1 71.49% 72.15% 62.93% 64.86% 61.98% 30.06% 8254 6293 23704
FM2 56.53% 61.56% 28.01% 41.81% 49.7% 0% 13473 11150 43445
FM3 50.74% 49.3% 30.31% 25.71% 30.05% 0% 17684 15767 63238
FM4 55.01% 64.67% 30.28% 44.25% 47.05% 0% 18138 16035 65049
FM5 45.87% 56.39% 30.83% 24.55% 38.59% 0% 18822 16941 67378

Table 7.10: Results of the preference-based analysis for FastPGA, NSGAII and random
search (RS) algorithms.

(a) Monitoring: in this work we assume that the monitoring phase is able to obtain
all the data required for the analysis. However, for a comprehensive approach
we need to propose specific ways to extract user preferences, monitor the work-
load determined by the service configurations and the users, and measure user
satisfaction and reconfiguration obtrusiveness – for instance by means of empir-
ical studies. Modifications in the configurations determined by system changes
or updates should also be detected and monitored.

(b) Analysis: one of the main limitations of the analysis is the simplicity of our work-
load estimation. In future work it will necessary to use monitored data to predict
resources usage determined by a specific configuration and users profiles; ad-
ditional aspects, such as thrashing, should also be incorporated. Moreover, we
recognise that although our assumption of uniformity within tenant groups is
simplistic, it was very useful to develop the initial prototype of our analysis. In
future work, we will use a more precise and updated model of user behaviour
and preferences within each tenant.

(c) Planning: the reconfiguration actions of the service must be planned systemati-
cally, in order to avoid inconsistent service states and user interruption.

(d) Execution: a reconfiguration engine on the specific service – a DaaS in our case –
remains to be implemented in order to execute planned configuration changes.

Furthermore, other aspects may threaten the validity of our approach:

• Malicious users. A malicious user may intentionally express specific preferences

146



7.9. RELATED WORK

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

0.4"

0.45"

DaaS" BeTTy1" BeTTy2" BeTTy3" BeTTy4"

Sa
#s
fa
c#
on

)im
pr
ov
em

en
t)

Ct"vs"Ct41"

Ct"vs"Cr"

Figure 7.5: Average satisfaction improvement with respect to the previous configura-
tion.

to achieve a desired service configuration. There are two possible ways in which
this problem can be avoided. An option could be to exclude critical features from
the adaptation process. This is the reason why in our case study we did not
allow the users to express preferences on security features, such as firewall level
or antivirus update frequency. Another option is to consider a preference in the
analysis only if at least a certain number of users has expressed it.

• Preferences aggregation function. The NNP function we adopt to aggregate
user preferences tries to balance the user satisfaction, avoiding configurations
that deliver a 0-valued satisfaction to any tenant. However, this may result in an
unfair adaptation when, for example, a tenant with a single user that expresses a
particular preference gets it satisfied, while decreasing the satisfaction of the rest
of the tenants with multiple users. To address this issue we can modify the NNP
function by assigning a weight to a specific preference depending on the number
of users sharing it.

7.9 RELATED WORK

The idea of performing adaptation to improve user satisfaction is not new. Other
approaches [30, 98] have considered conflicting users preferences and limited infras-

147



CHAPTER 7. TAAS 2015

tructural resources in the construction of adaptive software systems. For example-
Malek et al. [98] propose the redeployment of software components on hardware nodes,
in order to optimise conflicting QoS dimensions for changing user preferences. Cardellini
et al. [30] present a reference framework for self-adaptation of service-oriented sys-
tems, where the user satisfaction is considered as an adaptation driver. Both approaches
solve an optimisation problem to reconfigure a system architecture and a service ori-
ented application, respectively. The optimisation problem is solved by means of dif-
ferent techniques, such as a integer programming or genetic algorithms. Ali et al. [2]
propose social adaptation, which aims to dynamically adapt existing software systems
depending on the user collective judgement expressed on the way the system should
behave. This approach treats user feedback as a primary driver for planning and guid-
ing adaptation. Feedback is related to the selection of a specific system feature when
more than one of them can be enabled. This work also provides an analysis activity to
select a feature configuration that fulfils user preferences. Differently from these ap-
proaches, we propose user-centric adaptation for the reconfiguration of multi-tenant
services in cloud scenarios, where users can come and go and different service config-
urations and resources are shared depending on the cloud service model. Dalpiaz et al.
[44] propose to leverage the preferences of non-functional requirements expressed by
a single user as a key driver for adaptation. Collected preferences are used to adapt
the selection of routine tasks to be performed in a pervasive infrastructure by a user.
Instead, we focus on the maximisation of the satisfaction of the global user preferences
expressed on shared service configurations. Song et al. [147] present an approach to
develop self-adaptive systems that takes into account end-users, who express their
preferences on the adaptation actions selected by the system in order to better tune
the adaptation results. Differently from this work, in our approach we consider user
preferences as one of the main trigger for adaptation and not to improve the selection
of a candidate configuration.

Lamparter et al. [94] propose an ontology for representing and matching config-
urable web services. In particular, service configurations and associated preferences
are represented using function policies, which allow characterising service attributes
and the semantics and price of their value. The authors also propose an optimal algo-
rithm for service selection based on linear programming. Differently from this work,
we do not focus on the preferences expressed by a single user. Furthermore, we do
not explicitly represent price, but we assume that service providers can satisfy user
preferences up to a maximum amount of resources that can be allocated. A different
approach is adopted by Gallacher et al. [62] who propose an algorithm to learn contex-

148



7.9. RELATED WORK

tual user preferences without explicitly asking for feedback in order to drive personal
adaptations. The authors try to overcome problems related to the accuracy of the pref-
erences even when input sources come and go and users change their behavior. This
work focuses on improving the preference satisfaction of a single user, while we as-
sume that user preferences are given and address the problem of maximising their
global satisfaction.

Cloud services analysis and adaptation has been a prolific research area during the
last years. Caton and Rana [31] propose an approach for cloud infrastructure pro-
visioning through volunteered resources. It relies on autonomic fault management
techniques to adapt resource usage. In this direction, Maurer et al. [103] also pro-
pose an adaptive resource configuration for cloud infrastructure management. In this
case, they structure adaptation actions into levels, rely on Case-Based Reasoning and
a rule-based approach in order to counteract SLA-violations. Wei et al. [171] present
a similar idea, with the difference that they intend to reach an equilibrium among re-
sources allocation performed on behalf of different users. To achieve this aim, Wei et
al. use a game theoretic approach based on Nash equilibria. Pitt et al. [125] also pro-
pose a resource allocation method which is focused on the notion of fairness for the
agents who share a common pool of resources. The authors take inspiration from the
principles of enduring institutions [52] to identify a resource allocation method based
on canons of distributive justice. In particular, they propose a variant of the Linear
Public Good game as an abstract representation of the resource allocation scenarios
found in ad-hoc networks, sensor networks and smart grids. This approach demon-
strates to produce a better balance of utility and fairness. Differently from us, the ap-
proaches [31, 103, 125, 171] presented previously focus on resource allocation instead
of feature selection and maximisation of the global user preferences. Furthermore, al-
though the work by Wei et al. [171] and Pitt et al. [125] is also based on game theory
to achieve fair resource allocation, their analysis has not ben proposed to support run-
time adaptation. Finally, Vankeirsbilck et al. [166] propose a model for identifying an
optimal resource allocation in order to satisfy virtual desktop requests based on the
trade-off between costs and revenues for the service provider. The authors also con-
sider the possibility of overbooking i.e. probability that less resources for the virtual
desktops than needed are allocated. This approach is agnostic of user preferences and
takes only into account resource allocation as a measure of SLA violations.

Other work is more focused on cloud adaptation at the application level. Inzinger
et al. [83] propose a model-based adaptation which allows cloud application develop-
ers to specify behavior goals and adaptation rules. These models are “management

149



CHAPTER 7. TAAS 2015

hooks” for the cloud providers, who can implement an adaptation strategy by con-
sidering preferences of multiple customers and low level infrastructural constraints.
Marquezan et al. [100] provide a conceptual model that characterises all entities of the
cloud environment that are relevant for adaptation decisions, the concrete adaptation
mechanisms and actions that these entities may perform, and the mutual dependen-
cies between these entities and actions. This allows cloud developers to take informed
decisions on which kind of adaptation mechanisms to exploit for their application. Dif-
ferently from this work, in our approach we model user preferences expressed over the
service configurations, and identify infrastructural resources required to support spe-
cific service delivery models. These models allows us to configure our user preference
analysis automatically.

Nallur and Bahsoon [119] propose an adaptive mechanism for applications com-
posed of different cloud services. Adaptation dynamically selects the best value-for-
money services and is triggered by violations of QoS by any of the adopted concrete
service and by changes of an application target QoS. The authors propose an approach
based on Market-Based Control (MBC) to self-adaptation: bids are the mechanism by
which the search space of QoS-cost combinations is explored. This approach is mainly
focused on service selection rather than features selection and aims to maximise the
satisfaction of a single user. Our aim instead is to maximise global user’ preferences
and to minimise obtrusiveness of adaptation. A security oriented perspective is in-
stead assumed by Bernal Bernabe et al. [22] who propose an advanced authorisation
model that provides conditional role based access control. This adapts the privileges
assigned to roles depending on the groups of tenants sharing the same resources.

Research on SPLs is highly related to our paper. The idea of using variability tech-
niques to model the adaptation space is not new. For example, Bencomo et al. [20] pro-
pose the use of variability modelling to define the runtime adaptation space. About
multi-tenancy and SPLs, Schroeter et al. [143, 144] use variability and SPLs techniques
to assist the configuration of multi-tenant applications. The authors identify configu-
ration requirements and propose a configuration process using FMs [144], and also
define requirements and middleware for a variable multi-tenant architecture [143].
However, this work has not considered how to reconfigure multi-tenant applications
at runtime, when user preferences, available service configurations, and infrastructural
constraints change.

Mietzner et al. [113] propose to use variability modelling techniques to manage the
variability of SaaS applications and their requirements. Specifically, they use variabil-

150



7.10. SUMMARY

ity models to configure and deploy SaaS applications for different tenants. However,
they focus on modelling the variability and deploying different variants of a SaaS ap-
plication instance. Variability of different cloud providers has also been analysed and
modelled by Garcı́a-Galán et al. [69], in order to assist the migration of an in-house
infrastructure to the cloud. However, this approach works with hard requirements
and ignores changes of user preferences. Similarly to us, Stein et al. [149] consider the
problem of configuring multi-tenant services in order to better satisfy tenant prefer-
ences on average. Based on such preferences, different product configurations using
different strategies from the social theory are suggested. However, preferences are only
expressed as hard and soft constraints, and the analysis does not take into account in-
frastructural constraints that might prevent the satisfaction of users preferences. Fur-
thermore, the approach is not adopted to support runtime reconfiguration and, for this
reason, feasibility of the proposed analysis at runtime has not been investigated.

Several research efforts have been made to investigate multi-objective optimisation
in applications characterised by variability. Guo et al. [76] use a genetic algorithm
to find optimal FM configurations for a single objective and user. Sayyad et al. [140]
perform multi-objective optimisation of several large FMs using metaheuristics tech-
niques. However, their objective functions are fixed (i.e. minimise errors and cost,
or maximise number of features), while our fitness function depends on the specific
user preferences. Finally, other work has explored techniques for solving conflicts in
a configuration process. White et al. [174] propose a technique in this direction that
only considers a single user and a minimal changes criterion. While, although Garcı́a-
Galán et al. [70] consider multiple users, after detecting the conflicts these users have
to define explicitly the impact of every solution on their preferences satisfaction.

7.10 SUMMARY

In this paper, we present an approach to support user-centric adaptation of multi-
tenant services. We motivate our proposal by using a multi-tenant DaaS case study
and explain how to engineer the activities of the MAPE loop necessary to support
user-centric adaptation. In this paper we focus on the analysis activity of the MAPE
loop that identifies a service reconfiguration which maximises tenants preferences sat-
isfaction. The analysis also guarantees that the computed service reconfiguration can
be provisioned by using the infrastructural resources available at the provider side.
The analysis takes as input the model of the service and the user preferences. We use

151



CHAPTER 7. TAAS 2015

FMs to model the multi-tenant service, which, more precisely, describes the service
configuration space, the infrastructural constraints, the workload, and the obtrusive-
ness of the service configurations. We adopt the SOUP preference model to represent
user preferences.

The analysis is interpreted as a multi-objective constrained optimisation problem,
where the different objectives are defined by the preferences of the tenants. This opti-
misation problem is solved by using genetic algorithms (FastPGA and NSGAII), which
identify the Pareto front of potential candidate reconfigurations. Obtained experimen-
tal results demonstrate that our analysis approach 1) identifies reconfigurations that
improve user satisfaction and 2) can be performed at runtime. FastPGA provides more
effective results for smaller FMs, while NSGAII is more effective when bigger FMs
have to be analysed.

As future work, we are planning to evaluate the applicability of our approach with
practitioners by using real multi-tenant services. This will require collecting experi-
mental data related to the impact that specific service features have on the consumption
of the infrastructural resources. Regarding the whole user-centric adaptation problem,
we will integrate our analysis with the other activities of the MAPE loop. In particular,
for the monitoring activity we will leverage existing work [62] to measure user prefer-
ences in a non-intrusive and precise way. For the planning and execution activities we
will adopt real multi-tenant services to identify possible strategies to enact a service
reconfiguration on the system at runtime depending on the current configuration and
the number of users. Finally, we are planning to conduct empirical studies to estimate
more precisely how adaptation obtrusiveness is perceived by real users.

152



FINAL CONSIDERATIONS

PART V





8

CONCLUSIONS AND DISCUSSION

155

When you come out of the storm, you won’t be the same person who walked in. That’s what this storm’s all
about.

Kafka on the shore(2002),
Haruki Murakami

I n this chapter, we present the conclusions of this dissertation. Section §8.1 summarises
the conclusions, Section §8.2 discusses the controversial aspects and the future work, and
Section §8.3 exposes the related publications.



CHAPTER 8. CONCLUSIONS AND DISCUSSION

8.1 CONCLUSIONS

In this thesis, we have enhanced and automated the support for the configura-
tion of HCSs. Firstly, we have defined and clarified what configurable and highly-
configurable services are. And in particular, we have proposed 1) a language to spec-
ify the decision space of HCSs and 2) a catalogue of analysis operations to assist the
decision making for providers and consumers. In this sense, we have taken inspiration
from the specification and automated analysis of BPMs [28, 47], SLAs [101, 115, 138]
and variability [17, 60, 154]

Regarding the specification of service configurations, we have proposed the SYN-
OPSIS notation. This plain-text language, which takes its inspiration from textual vari-
ability languages [53], let describe the decision space of HCSs in a succinct and expres-
sive way while enabling at the same time an automated processing. As far as we know,
this is the first notation especially intended to describe the configuration capabilities of
services. On the user’s side, we have presented a variant of this notation, the so named
UCL, to describe user needs on HCSs– in terms of items, requirements and preferences.

A set of validity criteria for SYNOPSIS documents have been proposed in order to
detect anomalies in HCSs. We have identified three different categories, depending on
the importance: warning, term level and service level. While warning level anomalies
only affect the description clarity, term and service level anomalies damages the con-
figuration capabilities of the service. In both cases, dead values – term values which
cannot be selected under any circumstance – are the base underlying errors.

Regarding the analysis techniques of HCSs, we have proposed a catalogue of anal-
ysis operations. The analysis operations are intended to assist HCS providers and
consumers in their decision making. For providers, we propose analysis operations to
automatically check the validity criteria of SYNOPSIS specifications, and consequently
ensure that the service decision space is free of anomalies. For consumers, we pro-
pose analysis operations to assist the search and selection of the best configuration.
In both cases, we haven taken inspiration from the AAFM [19] to design the analysis
operations for HCSs.

Our automated analysis techniques rely on the formalisation of the underlying
SYNOPSIS and UCL models as SFMs [154, 162]. This formalisation enables 1) the use of
SFM analysis operations as base for HCS analysis operations and 2) the use of AAFM
tools to prototype the HCS-driven solutions.

156



8.2. DISCUSSION AND FUTURE WORK

Regarding the validation of our proposal, we have interpreted two cloud scenar-
ios in terms of HCS specification and automated analysis. For such particular solu-
tions and implementations, we have employed variability modelling and automated
analysis techniques to describe and analyse the service decision space. First, we have
assisted the migration of an on-premise infrastructure to the Amazon’s cloud. And
second, we have performed the adaptation analysis of a multi-tenant Desktop as a Ser-
vice to satisfy the changing preferences of their tenants. The results prove the adequacy
and feasibility of modelling and analysis techniques for the decision making in these
scenarios.

8.2 DISCUSSION AND FUTURE WORK

We had two alternative ways to relate this dissertation: focusing on variability or
focusing on services. On the one side, we could relate this thesis as an application case
of variability modelling and analysis techniques. On the other side, we could relate this
thesis defining the problem of HCSs in the services field, and then tackling it by means
of the aforementioned techniques. Although both ways are valid, we think that the
definition of a problem is, in most of the cases, more valuable – although consequently
requires more effort – than an application case.

In a similar way, the formalisation of HCSs could be done in several ways. For in-
stance, we could choose CSP as target domain. Indeed, CSP is a well-known paradigm
where we are rather experienced and whose semantic distance with HCSs is short.
However, a translation to SFMs present several benefits that other paradigms cannot
offer. In particular 1) SFMs are already formalised in CSP and First-order Logic among
others, 2) SFMs define a set of analysis operations which are used as a starting point
for the HCS operations and 3) the existing AAFM tools can be employed to perform
the analysis of SFMs.

A challenging and non-tackled issue in this dissertation is the automated extrac-
tion of SYNOPSIS specifications from existing HCSs. This task is performed manually
most of the times. Although we could propose a method to perform it, it should be
adapted for each specific case, and requires a deep understanding of the HCS. Some
tedious tasks can be automated, such as the extraction of the pricing policy and its
translation to table constraints by means of web scraping. However, the identification
and modelling of the decision terms and their values and dependencies are carried out
manually. This issue becomes more challenging when we consider the usual evolution

157



CHAPTER 8. CONCLUSIONS AND DISCUSSION

of HCSs and the necessary maintenance of the model. IaaS providers, for instance, use
to update their offers periodically. This is the case of Amazon, which does it every few
weeks.

Ontology alignments among similar HCSs from different providers also remains
to be tackled. An ontology alignment would enable multi-provider support for the
decision making of the consumers. For example, Rackspace servers, Azure virtual
machines and Google compute engine are three computing services, as Amazon EC2.
However, the employed vocabulary and decision terms slightly change from one ven-
dor to another, e.g. Amazon bills computing instances per hour, while Google bills a
minimum of 10 minutes per instance, and after that in spans of 1 minute.

Our proposal also has limitations for the configuration of multiple service items.
The number of items required by a consumer has to be specified in order to perform
the analysis techniques. This means that the number of instances that a consumer
requires is the same number of instances returned by the analysis. The underlying
reason is that our analysis approach cannot determine the optimal number of instances
to satisfy given user needs. Therefore, in this dissertation we are not able to answer a
question like “which is the cheapest combination of instances to satisfy my needs?”.

8.3 PUBLICATIONS

Publications Related to this Dissertation

The following publications present the preliminary results that have driven to this
dissertation.

International journals

• J. Garcı́a Galán, P. Trinidad, O.F. Rana, A. Ruiz-Cortés. Automated Configuration
Support for Infrastructure Migration to the Cloud. Future Generation Computer Sys-
tems. 2015. In Press [73].

• J. Garcı́a Galán, L. Pasquale, P. Trinidad, A. Ruiz-Cortés. User-centric Adaptation
Analysis of Multi-tenant Services. ACM Transactions on Autonomous and Adap-
tive Systems. 2015 [72]. Under revision (second round).

158



8.3. PUBLICATIONS

International conferences, workshops and symposiums

• J. Garcı́a Galán, O.F. Rana, P. Trinidad, A Ruiz-Cortés. Migrating to the Cloud: a
Software Product Line based analysis. 3rd International Conference on Cloud Com-
puting and Services Science (CLOSER). 2013 [69]. Best student paper award.

• J. Garcı́a Galán, L. Pasquale, P. Trinidad, A. Ruiz-Cortés. User-centric adaptation
of multi-tenant services: preference-based analysis for service reconfiguration. 9th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). Co-located with the International Conference on Software En-
gineering. 2014 [71]. Best paper award.

• J. Garcı́a Galán, P. Trinidad, A Ruiz-Cortés. Multi-user variability configuration:
A game theoretic approach. IEEE/ACM International Conference on Automated
Software Engineering (ASE). 2013 [70].

• J. Garcı́a Galán, P. Trinidad, A Ruiz-Cortés. ISA Packager: a tool for SPL deploy-
ment. Proceedings of the 5th International Workshop on Variability Modelling of
Software-intensive Systems, 2011 [67].

• P Trinidad, C Muller, J. Garcı́a Galán, A Ruiz-Cortés. Building industry-ready tools:
FAMA Framework and ADA. 3rd International Workshop on Academic Software
Development Tools and Techniques (WASDETT). 2010 [159].

National conferences, workshops and symposiums

• J. Garcı́a Galán, P. Trinidad, R. Capilla. Automating the deployment of componentized
systems. Jornadas de IngenierÃa del Software y Bases de Datos (JISBD). 2012 [68].
Best emerging work.

Other Publications

These publications, although they are not specifically linked to the problems stated
in this dissertation, have contributed to increase the knowledge and understanding of
the techniques in which the solution of this dissertation relies:

International conferences, workshops and symposiums

159



CHAPTER 8. CONCLUSIONS AND DISCUSSION

• J. Garcı́a Galán, J.A. Galindo, P Trinidad, A Ruiz-Cortés. Tool supported error detec-
tion and explanations on feature models. In: Proc. of 2nd International Workshop on
Formal Methods and Analysis in Software Product Line Engineering (FMSPLE
2011), co-located with Software Product Line Conference. 2011. [66]

• J.A. Galindo, F. Roos-Frantz, J. Garcı́a Galán, A Ruiz-Cortés. Extracting orthogonal
variability models from Debian repositories. In: Proc. of 2nd International Work-
shop on Formal Methods and Analysis in Software Product Line Engineering
(FMSPLE 2011), co-located with Software Product Line Conference. 2011. [61]

National conferences, workshops and symposiums

• Carlos Müller, Jesús Garcı́a-Galán, Antonio Ruiz-Cortés, M. Resinas. ADA: Agree-
ment Documents Analyser. JSWEB 2010 Tool demo. Valencia; 2010. [117]

• P. Trinidad, J. Garcı́a Galán, A Ruiz-Cortés. FaMa Abductive: una herramienta para
explicaciones de errores en modelos de caracterÃsticas. Actas de las XVI Jornadas de
Ingenierı́a del Software y Bases de Datos. A Coruña; 2011. [160]

• J.A. Galindo, F. Roos-Frantz, A Ruiz-Cortés, J. Garcı́a Galán. Automated Analy-
sis of Diverse Variability Models with Tool Support. Actas de las XIX Jornadas de
Ingenierı́a del Software y Bases de Datos. Cádiz; 2014 [136]

160



BIBLIOGRAPHY

161

[1] M. Acher, P. Collet, P. Lahire, and R. B. France. Familiar: A domain-specific
language for large scale management of feature models. Science of Computer Pro-
gramming, 78(6):657–681, 2013. (pages 27, 28, 34).

[2] R. Ali, C. Solis, I. Omoronyia, M. Salehie, and B. Nuseibeh. Social Adaptation:
When Software Gives Users a Voice. In Proc. of the 7th International Conference on
Evaluation of Novel Approaches to Software Engineering, 2012. (pages 120, 128, 148).

[3] Amazon. AWS Total Cost of Ownership (TCO) Calculator.
https://awstcocalculator.com, 2014. (pages 6, 40, 90, 110).

[4] Amazon. Amazon Web Services. http://aws.amazon.com/, 2015. (pages 5, 18).

[5] Amazon. Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2,
2015. (pages 4, 17, 18, 19, 20, 90, 96, 99, 100).

[6] Amazon. Amazon Sample Storage Service. http://aws.amazon.com/s3/, 2015.
(page 18).

[7] Amazon Web Services. Amazon EC2 calculator.
http://calculator.s3.amazonaws.com/calc5.html. Last accessed: November
2012, 2014. (pages 6, 40).

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and Others. A view of cloud computing. Com-
munications of the ACM, 53(4):50–58, 2010. (pages 4, 16).

[9] M. Asadi, S. Soltani, D. Gasevic, M. Hatala, and E. Bagheri. Toward automated
feature model configuration with optimizing non-functional requirements. In-
formation and Software Technology, 56(9):1144–1165, 2014. (pages 25, 34, 137).

[10] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider.
The Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press, 2003. ISBN 0-521-78176-0. (page 46).



BIBLIOGRAPHY

[11] R. Bachmeyer and H. Delugach. A conceptual graph approach to feature model-
ing. In U. Priss, S. Polovina, and R. Hill, editors, Conceptual Structures: Knowledge
Architectures for Smart Applications, volume 4604 of Lecture Notes in Computer Sci-
ence, pages 179–191. Springer Berlin / Heidelberg, 2007. ISBN 978-3-540-73680-6.
(page 46).

[12] K. Bak, K. Czarnecki, and A. Wasowski. Feature and meta-models in clafer:
mixed, specialized, and coupled. In Software Language Engineering, pages 102–
122. Springer, 2011. (pages 27, 28).

[13] L. Baresi, S. Guinea, and L. Pasquale. Service-Oriented Dynamic Software Prod-
uct Lines. IEEE Computer, 2012. (pages 120, 130).

[14] A. Barros and D. Oberle. Handbook of Service Description: USDL and Its Methods.
Springer Publishing Company, Incorporated, 2012. (page 5).

[15] D. Batory. Feature models, grammars, and propositional formulas. In Software
Product Lines Conference, LNCS 3714, pages 7–20, 2005. (pages 26, 28, 46).

[16] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and P. F. Patel-Schneider. OWL Web Ontology Language Reference.
World Wide Web Consortium, 2004. URL http://www.w3.org/TR/owl-ref/.
(page 46).

[17] D. Benavides. On the Automated Analysis of Software Product Lines Using Fea-
ture Models. A framework for developing automated tool support. PhD thesis, Uni-
versity of Seville, http://www.lsi.us.es/˜dbc/dbc archivos/pubs/benavides07-
phd.pdf, 2007. (pages 7, 156).

[18] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on feature
models. LNCS, Advanced Information Systems Engineering: 17th International Con-
ference, CAiSE 2005, 3520:491–503, 2005. ISSN 0302-9743. (pages 21, 24, 29, 42,
46, 93, 107).

[19] D. Benavides, S. Segura, and A. R. Cortés. Automated analysis of feature models
20 years later: A literature review. Information Systems, 35(6):615–636, 9 2010.
(pages 5, 29, 42, 44, 45, 93, 102, 105, 107, 121, 137, 156).

[20] N. Bencomo, P. Sawyer, G. S. Blair, and P. Grace. Dynamically Adaptive Sys-
tems are Product Lines too: Using Model-Driven Techniques to Capture Dy-
namic Variability of Adaptive Systems. In Software Product Line Conference, 2008.
(page 150).

162

http://www.w3.org/TR/owl-ref/


BIBLIOGRAPHY

[21] T. Berger, A. Wasowski, K. Czarnecki, S. She, and R. Lotufo. A Study of Variabil-
ity Models and Languages in the Systems Software Domain. IEEE Transactions
on Software Engineering, 2013. (page 5).

[22] J. Bernal Bernabe, J. M. Marin Perez, J. M. Alcaraz Calero, F. J. Garcia Clemente,
G. Martinez Perez, and A. F. Gomez Skarmeta. Semantic-aware multi-tenancy
authorization system for cloud architectures. Future Generation Computer Systems,
32:154–167, 2014. (page 150).

[23] D. L. Berre. Sat4j: The satisfiability library for java (www.sat4j.org). http://

www.sat4j.org, 2004. (page 46).

[24] P. V. Beserra, A. Camara, R. Ximenes, A. B. Albuquerque, and N. C. Mendonca.
Cloudstep: A step-by-step decision process to support legacy application migra-
tion to the cloud. In Maintenance and Evolution of Service-Oriented and Cloud-Based
Systems (MESOCA), 2012 IEEE 6th International Workshop on the, pages 7–16. IEEE,
2012. (pages 94, 114).

[25] C.-P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. t Hart. En-
abling multi-tenancy: An industrial experience report. In Software Maintenance
(ICSM), 2010 IEEE International Conference on, pages 1–8. IEEE, 2010. (pages 120,
122).

[26] D. Borgetto, M. Maurer, G. Da-Costa, J.-M. Pierson, and I. Brandic. Energy-
efficient and SLA-aware management of IaaS clouds. In Proceedings of the 3rd
International Conference on Future Energy Systems: Where Energy, Computing and
Communication Meet, page 10, 2012. (page 115).

[27] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing
as the 5th utility. Future Generation computer systems, 25(6):599–616, 2009. (page
4).

[28] C. Cabanillas. Enhancing the Management of Resource-Aware Business Processes.
PhD thesis, Universidad de Sevilla, 12/2012 2012. (pages 7, 156).

[29] C. Cabanillas, J. M. Garc’ia, M. Resinas, D. Ruiz, J. Mendling, and A. Ruiz-Cortés.
Priority-Based Human Resource Allocation in Business Processes. In ICSOC,
2013. (page 136).

163

http://www.sat4j.org
http://www.sat4j.org


BIBLIOGRAPHY

[30] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, and R. Mirandola.
Moses: A Framework for QoS Driven Runtime Adaptation of Service-Oriented
Systems. IEEE Transactions on Software Engineering, 38(5):1138–1159, 2012. (pages
42, 120, 147, 148).

[31] S. Caton and O. Rana. Towards autonomic management for Cloud services based
upon volunteered resources. Concurrency and Computation: Practice and Experi-
ence, 2012. (pages 42, 149).

[32] E. Cavalcante, A. Almeida, and T. Batista. Exploiting software product lines to
develop cloud computing applications. In Software Product Line Conference, pages
179–187, 2012. (page 115).

[33] Citrix. Citrix Virtual Desktop Handbook 7.x. http://support.citrix.com/

article/CTX139331, Last 2013. (pages xv, 17, 122, 123, 124, 125).

[34] D. Clarke, R. Muschevici, J. Proença, I. Schaefer, and R. Schlatte. Variability mod-
elling in the abs language. In Formal Methods for Components and Objects, pages
204–224. Springer, 2012. (pages 27, 28).

[35] A. Classen, Q. Boucher, and P. Heymans. A text-based approach to feature mod-
elling: Syntax and semantics of tvl. Science of Computer Programming, 76(12):
1130–1143, 2011. (pages 27, 28).

[36] CloudHarmony. Cloud Harmony. http://cloudharmony.com/, 2014. (pages
90, 116).

[37] Cloudorado. Cloudorado. http://www.cloudorado.com/, 2014. (pages 41, 116).

[38] CloudScreener. Cloud Screener. http://www.cloudscreener.com/, 2014. (pages
6, 40, 90, 111, 116).

[39] M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay. Beyond boolean product-
line model checking: dealing with feature attributes and multi-features. In Pro-
ceedings of the 2013 International Conference on Software Engineering, pages 472–481.
IEEE Press, 2013. (pages 26, 27, 28).

[40] K. Czarnecki and P. Kim. Cardinality-based feature modeling and constraints: A
progress report. In Proceedings of the International Workshop on Software Factories
At OOPSLA 2005, 2005. (page 46).

164

http://support.citrix.com/article/CTX139331
http://support.citrix.com/article/CTX139331


BIBLIOGRAPHY

[41] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using feature
models. In Proceedings of the Third Software Product Line Conference 2004, pages
266–282. Springer, LNCS 3154, 2004. (pages 32, 34).

[42] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing cardinality-based fea-
ture models and their specialization. Software Process: Improvement and Practice,
10(1):7–29, 2005. doi: 10.1002/spip.213. URL http://dx.doi.org/10.1002/

spip.213. (pages 22, 28, 31).

[43] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration through spe-
cialization and multilevel configuration of feature models. Software Process: Im-
provement and Practice, 10(2):143–169, Apr. 2005. doi: 10.1002/spip.225. URL
http://dx.doi.org/10.1002/spip.225. (page 26).

[44] F. Dalpiaz, E. Serral, P. Valderas, P. Giorgini, and V. Pelechano. A NFR-based
framework for user-centered adaptation. In Conceptual Modeling. Springer, 2012.
(page 148).

[45] A. V. Dastjerdi, S. G. Tabatabaei, and R. Buyya. An Effective Architecture for
Automated Appliance Management System Applying Ontology-Based Cloud
Discovery. In Proceedings of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, 2010. (page 116).

[46] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on, 6(2):
182–197, 2002. (page 141).

[47] A. del Rı́o-Ortega. On the Definition and Analysis of Process Performance Indicators.
International, University of Sevilla, 09/2012 2012. (pages 7, 156).

[48] A. v. Deursen and P. Klint. Domain–specific language design requires feature
descriptions. Journal of Computing and Information Technology, 10(1):1–17, 2002.
(pages 26, 28).

[49] B. Dougherty, J. White, and D. C. Schmidt. Model-driven auto-scaling of green
cloud computing infrastructure. Future Generation Computer Systems, 2012. (page
115).

[50] I. Dropbox. Dropbox. https://www.dropbox.com/, 2014. (pages 4, 5, 17, 19,
20).

165

http://dx.doi.org/10.1002/spip.213
http://dx.doi.org/10.1002/spip.213
http://dx.doi.org/10.1002/spip.213
http://dx.doi.org/10.1002/spip.225
http://dx.doi.org/10.1002/spip.225


BIBLIOGRAPHY

[51] J. J. Durillo and A. J. Nebro. jMetal: A Java framework for multi-objective opti-
mization. Advances in Engineering Software, 2011. (page 141).

[52] E. Ostrom. Governing the Commons. CUP, 1990. (page 149).

[53] H. Eichelberger and K. Schmid. A systematic analysis of textual variability mod-
eling languages. In Proceedings of the 17th International Software Product Line Con-
ference, pages 12–21. ACM, 2013. (pages 26, 28, 109, 156).

[54] H. Eskandari, C. D. Geiger, and G. B. Lamont. Fastpga: A dynamic population
sizing approach for solving expensive multiobjective optimization problems. In
Evolutionary Multi-Criterion Optimization, pages 141–155. Springer, 2007. (page
141).

[55] F. Fittkau, S. Frey, and W. Hasselbring. Cdosim: Simulating cloud deployment
options for software migration support. In Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems (MESOCA), 2012 IEEE 6th International Work-
shop on the, pages 37–46. IEEE, 2012. (pages 6, 114).

[56] P. Flach. Simply Logical. John Wiley, April 1994. ISBN 0-471-94152-2. (page 46).

[57] S. Frey and W. Hasselbring. The cloudmig approach: Model-based migration
of software systems to cloud-optimized applications. International Journal on Ad-
vances in Software, 4(3 and 4):342–353, 2011. (page 114).

[58] S. Frey, F. Fittkau, and W. Hasselbring. Search-based genetic optimization for
deployment and reconfiguration of software in the cloud. In Proceedings of the
2013 International Conference on Software Engineering, pages 512–521. IEEE Press,
2013. (pages 6, 90, 94, 114).

[59] K. Z. Gajos, M. Czerwinski, D. S. Tan, and D. S. Weld. Exploring the Design
Space for Adaptive Graphical User Interfaces. In Proc. of the International Working
Conference on Advanced Visual Interfaces, pages 201–208. ACM Press, 2006. (page
129).

[60] J. A. Galindo. Evolution, testing and configuration of variability intensive systems.
PhD thesis, University of Seville/University of Rennes 1, 3 2015. Advised by
David Benavides and Benoit Baudry. (pages 7, 156).

[61] J. A. Galindo, F. Roos-Frantz, J. Garcı́a-Galán, and A. Ruiz-Cortés. Extracting or-
thogonal variability models from debian repositories. In 15th International Soft-
ware Product Line Conference Proceedings, volume 2, 2011. (page 160).

166



BIBLIOGRAPHY

[62] S. Gallacher, E. Papadopoulou, N. K. Taylor, and M. H. Williams. Learning user
preferences for adaptive pervasive environments: an incremental and temporal
approach. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 8(1):5,
2013. (pages 148, 152).

[63] J. M. Garcı́a, D. Ruiz, and A. Ruiz-Cortés. A model of user preferences for seman-
tic services discovery and ranking. In The Semantic Web: Research and Applications,
pages 1–14. Springer, 2010. (page 118).

[64] J. M. Garcı́a, D. Ruiz, and A. Ruiz-Cortés. An Intuitive and Formal Description of
Preferences for Semantic Web Service Discovery and Ranking. Technical report,
University of Seville, 2012. (page 37).

[65] J. M. Garcı́a, M. Junghans, D. Ruiz, S. Agarwal, and A. Ruiz-Cortés. Integrat-
ing Semantic Web Services Ranking Mechanisms Using a Common Preference
Model. Knowledge-Based Systems, 2013. (pages 36, 68, 121, 131, 136).

[66] J. Garcı́a-Galán, P. Trinidad, J. Á.Galindo, and A. Ruiz-Cortés. Tool supported
error detection and explanations on feature models. In Proc. of 2nd International
Workshop on Formal Methods and Analysis in Software Product Line Engineering (FM-
SPLE 2011), co-located with Software Product Line Conference 2011 (SPLC 2011), Mu-
nich, 2011. Fraunhofer, Fraunhofer. (page 160).

[67] J. Garcı́a-Galán, P. Trinidad, and A. Ruiz-Cortés. Isa packager: A tool for spl de-
ployment. In Proceedings of the Fifth International Workshop on Variability Modelling
of Software–intensive Systems (VAMOS), 2011. (page 159).

[68] J. Garcı́a-Galán, P. Trinidad, and R. Capilla. Automating the deployment of com-
ponentized systems. In Actas de las XVIII Jornadas de Ingenierı́a del Software y Bases
de Datos, Almeria, Sept. 2012. (page 159).

[69] J. Garcı́a-Galán, O. F. Rana, P. Trinidad, and A. Ruiz-Cortés. Migrating to the
Cloud: a Software Product Line based analysis. In 3rd International Conference on
Cloud Computing and Services Science (CLOSER), pages 416–426, 2013. (pages 5,
29, 90, 92, 131, 132, 151, 159).

[70] J. Garcı́a-Galán, P. Trinidad, and A. Ruiz-Cortés. Multi-user Variability Con-
figuration: A Game Theoretic Approach. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2013. (pages 151, 159).

167



BIBLIOGRAPHY

[71] J. Garcı́a-Galán, L. Pasquale, P. Trinidad, and A. R. Cortés. User-centric adapta-
tion of multi-tenant services: preference-based analysis for service reconfigura-
tion. In SEAMS, pages 65–74, 2014. (pages 117, 120, 159).

[72] J. Garcı́a-Galán, L. Pasquale, P. Trinidad, and A. R. Cortés. User-centric Adapta-
tion Analysis of Multi-tenant Services. Transactions on Autonomous and Adaptive
Systems, 2014. Submitted. (page 158).

[73] J. Garcı́a-Galán, P. Trinidad, O. F. Rana, and A. Ruiz-Cortés. Automated Con-
figuration Support for Infrastructure Migration to the Cloud. Future Generation
Computer Systems, 2015. In Press. (pages 4, 6, 41, 158).

[74] Google. Google App Engine. https://appengine.google.com/, 2015. (page 17).

[75] Google Inc. Google Compute engine. https://cloud.google.com/compute/,
2014. (page 96).

[76] J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A genetic algorithm for opti-
mized feature selection with resource constraints in software product lines. J.
Syst. Softw., 2011. (pages 121, 141, 151).

[77] V. Haarslev and R. Moller. Description of the RACER system and its applications.
In Description Logics, 2001. URL http://www.racer-systems.com. (page 46).

[78] T. Han and K. M. Sim. An ontology-enhanced cloud service discovery system. In
Proc. of the International MultiConference of Engineers and Computer Scientists, Hong
Kong, 2010. (page 116).

[79] A. Hemakumar. Finding contradictions in feature models. In First International
Workshop on Analyses of Software Product Lines (ASPL’08), pages 183–190, 2008.
(page 46).

[80] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon. Towards auto-
mated testing and fixing of re-engineered feature models. In Software Engineering
(ICSE), 2013 35th International Conference on, pages 1245–1248. IEEE, 2013. (page
45).

[81] I. Heroku. Heroku. https://www.heroku.com/, 2015. (page 17).

[82] A. H. M. T. Hofstede and H. Proper. How to formalize it? formalization prin-
ciples for information system development methods. Information and Software
Technology, 40:519–540, 1998. (pages 7, 72).

168

http://www.racer-systems.com


BIBLIOGRAPHY

[83] C. Inzinger, B. Satzger, P. Leitner, W. Hummer, and S. Dustdar. Model-based
Adaptation of Cloud Computing Applications. In International Conference on
Model-Driven Engineering and Software Development, 2013. (page 149).

[84] ISA Research group. Fama tool suite. http://www.isa.us.es/fama/, 2014.
(pages 28, 109).

[85] ISO. Iso/iec 13211-1. international standard, information technology - program-
ming languages - prolog - part 1: General core, 1995. (page 46).

[86] P. Jamshidi, A. Ahmad, and C. Pahl. Cloud migration research: A systematic
review. Cloud Computing, IEEE Transactions on, 1(2):142–157, July 2013. ISSN
2168-7161. doi: 10.1109/TCC.2013.10. (pages 6, 41, 94, 113).

[87] W. Ju and L. Leifer. The Design of Implicit Interactions: Making Interactive Sys-
tems Less Obnoxious. Design Issues, 24(3):72–84, 2008. (page 135).

[88] K. C. Kang. Feature-oriented domain analysis (FODA) feasibility study. Techni-
cal Report November, Software Engineering Institute, 1990. (pages 5, 21, 22, 28,
30, 46, 92, 97, 121, 124).

[89] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer, 36
(1):41–50, 2003. doi: 10.1109/MC.2003.1160055. URL http://dx.doi.org/10.

1109/MC.2003.1160055. (page 120).

[90] A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts, and P. B. Teregowda. Decision
Support Tools for Cloud Migration in the Enterprise. In IEEE CLOUD Conference,
pages 541–548, 2011. (pages 6, 114).

[91] A. Khajeh-Hosseini, D. Greenwood, J. W. Smith, and I. Sommerville. The Cloud
Adoption Toolkit: supporting cloud adoption decisions in the enterprise. Softw.,
Pract. Exper., pages 447–465, 2012. (page 114).

[92] I. Kumara, J. Han, A. Colman, T. Nguyen, and M. Kapuruge. Sharing with a Dif-
ference: Realizing Service-Based SaaS Applications with Runtime Sharing and
Variation in Dynamic Software Product Lines. In 10th International Conference on
Services Computing, 2013. (page 120).

[93] Y.-W. Kwon and E. Tilevich. Cloud refactoring: automated transitioning to
cloud-based services. Automated Software Engineering, 21(3):345–372, 2014. (page
114).

169

http://www.isa.us.es/fama/
http://dx.doi.org/10.1109/TCC.2013.10
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/MC.2003.1160055


BIBLIOGRAPHY

[94] S. Lamparter, A. Ankolekar, R. Studer, and S. Grimm. Preference-based selec-
tion of highly configurable web services. In Proceedings of the 16th international
conference on World Wide Web, pages 1013–1022. ACM, 2007. (pages 16, 21, 148).

[95] S. Le, H. Dong, F. K. Hussain, O. K. Hussain, and E. Chang. Cloud service se-
lection: State-of-the-art and future research directions. Journal of Network and
Computer Applications, 2014. (pages 6, 41).

[96] K. Lee, K. C. Kang, and J. Lee. Concepts and guidelines of feature modeling for
product line software engineering. In Software Reuse: Methods, Techniques, and
Tools, pages 62–77. Springer, 2002. (page 96).

[97] W. Lloyd, S. Pallickara, O. David, J. Lyon, M. Arabi, and K. Rojas. Migra-
tion of multi-tier applications to infrastructure-as-a-service clouds: An investi-
gation using kernel-based virtual machines. In Grid Computing (GRID), 2011 12th
IEEE/ACM International Conference on, pages 137–144. IEEE, 2011. (pages 6, 115).

[98] S. Malek, N. Medvidovic, and M. Mikic-Rakic. An extensible framework for
improving a distributed software system’s deployment architecture. IEEE Trans-
actions on Software Engineering, 38(1):73–100, 2012. (pages 120, 147, 148).

[99] R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods for
engineering. Structural and multidisciplinary optimization, 2004. (page 121).

[100] C. C. Marquezan, F. Wessling, A. Metzger, K. Pohl, C. Woods, and K. Wallbom.
Towards exploiting the full adaptation potential of cloud applications. In Proceed-
ings of the 6th International Workshop on Principles of Engineering Service-Oriented
and Cloud Systems, pages 48–57. ACM, 2014. (page 150).

[101] O. Martı́n-Dı́az. Emparejamiento Automático de Servicios Web usando Programación
con Restricciones. phd, Dpto. de Lenguajes y Sistemas Informáticos, E.T.S. de
Ingenierı́a Informática. Universidad de Sevilla, 2007. (pages 7, 156).

[102] O. Martı́n-Dı́az, A. Ruiz-Cortés, A. Durán, and C. Müller. An approach to
temporal-aware procurement of web services. In Service-Oriented Computing-
ICSOC 2005, pages 170–184. Springer, 2005. (page 118).

[103] M. Maurer, I. Brandic, and R. Sakellariou. Adaptive resource configura-
tion for Cloud infrastructure management. Future Generation Computer Sys-
tems, 2013. doi: 10.1016/j.future.2012.07.004. URL http://dx.doi.org/10.

170

http://dx.doi.org/10.1016/j.future.2012.07.004
http://dx.doi.org/10.1016/j.future.2012.07.004
http://dx.doi.org/10.1016/j.future.2012.07.004


BIBLIOGRAPHY

1016/j.future.2012.07.004. ¡ce:title¿Special section: Recent advances in e-
Science¡/ce:title¿. (pages 42, 140, 149).

[104] P. Mell and T. Grance. The NIST definition of cloud computing. NIST special
publication, 800(145):7, 2011. (pages 4, 16).

[105] M. Mendonca, M. Branco, and D. Cowan. SPLOT: software product lines online
tools. In Proceedings of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications. ACM, 2009. (pages 27,
28).

[106] M. Mendonça, T. T. Bartolomei, and D. Cowan. Decision-Making Coordination
in Collaborative Product Configuration. In 23rd Annual ACM Symposium on Ap-
plied Computing, SAC, 2008. (page 31).

[107] M. Mendonça, D. Cowan, W. Malyk, and T. Oliveira. Collaborative Product Con-
figuration : Formalization and Efficient Algorithms for Dependency Analysis.
Journal of Software, 2008. (pages 32, 34).

[108] M. Mendonça, A. Wasowski, and K. Czarnecki. Sat-based analysis of feature
models is easy. In SPLC, pages 231–240, 2009. (page 46).

[109] M. Menzel and R. Ranjan. Cloudgenius: decision support for web server cloud
migration. In Proceedings of the 21st international conference on World Wide Web,
pages 979–988. ACM, 2012. (pages 6, 114).

[110] R. Michel, A. Classen, A. Hubaux, and Q. Boucher. A formal semantics for fea-
ture cardinalities in feature diagrams. In Proceedings of the 5th Workshop on Vari-
ability Modeling of Software-Intensive Systems, pages 82–89. ACM, 2011. (page 26).

[111] Microsoft. Windows Azure Configurator. http://azure.microsoft.com/en-
us/pricing/calculator/, 2014. (page 40).

[112] Microsoft. Azure Virtual Machines. http://azure.microsoft.com/en-
us/services/virtual-machines/, 2014. (pages 19, 96).

[113] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Variability modeling to sup-
port customization and deployment of multi-tenant-aware Software as a Service
applications. In ICSE Workshop on Principles of Engineering Service Oriented Sys-
tems, 2009. (pages 120, 150).

171

http://dx.doi.org/10.1016/j.future.2012.07.004
http://dx.doi.org/10.1016/j.future.2012.07.004


BIBLIOGRAPHY

[114] P. Mohagheghi and T. Sæther. Software engineering challenges for migration
to the service cloud paradigm: Ongoing work in the remics project. In Services
(SERVICES), 2011 IEEE World Congress on, pages 507–514. IEEE, 2011. (page 115).

[115] C. Müller. On the Automated Analysis of WS-Agreement Documents. Applications
to the Processes of Creating and Monitoring Agreements. International dissertation,
Universidad de Sevilla, 2013. (pages 5, 7, 156).

[116] C. Müller, O. Martı́n-Dı́az, A. Ruiz-Cortés, M. Resinas, and P. Fernandez. Improv-
ing temporal-awareness of WS-agreement. Springer, 2007. (page 118).

[117] C. Müller, J. Garcı́a-Galán, A. Ruiz-Cortés, and M. Resinas. Ada: Agreement
documents analyser*. In JSWEB 2010, Valencia, Sep 2010. (page 160).

[118] R. B. Myerson. Game theory: analysis of conflict. Harvard University Press, 1991.
(page 138).

[119] V. Nallur and R. Bahsoon. A decentralized self-adaptation mechanism for
service-based applications in the cloud. Software Engineering, IEEE Transactions
on, 39(5):591–612, 2013. (pages 42, 150).

[120] Y. V. Natis. Gartner Reference Model for Elasticity and Multitenancy. Technical
report, Gartner, Inc., 2012. (pages 120, 122).

[121] L. D. Ngan and R. Kanagasabai. Owl-s based semantic cloud service broker. In
Web Services (ICWS), 2012 IEEE 19th International Conference on, pages 560–567.
IEEE, 2012. (page 116).

[122] A. Nöhrer and A. Egyed. Conflict resolution strategies during product configura-
tion. In D. Benavides, D. S. Batory, and P. Grünbacher, editors, VaMoS, volume 37
of ICB-Research Report, pages 107–114. Universität Duisburg-Essen, 2010. (page
34).

[123] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages. Prag-
matic Programmers. Pragmatic Bookshelf, May 2007. ISBN 0978739256.

[124] R. B. Penman, T. Baldwin, and D. Martinez. Web scraping made simple with
sitescraper, 2009. (page 108).

[125] J. Pitt, J. Schaumeier, D. Busquets, and S. Macbeth. Self-organising common-
pool resource allocation and canons of distributive justice. In Self-Adaptive and

172



BIBLIOGRAPHY

Self-Organizing Systems (SASO), 2012 IEEE Sixth International Conference on, pages
119–128. IEEE, 2012. (page 149).

[126] PlanForCloud. Plan for cloud. http://www.planforcloud.com/, 2014. (page
116).

[127] I. project consortium. Open variability modeling approach for service ecosys-
tems. technical report deliverable. Technical report, INDENICA research project,
2012. (pages 27, 28).

[128] C. Quinton, D. Romero, and L. Duchien. Automated selection and configuration
of cloud environments using software product lines principles. In IEEE CLOUD
2014, page 8, 2014. (pages 29, 30, 94, 115).

[129] Rackspace. Rackspace. http://www.rackspace.com/, 2014. (page 5).

[130] Rackspace. Rackspace Solutions Configurator.
http://www.rackspace.co.uk/solutions-configurator, 2014. (pages 6, 40,
90).

[131] Rackspace. Rackspace Servers. http://www.rackspace.com/cloud/servers,
2015. (pages 17, 96).

[132] M.-O. Reiser. Core Concepts of the Compositional Variability Management Framework
(CVM): A Practitioner’s Guide. TU, Professoren der Fak. IV, 2009. (pages 26, 28,
34).

[133] M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow. Extending feature di-
agrams with uml multiplicities. In 6th World Conference on Integrated Design &
Process Technology (IDPT2002), June 2002. (pages 22, 26).

[134] M. Á. Rodrı́guez-Garcı́a, R. Valencia-Garcı́a, F. Garcı́a-Sánchez, and J. J. Samper-
Zapater. Ontology-based annotation and retrieval of services in the cloud.
Knowledge-Based Systems, 56:15–25, 2014. (page 116).

[135] F. Roos-Frantz, D. Benavides, A. Ruiz-Cortés, A. Heuer, and K. Lauenroth.
Quality-aware analysis in product line engineering with the orthogonal variabil-
ity model. Software Quality Journal, pages 1–47, 2012. ISSN 0963-9314. (page
34).

[136] F. Roos-Frantz, J. A. G. Duarte, D. Benavides, A. R. Cortés, and J. Garcı́a-Galán.
Automated analysis of diverse variability models with tool support. In Jornadas

173



BIBLIOGRAPHY

de Ingenierı́a del Software y de Bases de Datos (JISBD 2014), Cádiz. Spain, 2014.
(page 160).

[137] M. Rosenmüller, N. Siegmund, T. Thüm, and G. Saake. Multi-dimensional vari-
ability modeling. In Proceedings of the 5th Workshop on Variability Modeling of
Software-Intensive Systems - VaMoS ’11, 2011. (pages 27, 28, 34).

[138] A. Ruiz-Cortés. Una Aproximación Semicualitativa al Tratamiento Automático de Req-
uisitos de Calidad Aplicación a la Obtención Automática de Acuerdos de Nivel de Servi-
cio en MOWS. Phd thesis, Universidad de Sevilla, 2002. (pages 7, 156).

[139] A. B. Sánchez, S. Segura, and A. Ruiz-Cortés. The Drupal Framework: A Case
Study to Evaluate Variability Testing Techniques. In Proc. of the 8th Int. Work. on
Variability Modelling of Software-intensive Systems, page 11, 2014. (page 132).

[140] A. S. Sayyad, J. Ingram, Tim, and H. Ammar. Scalable Product Line Configura-
tion: A Straw to Break the Camel’s Back. In International Conference on Automated
Software Engineering (ASE), 2013. (pages 121, 141, 142, 144, 151).

[141] A. S. Sayyad, T. Menzies, and H. Ammar. On the value of user preferences in
search-based software engineering: a case study in software product lines. In
International Conference on Software Engineering, 2013. (page 25).

[142] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Feature Diagrams: A
Survey and A Formal Semantics. In Proceedings of the 14th IEEE International
Requirements Engineering Conference (RE’06), Minneapolis, Minnesota, USA, Sept.
2006. (pages 22, 23, 35).

[143] J. Schroeter, S. Cech, S. Götz, C. Wilke, and U. Assmann. Towards Modeling a
Variable Architecture for Multi-tenant SaaS-Applications. In International Work-
shop on Variability Modelling of Software-Intensive Systems. ACM, 2012. (pages 120,
150).

[144] J. Schroeter, P. Mucha, M. Muth, K. Jugel, and M. Lochau. Dynamic configuration
management of cloud-based applications. In Proceedings of the 16th International
Software Product Line Conference - Volume 2, pages 171–178, 2012. (pages 30, 115,
120, 130, 150).

[145] S. Segura, J. Á.Galindo, D. Benavides, J. A. Parejo, and A. Ruiz-Cortés. BeTTy:
Benchmarking and Testing on the Automated Analysis of Feature Models. In
VaMoS, Leipzig, Germany, 2012. ACM, ACM. (page 144).

174



BIBLIOGRAPHY

[146] S. Segura, A. B. Sánchez, and A. Ruiz-Cortés. Automated variability analysis
and testing of an e-commerce site.: an experience report. In Proceedings of the
29th ACM/IEEE international conference on Automated software engineering, pages
139–150. ACM, 2014. (page 25).

[147] H. Song, S. Barrett, A. Clarke, and S. Clarke. Self-adaptation with End-User
Preferences: Using Run-Time Models and Constraint Solving. In Model-Driven
Engineering Languages and Systems. Springer, 2013. (page 148).

[148] C. Speier, I. Vessey, and J. S. Valacich. The Effects of Interruptions, Task Com-
plexity, and Information Presentation on Computer-Supported Decision-Making
Performance. Decision Sciences, 34(4):771–797, 2003. (page 128).

[149] J. Stein, I. Nunes, and E. Cirilo. Preference-based Feature Model Configuration
with Multiple Stakeholders. In Proc. of the 18th Int. Software Product Lines Conf.,
pages 132–141, 2014. (page 151).

[150] S. Sundareswaran, A. Squicciarini, and D. Lin. A Brokerage-Based Approach for
Cloud Service Selection. In Cloud Computing (CLOUD), 2012 IEEE 5th Interna-
tional Conference on, pages 558–565, 2012. (pages 94, 115).

[151] B. C. Tak, B. Urgaonkar, and A. Sivasubramaniam. To move or not to move: The
economics of cloud computing. In Proceedings of the 3rd USENIX conference on
Hot topics in cloud computing, pages 5–5. USENIX Association, 2011. (pages 90,
94, 115).

[152] K. Takemura. Behavioral Decision Theory. Springer, 2014.

[153] T. Thum, C. Kastner, S. Erdweg, and N. Siegmund. Abstract Features in Fea-
ture Modeling. In Proceedings of the 2011 15th International Software Product Line
Conference, page 10, 2011. (pages 92, 124).

[154] P. Trinidad. Automating the Analysis of Stateful Feature Models. PhD thesis, Uni-
versity of Seville,
urlhttp://www.lsi.us.es/˜trinidad/docs/tesis.pdf, 2012. (pages 7, 9, 28, 29, 34,
35, 45, 156).

[155] P. Trinidad and A. Ruiz-Cortés. Abductive reasoning and automated analysis of
feature models: How are they connected? In 3rd. International Workshop on Vari-
ability Modelling of Software-intensive Systems (VAMOS), pages 145–153, Sevilla,

175



BIBLIOGRAPHY

Spain, Jan 2009. ICB Research Report N. 29. URL http://www.vamos-workshop.

net/. (page 44).

[156] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and M. Toro. Explanations
for agile feature models. In Procceedings of the 1st International Workshop on Agile
Product Line Engineering (APLE’06), 2006. (page 46).

[157] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro. Automated
error analysis for the agilization of feature modeling. Journal of Systems and Soft-
ware, 81(6):883–896, 2008. doi: 10.1016/j.jss.2007.10.030. (pages 46, 103, 104).

[158] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A. Jimenez. FAMA
Framework. In 12th Software Product Lines Conference (SPLC), pages 359–359,
2008. (pages 8, 9, 28, 46, 106, 109, 133, 142).

[159] P. Trinidad, C. Müller, J. Garcı́a-Galán, and A. Ruiz-Cortés. Building industry-
ready tools: Fama framework and ada. In Third International Workshop on Aca-
demic Software Development Tools and Techniques, pages 160–173, 2010. (page 159).

[160] P. Trinidad, J. Garcı́a-Galán, and A. Ruiz-Cortés. FaMa Abductive: una her-
ramienta para explicaciones de errores en modelos de caracteristicas. In XVI
Jornadas de Ingenierı́a del Software y Bases de Datos, 2011. (page 160).

[161] P. Trinidad, A. Ruiz-Cortés, and D. Benavides. Automated analysis of stateful
feature models. In Seminal Contributions to Information Systems Engineering, pages
375–380. Springer, 2013. (page 45).

[162] P. Trinidad, A. Ruiz-Cortés, and J. G. Galán. Configurable feature models. In
Actas de las XIX Jornadas de Ingenierı́a del Software y Bases de Datos, pages 335–348,
09/2014 2014. ISBN 84-697-1152-0. (pages 9, 28, 29, 34, 156).

[163] I. Trummer, F. Leymann, R. Mietzner, and W. Binder. Cost-optimal outsourcing
of applications into the clouds. In Cloud Computing Technology and Science (Cloud-
Com), 2010 IEEE Second International Conference on, pages 135–142. IEEE, 2010.
(pages 94, 114).

[164] H.-L. Truong and S. Dustdar. Composable cost estimation and monitoring for
computational applications in cloud computing environments. Procedia Computer
Science, 1(1):2175–2184, 2010. (page 114).

176

http://www.vamos-workshop.net/
http://www.vamos-workshop.net/
http://dx.doi.org/10.1016/j.jss.2007.10.030


BIBLIOGRAPHY

[165] W.-T. Tsai, G. Qi, and Y. Chen. A Cost-Effective Intelligent Configuration Model
in Cloud Computing. In Distributed Computing Systems Workshops (ICDCSW),
2012 32nd International Conference on, pages 400–408, 2012. (pages 94, 114).

[166] B. Vankeirsbilck, L. Deboosere, P. Simoens, P. Demeester, F. De Turck, and
B. Dhoedt. User Subscription-Based Resource Management for Desktop-as-a-
Service Platforms. The Journal of Supercomputing, 69(1):412–428, 2014. (page 149).

[167] S. Venticinque, R. Aversa, B. Di Martino, and D. Petcu. Agent based cloud provi-
sioning and management: Design and prototypal implementation. In CLOSER
2011 - Proceedings of the 1st International Conference on Cloud Computing and Ser-
vices Science, pages 184–191, 2011. (page 115).

[168] T. von der Massen and H. Lichter. Requiline: A requirements engineering tool
for software product lines. In F. van der Linden, editor, Proceedings of the Fifth
International Workshop on Product Family Engineering (PFE-5), LNCS 3014, Siena,
Italy, 2003. Springer Verlag. (page 46).

[169] T. von der Massen and H. Lichter. Deficiencies in feature models. In T. Man-
nisto and J. Bosch, editors, Workshop on Software Variability Management for Prod-
uct Derivation - Towards Tool Support, 2004. (page 46).

[170] H. Wang, Y. F. Li, J. Sun, and H. A. Zhang. A Semantic Web Approach to Fea-
ture Modeling and Verification. In Workshop on Semantic Web Enabled Software
Engineering (SWESE’05), 2005. (page 46).

[171] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong. A game-theoretic method of fair
resource allocation for cloud computing services. The Journal of Supercomputing,
54(2):252–269, 2010. (page 149).

[172] J. Whaley. Javabdd. http://javabdd.sourceforge.net/, 2007. (page 46).

[173] J. White, B. Dougherty, and D. C. Schmidt. Selecting highly optimal architectural
feature sets with Filtered Cartesian Flattening. Journal of Systems and Software,
2009. doi: 10.1016/j.jss.2009.02.011. URL http://dx.doi.org/10.1016/j.jss.

2009.02.011. (page 34).

[174] J. White, D. Benavides, D. Schmidt, P. Trinidad, B. Dougherty, and A. Ruiz-
Cortes. Automated diagnosis of feature model configurations. Journal of
Systems and Software, 83(7):1094 – 1107, 2010. ISSN 0164-1212. doi: DOI:
10.1016/j.jss.2010.02.017. (pages 31, 34, 46, 104, 151).

177

http://javabdd.sourceforge.net/
http://dx.doi.org/10.1016/j.jss.2009.02.011
http://dx.doi.org/10.1016/j.jss.2009.02.011
http://dx.doi.org/10.1016/j.jss.2009.02.011
http://dx.doi.org/DOI: 10.1016/j.jss.2010.02.017
http://dx.doi.org/DOI: 10.1016/j.jss.2010.02.017


BIBLIOGRAPHY

[175] J. White, B. Dougherty, C. Thompson, and D. C. Schmidt. ScatterD : Spa-
tial Deployment Optimization with Hybrid Heuristic / Evolutionary Algo-
rithms. ACM Transactions on Autonomous and Adaptive Systems, 6(3), 2011.
doi: 10.1145/2019583.2019585. URL http://dx.doi.org/10.1145/2019583.

2019585. (page 45).

[176] E. Wittern and C. Zirpins. Service feature modeling: modeling and participatory
ranking of service design alternatives. Software & Systems Modeling, pages 1–26,
2014. (pages 29, 30, 115, 116).

[177] E. Wittern, J. Kuhlenkamp, and M. Menzel. Cloud service selection based on
variability modeling. In Service-Oriented Computing, pages 127–141. Springer,
2012. (pages 5, 30, 115).

[178] Wordpress. Wordpress.com. http://www.wordpress.com/, 2015. (pages 17,
42).

[179] S. Zardari and R. Bahsoon. Cloud adoption: a goal-oriented requirements en-
gineering approach. In Proceedings of the 2nd International Workshop on Software
Engineering for Cloud Computing, pages 29–35. ACM, 2011. (page 115).

[180] G. Zhang, H. Ye, and Y. Lin. Quality attribute modeling and quality aware prod-
uct configuration in software product lines. Software Quality Journal, pages 1–37,
2013. (page 34).

[181] W. Zhang, H. Zhao, and H. Mei. A propositional logic-based method for verifi-
cation of feature models. In J. Davies, editor, ICFEM 2004, volume 3308, pages
115–130. Springer–Verlag, 2004. doi: 10.1007/b102837. (page 46).

[182] W. Zhang, H. Mei, and H. Zhao. Feature-driven requirement dependency analy-
sis and high-level software design. Requirements Engineering, 11(3):205–220, June
2006. doi: 10.1007/s00766-006-0033-x. (page 46).

[183] W. Zhang, H. Yan, H. Zhao, and Z. Jin. A bdd-based approach to verifying clone-
enabled feature models’ constraints and customization. In H. Mei, editor, High
Confidence Software Reuse in Large Systems, volume 5030 of Lecture Notes in Com-
puter Science, pages 186–199. Springer Berlin / Heidelberg, 2008. ISBN 978-3-540-
68062-8. (page 46).

178

http://dx.doi.org/10.1145/2019583.2019585
http://dx.doi.org/10.1145/2019583.2019585
http://dx.doi.org/10.1145/2019583.2019585
http://dx.doi.org/10.1007/b102837
http://dx.doi.org/10.1007/s00766-006-0033-x

	List of Figures
	List of Tables
	I Introduction
	Introduction
	Research Context
	Thesis Goals
	Contributions
	Contributions Regarding HCS Specification
	Contributions Regarding Automated Analysis
	Contributions Regarding HCS-driven Solutions

	Thesis Context
	Structure of this Dissertation


	II Background
	HCS Modelling
	Highly-configurable Services
	Dropbox
	Amazon EC2

	Decision Space Representation Techniques
	Structured Natural Language
	Variability Modelling

	User Needs Representation Techniques
	Configuration Models in Variability
	Stateful Feature Models
	SOUP

	Summary

	HCS-driven Solutions Automated Support
	Search of the Best Configuration
	Cloud Migration
	Automated Service Adaptation
	Automated Support of Variability Models
	Automated Analysis of Feature Models
	Automated Analysis of Stateful Feature Models
	Analysis Techniques

	Summary


	III Contribution
	Highly-configurable Services
	Introduction
	Abstract Model for Highly-configurable Services
	Configurable Services
	User Configurations
	Highly-Configurable Services
	Conceptual Metamodel

	SYNOPSIS
	Configurable and Highly-configurable Services
	Decision Terms
	Dependencies

	Validity Criteria
	Warning Level
	Term Error Level
	Service Error Level
	Discussion

	User Configuration Language
	Service and Items
	User Requirements
	User Preferences

	Summary

	HCS Automated Analysis
	Introduction
	Formal Semantics
	Primary Goal
	Mapping CSs to SFMs
	Mapping HCSs to SFMs

	Configurable Service Analysis operations
	Core operations
	Compound operations

	HCS Analysis operations
	Core operations
	Compound operations

	Summary


	IV Validation
	Automated Configuration Support for Infrastructure Migration to the Cloud
	Introduction
	Feature Models
	Problem
	Scenario

	Modelling
	IaaS Configuration Options
	Modelling Methodology

	Modelling Case Study: Amazon EC2
	AWS Elastic Compute Cloud
	EC2 Feature Model
	Customer Requirements on EC2 FM

	FM Analysis
	Error Checking
	Configurations Listing
	Most Suitable Configuration

	Implementation and Verification
	Analysis Operations Implementation
	EC2 Web Scraper
	EC2 FM

	Evaluation
	Comparison to Other Approaches
	Performance Study

	Related work
	Cloud Migration
	Variability, Ontologies and Cloud Services
	Commercial Approaches

	Summary

	User-centric Adaptation Analysis of Multi-tenant Services
	Introduction
	Background
	Multi-tenancy
	Desktop as a Service Delivery Models
	Feature Models

	Case study
	DaaS Configuration Space
	Infrastructural Constraints
	Users, Preferences and Conflicts

	Towards User-centric Adaptation of Multi-tenant Services
	User-Centric Adaptation Problem
	Adaptation Analysis for Service Reconfiguration

	Modelling
	Service Modelling
	User Preferences Modelling

	Analysis
	Automated Analysis of Feature Models
	Preference-based Optimisation
	Obtrusiveness-aware Optimisation

	Evaluation
	Implementation
	Experiments
	Experimental Results and Discussion

	Open Issues
	Related work
	Summary


	V Final Considerations
	Conclusions and Discussion
	Conclusions
	Discussion and Future Work
	Publications

	Bibliography


