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Abstract

We study a class of abstract nonlinear equations in a separable Hilbert space for
which we prove properties of the set of solutions. The results apply, in particular, in
several models of hydrodynamics, such as magneto-micropolar equations, micropolar
fluid equations, Boussinesq and Navier-Stokes equations.
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1 Introduction

We are concerned in the study of properties of the following class of abstract
stationary nonlinear equations in a separable Hilbert space X

Au + B(u,u) + B1u + B2u = f. (1)
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In (1) A is a self-adjoint, strictly positive operator in X with domain D(A)
and inverse compact. Thus there exists an ortonormal basis of X, {wj}j∈N
such that

Awj = λjwj, j = 1, 2, ... 0 < λ1 ≤ λ2 ≤ ... −→∞.

The scalar product and the norm in X are denoted by (·, ·) and |·|, respectively.
As {wj}j∈N is an ortonormal basis in X, for all u ∈ X we have:

u =
∞∑

j=1

cjwj, cj = (u,wj).

The domain of operator A is characterized by

D(A) = {u =
∞∑

j=1

cjwj :
∞∑

j=1

λ2
jc

2
j < ∞}.

For u ∈ D(A) we have Au =
∑∞

j=1 λjcjwj. We can define the powers Aα :
D(Aα) −→ X, α ∈ R, 0 ≤ α ≤ 1 with domain

D(Aα) = {u =
∞∑

j=1

cjwj :
∞∑

j=1

λ2α
j c2

j < ∞}

defines by Aαu =
∑∞

j=1 λα
j cjwj and cj = (u,wj). Observe that Xα = D(Aα/2)

is a Hilbert space with the product

(u,v)α = (Aα/2u, Aα/2v).

The associated norm is denoted by | · |α. We also denoted ((u,v)) = (u,v)1

and | · |1 = ‖ · ‖. The dual space of Xα is denoted by X−α. Thus, identifying
X with its dual space we have

Xα ↪→ X ↪→ X−α

where the injections are continuous and with dense image. In (1) B1 and B2

are linear continuous operators and B is a bilinear continuous operator in
X satisfying the following assumptions: B : D(A1/2) × D(Aβ) −→ X, Bi :
D(Aβ) −→ X with β ∈ (3/4, 1) such that:

(B(u,v),v) = 0, ∀u,v ∈ D(A1/2), (2)

(B1u,v) + (B1v,u) = 0, ∀u,v ∈ D(A1/2). (3)

We assume such that B, Bi have continuous extensions B : X ×X1 → X−2β,
B : X1×X1 → X−2β+1, B : X1×X → X−2β, Bi : X → X−2β and Bi : X1 →
X1−2β. Note that by interpolation inequalities, (2),(3) implies that
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|(B(u,v),w)| ≤ c1|A1/2u||A1/2v|2−2β|Av|2β−1|w|, for v ∈ D(A)

and

|(Biu,v)| ≤ c2i|A1/2u|2−2β|Au|2β−1|v|, for u ∈ D(A).

The norms of B and Bi with values in X−α are denoted by ‖B‖α and ‖Bi‖α. f
is assumed in X while u is unknown.

Equations (1) cover several models of hydrodynamics, such as magneto-micropolar
equations, micropolar fluid equations, classical hydrodynamics, Boussinesq
and Navier-stokes equations. Many authors have studied this models sepa-
rately and many results relatives to existence, uniqueness, regularity of so-
lutions, for instance, were encountred. The structure of the set of stationary
solutions of the Navier-Stokes equations was considered in [3], [4],[8] and ref-
erences therein. We study some of those properties for the set of solutions of
(1) and the technique of analysis is closely related to those in the above cite
papers. We will prove the following theorems:

Theorem 1.1 We consider the equation (1) and the assumptions (2)-(3)
hold. Then there exists a dense open set O ⊂ X such that for every f ∈ O,
the set of solutions of (1) is finite and odd number. Moreover, the number of
solutions R(f) of (1) on each connected component of O is constant.

Theorem 1.2 (Continuous Dependence) Let f0 ∈ O. Then there exists a
neighborhood of f0 such that for all f in it, Card R(f) = Card R(f0) < ∞.
Moreover, if f converges to f0 in X, R(f) converges to R(f0) in the Hausdorff
metric over X.

2 Preliminaries.

We recall first some definitions and facts from the linear theory of Fredholm
operators (see [5], and the references therein for details). If E1 and E2 are two
real Banach spaces, a linear continuous operator L : E1 −→ E2 is called a
Fredholm operator if

(1) Ker L has finite dimension
(2) Range L is closed
(3) Coker L = E2/Range L, has finite dimension

If L is Fredholm, then its index is the integer ind L = dim KerL-dim Coker L.
If L = L1 +L2 where L1 is compact from E1 into E2 and L2 is an isomorphism
(respectively is surjective and dim Ker L2 = q ), then L is Fredholm operator
of index 0 (respectively q). Let M ⊂ E1 a differentiable manifold. A Fredholm
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map is a C1 map F : M −→ E2 such that for each u ∈ M , the differential
DF(u) is a Fredholm operator. In this case it follows from the properties
of Fredholm operators that the index doesn’t depend on u [5]; in this case
the index of F is defined as index of DF(u). Let F be a C1 map from a
differentiable manifold M of E1 into E2. We recall that u ∈ M is called a
regular point of F if DF(u) is surjective and is singular if its not regular.
The images of the singular points under F are called the singular values or
critical values. Its complement in E2 constitutes the set of regular values of
F . Thus a regular value of F is a point f ∈ E2 which does not belong to the
image F(M), or such that DF(u) is onto at every point u in the pre image
F−1(f). To prove the Theorem 1.1, we going to make use of the following
infinite dimensional version of Sard’s Theorem [5].

Theorem 2.1 (Smale). Let E1 and E2 be two Banach spaces, M ⊂ E1 a
connected open and F : M −→ E2 a proper Ck Fredholm map with k >
max(ind F , 0). Then the regular values of F form a dense set of E2. If ind
F = 0 and f is a regular value of F , then F−1(f) is a discrete set. If ind
F > 0, and f is a regular value of F , then F−1(f) is either empty or a
manifold in M of class Ck and dimension ind F .

3 Proof of Theorems.

With respect to Equations (1) we have the following results

Theorem 3.1 If ‖B2‖1 < 1, then for all f ∈ X−1 the equation (1) have at
least one weak solution u ∈ X1 in the following sense: for all v ∈ X1, u
verifies

((u, v)) + (B(u,u), v) + (B1u, v) + (B2u, v) = (f, v). (4)

If B2 satisfies

1− ‖B2‖1 > (‖B‖1‖f‖2
−1)

1/2, (5)

then the equations (1) has a unique solution.

To demonstrate the Theorem 3.1 (existence) we considered the Galerkin ap-
proximations and used the following result which is an consequence of Brouwer’s
Theorem (see [2]):

Lemma 3.2 Let H a Hilbert space of finite dimension, with inner product
[·, ·] and norm [·]. If the operator P : H −→ H is continuous and if there
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exists a > 0 with [y] = a : [P (y), y] > 0, then there exists y ∈ H with [y] ≤ a
such that P (y) = 0.

The Galerkin approximation is given by the expression

uk =
k∑

j=1

cjkwj, k ∈ N,

where the coefficients cjk are real numbers which determined such that uk is
solution of the following problem

Auk + Pk(B(uk) + B1u
k + B2u

k) = Pkf. (6)

Here Pk represent the orthogonal projection associated to vectorial closed
space Xk = span{w1, ...,wk} or equivalently for j = 1, ..., k,

((uk,wj)) + (B(uk,uk),wj) + (B1u
k,wj) + (B2u

k,wj) = (f,wj). (7)

Taking v = u (u solution of (1) gives by Theorem 3.1) in (4) and using (2),
(3) is easy obtain the following:

Theorem 3.3 The solutions of (1) belong to the ball {u ∈ X1 : ‖u‖2 ≤ r},
where

r =
‖f‖2

−1

1− ‖B2‖1

.

Now, with f ∈ X we show an estimate of u in the norm of X2. From (7), for
all φ ∈ Xk, we have

(A1/2uk, A1/2φ)+(B(uk,uk), φ)+(B1u
k, φ)+(B2u

k, φ) = (f, φ), k = 1, 2, ..., k.

Considering φ = Auk ∈ Xk, using (2),(3), Young’s inequality and interpolation
inequalities, we obtain:

|Auk|2≤ |f||Auk|+ |(B(uk,uk), Auk)|+ |(B1u
k, Auk)|+ |(B2u

k, Auk)|
≤ |f ||Auk|+ c1|A1/2uk|3−2β|Auk|2β + c2|A1/2uk|2−2β|Auk|2β

≤ cε|f|2 + ε|Auk|2 + cε|A1/2uk|α + ε|Auk|2 + cε|A1/2uk|2 + ε|Auk|2,

with α = (3− 2β)/(1− β). Here, we mean by cε a generic positive constant
which depend of ε. Taking ε sufficiently small and using that |A1/2uk| ≤ r, we
obtain |Auk|2 ≤ C, where C does not depend of k. This estimate implies that
the solutions u in X1 of (1) belong D(A). From (1) we obtain
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|Au| ≤ |f|+ |B(u,u)|+ |B1u|+ |B2u|
≤ |f|+ c1|A1/2u|3−2β|Au|2β−1 + c2|A1/2u|2−2β|Au|2β−1

≤ |f|+ c1|A1/2u|(3−2β)/(1−β) + c2|A1/2u|2.

Therefore using that |A1/2u| ≤ r (which depend of |f|) we have

|Au| ≤ c(|f|) (8)

for some constant c > 0 independent of u. Now we are going to apply the
Theorem 2.1 to show the Theorem 1.1. For this, we considered M = E1 =
D(A), E2 = X and F(u) = Au+ B(u,u) + B1u+ B2u. From assumptions of
B, Bi, i = 1, 2 we have that F makes since as a mapping from D(A) into X.
Let us remark that for any f ∈ X : R(f) := F−1(f).

Lemma 3.4 The application F : D(A) −→ X is proper.

PROOF. Let K a compact set of X. It follows of (8) that F−1(K) is bounded
in D(A) because K is bounded in X. Thus F−1(K) is compact in D(Aβ)
since D(A) = X2 ↪→ X2β = D(Aβ) compactly. As B(u,u), Bi, i = 1, 2 are
continuous from D(Aβ) −→ X, we have that B(F−1(K)), Bi(F−1(K)) are
compact in X. As the set A−1(K−B(F−1(K))−∑2

i=1 Bi(F−1(K))) is relatively
compact in D(A) and contain F−1(K), we conclude that F−1(K) is compact
in D(A).

Remark 3.5 The Lemma 3.4 implies that the set R(f) = F−1(f) is a compact
subset of D(A) for any f ∈ X.

Note that F is a C∞ mapping from D(A) into X and

DF(u).v = Av + B(u,v) + B(v,u) + B1v + B2v, ∀u,v ∈ D(A).

We also have that for each u ∈ D(A) the linear applications v 7→ B(u,v), v 7→
B(v,u), v 7→ Biv, i = 1, 2 are continuous from X2β into X; therefore, if (vn)
is a bounded sequence in D(A), then as D(A) ↪→ X2β compactly, there exists
a subsequence vnk that converges strongly in X2β to some v ∈ X2β. Conse-
quently, B(u,vnk) → B(u,v), B(vnk,u) → B(v,u), and Bivnk → Biv in X,
i.e, v 7→ B(u,v), v 7→ B(v,u), v 7→ Biv, i = 1, 2 are compact from D(A)
into X. Since A is an isomorphism from D(A) into X, then using the property
of Fredholm commented in the begin of this section, we concluded that DF(u)
is a Fredholm operator of index 0. Applying the Theorem 2.1, we have that
F−1(f) is a discrete set for each f regular value of F . Since F is proper F−1(f)
is a finite set; consequently setting O = {the set of regular values of F} which
is dense and open by Smale’s Theorem, we concluded a part of demonstration
of Theorem 1.1. Now, we going to show that the number of solutions of (1)
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an each connected component of O is constant and every solution is a C∞

function of f. Let Oj, j ∈ Λ be the connected components of O (which are
open) and let f0, f1 be two points of Oj, for some j. Take u0 ∈ F−1(f0). Then
exists a continuous curve t ∈ [0, 1] 7→ f(t) ∈ Oj, f(0) = f0, f(1) = f1. We
extend the above application as f(t + z) = f(t), z ∈ Z and we define the map
T : R×D(A) −→ X such that

(s,u) 7−→ T (s,u) = F(u)− f(s).

Directly from the assumptions, it follows that T (0,u0) = 0, the mapping
T (s, ·) is of class C∞ and moreover for (s,u) ∈ R × D(A) : DuT (s, ·) =
DF(u). Du0T (0, ·) is an isomorphism of D(A) in X since DF(u) is a Fredholm
operator of Index 0, hence, by the Implicit Function Theorem there exists
neighborhoods U0,Uu0 of 0 and u0, respectively, and a unique continuous
function s 7→ u(s), s ∈ U0, with F(u(s)) = f(s), u(0) = u0. Since f(s) is
regular value of F , for all s ∈ [0, 1], u(s) is defined for every s, 0 ≤ s ≤ 1,
and therefore u(1) ∈ F−1(f1). Now, Card F−1(f0) ≤ Card F−1(f1) because
the uniqueness of u(s). By symmetry, the number of points is the same. It
remain to show that the number of solutions of (1) is odd. For fixed f ∈ O,
we rewrite (1) as

F (u) = u + A−1
(
B(u,u) +

j=2∑

j=1

Bju
)

= A−1(f) = g, u,g ∈ D(A).

Note that F = (I − F0), with −F0 := A−1(B +
∑j=2

j=1 Bj) which is compact. If
uλ is solution of F (uλ) = λg, 0 ≤ λ ≤ 1, then by (8)

|Auλ| ≤ c(|f|+ |f|3) < R := 1 + c(|f|+ |f|3).

Therefore the Leray-Schauder degree D(F, BR, λg) (see [1]) where BR is the
open ball of D(A) of radius R, is well defined. If λf is a regular value of F ,
then λg is a regular value of F . Hence, if F−1(λg) = {u1, ...,uk} (finite set),
we have that

D(F,BR, λg) =
k∑

i=1

ind(uj).

There exist λ0 ∈ [0, 1], such that B2 satisfies 1 − ‖B2‖1 > (
√
‖B‖1‖λf‖2−1)

1/2

for all 0 ≤ λ ≤ λ0 implying that F−1(λf) contains only one point uλ. For
this values of λ, using arguments similar to that used before, we can show
that DF(uλ) is an isomorphism and consequently D(F,BR, λg) = ±1. As
D(F, BR, λg) is invariant by homotopy, we have that D(F, BR,g) = ±1. This
implies that k is an odd number.

To prove the Theorem 1.2 we need the following lemma:

Lemma 3.6 Let f0 ∈ O, u0 ∈ R(f0). There exists a neighborhoods Uf0
,Uu0
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of f0 and u0, respectively, such that Card (Uu0 ∩ R(f)) = 1 for all f ∈ Uf0
.

Moreover the application Uf0
3 f 7−→ uf ∈ Uu0 is of class C∞, where {uf} :=

Uu0 ∩R(f).

PROOF. . we consider the map T : X × D(A) −→ X such that T (f,u) =
F(u) − f. Note that T (f0,u0) = 0 and T is of class C∞. As DF(u) is a
Fredholm operator of index 0, we have that Du0T (f0, ·) is an isomorphism of
D(A) to X. Hence, from the Implicit Function Theorem, it follows that there
exists neighborhoods Uf0 ,Uu0 of f0 and u0, respectively, and a C∞− function
ξ : Uf0 −→ Uu0 such that T (f, ξ(f)) = 0, for all f ∈ Uf0 . In particular for any
f ∈ Uf0 , there exists an unique uf ∈ Uu0 with ξ(f) = uf, i.e, T (f,uf) = 0, or
equivalently uf ∈ Uu0 ∩R(f). Moreover the application Uf0 3 f 7−→ uf ∈ Uu0

is of class C∞.

Proof of Theorem 1.2.

From Theorem 1.1, the set R(f0) < ∞. Let u ∈ R(f0). By the Lemma 3.6
there exists a neighborhoods Uf0 , Uu of f0 and u, respectively, such that
Card(Uu ∩R(f0)) = 1 for all f ∈ Uf0 . Moreover the application

Uf0 3 f 7−→ uf ∈ Uu (9)

is of class C∞, where {uf} = Uu ∩ R(f). As R(f0) < ∞, there exists δ > 0
so small that the ball {B(u, δ) : u ∈ R(f0)} are pairwise disjoint and for
all u ∈ R(f0) : B(u, δ) ⊂ Uu. By the continuity of the function (9), there
exists a neighborhood U ⊂ Uf0 such that uf ∈ B(u, δ), for f ∈ U . Making
U = ∩{U : u ∈ R(f0)}, we have that if f ∈ U , then the function

R(f0) 3 u 7−→ uf ∈ Uu0 ∩R(f)

is an injection and as a consequence, Card R(f0) ≤ Card R(f). To see the
equality assume contrary to our claim, that the set {f ∈ U : Card R(f0) <
Card R(f)} is infinite. Then, there exists a sequence (fk), fk ∈ U convergent
to f0 in X such that Card R(f0) < Card R(fk), k ∈ N. The subset {ufk

: u ∈
R(f0)} has exactly Card R(f0) elements because ufk

is the unique element of

the set R(fk) which is in a suitable neighborhood of the solution u ∈ R(f0),
therefore it is not the whole R(fk). We select a sequence ak ∈ R(fk) \ {ufk

:

u ∈ R(f0)}. Note that ak is not belong to set ∪{Uu : u ∈ R(f0)}. By (8), the
sequence (ak)k∈N is bounded in D(A), thus in virtue of the Banach- Alauglu
theorem there exists a ∈ D(A), and an infinite subset N ⊂ N such that ak

converges weakly to a in D(A) as N 3 k −→∞. As D(A) ↪→↪→ X, ak −→ a
strong in X and this is sufficiently for the pass the limit. Consequently, the
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limit a ∈ R(f0). This leads to a contradiction

∪{Uu : u ∈ R(f0)}C 3 a ∈ R(f0) ⊂ ∪{Uu : u ∈ R(f0)}.

Therefore the set {f ∈ U : Card R(f0) < Card R(f)} is finite and conse-
quently we can take a neighborhood sufficiently small U such that ∀f ∈ U ,
Card R(f) = Card R(f0). Now, we are going to show that if f −→ f0 in X,
then R(f) −→ R(f0) in the Hausdorff metric over X. Let ε > 0, then there
exists Uf0such that uf ∈ B(u, ε) for any f ∈ Uf0 hence uf ∈ {u} + B(0, ε) ⊂
R(f0) + B(0, ε) and consequently

R(f) ⊂ {uf : u ∈ R(f0)} ⊂ R(f0) + B(0, ε).

As uf ∈ B(u, ε), then u ∈ B(uf, ε) = {uf} + B(0, ε) ⊂ R(f) + B(0, ε), hence
R(f0) ⊂ R(f)+B(0, ε). Remark that Theorem 1.2 implies that the application

O 3 f 7→ R(f) ∈ D(A)

is continuous if we consider the Hausdorff metric over X. The function

O 3 f 7→ Card R(f) ∈ Z

is constant on every connected component of the set O. (cf. Theorem1.1).

4 Applications.

As an application of Theorem 1.1 we shall consider first a model of Microp-
olar Fluids. A steady in time flow of micropolar fluid filling the domain Ω is
described by the following equations in Ω [6].

−(ν + νr)∆u + (u · ∇)u +∇p = 2νrrot w + f1, (10)

−σ∆w + (u · ∇)w− β∇div w + 4νrw= 2νrrot u + f2, (11)

div u= 0. (12)

Equations (10)-(12) are the conservation laws of momentum, momentum an-
gular and mass, respectively. u is the velocity, p is the pressure and w is the
angular velocity of rotation of particles. Moreover, f1 and f2 represent exter-
nal fields, ν, νr, σ, β are positive constants (ν is the usual Newtonian viscosity,
νr is the microrotation viscosity, σ and β are constants that depend of new
viscosities connected with the asymmetry of the stress tensor). The density
of fluid is considered equal to one. We assume that Ω is a bounded set in R3

with smooth boundary ∂Ω. Let u = 0, w = 0 in ∂Ω.
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By X we denote the Hilbert space H × L2(Ω)3 where H is the closure of the
set

V = {u ∈ C∞
0 (Ω) : div u = 0}

in the norm of L2(Ω). The norm in X is denoted by | · |.
We introduced the following operators:

A(U) = (−(ν + νr)P∆u1,−σ∆w1 − β∇div w1)

≡ (A1u1, A2w1),

B(U, V ) = (P ((u1 · ∇)u2), (u1 · ∇)w2),

B1(U) = (0, 0),

B2(U) = (−2νrrot w1,−2νrrot u1 + 4νrw1),

for U = (u1,w1) ∈ D(A), V = (u2,w2) ∈ D(A). The operator P above is the
orthogonal projection of L2(Ω)3 on the subspace H. With this notation the
system of equations (10)-(12) takes the form (1) with f = (f1, f2).
We check the assumptions of Theorem 1.1. The operator A is self-adjoint,
positive, with domain

D(A) = (W 2,2(Ω)3 ∩ V )× (W 2,2(Ω)3 ∩W 2,2
0 (Ω)3)

where W 2,2(Ω) and W 1,2
0 (Ω) are the usual Sobolev spaces, and V is the ad-

herence of V in the norm of W 1,2
0 (Ω); indeed, V can be characterized by

V = {u ∈ W 1,2
0 (Ω) : div u = 0}. We denoted by Xα = D(Aα/2) and

Xα
i = D(Aα

i ), i = 1, 2. The Xα
2 = D(∆α). From the properties of the Laplace

and Stokes operator [9], we conclude that for u ∈ X1
1 ,v ∈ X2

2 ,

|(u · ∇)v| ≤ c|u|L6|∇v|L3 ≤ c|u|L6|v|1/2
L6 ‖v‖1/2

W 2,2

≤C|A1/2
1 u|L2|A1/2

i v|1/2
L2 |Aiv|1/2

L2 .

Indeed the norms |AU | and ‖U‖W 2,2 are equivalent on D(A) and the norms
|A/2U | and ‖U‖W 1,2 are equivalent on D(A/2).
We can show that

|B(U, V )| ≤ c|A1/2U ||A1/2V |1/2|AV |1/2,

for U ∈ X1, V ∈ X2. The condition (2) is verifies thanks to properties of the

bilinear form b(u,v,w) =
∑

i,j ui
∂vj

∂xi
wj to u ∈ D(A

/2
1 ),v,w ∈ W 1,2

0 (Ω). [8].

We also can verifies that |(B2(U), V )| ≤ c|A1/2U ||V |, U ∈ D(A1/2), V ∈ X.
From Theorem (1.1) follows that for all f ∈ O, the set of solutions of (10)-(12)
is finite and add number. Moreover the number of solutions on each connected
component of O is constant. The consequences of Theorem 1.2 are also verifies.

10



As Another application of Theorem 1 and Theorem 2 we consider the station-
ary Navier-Stokes equations

−ν∆u + (u · ∇)u +∇p = f, in Ω (13)

div u= 0, in Ω (14)

u= φ in ∂Ω, (15)

where f ∈ H, φ ∈ H1/2(∂Ω) (The space of traces of function in W 1,2(Ω))3 with∫
∂Ω φ · ηds = 0, η the unit outward normal on ∂Ω. A study of the properties

give by the Theorem 1.1, Theorem 1.2, for this system is encountered in [3].
The Theorem 1.1, Theorem 1.2 also apply in the model magneto-microplar
fluid. In this model, moreover of unknown u,v there exists the unknown h
correspondent the magnetic field [7].
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