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Abstract

We consider the stationary Oseen and Navier-Stokes equations in a bounded domain of class C1,1 of R3. Here we
give a new and simpler proof of the existence of very weak solutions (u , q) ∈ L

p(Ω) ×W−1,p(Ω) corresponding
to boundary data in W

−1/p,p(Γ). These solutions are obtained without imposing smallness assumptions on the
exterior forces. We also obtain regularity results in fractional Sobolev spaces.

To cite this article: C. Amrouche, M. A. Rodŕıguez-Bellido, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Résumé

Solutions très faibles pour les équations stationnaires d’Oseen et de Navier-Stokes. Nous considérons
les équations stationnaires d’Oseen et de Navier-Stokes dans un ouvert borné connexe et de classe C1,1de R3. Nous
donnons ici une nouvelle preuve plus simple de l’existence de solutions très faibles (u , q) ∈ L

p(Ω) × W−1,p(Ω)
correspondant à des données au bord dans W

−1/p,p(Γ). Ces solutions sont obtenues sans hypothèse de petitesse
des forces extérieures. On obtient aussi des résultats de régularité dans des espaces de Sobolev fractionnaires.

Pour citer cet article : C. Amrouche, M. A. Rodŕıguez-Bellido, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Version française abrégée

L’objet de cette note consiste essentiellement à étudier l’existence de solutions très faibles (u , q) ∈
Lp(Ω)×W−1,p(Ω) pour les équations d’Oseen (O) et de Navier-Stokes (NS). L’une des difficultés consiste
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à donner un sens aux conditions aux limites de Dirichlet. Le terme de convection rend les choses plus
difficiles pour le problème (O) et complique sérieusement la situation pour l’étude du problème non
linéaire (NS). Les résultats concernant l’existence de solutions très faibles sont donnés dans le théorème
2.4 pour (O) et les théorèms 3.1 et 3.2 pour (NS). Les autres résultats concernent la régularité de telles
solutions sous des hypothèses adéquates. Nons considérons en particulier le cas où les données et donc les
solutions appartiennent à des espaces de Sobolev fractionnaires.

1. Introduction

Let Ω be a bounded connected open set of R3 of class C1,1 with boundary Γ. We are interested in some
questions concerning the stationary Oseen and Navier-Stokes equations, that generally can be written as:

(O) −∆u + v · ∇u +∇q = f and ∇ · u = h in Ω, u = g on Γ,

(NS)−∆u + u · ∇u +∇q = f and ∇ · u = h in Ω, u = g on Γ,

where u denotes the velocity field and q the pressure, both being unknown, and f , h, g and v are given.
In the case of incompressible fluids, h = 0, it has been well-known since Leray [6] that if f ∈ W−1,p(Ω)

and g ∈ W1−1/p,p(Γ) with p ≥ 2, Γi are the connected components of the boundary Γ, i = 0, . . . , I, and
�

Γi

g · n dσ = 0, ∀i = 0, ..., I, (1)

then there exists a solution (u , q) ∈ W1,p(Ω) × Lp(Ω) satisfying (NS). Serre proved [8] the existence
of weak solution (u , q) ∈ W1,p(Ω) × Lp(Ω) for any 3

2 < p < 2 when h = 0 and g satisfies the above
conditions. Recently, Kim [5] improves Serre’s existence and regularity results on weak solutions of (NS)
for any 3

2 ≤ p < 2, when Γ is connected (I = 0) provided h is small in an appropriate norm (due to (2),
see below, g is also small in the corresponding appropriate norm).

Existence of very weak solutions (u , q) ∈ L3(Ω)×W−1,3(Ω), for h = 0, arbitrary large f ∈ H−1(Ω) and
large g ∈ L2(Γ), without assuming condition (1), was proved first by Marusic-Paloka in [7] (see Theorem
5) with Ω a bounded simply-connected open set of class C1,1. But the proof of Theorem 5 becomes correct
only if either condition (1) or condition (12) hold. The same result was proved by Kim [5] for arbitrary
large external forces f ∈ [W1,3/2

0 (Ω)∩W 2,3(Ω)]�, for small h ∈ [W 1,3/2(Ω)]� and g ∈ W−1/3,3(Γ), with Γ
supposed connected (I = 0). Observe that the space chosen for h and for f are not correct either and led
us to some erros (in particular, the equivalence given in Theorem 5 there does not work).

The purpose of our work is to generalize the theory of very weak solutions of the Dirichlet problem
from the Stokes equations to the Oseen and Navier-Stokes equations, defining rigorously the traces of
the vector functions which are living in subspaces of Lp(Ω) (see [1], [2]), and the spaces for the data.
We prove existence and regularity of very weak solutions (u , q) ∈ Lp(Ω)×W−1,p(Ω) of Oseen equations
for any p ∈ (1,+∞) with arbitrary large data in Sobolev spaces of negative order. In the Navier-Stokes
case, the existence of very weak solution is proved for arbitrary large external forces, but with a smallness
condition for both h and g . Uniqueness of very weak solutions is also proved for small enough data. The
detailed proofs of the results announced in this Note are given in [2].

2. Oseen Equations

For any 1 < r, p < ∞, we define the spaces: Hp(Ω) = {v ∈ Lp(Ω); ∇ · v = 0}, Xr,p(Ω) = {ϕ ∈
W1,r

0 (Ω); ∇·ϕ ∈ W
1,p
0 (Ω)}, and Tp,r(Ω) = {v ∈ Lp(Ω); ∆v ∈ (Xr�,p�(Ω))�}, endowed with the topology
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given by the norm �v�Tp,r(Ω) = �v�Lp(Ω) + �∆v�[Xr�,p� (Ω)]� .
As for the Navier-Stokes system, we can prove that if f ∈ H−1(Ω), v ∈ H3(Ω), h ∈ L2(Ω) and

g ∈ H1/2(Γ) with h and g verifying the compatibility condition
�

Ω
h(x ) dx =

�

Γ
g · n dσ, (2)

then the problem (O) has a unique solution (u , q) ∈ H1(Ω)× L2(Ω)/R verifying the following estimate:

�u�H1(Ω) ≤ C

�
�f �H−1(Ω) +

�
1 + �v�L3(Ω)

�
(�h�L2(Ω) + �g�H1/2(Γ))

�
.

Theorem 2.1 (Strong solutions) Consider p ≥ 6
5 , f ∈ Lp(Ω), h ∈ W 1,p(Ω), v ∈ Hs(Ω) and g ∈

W2−1/p,p(Γ), with s = 3 if p < 3, s = p if p > 3, or s = 3 + ε if p = 3, for some arbitrary ε > 0, and

satisfying the compatibility condition (2). Then, the unique solution of (O) verifies (u, q) ∈ W2,p(Ω) ×
W 1,p(Ω). Moreover, there exists a constant C > 0 such that

�u�W2,p(Ω)+�q�W 1,p(Ω)/R ≤ C
�
1 + �v�Ls(Ω)

� �
�f�Lp(Ω)+

�
1 + �v�Ls(Ω)

� �
�h�W 1,p(Ω) + �g�W2−1/p,p(Γ)

� �
.

Proof: First, let (u , q) ∈ H1(Ω)×L2(Ω)/R be the unique solution of Problem (O). For a given vλ ∈ D(Ω)
(λ > 0) such that ∇ · vλ = 0 and �vλ − v�Ls(Ω) ≤ λ, let (uλ, qλ) ∈ W2,p(Ω) ×W 1,p(Ω) be the unique
solution of the problem (Oλ): −∆uλ− vλ ·∇uλ +∇qλ = f and ∇ ·uλ = h in Ω, uλ = g on Γ (use the
Stokes regularity and a bootstrap argument). Secondly, we focus on the obtention of a strong estimate
for (uλ, qλ). If �v is the extension by zero of v to R3 and ρε the classical mollifier, we consider

vλ = vε
1 + vε

λ,2 where vε
1 = �v � ρε/2, vε

λ,2 = vλ − �v � ρε/2 for ε > 0, and 0 < λ < ε/2. (3)

By regularity estimates for the Stokes problem, we have

�uλ�W2,p(Ω) + �qλ�W 1,p(Ω)/R ≤ C(�f �Lp(Ω) + �h�W 1,p(Ω) + �g�W2−1/p,p(Γ) + �vλ · ∇uλ�Lp(Ω)). (4)

In order to estimate the term �vλ · ∇uλ�Lp(Ω), we use (3) and Sobolev embeddings. First:

�vε
λ,2 · ∇uλ�Lp(Ω) ≤ �vε

λ,2�Ls(Ω)�∇uλ�Lk(Ω) ≤ C ε�uλ�W2,p(Ω), with
1
k

=
1
p
− 1

s
. (5)

For the estimate on vε
1, we consider two cases: If p ≤ 2, let r ∈ ]3,∞] be such that 1

p = 1
r + 1

2 , and t ≥ 1 such
that 1+ 1

r = 1
3+ 1

t satisfying: �vε
1·∇uλ�Lp(Ω) ≤ �vε

1�Lr(Ω)�∇uλ�L2(Ω) ≤ �v�L3(Ω)�ρε/2�Lt(R3)�∇uλ�L2(Ω).

Using the estimate (5), we deduce from (4) that

�uλ�W2,p(Ω)+�qλ�W 1,p(Ω)/R ≤ C
�
1 + �v�L3(Ω)

�
(�f �Lp(Ω)+

�
1 + �v�L3(Ω)

�
(�h�W 1,p(Ω)+�g�W2−1/p,p(Γ))).

If p > 2, using the compact embedding W 2,p(Ω) �→ W 1,q(Ω), with q < p∗, for any ε� > 0, we known that
there exists Cε� > 0 such that �∇uλ�Lq(Ω)≤ ε��uλ�W2,p(Ω)+Cε��uλ�H1(Ω). Considering the case p < 3
and then the case p ≥ 3, we can choose the exponent q and fix ε > 0 and ε� > 0 small enough to obtain

�uλ�W2,p(Ω) + �qλ�W 1,p(Ω)/R ≤ C

�
�f �Lp(Ω) + �h�W 1,p(Ω) + �g�W2−1/p,p(Γ)

+ Cε��v�Ls(Ω)�ρε/2�Lt(Ω)

�
�f �Lp(Ω) +

�
1 + �v�Ls(Ω)

�
(�h�W 1,p(Ω) + �g�W2−1/p,p(Γ))

��
.

Thus, we deduce that there exists a sequence of real numbers kλ such that (uλ, qλ +kλ) converges weakly
in W2,p(Ω)×W 1,p(Ω) to (u , q), solution of Problem (O) with the corresponding estimate.
Theorem 2.2 Let f ∈ W−1,p(Ω), v ∈ H3(Ω), h ∈ Lp(Ω) and g ∈ W1−1/p,p(Γ) verify the compatibility

condition: �

Ω
h(x) dx = �g · n, 1�W−1/p,p(Γ)×W 1/p,p� (Γ). (6)
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Then, the problem (O) has a unique solution (u, q) ∈ W1,p(Ω) × Lp(Ω)/R. Moreover, there exists some

constant C > 0 such that, for α = 1 if p ≥ 2 and α = 1 + �v�L3(Ω) if p < 2, we have

�u�W1,p(Ω) + �q�Lp(Ω)/R ≤ C
�
1 + �v�L3(Ω)

�2 �
�f�W−1,p(Ω) + α�h�Lp(Ω) + �g�W1−1/p,p(Γ)

�
. (7)

Sketch of the proof: We split it in two cases. If p ≥ 2, we decompose the solution (u , q) as (z , θ)+(u0, q0),
being (u0, q0) ∈ W1,p(Ω) × Lp(Ω) satisfying −∆u0 +∇q0 = f and ∇ · u0 = h in Ω, u0 = g on Γ, and
(z , θ) ∈ W2,t(Ω)×W 1,t(Ω) satisfying −∆z +v ·∇z +∇θ = −v ·∇u0 and ∇·z = 0 in Ω, z = 0 on Γ, where
1
t = 1

3 + 1
p . The corresponding estimates (see Theorem 2.1) and the embedding W2,t(Ω) �→ W1,p(Ω)

conclude the proof in this case. Secondly, if p < 2, we are able to conclude by a duality argument.
Remark 1 Estimate (7) can be improved for p ∈ [ 65 , 6], and for any p > 1 if v · n = 0 on Γ as:

�u�W1,p(Ω)+�q�Lp(Ω)/R ≤ C
�
1 + �v�L3(Ω)

��
�f �W−1,p(Ω)+

�
1 + �v�L3(Ω)

��
�h�Lp(Ω) + �g�W1−1/p,p(Γ)

� �
.

Corollary 2.3 Consider 1 < p < 6/5 and f ∈ Lp(Ω), v ∈ H3(Ω), h ∈ W 1,p(Ω) and g ∈ W2−1/p,p(Γ)
verifying the compatibility condition (6). Then, the solution given by Theorem 2.2 satisfies (u, q) ∈
W2,p(Ω)×W 1,p(Ω) and the following estimate holds:

�u�W2,p(Ω)+�q�W 1,p(Ω)/R ≤ C
�
1 + �v�L3(Ω)

� �
�f�Lp(Ω)+

�
1 + �v�L3(Ω)

� �
�h�W 1,p(Ω) + �g�W2−1/p,p(Γ)

� �
.

Using the previous results and following arguments in [2], we obtain:
Theorem 2.4 (Very weak solution of Oseen equations) Let f ∈ (Xr�,p�(Ω))�, h ∈ Lr(Ω), g ∈
W−1/p,p(Γ), with

1
r = 1

p + 1
s , be given, satisfying the compatibility condition (6), and v ∈ Hs(Ω) with

s = 3 if p > 3/2, s = p� if p < 3/2, or s = 3 + ε if p = 3/2. Then, the Oseen problem (O) has a unique

solution (u, q) ∈ Tp,r(Ω)×W−1,p(Ω)/R verifying the estimates

�u�Tp,r(Ω) ≤C
�
1 + �v�Ls(Ω)

� �
�f�[Xr�,p� (Ω)]� + �h�Lr(Ω) + �g�W−1/p,p(Γ)

�
, (8)

�q�W−1,p(Ω)/R ≤C
�
1 + �v�Ls(Ω)

�2
�
�f�[Xr�,p� (Ω)]� + �h�Lr(Ω) + �g�W−1/p,p(Γ)

�
.

Concerning the regularity of solutions for the Oseen equations in fractional Sobolev spaces, we obtain:
Theorem 2.5 (Regularity for Oseen equations) Consider σ ∈ (1/p, 2]. Let f ∈ Wσ−2,p(Ω), h ∈
W σ−1,p(Ω), g ∈ Wσ−1/p,p(Γ) be given satisfying the compatibility condition (6), and v ∈ Hs(Ω) with s as

in Theorem 2.4. Then, the Oseen problem (O) has a unique solution (u, q) ∈ Wσ,p(Ω) ×W σ−1,p(Ω)/R
satisfying

�u�Wσ,p(Ω) + �q�W σ−1,p(Ω)/R ≤ C (�f�Wσ−2,p(Ω)) + �h�W σ−1,p(Ω) + �g�Wσ−1/p,p(Ω)).

3. Navier-Stokes Equations

Now, we present two theorems giving existence of very weak solutions for the Navier-Stokes equations
in L3(Ω)×W−1,3(Ω), first one for the small data case, and second one for arbitrary large f but h and g
small enough in a domain possibly multiply-connected.
Theorem 3.1 (Very weak solution for Navier-Stokes, small data case) Let f ∈ (X3,3/2(Ω))�, h ∈
L3/2(Ω) and g ∈ W−1/3,3(Γ) verify (6). Then,

i) there exists a constant α1 > 0 such that, if � f �[X3,3/2(Ω)]� + � h �L3/2(Ω) + � g �W−1/3,3(Γ) ≤ α1, then,

there exists a very weak solution (u, q) ∈ L3(Ω)×W−1,3(Ω) to problem (NS) verifying the estimates

� u �L3(Ω) ≤C

�
� f �[X3,3/2(Ω)]� + � h �L3/2(Ω) + � g �W−1/3,3(Γ)

�
, (9)

� q �W−1,3/R ≤C1� f �[X3,3/2)]� + 2(1 + C2)C
�
� f �[X3,3/2]� + � h �L3/2 + � g �W−1/3,3

�
, (10)
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where C > 0 is the constant given in (8), α1 = min
�
(2C)−1, (2C2)−1

�
, and C1 and C2 constants of

Sobolev embeddings.

ii) Moreover, there exists a constant α2 ∈ ]0, α1] such that if � f �[X3,3/2(Ω)]�+� h �L3/2(Ω)+� g �W−1/3,3(Γ) ≤
α2, then this solution is unique, up to an additive constant for q.

Proof: We prove existence of a very weak solution by applying Banach’s fixed point theorem over the
Oseen equations. Indeed, let T : H3(Ω) → H3(Ω) be the application defined as v �→ Tv = u , where u is
the unique solution of (O) provided by Theorem 2.4. We set Br = {v ∈ H3(Ω); �v�L3(Ω) ≤ r}. We will
prove that there exists θ ∈ ]0, 1[ such that

�Tv1 − Tv2�L3(Ω) = �u1 − u2�L3(Ω) ≤ θ�v1 − v2�L3(Ω). (11)

In order to estimate �u1 − u2�L3(Ω), we observe that for each i = 1, 2, (u i, qi) is the solution of −∆u i +
v i · ∇u i +∇qi = f and ∇ · u i = h in Ω, u i = g on Γ, with the estimates

�u i�L3(Ω) ≤ C
�
1 + �v i�L3(Ω)

� �
� f �[X3,3/2(Ω)]� + � h �L3/2(Ω) + � g �W−1/3,3(Γ)

�
,

being C > 0 the constant given in (8). However, to estimate the difference u1 − u2, we have to argue
differently. Consider the problem fulfilled by (u , q) = (u1−u2, q1− q2), which is −∆u + v1 · ∇u +∇q =
−v · ∇u2 and ∇ · u = 0 in Ω, u = 0 on Γ, where u1 = Tv1, u2 = Tv2 and v = v1 − v2. Using the very
weak estimates (8) for the Oseen problem successively for u and for u2, we obtain that

�u�L3(Ω) ≤ C
�
1 + �v1�L3(Ω)

�
�(v · ∇)u2�[X3,3/2(Ω)]� ≤ C

2
β

�
1 + �v1�L3(Ω)

� �
1 + �v2�L3(Ω)

�
�v�L3(Ω),

where β = � f �[X3,3/2(Ω)]� + � h �L3/2(Ω) + � g �W−1/3,3(Γ). Thus, we obtain estimate (11) if we con-
sider C2 β (1 + r)2 < 1, and (9)-(10) hold for C1 the continuity constant of the Sobolev embedding
[X3,3/2(Ω)]� �→ W−2,3(Ω) and C2 the continuity constant of the Sobolev embedding W1,3/2

0 (Ω) �→ L3(Ω).
The uniqueness result is a simple consequence of Sobolev embeddings and the Stokes estimates.
Theorem 3.2 (Very weak solution for Navier-Stokes, arbitrary forces) Let f ∈ (X3,3/2(Ω))�,
h ∈ L3/2(Ω) and g ∈ W−1/3,3(Γ) be given, and satisfying the compatibility condition (6). There ex-

ists a constant δ > 0 (depending only on Ω) such that the problem (NS) has a very weak solution

(u, q) ∈ L3(Ω)×W−1,3(Ω) if

�h�L3/2(Ω) +
i=I�

i=0

|�g · n, 1�Γi | ≤ δ. (12)

Sketch of the proof: We decompose (NS) into two problems. One system, denoted (NS1), for small data:

−∆vε + vε · ∇vε +∇q
1
ε = f − f ε, ∇ · vε = h− hε in Ω, and vε = g − gε on Γ.

with ε > 0 and the (NS2) system:

−∆z ε + z ε · ∇z ε + z ε · ∇vε + vε · ∇z ε +∇q
2
ε = f ε, ∇ · z ε = hε in Ω, z ε = gε on Γ.

where f ε ∈ H−1(Ω), hε ∈ L2(Ω) and gε ∈ H1/2(Γ) satisfy

�f − f ε�[X3,3/2(Ω)]�+�h− hε�L3/2(Ω)+�g − gε�W−1/3,3(Γ) ≤ ε and �hε�L3/2(Ω) +
i=I�

i=0

|�gε · n , 1�Γi | ≤ 2δ,

(here, we have used density arguments). Finally, we use an extension of Hopf’s lemma: (see [3], Remark
VIII.4.4 for instance) for any α > 0, there exists yε ∈ H1(Ω), depending on α, such that for C1 > 0
depending only on Ω, ∇ · yε = hε in Ω, yε = gε on Γ and for any w ∈ H1

0(Ω),
����
�

Ω
(w · ∇)yε · w dx

���� ≤
�

α + �hε�L3/2(Ω) + C

i=I�

i=0

|�gε · n , 1�Γi |
�
�w�2

H1(Ω) ≤ (α + 2C1δ)�w�2H1(Ω).
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To finish, we prove some regularity results on very weak solutions for the Navier-Stokes equations by
using the regularity results for the Stokes and Oseen problems.
Theorem 3.3 (Regularity for Navier-Stokes equations) Let (u, q) ∈ L3(Ω)×W−1,3(Ω) be the so-

lution given by Theorem 3.2. Then, the following regularity results hold:

i) If f ∈ (Xr�,p�(Ω))�, h ∈ Lr(Ω) and g ∈ W−1/p,p(Γ), with
1
r ≤

1
p + 1

3 and max{r, 3} ≤ p, then (u, q) ∈
Lp(Ω)×W−1,p(Ω).

ii) Consider r ≥ 3/2, f ∈ W−1,r(Ω), h ∈ Lr(Ω) and g ∈ W1−1/r,r(Γ). Then (u, q) ∈ W1,r(Ω)× Lr(Ω).
iii) For r ∈ (1,+∞), if f ∈ Lr(Ω), h ∈ W 1,r(Ω) and g ∈ W2−1/r,r(Γ), then (u, q) ∈ W2,r(Ω)×W 1,r(Ω).
iv) Suppose that 3/2 ≤ p ≤ 3, f = ∇ · F0 +∇f1 for F0 ∈ Wσ,r(Ω) and f1 ∈ W σ−1,p(Ω), h ∈ W σ,r(Ω), and

g ∈ Wσ−1/p,p(Γ), with σ = 3
p − 1,

1
r ≤

1
p + 1

3 and r ≤ p. Then (u, q) ∈ Wσ,p(Ω)×W σ−1,p(Ω).
v) Let σ be such that 1/p < σ ≤ 1 and σ ≥ 3/p − 1. Suppose that f ∈ Wσ−2,p(Ω), h ∈ W σ−1,p(Ω), and

g ∈ Wσ−1/p,p(Γ). Then (u, q) ∈ Wσ,p(Ω)×W σ−1,p(Ω).
Remark 2 i) Point i) shows in particular that for any p ≥ 3, if f ∈ W−1,r(Ω) and g ∈ W1−1/r,r(Γ),

with 3p
3+p ≤ r ≤ p, and

�
Γi

g · n = 0 for any i = 1, . . . , I and h = 0, then Problem (NS) has a solution
(u , q) ∈ Lp(Ω) × W−1,p(Ω). Serre [8] proves that for any 3/2 < r < 2 (and then for r > 3/2), if
f ∈ W−1,r(Ω), g ∈ W1−1/r,r(Γ), h = 0 and (1) is verified for any i = 0, . . . , I, then (NS) has a solution
(u , q) ∈ W1,r(Ω)× Lr(Ω). Point ii) proves that this result holds if r = 3/2 without assuming h or the
flux g through Γi to be equal to 0. Actually, it suffices to assume the smallness condition (12).

ii) From relation (6), condition (12) is automatically fulfilled when the norm �h�L3/2(Ω) is small enough
and I = 0, that means that the boundary Γ is connected, which is the case considered by Kim [5].

iii) Marusic-Paloka [7] proves Theorem 3.2 with f ∈ H−1(Ω) ⊆ (X3,3/2(Ω))�, h = 0 and g ∈ L2(Γ) ⊆
W−1/3,3(Γ) with �g�L2(Γ) small, in a domain Ω simply-connected. In fact, the solution u ∈ L3(Ω)
obtained in [7] is more regular and belongs to H1/2(Ω) by point iv) with p = 2.

iv) Galdi et al. [4] prove Theorem 3.2 and Theorem 3.3 point i) with f = div F0, F0 ∈ Lr(Ω), h ∈ Lp(Ω)
and g ∈ W−1/p,p(Γ) with 1

r ≤
1
p + 1

3 and max{2r, 3} ≤ p, in a domain Ω of class C2,1, assuming that f ,
h and g are small enough in their respective norms. The smallness condition on f is in fact unnecessary.
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[2] C. Amrouche and M. A. Rodŕıguez-Bellido, Stokes, Oseen and Navier-Stokes equations with singular data,

Submitted.

[3] G. P. Galdi, An Introduction to the Matematical Theory of the Navier-Stokes Equations, Vol 2: Nonlinear Steady

Problems. Springer Tracts in Natural Philosophy, vol. 39. Springer, New York (1994).

[4] G. P. Galdi, C. G. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with

boundary data in W−1/q,q, Math. Ann. , 331 (2005), pp. 41–74.

[5] H. Kim, Existence and regularity of very weak solutions of the stationary Navier-Stokes equations, Arch. Rational

Mech. Anal., 193 (2009), 117-152.
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