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Abstract. We present research in progress on the algorithmic
computation of the fundamental group of a CW complex. We
use the algorithm to compute certain algebraic invariants of the
fundamental group of the complement of a knot. We show that
the invariants classify the prime knots up to 13 crossings. The long
term goal is an automated classification of knots in 3D images, in
particular images of proteins.

1. Fundamental group of a CW complex

Let K be an oriented CW complex, i.e. a CW complex with a fixed
orientation for every its cell. Then, for a 2-cell σ there is a closed path
τ1, τ2, . . . , τn of oriented 1-cells and a map θ : S1 → K1 in the homotopy
class of ϕσ|S1 such that S1 =

⋃n
j=1 Ij and θ|Ij is the characteristic map of

the edge τj. The path τ1, τ2, . . . , τn is called the homotopical boundary
of σ and denoted d(σ).

We propose an algorithm computing a presentation of the funda-
mental group of a CW complex based on the following theorem of
Whitehead [6]

Theorem 1.1. Assume K is a connected CW complex with precisely
one vertex. Then, the fundamental group of K depends only on the
2-skeleton of K. Moreover, up to an isomorphism it is the group gen-
erated by the edges of K with arbitrarily selected orientation of K and
homotopical boundaries of all 2 cells as relators.

In order to reduce the computations for an arbitrary CW complex
K to the setting of the Whitehead Theorem, we apply the Discrete
Morse Theory proposed by R. Forman [3]. More precisely, we use the
algorithm presented in [4, 5] to construct a discrete vector field on K.
Then, the fundamental theorem of Forman reduces the computations
of a presentation of the fundamental group of K to the setting of the
Whitehead theorem. In order to further speed up the computations we
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precede them by two special cases of the Forman theorem: reductions
by shaving and the construction of a collapsible subset. The interme-
diate results are stored in a special data structure for CW complexes,
called C-structure. The details will be presented in [1, 2]).

This leads to the following fundamental group presentation algo-
rithm:

fundGroup(collection of top dimensional cells of a CW complex K)
K := shaving(K);
A := collapsibleSubset(K);
C := C-structure of K/A;
V := discreteVectorField(C);
for each α ∈ V do

assign to C the α-collapse of C;
endfor;
return (C1, d(C2));

Theorem 1.2. The algorithm always stops and returns a presentation,
up to an isomorphism, of the fundamental group of K.

An implementation of this algorithm will be available via the Red-
Homs software library [9].

2. Knot invariants

Let G be a finitely generated group. Recall that for g, h ∈ G the
group element [g, h] := ghg−1h−1 is called the commutator of g, h. For
any normal subgroup H ⊂ G let

[H,G] := 〈[h, g] | h ∈ H, g ∈ G〉
and define the lower central series of G recursively by given by γ1G :=
G, γn+1G = [γnG,G].

Set

I [n,c,m](G) := {Hm(S/γc+1S,Z) | S ⊂ G, |G : S| ≤ n }
We prove the following theorem

Theorem 2.1. For a prime knot K : S1 → R3 set G(K) := π1(R3 \
K(S1)) and define the knot invariant In(K) := I [n,1,1](G(K)). Then,
In(K) distinguishes between all prime knots (modulo mirror image)
with N or fewer crossings with n given by the following table:

N 3 4 5 6 7 8 9 10 11 12 13 14

iN 2 2 3 3 3 3 5 5 6 6 7 7-?
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The proof is computer assisted, based on our fundamental group al-
gorithm and computations of group invariants provided by the GAP
[8] and HAP [7] packages. The complexity of computations depends
obviously on N and on the number of prime knots with up to N cross-
ings. For N up to 11 the cost is small and the computations may be
completed withim minutes using only one CPU core. For N ≥ 12 the
number of knots is huge and also the time needed to compute the rel-
evant algebraic invariants grows rapidly. Therefore, we used a cluster
of 352 CPU cores for N ≥ 12. In the case of N = 12 and N = 13 we
obtained the result using only a few hours of cluster time. For N = 14
we are done for all but one knot. In this case the computations for
many knots take days of cluster time. Nevertheless, we have reasons
to expect that we will manage to complete the computations for the
remaining case.

Whatever is the outcome of these computations, we expect that the
classification we have obtained so far will turn out very useful in the
automated recognition of knots in 3D images of proteins.

References

[1] P. Brendel, P. D lotko, G. Ellis, M. Juda, M. Mrozek, Computing fundamental
groups from point clouds, Applicable Algebra in Engineering, Communication
and Computing, accepted.

[2] P. Brendel, P. D lotko, G. Ellis, M. Juda, M. Mrozek, Fundamental Group
Algorithm for low dimensional tesselated CW complexes, in preparation.

[3] R. Forman, Morse theory for cell complexes, Adv. Math. 134(1998), 90–145.
[4] S. Harker, K. Mischaikow, M. Mrozek, V. Nanda, H. Wagner, M. Juda, P.

D lotko, The Efficiency of a Homology Algorithm based on Discrete Morse
Theory and Coreductions, in: Proceedings of the 3rd International Workshop
on Computational Topology in Image Context, Chipiona, Spain, November
2010 (R. G. Diaz and R. Jurado (Eds.)), Image A Vol. 1(2010), 41–47 (ISSN:
1885-4508)

[5] S. Harker, K. Mischaikow, M. Mrozek, V. Nanda, Discrete Morse Theoretic
Algorithms for Computing Homology of Complexes and Maps, Foundations
of Computational Mathematics, 14(2014) 151-184, DOI:10.1007/s10208-013-
9145-0.

[6] J. H. C. Whitehead. Combinatorial homotopy. I,II. Bull. Amer. Math. Soc.,
55(1949):213–245,453–496.

[7] Graham Ellis. HAP – Homological Algebra Programming, Version 1.10.13,
2013. (http://www.gap-system.org/Packages/hap.html).

[8] The GAP Group. GAP – Groups, Algorithms, and Programming, Version
4.6.5, 2013. (http://www.gap-system.org).

[9] The CAPD Group. The CAPD::RedHom homology algorithms library,
(http://redhom.ii.uj.edu.pl).



4 P. BRENDEL, P. D LOTKO, G. ELLIS, M. JUDA, AND M. MROZEK

Piotr Brendel, Division of Computational Mathematics, Jagiellonian
University

Pawe l D lotko, Department of Mathematics, University of Pennsyl-
vania

Graham Ellis, Department of Mathematics, National University of
Ireland, Galway

Mateusz Juda, Division of Computational Mathematics, Jagiellonian
University

Marian Mrozek, Division of Computational Mathematics, Jagiel-
lonian University


