
The algorithm for going through a labyrinth by an

autonomous

Prof.PhD.Eng.Eugen Raduca, Eng.Păun Adrian,

Prof.Assist.PhD.Eng.Mihaela Raduca, PhD. Eng.Silviu

Drăghici, PhD Eng. Cornelia Anghel Drugarin, PhD.

Cristian Rudolf

Electrical Engineering and Informatics Department

Eftimie Murgu University of Resita

Resita, Romania

e.raduca@uem.ro, padrian88@gmail.com

m.raduca@uem.ro, silviudraghici75@yahoo.com,

c.anghel@uem.ro, c.rudolf@uem.ro,

Abstract— The paper presents an algorithm for going

through a path type labyrinth by an autonomous vehicle. The

detection of the path and the maintaining of the motion direction

have been addressed as well as going through the labyrinth on

road segments and the categories of crossings in the said

labyrinth. The algorithm has been implemented in C++ and

validated in an experimental model that has totally confirmed its

correctness.

Keywords—algorithm, vehicle, autonomous, labyrinth, C++

I. INTRODUCTION

The auto field is one of the most productive important and

dynamic sectors of the present. The branch of this field that

deals with implementing IT technologies has known

spectacular progresses and achievements in the last period,

one of the main research directions being targeted towards the

realizing of autonomous vehicles that present elements of

artificial intelligence. The importance of this sector from the

field is best indicated by statements of auto producers, who

express the fact that the IT sector from the auto domain has

not been practically affected by the recent global crisis. The

work tackles just the theme of interest from the IT sphere

associated with autonomous vehicles.

II. PRESENTATION METHOD

In this present paper there is analyzed and solved the

going through of an autonomous vehicle through a labyrinth

type runway made up of right edged segments. The labyrinth

has a single way out, and the algorithm of command for the

vehicle is thus conceived that the vehicle, at any point in the

interior of the labyrinth, may follow a path to find the way out.

The algorithm, written in C++ [1] has been implemented on an

experimental model. It is useful to state that the algorithm may

be used as basis, without major modifications to the source

code, for going through a vehicle on a road that also present

curved runways.

The labyrinth on which basis the algorithm is presented is

indicated in fig.1. In the center of the labyrinth one can notice

the model of vehicle on which the experiments have been

realized. For defining the whole runway in the labyrinth on

which the vehicle may evolve, the said one, totally, is marked

by a strip with a high absorption index. Concretely, for the

presented case, one uses a black strip, on the basis of the

labyrinth associated to the possible runways of the vehicle,

that are, by contrast, white.

The principle after which the vehicle follows a runway

path is highlighted in fig.2 [2].

It can be seen that an electronic device emit radiation for

the photometer convenient frequency band which is strongly

reflected in the route. A photo detector receives the reflected

wave band, this being the information based on which the

microcontroller UC sets the direction of the vehicle on which

the vehicle is traveling below.

The UC used for the soft implementing of the algorithm is

of Arduino type [3].

Fig.1 The labyrinth and the vehicle model with which the experiments have

been carried out

Fig.2 The work principle of the IR (infrared) sensors for detecting the path

Fig.3 The specter of solar light

 For the construction and implementation of the

algorithm required several pairs of such sensors. Since a

moving vehicle rule in natural solar emission can seriously

disrupt the implementation of the algorithm. Therefore based

on the energy distribution of the solar spectrum [4] (Figure 3)

was used strap emission sensors - infrared reception [5]. In the

algorithm, positional sensors are classified into two categories:

central (2 pieces) and terminal (4 pieces, 2 of right terminal

and two terminals left).

III. THE ALGORITHM FOR COVERING THE PATH

A. Going through the labyrinth

The vehicle has the task of completing the maze achieved

between two endpoints known as "go" and "exit"; other

endpoints of the maze are considered "turning points" and are

those points where appropriate tape path ends abruptly without

pay further options route endpoints that are landlocked. In

other words "end points" except the two mentioned, there are

points where the only option to continue the route for the

vehicle when it came to such a point is a turning maneuver the

vehicle and continue maze on another branch.

The starting point can be considered any terminal point of

the maze during which output endpoint was distinctly marked

by a black rectangle (Fig. 1). Marking separate exit point has

been done to facilitate the detection of its unique avoid

confusion with other markers of the route, such as

intersections or absence of markings such as turning points.

Between the starting point and the vehicle moves out of the

maze segments of fixed lengths that can be crossed, for this

case, only the angles of 90 °.

All segments, intersections, turning points and the

presence of two terminal points of departure and exit from the

labyrinth itself, the autonomous vehicle will need to go

through. The components of the maze and the way in which

they are positioned are summarized in fig.4.

.

Fig.4 The structure of the labyrinth

Actual movement of the vehicle on the road is made by

independent operation of two electric motors, each coupled to

a wheel. Role writing program based on the algorithm is to

determine at any time the control logic of each motor vehicle

so as to move between points "out" and "exit".

B. The detection of the path and maintain the motion

direction

The detection path and to maintain the direction of

movement is an iterative process involving a number of

separate functions and ensures the continuous detection of the

tape path by means of optical sensors in order to be able to

determine the position of the vehicle relative to the track. Its

deviation is processed and matched by generating two PWM

signals [6].

The two signals will order 2 differential drivers of the

vehicle by setting the duty cycle ensuring appropriate

differential speed between the 2 engines, compensating the

error gradually until it was eliminated.

In order to detect lane was implemented sensors _ reading

function () that is to make a sequential numerical analog

conversion values received from the six sensors and determine

the maximum and minimum values obtained :

Void reading _ sensors ()

{

 Minim = 0;

 Maxim = 0;

 Analog Read (A3); delay (1); s1 = analog Read (A0);

maxim=s1; minim=s1; detected = 1;

 Analog Read (A3); delay (1); s2 = analog Read (A1);

 If (s2>=maxim) {maxim = s2; detected = 2 ;}

 If (s2<=minim) {minim = s2 ;}

 Analog Read (A3); delay (1); s3 = analog Read (A2);

 If (s3>=maxim) {maxim = s3; detected = 3 ;}

 If (s3<=minim) {minim = s3 ;}

 Analog Read (A3); delay (1); s4 = analog Read (A6);

 If (s4>=maxim) {maxim = s4; detected = 4 ;}

 If (s4<=minim) {minim = s4 ;}

 Analog Read (A3); delay (1); s5 = analog Read (A4);

 If (s5>=maxim) {maxim = s5; detected = 5 ;}

 If (s5<=minim) {minim = s5 ;}

 Analog Read (A3); delay (1); s6 = analog Read (A5);

 If (s6>=maxim) {maxim = s6; detected = 6 ;}

 If (s6<=minim) {minim = s6 ;}

}

The function converts the numeric analog is called Read

(pin), this function returns an integer numeric value in the

range (0-1023) by the voltage applied to pin point the

argument. The result of the conversion is assigned to the

variables s1, s2, s3, s4, s5, s6 which is the number from left to

right in the bar sensor sensing. The analog function Read () is

part of the library "Wire.h" which is automatically included by

the compiler Arduino IDE.

The variables used according to maximum and minimum

are designed to continuously compare the current value with

the previous sensor. In this way out of office, after all sensors

have been traveled and compare, maximum and minimum

values remain set, being declared global and can be used in the

current cycle.

A variable has a maximum of great importance because;

with the variable which is detected may be determined

position of the vehicle from the lane which is black in the

tread.

The vehicle is considered the center of the band center

when the two sensors S3 and S4 are detected at the same time,

to a certain extent, the tape. Position straps and even number

of sensors confirms that the absolute center of the vehicle is

just halfway between S3 and S4. Since sensors _ reading

function () establishes a maximum even between these two

central sensors, detect variable value will become one of them,

the one with the highest value, i.e., one that sees the best band.

Experiments have confirmed that when the middle of the

vehicle lies between the two sensors, a correction can be made

smoother, which is favorable for the movement of the

segments crossing in the right angles of 90°.

Next there was implemented a general function driving

called SRA () that is designed to keep the vehicle on the road

constantly compensating for deviations by generating two

fixed frequency PWM signal duty cycle parameter variable in

steps according to deviation detected from the position of the

vehicle considered ideal (the middle of the vehicle to find the

center of the black belt).

 The motor control signal PWM1 PWM2 signal of the

right and left of the vehicle engine can be obtained various

rotational speeds of the two motors, which makes the wheels

of the vehicle rotate differently. By consequence if the right

wheel rotates faster than the left, the vehicle will swerve left

and if left wheel rotates faster than the right vehicle to swerve

to the right, that vehicle will be able to print the desired

direction . Of course if the vehicle has to travel before PWM1

and PWM2 signals will be identical so that the two wheels

will have the same peripheral speed.

In the SRA function () parameter setting duty1, duty2

representing engine duty cycle values right or left, is 8 bits (in

the range 0-255). Function that implements PWM signal

generation is analog Write (pin, duty _ cycle). Calling them is

after being called sensors _ reading function () variable

detected after passing through a switch control structure type

(int.), which aims to set duty1 and duty2 by misconduct by

selecting a single case of possible. For each case the variables

duty2 duty1 and get a set of predefined values that ensure

swift compensation misconduct. Structure selection switch

(detected) is shown below:

Switch (detected)

 {

 Case 4:

 duty2 = 255;

 If ((s4-s3)>= 300) {duty1 = 160 ;} else {duty1 = 255 ;}

 Break;

 Case 3:

 If ((s3-s4)>= 300) {duty2 = 160 ;} else {duty2 = 255 ;}

 duty1 = 255;

 Break;

 Case 1:

 duty1 = 255;

 duty2 = c2;

 Break;

 Case 2:

 duty1 = 255;

 duty2 = c1;

 Break;

 Case 5:

 duty1 = c1;

 duty2 = 255;

 Break;

 Case 6:

 duty1 = c2;

 duty2 = 255;

 Break;

 }

Analog Write (pwm1, duty1);

Analog Write (pwm2, duty2);

The command principle of the vehicle after deviation,

based on the information provided by the optic sensors, is

suggested graphic in fig.5.

C. The detection and mapping the intersection

The crossings or intersections represent the elements that

transform the path in a Labyrinth, the intersections together

with the turning points require a specific handling.

The four categories of intersections that the vehicle may

encounter and that are found in the studied labyrinth are

presented in fig.6.

Fig.5 The command principle of the vehicle after deviation

Fig. 6 Types of intersections

 The detection of the crossings takes place in the main

regulation function SRA () being positioned at their end,

according to the instructions of compensating a deviation.

The vehicle detects an intersection, when at least two

terminal sensors recorded simultaneously values indicating the

presence of black tape under them. The logic of this approach

concludes that in this case the vehicle has encountered a route

segment transverse to the direction of travel and is therefore

an intersection.

If only 2 sensors detected junction terminal available for

junctions that allow one option away intersections they are

either left or right. If the intersection with left turn is

conditional, the terminal of the 2 sensors will be on the left, s1

and s2 respectively. If the intersection is turning right, the

conditioning is done on the right side terminal sensors, s5 and

s6. The conditions mentioned were implemented by two lines

of code that sets the IF type two Boolean flags: left and right

detection as true if the left or right. This approach has the

advantage of setting flags that allow control decisions by

setting them true or false. Flags can be compared and put

themselves IF instruction for command decisions and thus

help in the implementation of a general algorithm scroll

available.

If ((s1>=400) && (s2>=400)) {left = true ;}

If ((s6>=450) && (s5>=400) && (s1<=200)) {right = true ;}

The T- intersections or cross intersecting segments 3 and

4 track segments and enables the vehicle to traverse them in 2

or 3 directions complicating the maze solving and finding the

exit. These intersections require different treatment given the

number of options that the vehicle can take. It was necessary

to implement an algorithm of scroll in order to ensure that it

takes up so that the vehicle does not pass 2 times through the

same intersection, and in the same direction and be able to

find out from labyrinth into a finite number of passes through

each intersection.

Analyzing the conditions for the validity of a scroll

efficient algorithm can deduce that it must allow a maximum

of 4 passes through an intersection type cross and three passes

through an intersection type T. This condition ensures that the

vehicle is will return to already visited points and will

continue to look for other ways to find exits.

 The algorithm based on the "left hand rule" provides

such a solution by setting strict scroll. This algorithm requires

compliance with four simple rules, valid for any type of

intersection encountered:

-If the vehicle can make only Left, it will turn left

-If the vehicle can do and left and right, it will turn left

-If the vehicle can do right or to go forward, it will go

forward

-If the vehicle can do strict right, it will turn right

Implementation of these rules was made by making flags

and settings, will be considered as finally set flags: right, left,

back and depending on them to be on call to scroll individual

intersections. At the above program is found as follows:

If (left && right) {left (); left=false; right=false ;}

If (left) {left (); left=false; left=false ;}

If (left) {right (); left=false; left=false ;}

If (back) {halt (); left=false; left=false ;}

According to the algorithm described, the vehicle will go

through the crossing encountered by choosing one of the three

directions of movement: forward, left of right. In the moment

in which one crossing has been detected, that one is counted

by incrementing the nodes variable. According to the set flags

by the runway algorithm, a decision is taken on the direction

on which the progress will continue. The implementing of the

decision taken, at the program level, is reflected in a function

call that temporarily takes over the control of the vehicle

throughout the covering of the crossing, in other words, until

the vehicle is centered again on the desired path.

The 2 generic functions named: left () and right () contain

code lines that ensure the turning of the vehicle in the desired

direction, upon exiting these functions, the vehicle must find

itself centered again on the segment of runway towards which

the turn has been made, the normal cycle of the program being

able to continue through calling the SRA () in the loop () hole,

the process being repeated upon detecting another intersection.

IV. CONCLUSIONS AND CONTRIBUTIONS

 The proposed algorithm is general and can be applied

to any configuration labyrinth. To be known and possibly easy

to use and optimized algorithm was implemented in a program

widely used C + +. The algorithm can be applied to curved

paths containing junctions with any number of branches. The

implementation of the algorithm is simple, it provides only

two commands output PWM correlated. The PWM commands

are recognized and accepted as input by a large number of

programmable logic being used in applications. The validity of

the algorithm was tested in an experimental model. The

principle of identification of the route by the experimental

model avoids recognition of complex images, but uses optical

information which is associated binary.

V. REFERENCES

[1] Jamsa, L. Klander - "Totul despre C si C++". Manualul fundamental de
programare in C si C++. Ed.Teora 1999

[2] http://www.w9xt.com/page_microdesign_pt11_opto_inputs.html

[3] http://arduino.cc/en/Tutorial/HomePage

[4] http://en.wikipedia.org/wiki/Electromagnetic_spectrum

[5] http://www.pololu.com/docs/pdf/0J12/QTR-8x.pdf

[6] http://arduino.cc/en/Tutorial/SecretsOfArduinoPWM

http://arduino.cc/en/Tutorial/HomePage
http://en.wikipedia.org/wiki/Electromagnetic_spectrum
http://www.pololu.com/docs/pdf/0J12/QTR-8x.pdf

