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Abstract We demonstrate real time tracking of systematic failures in sensor networks, us-
ing distributed computation of the α−shape derived from the network. More generally, our
work may be applied to tracking the boundary of any time varying object, whose data is
captured in the form of a point cloud. We also demonstrate the use of a new geometric
object called the Delaunay-Čech shape, which is geometrically more appropriate than an
α−shape for some cases.
For a given point set S in a plane, we develop a distributed algorithm to compute the
α−shape of S. α−shapes are well known geometric objects which generalize the idea of a
convex hull, and provide a good definition for the shape of S. We assume that the distances
between pairs of points which are closer than a certain distance r > 0 are provided, and
we show constructively that this information is sufficient to compute the alpha shapes for a
range of parameters, where the range depends on r.

1 Introduction

Many applications call for detecting and tracking the boundary of a dynamically changing space
of interest [4][2]. We would expect any algorithm performing the task to include the following
important properties: 1) the boundary output is geometrically close to the actual boundary, and
2) the interior of the boundary is topologically faithful to the original space. It is often the case
that we are only given random samples from the space. We may then reconstruct the space by
first placing balls of a certain radius around these points, and then by taking the union of these
balls.

We start with the assumption that the union of the balls described above is a good approxima-
tion to the space of interest. Note that in some cases, this is by design. For example, in the case of
systematic failures in sensor networks [2], the failure in the nodes is caused by a spatially propagat-
ing phenomenon, and our aim is to track its boundary. In this case, we construct a space by taking
the union of balls of radius rc/2 around each node, where rc is its radius of communication. The
radius of communication is the distance within which two nodes can communicate with each other.

The problem may also be viewed as one of computing the boundary of a set of points, provided
with some geometric information. Given the pair-wise distances of nodes within a neighborhood,
the above decision may be locally made by constructing an associated α−shape. the α−shape
introduced in [5] gives a generalization of the convex hull of S, and an intuitive definition for the
shape of points.

When there is a sufficient density of nodes, computing local coordinates is accurate (prob-
abilistically), and distributed algorithms exist for computing modified versions of Delaunay tri-
angulation [1, 8]. In this case, we define a certain Delaunay-Čech triangulation, which contains
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an alpha complex, and which we show to be homotopy equivalent. For boundary tracking-based
applications, the boundary of Delaunay-Čech triangulation will serve as a better geometric ap-
proximation to the boundary, while preserving the topological features.
Our contributions are:

• Given the distances between pairs of nodes whenever they are closer than rc > 0, we develop
an algorithm to compute the α−shape for a range of parameters, where this range depends
on rc.

• We introduce the Delaunay-Čech triangulation, defined in Section 2.2, and show that it is
homotopy equivalent to the alpha complex.

2 Preliminaries

2.1 Alpha complex and α−shape

Consider a set of nodes V ⊂ R2, and a parameter r. Let Vi be the voronoi cell associated
with node vi ∈ V in the voronoi decomposition of V . Define an alpha cell (α−cell) of vi as
α(vi, r) = Vi ∩ B(vi, r) where B(vi, r/2) is the closed ball of radius r/2 around vi. The alpha
complex, Ar (we are assuming V is implied in this notation), is defined as the nerve complex of
the alpha cells, i.e., (v0, v1, . . . , vk) spans a k−simplex in Ar if

�
i α(vi) �= ∅. Since the alpha cells

are convex, the nerve theorem [9, 7] implies that the alpha complex has the same homotopy type
as the union of the alpha cells, which in turn is equal to the union of the balls B(vi, r/2).

Given a set of nodes V ⊂ R2 †, and a parameter r > 0, the alpha shape, ∂Ar, is a 1-dimensional
complex which generalizes the convex hull of V . To simplify the notation, we use (vi, vj) to denote
an edge in a graph, a 1-simplex in a complex or the underlying line segment. A 1-simplex (vi, vj)
belongs to ∂Ar if and only if a circle of radius r/2 passing through vi and vj does not contain any
other node inside it. By “inside” a circle, we mean the interior of the ball to which this circle is a
boundary. We say that such a circle satisfies the “α−condition”. ∂Ar also contains all the nodes
{vj} such that a circle of radius r passing through vj satisfies the α−condition.

For a 2-dimensional simplicial complex K, we define the boundary of K to be the union of all
the 1-simplices (along with their faces), where each is a face of at most one 2−simplex, and all
0−simplices which are not faces of any simplex in K. The alpha shape ∂Ar is the boundary of
the alpha complex Ar[6].

2.2 Delaunay-Čech Shape

For a set of nodes V ⊂ R2 and a parameter r > 0, define the geometric graph Gr = (V,E) to be
the set of vertices (V ) and edges (E), where e = (vi, vj) is in E if the distance between vi and
vj is less than or equal to r. Let Č(V, r) denote the Čech complex with parameter r (the nerve
complex of the set of balls {B(vi, r/2)}) and let DT (V ) be the Delaunay triangulation of V . We
define the Delaunay-Čech complex DČr with parameter r as DČr = DT (V ) ∩ Č(V, r). We prove
in our manuscript [3], DČr is homotopy equivalent to Ar. We call the boundary of DČr, denoted
by ∂DČr the Delaunay-Čech shape.

3 Demonstrations

The distributed algorithm for computing the α-shape as described in our manuscript [3] is given
in Table 1, and the angles referred to are shown in figures to the right of the table. An example
of an α−shape for a set of points is shown in Figure 1. The figure illustrates that α−shape is

†The alpha shape is generally defined for points in Rk for any dimension k.
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a topologically faithful approximation to the boundary of the union of balls around each point
(shown as shaded region). We will demonstrate the real-time tracking of a time-varying
failure in a sensor network, by computing the α−shape at each time point using the
algorithm in Table 1.

We prove in our manuscript [3], that the Delaunay-Čech complex DČr defined in Section 2.2
is topologically equivalent to the α−complex Ar, and therefore, its boundary is also topologically
faithful to the space of interest. Further as illustrated in Figure 2, the boundary of DČr is
geometrically a better approximation to the space of interest, compared to the α−shape. We
demonstrate the advantage of the using the boundary of DČr over the α−shape in
tracking time-varying failures.
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computing the α−shape

At each edge e = (vi, vj) in G,
compute θ
for each vk ∈ Ni ∩Nj

compute φk

if φk > π − θ
e �∈ ∂A, terminate

if φk ≤ θ,
continue to next node

if θ < φ ≤ π − θ
is vk the first node satisfying this condition?
assign vk to C

else
compute β
if β = |∠vkvivj − ∠vlvivj |
continue to next node

else
e �∈ ∂A, terminate

e ∈ ∂A

vjvi

vk

θ

π − θ

φk

C�

C

vi vj

vk vl

vl

β

β

Table 1: Algorithm for computing the α−shape. Note that all the computations require only local
information. The angles denoted as illustrated in the figures on the right

Figure 1: α−shape with parameter rc/2 for a set of points in R2 computed using algorithm in
Table 1. The shaded region is the union of balls of radius rc/2 centered at each point.

(a) Arc/2(V ) (b) DČrc/2(V ) (c) Arc/2(V ) super-imposed over

DČrc/2(V )

Figure 2: Figure shows the homotopy equivalence between Arc/2(V ) and DČrc/2(V ). The shaded

region is Rc. Note that DČrc/2(V ) is a better geometric approximation to Rc than Arc/2(V ).
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