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Abstract In many geometry processing applications, differential geometric quantities esti-
mation such as curvature or normal vector field is an essential step. In [1], we have defined
curvature estimators on digital shape boundaries based on Integral Invariants. In this paper,
we focus on implementation details of these estimators.
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1 Introduction

In many shape processing applications, the estimation of differential quantities on the shape bound-
ary such as normal vectors, curvatures or principal directions are crucial. When evaluating a
differential estimator on discrete or digital data, because of digitization approximation, we need
a way to mathematically link the estimated quantity to the expect Euclidean one. In Digital
Geometry, we usually consider multigrid convergence principles: when the shape is digitized on a
grid with resolution tending to zero, the estimated quantity should converge to the expected one
[2].

In [1], we have proposed digital versions of integral invariant estimators for which convergence
results can be obtained when the kernel size tends to zero. In this paper, we first remind the
general principle of [1]. Then we focus on implementation details of these estimators in DGtal
library, and finally we show some results.

1.1 Principle

In geometry processing, interesting mathematical tools have been developed to design differential
estimators on smooth surfaces based on integral invariants. The principle is simple: we move a
convolution kernel along the shape surface and we compute integrals on the intersection between
the shape and the convolution kernel, as follow in dimension 3:

Vr(x)
def
=

�

Br(x)
χ(p)dp (1)

where Br(x) is the Euclidean ball of radius r, centered at x and χ(p) the characteristic function
of X . In dimension 2, we simply denote Ar(x) such quantity (represented in orange color on Fig.
1).
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Figure 1: Integral invariant computation in dimension 2 (left) and 3 (middle), and notations in
dimension 2 (right)

Authors of [4][5] have demonstrated that some integral quantities provide interesting curvature
information when the kernel size tends to zero. Indeed, thanks to Taylor expansion at x of the
surface ∂X approximated by a parametric function y = f(x) in 2d and z = f(x, y) in 3d and
with a fixed radius r, we obtain convergent local curvature estimators κ̃r(X,x) and H̃r(X,x) of
quantities κ(X,x) and H(X,x) respectively:

κ̃r(X,x)
def
=

3π

2r
− 3Ar(x)

r3
, H̃r(X,x)

def
=

8

3r
− 4Vr(x)

πr4
(2)

κ̃r(X,x) = κ(X,x) +O(r), H̃r(X,x) = H(X,x) +O(r) (3)

where κr(X,x) is the 2d curvature of ∂X at x and Hr(X,x) is the 3d mean curvature of ∂X at x.
In [1], we were interested in studying the behavior of integral invariants in digital geometry

using a multigrid framework with digitization on grids with grid step h tending to zero. We define
a digital version of Eq. (2) and (3) estimators.

∀0 < h < r, κ̂r(Z, x, h)
def
=

3π

2r
−

3�Area(Br/h(
1
h · x) ∩ Z, h)

r3
. (4)

where κ̂r is an integral digital curvature estimator of a digital shape Z ⊂ Z2 at point x ∈ R2 and
step h. Br/h(

1
h · x)∩Z, h) means the intersection between Z and a Ball B of radius r digitized by

h centered in x.
In the same way, we have in 3d:

∀0 < h < r, Ĥr(Z
�, x, h)

def
=

8

3r
−

4�Vol(Br/h(
1
h · x) ∩ Z �, h)

πr4
. (5)

where Ĥr is an integral digital mean curvature estimator of a digital shape Z � ⊂ Z3 at point
x ∈ R3 and step h.

We have demonstrated that Eq. (4) and (5) are multigrid convergent. With hypothesis about
the shape geometry and the radius of the convolution kernel, we guarantee a theoretical conver-
gence speed in O(h

1
3 ), confirmed with experimental results. We have also discussed about an

integral digital Gaussian curvature and principal curvature directions estimators obtained by dig-
ital approximation of the covariance matrices on Eq. (1) integral. Convergence results rely on
the fact that digital moments converge in the same manner as volumes [3]. Note that as other
convolution estimators, results of our algorithm depend on the size of the convolution kernel.

2 Implementation in DGtal

We have implemented integral invariant curvature estimators in DGtal library. DGtal is an open-
source C++ library that provides geometry structures, algorithms and tools for digital data
(http://libdgtal.org). Project DGtal gathers in a unified setting many data structures and
algorithms of digital geometry and related fields (digital topology, image processing, discrete ge-
ometry, arithmetic). For example, DGtal provides us parametric or implicit multigrid shape con-
struction in dimension 2 and 3, as well as object loaders. Furthermore, we benefit from available
implementations of existing 2d curvature estimators. It allows us to make comparisons easy.
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In our framework, objects are embedded into a Khalimsky space topological model. This
topological structure gives us cells from 0 to n dimension (in 3d, cells are called pointels, linels,
pixels and voxels for respectively cells of dimension 0, 1, 2 and 3). We call surfels cells of n − 1
dimension and spel cells of n dimension. Khalimsky cells are defined into a Khalimsky Domain
(cubical grid). For more information about the topology in DGtal, please refer to documentation
(http://libdgtal.org/doc/stable/packageTopology.html)

2.1 User interface

The user part is rather simple by using only IntegralInvariantMeanCurvatureEstimator or
IntegralInvariantGaussianCurvatureEstimator. These classes are parametrized by a Khal-
imsky space of a digital shape and a functor who return a value for a given Khalimsky cell. Indeed,
the χ(p) characteristic function is defined as a functor (here with values in {0, 1} for each spel of
the Khalimsky space).

At initialization (init()), we specify the current grid step h, and an Euclidean radius re in
order to construct the convolution kernel. As described in Sect. 3, this parameter re determines
the level of feature detected by the estimator.

For the evaluation (eval()), the user has two possibilities: evaluate the curvature at a specific
surfel of the digitized shape surface, or at a range of surfels. This choice can be important
because optimizations are available with the second option (see in Sect. 2.2). For the first one,
the estimator return a curvature value at the given surfel. If you choose the second possibility,
the estimator will try to optimize computations by using previous results thanks to displacement
kernel masks. But it requires to set a range of 0-adjacent surfels. If the range of surfels does not
follow that rule, no optimization is performed.

2.2 Implementation details

The following paragraph gives details on IntegralInvariantMeanCurvatureEstimator and
IntegralInvariantGaussianCurvatureEstimator classes.

To sum up, we need a convolution kernel which will be integrated along a digitized shape
boundary. At initialization, we first create a convolution kernel (Ball2D in 2d, Ball3D in 3d) of
Euclidean radius re and digitized at the grid step h. DigitalSurfaceConvolver is in charge of
centering the convolution kernel on the surfel on the digitized shape border. Its objective is to
compute Br/h(

1
h · x) ∩ Z and Br/h(

1
h · x) ∩ Z � from Eq. (4) and (5).

At evaluation, it will place the convolution kernel in order to lie his center with the cell to
estimate. After, it will iterate on all spels of the kernel, and compute the integral:

V (x) =
�

spel∈Br/h(
1
h ·x)∩Z

f(x)g(s− x) (6)

where x is the current spel, f is the shape functor (set by user), g is the kernel functor (return
1 on all spels from the kernel). IntegralInvariantMeanCurvatureEstimator uses this result to

get �Area(Br/h(
1
h ·x)∩Z, h) in 2d and �Vol(Br/h(

1
h ·x)∩Z �, h) in 3d. With Eq. (4) and (5), it finally

returns curvature quantities. Using this approach, we obtain a computation cost in O((r/h)d) per
surface element.

For IntegralInvariantGaussianCurvatureEstimator, the initialization is the same but at
evaluation DigitalSurfaceConvolver computes a covariance matrix of Br/h(

1
h · x) ∩ Z �. Eigen-

vectors and eigenvalues analysis of this covariance matrix helps us to extract principal curvatures
information. We can easily obtain mean or Gaussian curvature from them.

When we move the convolution kernel to 0-adjacent cells, we see that only few cells need to
be updated from the previous convolution. As seen in the top left illustration of Fig. 2, only the
green and the red part are interesting, the grey part is the same from the previous result. This
effect can produce a lot of computations, so we only need to remove the green part, and add the
red one (by additivity of the convolution).
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�Area(Br/h(
1

h
· x+ �δ) ∩ Z, h) = �Area(Br/h(

1

h
· x) ∩ Z, h)

− �Area(B1r/h(
1

h
· x) ∩ Z, h)

+ �Area(B2r/h(
1

h
· x+ �δ) ∩ Z, h).

where �δ is a translation vector in 0-adjacency, B1r/h is the mask to remove, and B2r/h the mask

to add (both depending to �δ).
We pre-compute at initialization of estimators a set a displacement masks from the full convo-

lution kernel (see Fig. 2 at right for an example in 2d). At evaluation, we use the full kernel for
the first computation. If the next surfel is adjacent to the previous one, we use a pair of masks
(depending to the shift) to remove/add interested quantities to the last. In the worst case, all
surfels set by user to the estimator are not adjacent and it will compute the curvature always
with the full convolution kernel, which means no optimizations. The computation cost per surface
element can be reduced from O((r/h)d) (size of the complete kernel) to O((r/h)d−1), and the
extra-cost of pre-computing displacement masks is meaningless: for example, with a full 2d kernel
support size of 91893, the optimization built 8 supplementary masks of size ≈ 450.

Figure 2: Illustration of the optimization with partial masks of a 2d ball for a given h. On the

top left: Illustration of a displacement of a full kernel from x to x+ �δ, on the bottom left: full 2d

kernel support, on the right: 0-adjacent 2d partial displacement masks of full kernel support.

3 Results

For all results presented in this section, yellow color is the highest curvature value, blue is the
lowest curvature value, and red means in-between max and min values. In Fig. 3, we can see
in order mean and Gaussian curvature mapped in a blobby cube1. We can also extract principal
curvature information. As mentioned before, the user needs to choose a convolution kernel size
re, which will influence the level of details captured (see Fig. 3) and computation time.

Euclidean radius re of a convolution kernel determines the level of details of estimated curva-
ture. It is an intuitive behavior, because a smaller convolution kernel will be more influenced by
small features, but will ignore large features and dependent to the noise level. A larger convolution
kernel will result the opposite effect.

1Implicit surface is 81x4 + 81y4 + 81z4 − 45x2 − 45y2 − 45z2 − 6 = 0.
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Figure 3: Illustration of curvature estimation.From left to right: mean curvature and Gaussian
curvature (back color means zero curvature surfels), first and second principal curvature directions
mapped on a blobby cube on a blobby cube, 2d curvature mapped on a Flower2D, 3d Gaussian
curvature on Al with a convolution kernel size of 14 and with a convolution kernel size of 7.
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