
Configurable feature models

Pablo Trinidad?, Antonio Ruiz-Cortés, and Jesús Garćıa-Galán

Universidad de Sevilla
{ptrinidad,aruiz,jegalan}@us.es

http://www.isa.us.es

Abstract. Feature models represent all the products that can be built
under a variability-intensive system such as a software product line, but
they are not fully configurable. There exist no explicit effort in defin-
ing configuration models that enable making decisions on attributes and
cardinalities in feature models that use these artefacts. In this paper we
present configurable feature models as an evolution from feature models
that integrate configuration models within, improving the configurability
of variability-intensive systems.

Keywords: software product lines, configurable feature models, config-
uration, model

1 Introduction

Since the set of products that can be manufactured in a Software Product Line
(SPL) can be huge, with thousands of products [4, 7] it is necessary to have
models that make it possible both to represent the complete set of products in a
compact manner and to enable its systematic and automated management. Fea-
ture Models (FMs) [3] are one of the most widely used models for this purpose,
proposing a compact representation of all the products in an SPL in terms of
their features. A feature is a user-visible aspect or characteristic of the domain.
Features are connected by means of relationships among them, forming a tree-like
structure. Relationships constrain the way in which features can be combined.
Besides features, FMs might use cardinalities to group features in the so-called
Cardinality-Based Feature Models (CBFMs) and/or attributes to remark non-
functional characteristics of products in the so-called Extended Feature Models
(EFMs).

The process by which one or more users define the product that best fits their
needs by making successive decisions on a particular FM is called configuration
process [5]. This process is successfully accomplished when a threefold condition
fulfils: there are no more user decisions to make, there exists only one product

? This work has been partially supported by the European Commission (FEDER) and
Spanish Government under TAPAS project (TIN2012-32273) and IPT-2012-0890-3
(SaaS-FireWall) and the Andalusian Government under COPAS (P12-TIC-1867)
and THEOS (TIC-5906) projects

in the SPL satisfying each and every user decision, and there are no contradic-
tions among decisions. The decisions made by users in a configuration process
are collected by the so-called Configuration Model (CM), or simply a configu-
ration. CMs have not been specifically studied in SPLs, being widely accepted
the three-set model that represents user decisions in terms of selected, removed
and undecided features. We have found three limitations in CMs that we aim to
save in this paper.

First, despite cardinalities and attributes are used in Extended and Cardinality-
Based Feature Models (ECBFMs) to represent relevant information, current
CMs are unable to represent decisions on them, only enabling the decision mak-
ing on features. It impedes a user making decisions about attributes such as ’I
want a Smart Home System (SHS) that costs less than 2.000 e’, or about car-
dinalities such as ’I want a SHS with two Internet connections’. We affirm that
current FMs are not fully-configurable since CMs are unable to make decisions
on any element of the FM.

Second, a strong relationship between elements in the FM and in the CM
arises when attributes and cardinalities come into play. A CM must ensure that
a user decision on an attribute is made within the attribute domain, which is
specified in the FM. The same happens for cardinalities, whose valid values for
user decisions are modelled in the FM. FMs and CMs share elements and the
values those elements can take in a user decision. There are two main approaches
to deal with information sharing: keeping two separate models in constant syn-
chronisation, communicating any change in the FM to CMs, or combining FMs
and CMs in a unique model around the common elements.

Third, some authors [2, 9] have used annotations on FMs to depict decisions
on features. But there is no graphical representation that supports attributes
and cardinalities.

From these problems we consider that it is possible to extend CMs to enable
fully-configurable ECBFMs. We propose Configurable Feature Models (CFMs)
[8] as a kind of model that (i) combines FMs and CMs in a unique model,
enabling the representation of user decisions on attributes and cardinalities;
(ii) takes advantage of the information that FMs and CMs share; and (iii) rep-
resents CMs together with FMs in a backwards-compatible graphical notation.
In Section 2, we interpret FMs and CMs as a set of constraints on the same
set of elements. In Section 3 we describe the main concepts in CFMs. In Sec-
tion 4 we propose an abstract model for CFMs. Two different representations
of CFMs are presented, each of them for a different purpose. In Section 5, we
firstly present the configurable feature diagrams as a graphical representation
of CFMs. in Section 6, a UML configurable feature metamodel is proposed as
a formalisation of CFMs that enable their transformation to other metamodels.
Last, Section 7 presents the next steps to make the most of CFMs.

!!

Products)

R4)

R2)

!!P!(F)!

R3)

R1)

Products)

!P (E)
!

!!
!
!

Products)

CM=){F,){U1,U2,U3}})

U2)U3)

FM=){F,){R1,R2,R3,R4}}) SFM=){E,){R1,R2,R3,R4},){U1,U2,U3}})

P!(F)!

U1)

(a) Feature model! (b) Configuration model! (c) Configurable feature model!

Fig. 1. A visual metaphore of FMs, CMs and CFMs

2 Rationale

A FM describes a set of products in terms of features and relationships. A
product is a subset of features that satisfy all the relationships. From these
definitions, we can interpret a FM in terms of the following sets. Let F be the
set of features in a SPL, and let P(F) be the set of all the possible combination
of features. The relationships can be interpreted as constraints on P(F). These
constraints define the set of products (P) as a subset P ⊆ P(F).

CMs represent the user decisions in terms of three sets of selected, removed
and undecided features. User decisions can be interpreted as another different
way to constrain the set of all the possible combination of features P(F) with
a different kind of constraints. Therefore FMs and CMs can be regarded as two
different models that describe subsets of P(F).

This vision also fits into CBFMs and EFMs where cardinalities and attributes
are added to the set of features. In this case, a new set that represents all the
features, cardinalities and attributes in an ECBFM is necessary. This set is
denoted as the set of elements E. In this case, relationships can be interpreted
as constraints on P(E), i.e. the space of all the possible combinations of elements.
Symmetrically, user decisions in CMs could also be interpreted as constraint on
P(E) if they were fully-configurable, but current CMs keep on interpreting the
CM as a subset of P(F).

In order to enable fully-configurable FMs, we propose extending CMs to
support cardinalities and attributes besides features. The resulting models must
also satisfy three main requirements in order to provide fully-configurable FMs:
(i) user decisions can only refer to elements in E so it must avoid any reference
to invalid cardinalities or attribute values; (ii) CMs must allow multiple users
making decisions at the same time, and (iii) CMs must distinguish between user
and automatic decisions.

As a solution, we propose incorporating FMs and CMs together in a single
model that we have coined as Configurable Feature Model (CFM). The resulting
model stores together the set of elements E, and two sets of constraints, one for

relationships and another one for user decisions (see Figure 1). A CFM supports
multiuser configurations and distinguishes between user and automatic decisions.
CFMs are the first fully-configurable FMs, able to represent user decisions on
attributes and cardinalities. Table 1 compares the capability of dealing with
features, cardinalities and attributes in CFMs, basic FMs, CBFMs, EFMs and
ECBFMs. In next Section we propose an abstract model for CFMs and the
relevant concepts that arise from their use.

Table 1. A comparison of the use of elements in different kinds of feature models

Kind of constraint Basic FM CBFM EFM ECBFM CFM

Relationship F F, C F, A F, C, A F, C, A
User decisions F F F F F, C, A

F = Features, C = Cardinals, A = Attributes

3 Main concepts

A CFM contains information about the elements in a SPL, which are features,
cardinalities and attributes, hitherto stored in FMs. Depending on the decisions
a user can make on elements, each element has its own set of states. So features
have a selected or removed state; Cardinalities have as many states as cardinals in
its range; Attributes have as many states as values they can take. An assignment
of states for every element in the CFM defines the characteristics of what is called
a potential product.

To determine which of the potential products can be built within the SPL,
a set of relationships constrains the valid combinations of states, defining what
is called the set of SPL products. A CFM also collects all user decisions, which
are constraints that define a subset of potential products named configuration.
The set of SPL products that are also found in the configuration is called the
set of compatible products, and brings together the SPL products that meet all
user decisions.

CFMs distinguish among user and automatic decisions. An automatic de-
cisions is the one that is made by an Automated Analysis of Feature Models
(AAFM) operation to support the configuration process. An automatic decision
can be defined as the one that if a user makes it, the set of compatible products
remains unaltered. They are computed and stored separately from user decisions
unless a user explicitly makes such a decision.

Figure 2 proposes a geometrical interpretation of the concepts presented in
this Section.

!P (E)!

!"#$
"%&'()*+$!P (E)!

!P (E)!

,&-./(%01&-$

,&2301456$
"%&'()*+$

!P (E)!
$

"&*6-105$
"%&'()*+$

765
01&

-+8
93+
$

:(*&201)$
'6)9+9&-+$

Fig. 2. A geometrical interpretation of basic concepts in CFMs

4 Abstract model for CFMs

In this Section we give a transformational semantics to CFMs in terms of set
theory, relying on a new vision of products as an assignment of states to elements.
In FMs, each product is described as a different subset of features. In CFMs,
all the products share the same set of elements, denoted by a non-empty set
E = {E1, ..., En} where each Ei is an element in that model, either features,
cardinalities or attributes. A product is defined as an assignment of states to
every element in E such that each element has a set of available states that
depends on the kind of element. This way, features have selected or removed
states to indicate their presence or absence in a product; a cardinality has a
cardinal value as state to indicate the number of features that are in a selected
state within a set relationship; attributes have a state which corresponds to a
value that represents the quality or behaviour of their linked features.

To define which states every element can have, a CFM has a set of available
state sets AS1, ..., ASn such that ASj is the set of available states for an element
Ej . Let us consider an SPL with 6 elements E = {FR, FA, FB , FC , C1,Mem}
as an example. FR is the root feature; FA, FB and FC are child features; C1

is a cardinal affecting the 3 child features; Mem is an attribute linked to the
root feature. The available states for each elements could be: ASFR

= {sel},
ASFA

= ASFB
= ASFC

= {sel, rem}, ASC1
= {1, 2, 3}, ASMem = {128, 256}.

This way, the root feature FR must have a selected state, features FA, FB and
FC can be either in a selected or removed state, C1 cardinality, which affects
features FA, FB and FC , must be either 1, 2 or 3 and the product can have a 128
or 256 kilobytes memory size. We define the set of potential products as follows:

Definition 1 (Set of potential products). Let ASj be the set of available
states for the jth element ej ∈ E. The set of all the potential products in a CFM
is defined by the cartesian product D = AS1 × ... × ASn. A potential product
corresponds to any tuple (s1, ..., sn) ∈ D.

In the previous example, the set of potential products D is comprised of 32
different potential products. S1 = (sel, sel, sel, sel, 2, 256) and S2 = (sel, rem,
sel, rem, 1, 128) are examples of potential products. However, not all of them are
SPL products, i.e. products that effectively can be built in the SPL. To define
the set of all the SPL products, a first option that consists of enumerating all
of them is immediately discarded when the number of SPL products shoots up.
A set in general can be defined by a list of its elements or by a subset that
satisfies a condition or constraint. CFMs use constraints to define the set of
SPL products as a subset of the set D of potential products. A CFM has a
set of relationships R = {R1, ..., Ri} that establishes the conditions a potential
product must necessarily fulfill to be an SPL product. So the set of SPL products
is defined as follows:

Definition 2 (Set of SPL products). Let R = {R1, ..., Ri} be the set of
relationships in a CFM and D its set of potential products. The set of SPL
products defined by the CFM is:

P = {(s1, ..., sn) ∈ D|R1 ∧ ... ∧Ri}

It might be the case that there exist no product satisfying all the relationships
and therefore P = ∅. In this case, it is said that the CFM is void or invalid.

The kinds of constraint that we propose for CFMs are the same than those
used for FMs. Table 2 shows a list of constraints that can be used to represent
the relationships in a CFM. So for example, if R is a parent feature linked by a
set relationship with three child features A, B and C and affected by cardinality
C1, the following constraint and set of SPL products can be defined:

P = {(sR, sA, sB , sC , sC1 , sMem)|set3(sR, sC1 , sA, sB , sC)}

A CFM also stores a configuration which comprises all the decisions made
by one or more users in a given moment. Decisions are collected in any order,
supporting a parallel configuration process. These user decisions set a partition
on the set of potential products D in a SPL: those that satisfy user decisions and
those that do not. Following this criterion, we define a configuration as follows:

Definition 3 (Configuration). Let U = {U1, ..., Uj} be a set of constraints
defined on D, describing the user decisions in a CFM. A configuration CU is
defined as the set of potential products that satisfy all the user decisions:

CU = {(s1, ..., sn) ∈ D|U1 ∧ ... ∧ Uj}

Table 2. Kinds of relationship constraints in a CFM

mandatory(sp, sc) ≡ sp = sc
optional(sp, sc) ≡ sc = sel⇒ sp = sel ∧ sp = rem⇒ sc = rem

set2(sp, sc, sc1 , sc2)†
≡ sp = sel⇔ numSelChild2(sc, sc1 , sc2)∧

sp = rem⇒ sc1 = rem ∧ sc2 = rem

set3(sp, sc, sc1 , sc2 , sc3)†
≡ sp = sel⇔ numSelChild3(sc, sc1 , sc2 , sc3)∧

sp = rem⇒ sc1 = rem ∧ sc2 = rem ∧ sc3 = rem
... ...
depends(s1, s2) ≡ s1 = sel⇒ s2 = sel
excludes(s1, s2) ≡ ¬(s1 = sel ∧ s2 = sel)

†numSelChildi(sc, sc1 , ..., scn) is a predicate that is true whenever the number of selected states

in sc1 , ..., scn coincides the cardinal sc.

Users can make two kinds of decisions as shown in Table 3. A user can
either make a choose decision, that assigns a state for one element, or a discard
decision that avoids an element having a certain state. So for example, U1 =
choose(sB , sel) identifies a user selecting feature B; U2 = discard(sMem, 128)
identifies a user refusing a 128Kb bandwidth. With these two kinds of decisions,
users delimit the set of potential products by means of successive refinements.

In case that user decisions contradict each other, as two users choosing se-
lected and removed states for the same feature for example, then the set CU = ∅.
This situation is known as a contradictory configuration.

Table 3. Kinds of decision constraints in a CFM

choose(se, S) ≡ se = S
discard(se, S) ≡ se <> S

From the configuration and the set of SPL products, it can be determined
the set of compatible products, i.e. the subset of SPL products that satisfy the
criteria established by user decisions. The set of compatible products is defined
as follows:

Definition 4 (Set of compatible products). Let P be the set of SPL products
defined by the relationship constraints R1, ..., Ri, and let CU be a configuration
defined by the user decision constraints U1, ..., Uj. The set of compatible products
(CP) is defined as:

CP = P ∩ CU = {(s1, ..., sn) ∈ D|R1 ∧ ... ∧Ri ∧ U1 ∧ ... ∧ Uj}

With the above definitions, we are able to represent a CFM in a compact
manner as follows:

Definition 5 (Configurable Feature Model). A CFM can be represented by
a 4- tuple (E,D,R,U) such that E is the set of elements in the CFM, D is the
set of potential products, R is the set of relationships and U is the set of user
decisions.

From the information contained in this tuple, the set of potential, SPL and
compatible products can be deduced. Next we introduce three concepts that can
be defined on top of CFMs: CFM states, element states and automatic decisions.

4.1 CFM states

From the set of compatible products (CP), it is possible to identify singular
situations or CFM states:

– Initial state: a CFM is in its initial state when there exist no user decisions,
i.e. U = ∅. In this case, the configuration coincides with the space of potential
states (CU = D) and therefore the set of compatible products coincides the
set of products, i.e. CP = P .

– Final state: a CFM is in a final state when it only determines one compatible
product, i.e. |CP | = 1. When a final state is reached, it can be affirmed that
a product satisfying all the user decisions has been found. The final adjective
comes from the inability of the CP set to evolve in a manner that the set of
compatible products is reduced even more.

– Intermediate state: A state is intermediate if U 6= ∅ and |CP | > 1. This is
the most common state in a CFM and it corresponds to a situation in which
users may still made decisions.

– Invalid state: if CP = ∅ at any moment, a CFM is said to reach an invalid
state. This state can be reached because the set of CFM products is empty
(P = ∅), or the configuration is contradictory (CU = ∅), or there exist no
compatible product satisfying the user decisions (P ∩ CU = ∅).

A CFM state makes reference to the instant in which the configuration pro-
cess is. This way, the configuration process starts with a CFM in its initial state.
User decisions provoke the CFM state to change to an intermediate state. A
final state can be reached if there exist only one product satisfying all the user
decisions. In case a configuration defines no compatible product, an invalid state
is reached.

4.2 Element states and automatic decisions

From a CFM, it is possible to extract relevant information about the elements
and states on which users might still make decisions without reaching an invalid
state. For this purpose, we define the concept of element state as the set of all
the states an element has for every compatible product in CP .

Definition 6 (Element State). Let Ei be an element in a CFM and CP the
set of compatible products. The element state for that element Ei is defined as
follows:

State(Ei) =
⋃

s∈CP

πi(s)

Being πi(s) the projection function that extracts the ith element from a tuple
s that represents a compatible product.

So for example, let us consider the following set of compatible products:

E = {FR, FA, FB , FC , C1,Mem}
CP = {P1, P2, P3}
P1 = {sel, rem, sel, sel, 2, 256}
P2 = {sel, rem, rem, sel, 1, 128}
P3 = {sel, rem, sel, sel, 2, 128}

The following element states are obtained from these compatible products:

State(FR) = {sel}, State(FA) = {rem}, State(FB) = {sel, rem},
State(FC) = {sel}, State(C1) = {1, 2, }, State(Mem) = {128, 256}

An element state is used to infer what we call the set of automatic decisions
(A). An automatic decision is the one that if it is made by a user, the set of
compatible products remains unaltered. This way, if A = {A1, ..., Ak} represents
the set of automatic decisions, and being CA the subset of all the potential states
that satisfy such automatic decisions:

CA = {(s1, ..., sn) ∈ D|A1 ∧ ... ∧Ai}

it is possible to affirm that

CP ∩ CA = CP ⇒ CP ⊆ CA

This set of automatic decisions is used to assist users in the decision making
process, avoiding as far as possible to reach for invalid states. Automatic decisions
can be calculated from the element states. Let Ei be an element in a CFM
having ASi as available states and State(Ei) as its corresponding element state.
Depending on the element state, an automatic decision can or cannot be inferred
as follows:

– State(Ei) = ASi: in this case, the element is said to be in an undecided
state. It means that no user has made any decision that affects it and no
automatic decision can be made on it.

– |State(Ei)| = 1: in this case, it can be interpreted that an automatic decision
has been made on Ei to choose the unique state in State(Ei)

– |ASi| > |State(Ei)| > 1: in this case, it can be interpreted that all the states
that are not in State(Ei) have been discarded. It means that those states in
the set ASi − State(Ei) can be automatically discarded.

– State(Ei) = ∅: this situation can only be given if CP = ∅ in which case it
does not make sense to calculate any automatic decision since there is no
compatible product.

Each automatic decisions obtained following the above criteria must be checked
if it already exists as a user decision, in which case they are disposed. For the
previous example, the following set of automatic decisions can be inferred:

A = {choose(sA, sel), choose(sC , sel), discard(sC1 , 3)}

5 Configurable feature diagrams

Smart&Home&

Ligh.ng&
Control&
System&

Internet&

Movie&
players&

An.9the:&
Alarm&

Contents&

Cell&Phone&
Control&
Panel&

[1..2]&

Video&on&
Demand&

Digital&

Media&Server&

[1..2]&!A{2}&
&&HDTV&42”& HDTV&32”&

[1..3]&

Ethernet&

3G&

[1..4]&!&{1,2,3}&

WiFi9b/g&

WiFi9n&

Providers& Cache&&

Provider&A& Provider&B&

[1..2]&

PCPlayer&

Rela.onships&

Mandatory&

Op.onal&

Depends&

Set&

Excludes&

✓&✓&

✓&

✓& ✓&

✓& ✓&

✓&

✓&

✓&

✗&

& && &&Decisions&

&

Selected&

Removed&

Cardinality&

Undecided&

[1..2]&!&{2}&

✗&

✓& ✓&

✗&

[1..2]&!A&{2}&

Contradictory&

User& Automa.c&

ε"

AXribute& Mem&!&{128}& Mem&!A&{128}&

Mem&in&{128,256,512}&
&

Mem&!&{128}&

Fig. 3. An example of a Configurable Feature Diagram

Configurable feature diagrams are a graphical notation of CFMs based on
feature diagrams [6]. The representation of elements and relationship constraints
is the same that FMs: a tree-like structure where features are boxes linked by
different kinds of lines that represent the relationships among features. Cardi-
nalities are also drawn together with the corresponding set relationship.

User and automatic decisions are not explicitly depicted in the diagram.
Instead of it, element states are drawn. If a feature state is {sel}, it is drawn
as a tick (3) within a circle in a corner of the feature box; if a feature state is

{rem}, a cross (7) is used instead; if a feature is undecided, no specific mark is
assigned; if two or more users have made contradictory decisions on a feature,
it is marked as ε. It the feature state is inferred by user decisions, then a filled
circle is used; if it can only be inferred by automatic decisions, a non-filled circle
is used instead.

Decisions on cardinalities and attributes are drawn as Ed → Es where Ed

is the cardinality or attribute domain and Es is the element state for that car-
dinality or attribute. For example a cardinality [1..3] whose state has been set
to {2} is drawn as [1..3] → {2}. If state 2 is removed but no other state has
been chosen, it is represented as [1..3] → {1, 3}. Likewise, memory attribute
(Mem) has three available states ASMem = {128, 256, 512}. If its state is set
to 128 Mb, it is drawn as Mem → {128}. If a user discards needing 512 Mb,
then it is depicted as Mem→ {128, 256}. Just in case any state is inferred only
from automatic decisions, Ed →A Es is used to remark that a state has changed
due to automatic decisions. Figure 3 shows an example of a configurable feature
diagram.

6 Configurable feature metamodel

A metamodel is a rigorous definition of a model that describes their main con-
cepts, relationships and rules. We propose the Configurable Feature Metamodel
(CFMM) as a rigorous definition of CFMs. Besides rigour, metamodels can be
used as development artefacts in Model-driven Engineering (MDE). It enables
to build analysis tools by the definition of transformations into other declarative
languages which can be used to reason about them.

Obtaining a metamodel is a design exercise. So we firstly propose a list of
objectives the design must satisfy according to the abstract model presented in
Section 4:

Objective 1. Representing a set of elements, each of which has a set of available
states.

Objective 2. Representing the set of SPL products by means of a set of rela-
tionship constraints.

Objective 3. Representing decisions as a set of constraints, distinguishing among
user and automatic decisions.

Objective 4. Enabling the computation of element states according to user and
automatic decisions.

Objective 5. Proposing an extensible metamodel that supports the future ad-
dition of new kinds of relationships and elements.

Figure 4 depicts our proposal of a CFMM using a UML class diagram that
satisfies the above objectives. A CFM is represented by a ConfigurableFeature-

Model instance. It is a container of Element, Relationship and Configuration

instances. The elements in a CFM can be either GenericFeature, Cardinality

or Attribute instances. There exists a class for each kind of relationship such
as mandatory, optional, set, requires, excludes and attribute relationships. A

C
o
n
fig
u
ra
b
le
F
e
a
tu
re
M
o
d
e
l

-
c
o
n
flic
ts
: b

o
o
le
a
n

+

c
o
n
fig
(C
o
n
fig
u
ra
tio
n
) : v

o
id

+

p
ro
p
a
g
a
te
() : v

o
id

+

re
s
e
t() : v

o
id

R
e
la
tio

n
s
h
ip

-
n
a
m
e
: S

trin
g

E
le
m
e
n
t

-
n
a
m
e
: S

trin
g

+

c
h
o
o
s
e
S
ta
te
(S
ta
te
) : v

o
id

+

d
is
c
a
rd
S
ta
te
(S
ta
te
) : v

o
id

S
ta
te

M
a
n
d
a
to
ry

-
c
h
ild
: F

e
a
tu
re

-
p
a
re
n
t: G

e
n
e
ric
F
e
a
tu
re

O
p
tio
n
a
l

-
c
h
ild
: F

e
a
tu
re

-
p
a
re
n
t: G

e
n
e
ric
F
e
a
tu
re

S
e
t

-
c
h
ild
re
n
: S

e
t<
F
e
a
tu
re
>

-
p
a
re
n
t: G

e
n
e
ric
F
e
a
tu
re

E
x
c
lu
d
e
s

-
fe
a
tu
re
A
: F

e
a
tu
re

-
fe
a
tu
re
B
: F

e
a
tu
re

R
e
q
u
ire
s

-
d
e
p
e
n
d
s
O
n
: F

e
a
tu
re

-
fe
a
tu
re
: F

e
a
tu
re

G
e
n
e
ric

F
e
a
tu
re

F
e
a
tu
re
S
ta
te

C
a
rd
in
a
l

-
v
a
lu
e
: in

t

S
e
le
c
te
d
S
ta
te

R
e
m
o
v
e
d
S
ta
te

R
o
o
t

C
a
rd
in
a
lity

-
c
h
ild
re
n
: in

t

C
o
n
fig

u
ra
b
le
M
o
d
e
l

C
o
n
s
tra

in
t

F
e
a
tu
re

«
In
v
a
ria
n
t»

{e
le
m
e
n
ts
->
o
n
e
(e
 : E

le
m
e
n
t |

e
.is
K
in
d
O
f(R
o
o
t))}

C
o
n
fig

u
ra
tio

n

C
h
o
s
e
n
E
le
m
e
n
tC
o
n
s
tra
in
t

D
is
c
a
rd
e
d
E
le
m
e
n
tC
o
n
s
tra
in
t

C
o
n
tra
d
ic
tio
n

U
n
d
e
c
id
e
d

A
ttrib

u
te

A
ttrib

u
te
V
a
lu
e

A
ttrib

u
te
C
o
n
s
tra
in
t

d
o
m
a
in

/e
le
m
e
n
ts

s
ta
te

e
le
m
e
n
ts

*

/re
la
tio
n
s
h
ip
s

u
s
e
rD
e
c
is
io
n
s

a
u
to
D
e
c
is
io
n
s

F
ig
.
4
.

C
o
n
fi
g
u
ra

b
le

F
ea

tu
re

M
eta

m
o
d
el

in
U

M
L

fo
rm

a
t

GenericFeature class is defined to distinguish between the root and remaining
features. It is used to avoid the incorrect use of the root feature in relationships
such as the root feature being the child of a relationship or an exclusion between
a root and any other feature that provokes a dead feature.

The decisions can be defined in terms of an element selection (ChosenEle-
mentConstraint class) or discarding (DiscardedElementConstraint class). A CFM
distinguishes between user and automatic decisions, storing them in two different
aggregates. Decisions are introduced in the model by means of the model edi-
tion operations shown in the Figure within the ConfigurableFeatureModel class.
Remaining operations, such as those to build a CFM from scratch or to modify
elements and relationships have been left out of the Figure since they are not
relevant for the purpose of this paper.

Every element has a domain and a current state. The domain is the set
of available states. Each kind of element has its own element-specific available
states: SelectedState and RemovedState for features, Cardinal for cardinalities
and AttributeValues for attributes. An element state is immediately updated
when a user decision is introduced into a CFM. Initially, every element state
contains an Undecided state instance to indicate that no decision has been made
on them. As decisions are added, the state of the affected elements changes to
represent the decisions. In case a contradiction is found among decisions, such
as a feature that is selected and removed at the same time, the Contradiction

state instance is set as the state for the affected elements.
Last, there exist some generalisation points to increase the extensibility of the

metamodel. A ConfigurableModel class is defined in case the constraint-element-
state structure wants to be reused for other models; relationships and decisions
are considered as two different kinds of Constraint. In case we want to add a
new kind of constraint that is not covered by relationships and decisions, it can
be done as an extension of this class.

7 Conclusions and further work

In this paper we have presented CFMs as a new kind of model that enables fully-
configurable FMs. CFMs incorporate the concept of element states to describe
the dynamic behaviour of CFMs which is a novel approach in the description of
products in a SPL. CFMs distinguish among potential products as any combi-
nation of element states, SPL products as those potential products that satisfy
the relationship contraints, and compatible products as the SPL products that
satisfy the configuration constraints. They also allow to work with multiple users
making decisions on a CFM at the same time and distinguishes between user
and automatic decisions.

Configurable feature diagrams are proposed to graphically describe CFMs.
They are inspired in feature diagrams where states are added to represent user
and automatic decisions.

Besides the rigorous definitions given in this paper for CFMs, we define them
in terms of an UML metamodel. Metamodels enable their use in MDE tools. The

CFMM takes extensibility as a major concern. The extension mechanisms allow
the future exploration of the impact of continuous attributes which have been left
out of this proposal. The metamodel presented in this paper will play a key role in
the implementation of analysis operations that enable the extraction of relevant
information from CFMs such as counting products, validating a configuration,
detecting and explaining errors, explaining invalid configurations, etc. Our future
work will consist in the proposal of a catalogue of analysis operations inspired in
the AAFM [1] that introduces new operations where attributes and cardinalities
are first-level artifacts.

References

[1] D. Benavides, S. Segura, and A. R. Cortés. Automated analysis of feature
models 20 years later: A literature review. Information Systems, 35(6):615–
636, 9 2010.

[2] C. Cetina, P. Trinidad, V. . Pelechano, and A. Ruiz-Cortés. Customisation
along lifecycle of autonomic homes. In 3rd International Workshop on Dy-
namic Software Product Line (DSPL09), 2009.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-21, Software Engineering Institute, Carnegie Mellon University, Nov.
1990.

[4] F. Lösch. Optimization of variability in software product lines: a semi-
automatic method for visualization, analysis, and restructuring of variability
in software product lines. PhD thesis, University of Stuttgart, 2008.

[5] R. Rabiser, P. Grunbacher, and D. Dhungana. Supporting product derivation
by adapting and augmenting variability models. In Software Product Line
Conference, 2007. SPLC 2007. 11th International, pages 141–150, Sept 2007.

[6] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Feature Dia-
grams: A Survey and A Formal Semantics. In Proceedings of the 14th IEEE
International Requirements Engineering Conference (RE’06), Minneapolis,
Minnesota, USA, Sept. 2006.

[7] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, and S. Ferber.
Introducing pla at bosch gasoline systems: Experiences and practices. In R. L.
Nord, editor, Software Product Lines, Third International Conference, SPLC
2004, Boston, MA, USA, August 30-September 2, 2004, Proceedings, volume
3154 of Lecture Notes in Computer Science, pages 34–50. Springer, 2004.

[8] P. Trinidad, A. Ruiz-Cortés, and D. Benavides. Automated Analysis of State-
ful Feature Models, chapter 30, pages 375–380. Springer Berlin Heidelberg,
2013.

[9] J. White, D. Benavides, D. Schmidt, P. Trinidad, B. Dougherty, and A. Ruiz-
Cortes. Automated diagnosis of feature model configurations. Journal of
Systems and Software, 83(7):1094 – 1107, 2010.

