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Abstract

Feature models have been cited as one of the main con-
tributions to model software product families. However,
there is still a gap in product family engineering which is
the automated reasoning on feature models. In this paper
we describe how to reason on feature models using con-
straint programming. Although, there are a few attempts
to reason on feature models there are two main drawbacks
in these proposals: �� none of them associate parameters
to features ��� none of them use constraint programming as
the reasoning base. Using constraint programming endows
our proposal with a more powerful reasoning capacity and
greater expressiveness than others.

1 Introduction

Most of the existing methods [3, 4] for Software Product
Line(SPL) engineering consider that designing a compact
model that represents all the possible products is an essen-
tial activity. In this context feature models [5, 9, 10, 15]
have been cited as one of the most important contributions
of SPL modeling [5, pag.82]. Feature models are used to
model SPL in terms of features and relations among them.
In these type of models, the number of potential products
of a SPL may increases with the number of features. Thus,
a big number of features may lead to have SPLs with a big
number of potential products. That is way, automated rea-
soning on feature models is one of the main challenges.

On the other hand, constraint programming, as a way
of reasoning, has been an active field of research in the re-
cent decades. In this paper we propose using constraint pro-
gramming to reason on feature models. To the best of our
knowledge, it has not been proposed up to now.

�This is a improved version of [2]. This work was partially funded
by the Spanish Ministry of Science and Technology under grant TIC2003-
02737-C02-01 (AgilWeb) and PRO-45-2003 (FAMILIES)

The contribution of this paper is twofold. First, we add
parameters to feature models and these parameters are taken
into account in the reasoning process. Second, we describe
how a feature model can be mapped onto a constraint satis-
faction problem which allows make questions on the feature
models, such as �� how many potential products a model has
��� which is the the resulting model after applying a filter
(e.g. users constraints) to a model, ���� which are the prod-
ucts of a model, ��� is it a valid model, or �� which is the
best product from a model according to a criterion.

The remainder of this paper is structured as follow. In
Section 2, we describe how to include parameters into fea-
ture models. In Section 3, we improve current reasoning on
feature models. Thus, we give some definitions to be able
to automatically answer to several questions about extended
feature models. In Section 4, we compare our proposal re-
garding to others and we show how our approach can be
used to obtain both variability and commonality informa-
tion from a feature model. In Section 5, a running prototype
implementation of our proposal is briefly described. Finally,
we give some conclusion and future work in Section 6.

2 Adding Parameters to Feature Models

2.1 Feature Models

The main goal of feature modeling is to identify com-
monalities and differences among all products of a SPL.
One of the main outputs of this activity is a compact repre-
sentation of all potential products of a SPL, hereafter called
”feature model” (FM). FMs are used to model SPL in terms
of features and relations among them. Roughly speaking, a
feature is a distinctive characteristic of a product. Depend-
ing on the development stage, it may refer to a requirement,
a component in an architecture or even to pieces of code
[12] of a SPL.

There are several notations to design FMs [5, 9, 10, 15].
We found the proposed by Czarnecki as the most compre-
hensible and flexible and also it is one of the most cited [5].
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Figure 1 depicts the FM of JAMES [8] using Czarneky’s no-
tation. JAMES is a framework to develop web collaborative
systems and it is a good example of a SPL.

Czarnecki’s notation proposes four main relations,
namely: mandatory, optional, alternative and or–relation.
In these relations, there is always a parent feature and one
(in the case or mandatory and optional) or more (in the case
of alternative and or–relation) feature’s childs. �� is an ex-
ample of Mandatory relation (Every JAMES product has
to have the ���� elements which are the base of the prod-
uct to be operative). �� is an example of Optional rela-
tion( there are JAMES products with Web Services Interface
(��	
����
��) management and other without it). ��

is an example of Alternative relation(Every JAMES prod-
uct can have data base (��), or ���� user authentica-
tion, but only one). �� is an example of an Or–relation(in
a JAMES product there are products with �� or ���
Graphical User Interface, or both at the same time). There
are also two more relations that are important to underline:
requires and excludes relations which have the following
meaning: ��Requires: Let � and � be two features, the
relation � �������� � means that � needs � to be opera-
tive. For example, feature ��
������


����
� needs
feature ���������� to be operative, otherwise it would not
work.���Excludes: Let � and � be two features, the rela-
tion � �������� � means that it is not possible to have a
product with � and � at the same time. For example, fea-
ture ���������� �������� ��� means that it is no possi-
ble to have a JAMES product with both features at the same
time.

2.2 A Notation for Extended Feature Models

The most cited proposals [5, 9, 10, 15] just deal with
feature as described formerly. However, there are some
voices proposing that, in addition to all those characteris-
tics, it would be very important to include parameters (also
called attributes) in FMs [6, 14]. There are several concepts
that we would like to clarify before giving a notation for
extended FMs:

� Feature: a prominent characteristic of a product. De-
pending on the development stage, it may refer to a
requirement (if products are requirement documents),
a component in an architecture (if products are com-
ponent architectures) or even to pieces of code [12] (if
products are binary code in a feature oriented program-
ming approaches) of a SPL.

� Parameter: is any characteristic of a feature that can be
measured. There are two kinds of parameters �� basic
parameters: parameters that are directly related to the
feature or ��� derived parameters: parameters that are

composed by one or more values of other parameters
of the same or different features.

� Parameter domain: the space of possible values where
the parameter takes its values. Every attribute belongs
to a domain. It is possible to have discrete domains
(e.g:integers, booleans, enumerated) or continuous do-
mains (e.g.:reals).

Every feature of Figure 1 may have associated one or
more parameters. For instance, consider ����������, it
is possible to identify parameters related to it, such as
�
� ���� referred to the maximum size of the files that
can be uploaded when using ���������� (real domain).
Likewise any of the child features of ������� can have
������
 referred to the versions of PHP (JAMES is imple-
mented using PHP) that the module requires to work 1 (in-
teger domain). These are examples of basic parameters.

An example of derived parameter would be the ������

parameter of the ������� feature due that it depends on
the version of the modules selected in every product. In
this case the version required for modules to run will be the
maximum of the versions of the child features of�������.
It would depend on the type of relation and the type of pa-
rameter how the derived parameters would be made up. It is
in accordance to the FM designer to define this composition
rules.

We use an extended notation of the Czarneki’s feature
models that allows to represent parameters. Using the
JAMES example, every feature may have one or more pa-
rameters. Thus, it would be possible to decorate the graphi-
cal FM with this kind of information. Figure 2 illustrates a
piece of the FM of Figure 1 with parameters with our own
notation.

Modules

Calendar

Forum Congress 
Management

Repository

version:5

version:5
version: 4

version:4

version: max(Forum.version, 
CongreessManagement.version, 

Repository.version, Calendar.version)

Figure 2. Extended FM for JAMES
In this example, every child feature of the ������� fea-

ture have a parameter: ������
. This parameter would rep-
resent the PHP version that is needed to run the module 2.

1PHP 5 uses object-oriented primitives that are not available in version
4, but all PHP modules written in version 4 should work using a PHP 5
interpreter

2these values are just illustrative, they may have nothing to do with real
values
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WSInterface
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Management

Repository

GUI
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UserManagement
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R1
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R9
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Mandatory Feature
Optional Feature

Alternative Feature

Or Feature

Requires

Excludes

Figure 1. JAMES feature model

The parameters referred to other feature are represented us-
ing the name of the feature and the name of the parameter.

3 Automatic Reasoning on Extended Feature
Models

3.1 Preliminaries

We propose to use constraint programming to reason on
extended features models. The reasoning framework that
we propose is depicted in Figure 3:  � represents a CSP
extracted from a FM following the mapping described in [1,
2]. � represent an operand that would serve as an input to
the reasoning system that in several cases may be equals to
null. This is when the operation has just  � as an input. �
represent the operation and finally! represents the response
of the question. If ! is another CSP, the composition of
several operations becomes possible.

ΨM

Ω

φ

Figure 3. Reasoning Framework

3.2 Filter

There should be a way to apply filters to the model.
These filters can be imposed by the users. A filter acts as a
limitation for the potential products of the model. A typical
application of this operation is when a customer is looking
for a product with a specific set of characteristics, this is to
say, they are not interested on all potential products but on
some of them (those passing the filter).

According to Figure 3, � represents the filter operation.
 � represents a CSP of a FM. � is a CSP that represents a
filter. It is important to underline that the set of variables of

� would be a subset of the set of variables of  � (" � � �.
Finally, ! represents a CSP according to the following def-
inition.

Definition 1 (Filter) Let  � be a CSP representing a FM
and � a CSP representing a filter. The result of the filter
operation would be a CSP with the same set of variables
and domains of  � (" � � � and�� � �) and the union of
constraint of  � and �.

������� � #�� � �" � � �# �� � �# �� � � � �����

Since the result of the filter operation is a CSP any other
operation can be applied taking this result as an input.

3.3 Number of products

One of the questions to be answered is how many poten-
tial products a FM contains. This is a key question when fol-
lowing a SPL engineering because if the number of products
increase the SPL becomes more flexible as well as more
complex.

According to Figure 3, � represents the cardinal opera-
tion.  � represents a CSP of a FM. � is null and ! is an
integer representing the number of potential products.

Definition 2 (Cardinal) Let  � be a CSP representing an
extended FM, the number of potential products of  � , here
in after cardinal, is equals to the number of solutions of � .

�
���

�� � � � ����� � ��

In the JAMES example of figure 1 �
���

�� �� � ��,
just adding for example a new Module like FAQ (a mod-
ule for the management of Frequent Asked Questions), the
number of potential products raises to 148. Likewise, a
possible filter for the JAMES example would be to ask for
all products with ���$%��� and &'�(� , then the
number of potential products decrease from 68 to 20. More-
over, it is possible to apply a filter also to attributes. Thus,
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it would be possible to ask for the products that are compat-
ibles with version 4, then

� � �� ��� ������ �������	
�� 	�

�� � ���

������������������ ���� � ��

(it decreases from 68 when any filter was imposed, to 16).

3.4 Products

There should be a way to get the solutions of the model,
this is to say the products of  � . A product is made up of
the features with ���� value in the solution and the param-
eter values. The features with �
��� values are considered
to be out of the product.

According to Figure 3, � represents the products opera-
tion.  � represents a CSP of a FM. � is null and ! is a set
representing all the solutions of  � .

Definition 3 (Products) Let  � be a CSP representing an
extended FM, the potential products of the model  � , here
in after products, is equals to solutions of  � .

��������� � � � �� � ���� � �	

3.5 Number of Features

There should be a way to know the number of features
that are present in a single product. This is important due
that a product would be more complex if it has a large
amount of features.

According to Figure 3, � represents the features opera-
tion.  � represents a CSP of a FM. � is a filter that impose
the features of the product that we want to know the num-
ber of features. Thus, �
���

���� � �. ! is an integer
representing the number of features of the product imposed
by the filter.

Definition 4 (Features) Let  � be a CSP representing an
extended FM and � a CSP representing a product of  � ,
the number of features of the product, here in after features,
is equals to the number of variables with ���� values of the
solution of � .

��
������ � #�� � ����������������� � #����

In the JAMES example there are several prod-
ucts composed by several features. For example if
� � ���#��#�'�$#���$%���#&'�(�	 then,
��
������� � � �.

3.6 Validation

A valid extended FM is a model where at least a product
can be selected. This is to say, it is a model where  � has
at least one solution.

According to Figure 3, � represents the valid operation.
 � represents a CSP of a FM. � is null and ! is a boolean.

Definition 5 (Valid model) Let  � be a CSP representing
an extended FM,  � is valid iff its equivalent CSP is satis-
fiable.

�
���� � � � �� ���� � � �) ��

The JAMES model of the example is valid, but there
might be situations where the constraints are not satisfi-
able therefore the model becomes invalid. For instance, if a
JAMES product with &'�(� and compatible with PHP
4 is desired, then the model is not valid:

� � ������ � ���	 ���
���
����
��� � ��

� � �� ��� �� 
��� �� ��

�
����������� � #��� � �
���

3.7 Optimum products

There should be a way of finding out the best products
following a criterion. This is to say, in addition to select the
features of a product, it would be interesting to select the
best product following a criterion. In this case, we define
the operation opt.

According to Figure 3, � represents the opt operation.
 � represents a CSP of an extended FM. � is an objective
function and ! is a solution of  � .

Definition 6 (Optimum) Let  � be a CSP representing an
extended FM and� an objective function, then the optimum
set of products, here in after opt, is equals to the optimum
space of  � .

���� � #�� � ��
� � #��

It is also possible to ask for an optimal product in the
JAMES example. Thus, a possible optimum would be to
ask for the product with the minimum number of features.
In this case selected products ���� are:

� � ����������� � � �

���� � #�� � ��
� � #��

The model presented in this section can support current
features models. The only difference is that current fea-
ture models do not support parameters. Hence, to use our
model to reason on current feature models, parameters are
not taken into account. Thus, the all definitions presented
formerly remain valid for current feature models.
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4 Realizing the Benefits

Our approach is very flexible regarding to others. To
the best of our knowledge, there are only a couple of lim-
ited attempts by Van Deursen et al. and Mannion [7, 11]
that treat automatic manipulation of feature models. It is
important to note that these two proposals do not consider
parameters in the features which is something that we do.
Van Deursen et al. [7] explore automated manipulation of
features descriptions providing an algebra to operate on the
feature diagrams proposed by [5]. Mannion’s proposal [11]
uses first–order logic for product line reasoning. However
it only provides a model based on propositional–logic us-
ing �%�, '� and *'� logical operators to model SPLs
based on feature models. Both attempts have several limi-
tations:

1. They do not allow deal with parameters( both of them
just say to be a future work).

2. They basically answer to the single question of how
many products a model has.

3. As far as we know, they do not have an implementation
available.

In addition, Mannion’s model uses the *'� (�) opera-
tor to model alternative relations, which is either a mistake
or a limitation. Thus, the model becomes invalid if more
than two features take part of an alternative relation.

Moreover, our proposal is very extensible. Next, we
shown two more definitions that are based on the definitions
of previous section.

4.1 Variability

As seen before, FMs are composed of a set of features
and relations among them. If relations restrict the number
of product to only one, we are considering the lowest vari-
ability. Let us take into account that a FM defining no possi-
ble product would be considered a non-valid model. On the
other hand, considering no relations, the number of prod-
ucts within the FM would be the highest. This case would
represent the highest variability. Relations restrict the num-
ber of potential products, so variability depends on relation
types.

Let a leaf feature be a feature that has no child feature.
Parent features add no variability to the model, because they
are features aggregates. Thus, we define the variability fac-
tor as follow.

Definition 7 (Variability Factor(VF)) Let  � be a CSP
representing an extended FM. Let  �� be another CSP

representing another extended FM, considering the leaf fea-
tures in � and no relation among its features. Then the VF
is defined as follow

" & � � � �
�
���

�� � �

�
���

�� �� �
�

����� � ��

����� �� ��

Variability factor would take values in the real domain
within the range from 0 to 1. In the case of JAMES example,
" & � �� �

�	
�
�� 
 �+�	

VF can assist decision making. For instance, one of the
first decisions to be taken when many products are going
to be developed, is whether SPL approach or traditional ap-
proach is going to be applied. A high VF may suggest a SPL
approach; a low VF may suggest a traditional approach.

4.2 Commonality

In a FM, some features will appear in every product,
some in only one product and others in some products.
When deciding the order in which features are going to be
developed, knowing which are the most common features is
very important in order to prioritize their building. Obtain-
ing commonality information from the FM can be feasible
by asking questions to our model. We define feature com-
monality as the percentage of products where that feature is
part of the product.

Definition 8 (Commonality) Let  � be a CSP represent-
ing an extended FM and & the feature we want to know its
commonality.

�����

����� � # & � �
�
���

��������� � # & � ������

�
���

�� � �

The feature���� in the JAMES example has a common-
ality equals to 1 and the feature &����,

�����

����� � # & ����� �

�

��

 �+��

5 Implementation

We have already implemented some of the ideas
presented in this paper available at http://www.tdg-
seville.info/topics/spl. This implementation uses OPL Stu-
dio, a commercial CSP solver.

Three modules have been developed in our implemen-
tation: first, a feature markup language and XML Schema
were agreed. This language allows to represent the Czar-
necki’s FM [5]. Second a parser to transform this XML
documents to a CSP following the algorithm described in
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[1, 2] was developed. Finally, a web–based prototyping in-
terface is available that allows to test some of the capabil-
ities of the model. In order to test our implementation, we
have modeled five problems (two academical and three real
product lines) that are accessible at the web site.

In order to evaluate the implementation, we measured
its performance and effectiveness. We implemented the
solution using Java. We run our tests on a WINDOWS
XP PROFESSIONAL machine that was equipped with a
1.5Ghz AMD Athlon XP microprocessor, and 496 MB of
DDR 266Mhz RAM memory. We based our testing in the
FM in Figure 1, adding new features. Several tests were
made on each FM in order to avoid as much exogenous in-
terferences as possible.

We have experimentally inferred that the implementation
presented has an exponential behavior while increasing the
number of features in the FM and maintaining a constant
variability factor. We have measured the solving time for
�����������, which is the most complex to obtain, and
have considered it for different values of VF as shown in
Figure 4. Our test determines our model has a good perfor-
mance until 25 features while the VF is kept constant.
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Figure 4. Empirical performance test for
�����������

6 Conclusion and Further Work

In this paper we put the basis for reasoning on FM with
features and parameters at the same time and in the same
model using constraint programming.

There are some challenges we have in the near feature,
namely: �� developing a case tool to validate our model on
an industrial context, ��� perform a more rigorous valida-
tion of our implementation studying the influences as well
as the number of solutions, the types of relations, the num-
ber of features, and so on, ��� comparing our work regarding
others in the field of product configuration [13] and ��� ob-
taining heuristics related to variability and commonality in
an empirical software engineering context.
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