
Explanations for Agile Feature Models

Pablo Trinidad David Benavides Antonio Ruiz-Cortés Sergio Segura
Miguel Toro

Dpto. Lenguajes y Sistemas Informáticos
University of Seville, Av. de la Reina Mercedes S/N, 41012 Seville, Spain

{trinidad,benavides,aruiz,segura,mtoro}@tdg.lsi.us.es

Abstract

Feature models are widely used to represent product
lines and they are key parts of the development process
in agile methodologies such as generative and feature-
oriented programming. One of the most common problems
in these cases is checking a feature model to be error-free.
Some works cope with detecting errors in feature models,
but automated explaination of errors is demanded in order
to help the modeler to solve them. In this paper we propose
a implementation-independent solution to explain the rea-
sons why dead features, a common kind of error, appear in
feature models, giving an implementation example.

1 Introduction

Agile methodologies follow a rapid development of soft-
ware giving attention to coding and reducing the amount
of documentation produced. In the other hand, SPL de-
velopment pursues reducing the products time-to-market
and cost by analyzing the commonalities and variabilities
within a set of products in a concrete domain. Although
both share the objective of reducing the costs and time-to-
market, their methodologies are very different, but may be
complemented. SPL development may be agile, it means
that reducing the amount of documentation and process def-
inition is also possible in this context. To make it possible,
the users should have at their disposal a set of development
tools that help them with rapidly developing SPL.

In this context, some tools [5, 16] have been proposed to
support the development of SPL focusing on feature mod-
els as the core of the process. Feature models have been
one of the most important proposals in the context of soft-
ware product lines (SPL). They are used to describe SPL
in terms of features, it means visible characteristics of the
products. Feature models are a key piece in generative pro-
gramming and feature oriented programming [3], two tech-
niques that pursue speeding up the SPL development pro-

cess. The treatment of errors in feature models is a matter
that many authors have demanded [1, 2, 10, 18]. However
these tools do not face up to an exhaustive analysis of the
kinds of error to be made in feature modeling and they only
deal with the detection of errors[5, 17, 18], but are not able
to explain the origin of the errors neither to give solutions
to them in order to help the modeler obtaining error-free
models.

It is very important to define the complete process to deal
with errors in feature models as a first step, and afterwards
developing a set of tools that holds the agile development
of SPL, where changes on requirements are supported by
them and where feature models are permanently checked to
be error-free.

In a previous work [14], we dealt with the detection of
dead features, a frequent case of error in feature models.
In this paper we define how to explain the possible rea-
sons why a dead feature appears as a second step in their
treatment, following this structure: in Section 2, we briefly
describe the concept of dead features. In Section 3, we pro-
pose a general solution to explain dead features appearance.
In Section 4, we implement the explanation, giving a run-
ning example of it in Section 5. Last, we summarize the
works on errors treatment in feature models in Section 6
and some conclusions and guidelines of our future work are
given in Section 7.

2 Dead Features

A feature model is a tree-like structure consisting of a
set of features linked by hierarchical relations and option-
ally, cross-tree constraints. Feature models capture the set
of products of a product line in terms of features. They have
a simple syntax that may be checked automatically with few
effort. However, it must be checked that a feature model
captures the correct set of products in the product line, and
it is not a trivial task.

In Figure 1, a feature model representing the set of prod-
ucts within a Home Integration System (HIS) product line is



HIS

Supervision 
systems

Control Services

fire intrusion flood

light control temperature

appliances 
control

Video on 
Demand

Internet 
Conection

ADSL WirelessPower Line

Mandatory Feature Optional Feature

Alternative Relation Or Relation

Depends

Excludes

R2 R4
R3

R5
R6

R7
R8

R9

R10 R11

R12

R13

Figure 1. Home Integration System(HIS) feature model

depicted. Among all the relations, an special attention must
be paid to the mutual exclusion betweenPower Lineand
Light controlfeatures. It means that there could be no prod-
uct with these two features at the same time.Light controlis
a full-mandatory feature, so it appears in every product. Al-
though,Power Linefeature is represented as an alternative
of Internet Connection, no product can contain it because
it is incompatible withLight Control. Power Lineis a dead
feature [5], and is a common case of error in feature models.
We define the concept of dead feature as:

Dead Feature A feature that does not appear in any of the
products in the family.

In Figure 2, some cases that cause the appearance of dead
features are exposed [17]. The treatment of dead features or
any other kind of error just starts with detection but the final
purpose is producing error-free feature models. This is the
reason why in [14] we proposed a 3-steps process that deals
with errors in feature models in general:

1. The detection of the set of errors in a feature model.

2. The detection of the relationship/s that cause each error
to appear.

3. Giving possible solutions to solve each error.

Taking Figure 1 feature model as example, these are re-
sults of applying this process (Figure 3):

1. Power Lineis a dead feature.

2. These are the relationships that may causePower Line
to be a dead feature: excludes relationship and/orLight
control mandatory relationship.

3. Some possible solutions can be given: removing ex-
cludes relationship;Light Control being an option of
Control feature; or removingPower Linefeature from
alternative.

In this paper we deal with the second step in the process,
detecting the relationships that may cause a dead feature to
appear, supposing that we have already detected them in a
previous step as shown in [14].

3 Diagnosing Feature Models

3.1 Theory of Diagnosis

In [6, 13], Reiter proposed a way to diagnose systems, it
means, determining the set of components that are function-
ing abnormally and makes the system present a different be-
haviour than expected. It has been widely used in detecting
the components failing in circuits, and we are applying it to
feature models. To deal with it, some concepts are defined:

System System is a pair(SD,COMPS) whereCOMPS

is the set of components that composes that system and
SD the set of default logic (a logic that generalizes
first-order logic) sentences [12] that describes the sys-
tem, it means the relations among components.

Abnormal predicate How to detect if a component is ab-
normal or not should be described inSD using abnor-
mal predicatesAB(c) that identifies that component
c ∈ COMPS works abnormally.

Observation A set OBS of default logic sentences de-
scribing an observation of the behaviour or state of the
system. From an observation, it can be evaluated the



DD

D

D D DD

D

D D D D

Figure 2. Typical situations that generate dead features. Dead features are depicted by D

DEAD FEATURES

DETECTION

EXPLANATION OF

THE ORIGIN OF

DEAD FEATURES
Power Line

Dead Features GIVE SOLUTIONS TO

CONFLICTING RELATIONS

Conflicting relations

Internet 

Connection

Power Line

light control Power Line

Control

light control

Feature Model

USER

DECISION

HIS

Supervision 

systems
Control Services

fire intrusion flood

light control temperature

appliances 

control

Video on 

Demand

Internet 

Connection

ADSL WirelessPower Line

Error-Free

Feature Model

HIS

Supervision 

systems
Control Services

fire intrusion flood

light control temperature

appliances 

control

Video on 

Demand

Internet 

Connection

ADSL WirelessPower Line

Figure 3. 3-Steps dead features treatment

set of components that may be faulty in a system. We
shall write(SD,COMPS,OBS) to represent the ob-
servationOBS of the system(SD,COMPS).

Suppose we have a system(SD, {c1, · · · , cn}) that
we want to evaluate if it is faulty or not. SD ∪
{¬AB(c1), · · · ,¬AB(cn)} is the set of predicates that rep-
resents the system behaviour assuming that all the compo-
nents work correctly. An observationOBS of the system
can detect an abnormal behaviour if

SD ∪ {¬AB(c1), · · · ,¬AB(cn)} ∪ OBS

is inconsistent. The objective of diagnosis is finding a
set of components that are faulty, considering that the rest
of components work properly.

Diagnosis A diagnosisD(∆, COMPS − ∆) for an ob-
servation of a system(SD,COMPS,OBS) is a set
∆ ⊆ COMPS such that

SD ∪ OBS ∪ {AB(c) | c ∈ ∆}

∪ {¬AB(c) | c ∈ COMPS − ∆}

But for an observation, there are many possible diagnosis
or sets of components that explained a faulty behaviour, so
the concept of minimal diagnosis is introduced:

Minimal Diagnosis A diagnosis D(∆, COMPS − ∆)
is minimal iff for no subset ∆′ ⊆ ∆ is
D(∆′, COMPS − ∆′) a diagnosis.

Therefore, a minimal diagnosis can be understood as a
minimal set of faulty components that explains the abnor-
mal behaviour of the system.

Theory of dianosis offers a framework where the prob-
lems of finding the abnormal components of systems can be
expressed independently from the implementation. The ad-
ventage of representing problems using theory of diagnosis
is that there are many algorithms and techniques to diagnose
systems, and any of them can be used in implementation.

3.2 Applying Theory of Diagnosis to Fea-
ture Models

Our purpose is to evaluate the possible reasons why a
feature model has dead features and how the theory of diag-
nosis offers a background to evaluate feature models. The
first step to take leverage from theory of diagnosis is identi-
fying all the elements that it provides in our problem.

The system we are evaluating is a feature model and it is
composed by features (F ) and relations (R), it means those
are the components inCOMPS. The system description
SD characterizes the kind of relations between features us-
ing default order logic. A possible mapping of feature mod-
els onto first order logic can be found at [10]. As stated
in previous section, abnormal predicate must be used when
defining the system. In this case, we want to find the faulty
relations, not faulty features. Therefore, for each sentece
that represents a relationr ∈ R, AB(r) predicate must be
used inSD.

Let F = {f1, · · · , fn} be the set of features in a fea-
ture model, andR = {r1, · · · , rm} the set of sentences that
represents the relations among features. To buildSD, we
define for each elementri ∈ R, an expressionr′i such as
follows:

r′i ≡ XOR(ri, AB(ri))



It means that, if a relation represented byri sentence
is consistent, that relation is not faulty, else the relation is
faulty and abnormal predicate is defined.

To be able to diagnose the system, an observation is
needed. In this case we part from a list of dead fea-
tures. We want to evaluate for each dead feature, which
are the relations that make it impossible to appear in any
product. Then the observation of the system forces that
dead feature to appear. This observation will causeSD ∪
{¬AB(r1), · · · ,¬AB(rn)} ∪ OBS to be inconsistent, be-
cause the definition of the system avoids the dead feature to
appear on it.

Let fd ∈ F be a dead feature previously detected. We
define the detection of the relations that cause a dead feature
to appear as a diagnosis problem this way:

SD = {r′
1
, · · · , r′m}

COMPS = F ∪ R

OBS = {fd}

The objective is finding the minimal diagnosis
D(∆, COMPS − ∆) to the observation of the fea-
ture model such that∆ ⊆ COMPS. As you may
notice, no abnormal predicate is defined for the features in
COMPS, soF ∩ ∆ = ∅. Therefore, all the components
in ∆ are relations, it means that the minimal diagnosis of
the observation of the system will be the minimal set of
relations that cause featurefd to be dead.

The theory of diagnosis is intended to be a framework
where different diagnosis techniques and implementations
can take part of it. We can use any of the implementa-
tions that deal with finding the set of minimal diagnoses
given a system observation. Many authors have expressed
diagnosis problems, a.k.a. explanations problems, as Con-
straint Satisfaction Problems (CSP), propositional satisfia-
bility problems (SAT) or description logic (DL).

There are some explanations algorithms [7, 8, 9] inde-
pendent of the usage of CSP, SAT or DL which may be used
to diagnose feature models. Next section we are proposing
a simple implementation that defines the diagnosis problem
as a CSP. However, it must be taken into account that the
description above permits the use of any of the mentioned
approaches.

4 Implementation: Explanations in CSP

A Constraint Satisfaction Problems (CSP) [15] repre-
sented by ((V,D),C) is defined as a set of variables (V ), each
ranging on a finite domain (D), and a set of constraintsC
restricting all the values that variables can take simultane-
ously. A solution to a CSP is an assignment of a value from

its domain to every variable, in such a way that all con-
straints are satisfied simultaneously. In the common usage
of CSP, we may want to find all the solutions or one solu-
tion, following or not an optimization criterion.

In [4], a mapping of feature models onto CSP is pro-
posed, allowing to realize different operations for extracting
relevant information and reasoning on them. CSP is shown
as a flexible technique that permits the user to extend the
questions and operations to be performed very easily.

The diagnosis problem may be defined as a CSP. The
components inCOMPS are the variables of the CSP.
Then, the variables are features (F = {f1, · · · , fn}) and
one sensor for each relation (S = {s1, · · · , sm}), and both
of them take values from the{0, 1} domain. The system
descriptionSD is depicted by the set of constraintsc′j that
are defined this way:

∀i · 1 ≤ i ≤ m

c′i ≡ ci ∨ si = 0

whereci is the constraint resulting from mapping a rela-
tion onto a constraint [4].

Sensors are used to detect when a constraint can or can-
not be satisfied. If a constraintci cannot be satisfied, its
sensorsi is forced to be zero. If the constraint can be satis-
fied, its sensor takes value from{0, 1}.

Last, the observationOBS must be added to the CSP
as part of the constraints set without any linked sensor. We
propose implementing the problem as a Constraints Opti-
mization Problem (COP) which is just a particular case of
CSP with an optimization criterionO. Our objective is ob-
taining the maximum number of constraints satisfied and
therefore the minimal set of non-satisfied constraints, so we
use the following optimization criterion:

max

m∑

i=1

si

Summarizing, the COP((V,D), C,O) that represents
our diagnosis problem may be depicted this way:

(V,D) = (F ∪ S) × {0, 1}

C = {c′
1
, · · · , c′m} ∪ {fd = 1}

O =

m∑

i=1

si

Solving the COP will generate a set of solutions with the
maximum numbers of constraints holding, it means with the
minimal number of sensors being zero. One or more solu-
tions can be obtained, but all of them will have the same
minimal number of zero-sensors. Determining the relations



System Description

Relations Original Constraint Sensor Constraint

Root c1 ≡ HIS = 1 s1 c′
1
≡ c1 ∨ s1 = 0

R2 c2 ≡ SUPERV ISION = HIS s2 c′
2
≡ c2 ∨ s2 = 0

R3 c3 ≡ CONTROL = HIS s3 c′
3
≡ c3 ∨ s3 = 0

R4 c4 ≡ SERV ICES ⇒ HIS s4 c′
4
≡ c4 ∨ s4 = 0

R5 c5 ≡ FIRE = SUPERV ISION s5 c′
5
≡ c5 ∨ s5 = 0

R6 c6 ≡ INTRUSION = SUPERV ISION s6 c′
6
≡ c6 ∨ s6 = 0

R7 c7 ≡ FLOOD ⇒ SUPERV ISION s7 c′
7
≡ c7 ∨ s7 = 0

R8 c8 ≡ LIGHT = CONTROL s8 c′
8
≡ c8 ∨ s8 = 0

R9 c9 ≡ APP ⇒ CONTROL s9 c′
9
≡ c9 ∨ s9 = 0

R10 c10 ≡ TEMPERATURE = CONTROL s10 c′
10

≡ c10 ∨ s10 = 0

R11 c11 ≡ (V IDEO ∨ INTERNET ) ⇔ SERV ICES s11 c′
11

≡ c11 ∨ s11 = 0

R12 c12 ≡ POWER ⇔ (INTERNET ∧ ¬ADSL ∧ ¬WIFI)∧ s12 c′
12

≡ c12 ∨ s12 = 0

ADSL ⇔ (INTERNET ∧ ¬POWER ∧ ¬WIFI)∧

WIFI ⇔ (INTERNET ∧ ¬ADSL ∧ ¬POWER)

R13 c13 ≡ LIGHT = 1 ⇒ POWER = 0 s13 c′
13

≡ c13 ∨ s13 = 0

Observation

Dead Feature POWER = 1 – POWER = 1

Components / Variables

HIS, SUPERV ISION,CONTROL,SERV ICES,FIRE, INTRUSION,FLOOD,LIGHT

APP, TEMPERATURE, V IDEO, INTERNET,POWER,ADSL,WIFI,

s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13

Table 1. Mapping sample feature model onto CSP constraints and variables

that are faulting is just a question of mapping the zero-
sensors to their correspondent conflictive relationships,it
means, for anysi = 0, finding its linked constraintci.

5 A Running Example

Let us take the feature model diagram in Figure 1. We
will use it as an example of how to apply the CSP imple-
mentation to explain the reasons why a dead feature ap-
pears. It is supposed that a detection technique [14] has
previously been applied in order to detect thatD is a dead
feature.

Applying the structure shown in section 4, there is a vari-
able for each feature in the feature model and one sensor for
each relation (S = {s1, · · · , s13}). In Table 1, the result
of mapping feature model relations and adding sensors is
shown. After solving the problem as a COP, two solutions
(only sensors values are considered) are obtained where the
only sensors with a zero value ares8 and s13. A sensor

with a zero value indicates a relation that may cause a dead
feature to appear. These solutions suggest that there are
two possible diagnosis affecting to the relations linked to
sensors{{s8}, {s13}}. It means that the relations causing
the appearance of a dead feature in this feature model are
mandatory relation betweenControl and LightControl

and the relationLightControl requiresPowerLine. In
a further step, we are analyzing in Table 2 the results of
applying this method to the examples shown in Figure 2.

6 Related Works

Characterising all the possible kinds of error and demon-
strating their completeness is an important point. Von der
Massen and Lichter [17] introduce the concept of deficien-
cies in feature models, identifying three different levelsof
errors:

• Redundancy: information is modeled in multiple



Feature Model Conflicting Relations Feature Model Conflicting Relations

D

R1

R3

R2

R4
{R1},{R4} D

R1

R3

R2

R4
{R1},{R3},{R4}

D

R1

R3

R2

R4
{R1},{R4}

D D

R1 R2

R3
{R3}

D

R1 R2

R3
{R1},{R3}

D D

R1

R2
{R1},{R2}

D

D

R1R2

{R2}

D D

R1

R2
{R1},{R2}

Table 2. Explanations for dead features in Figure 2

ways, being redundant. That redundancy can be re-
moved if it has been accidentally introduced or kept to
explicitly model an important relationship.

• Anomalies: senseless information is modeled and
potential configurations are lost, though configura-
tions should be possible. As a consequence, a non-
mandatory feature becomes full-mandatory or can
never be selected.

• Inconsistency: a model contains contradictory infor-
mation, making most of the times impossible to derive
any product configuration. In the best of the cases, a
set of features can never be selected in configuration
process.

A list of examples for each type is given, but it lacks of
exhaustive and complete definitions and no automated sup-
port is given to detect them. They also defined a normalized
feature model as the one that has no redundancy, anomaly
or inconsistency, considering the need of the assistance ofa
domain expert in most of the cases to produce them.

In [4], one feature model is considered to be valid if it
defines at least one product giving an automated support
based on CSP. In [10], Mannion also proposes the usage of
first order logic to validate feature models. Although they
define and automatically support the detection of non-valid
feature models, this case is only the consequence of an in-
consistency that affects the root.

On the other hand, many authors have dealt with the de-
tection of errors in configuration, it means when the user
selects features from the feature model to build concrete
products. Regarding to this process, [17] indicates that in-
consistencies arise when a variation point is not resolved or
a full-mandatory feature is missing in a concrete product.
Many authors have dealt with the problem of errors detec-
tion in product configuration: D.Batory[1], proposes select-
ing the features one by one and checking if each selection
is right or wrong by using SAT solvers; Czarnecki[5] uses
Binary Decision Diagrams (BDD) to check the satisfiability
of the model and propagating the decisions made in config-
uration; In [11], it is proposed the usage of configurators to
follow the same intention.



7 Conclusions and Future Work

In this paper we have stated a general framework to ex-
plain the origin of dead features and have presented an im-
plementation of this solution based on constraint optimiza-
tion problems. For the integration of errors explanation in
SPL modeling tools, it is needed a good performance that
makes this task agile and efficient. One of our open issues
is analyzing the best implementation to this solution regard-
ing to performance and efficiency.

Based only on explanations, a developer may be able to
manually solve dead features. However we want to go fur-
ther and deal with the third step in errors treatment, auto-
matedly giving alternatives that solves the dead features.

Another issue to address in the future is the empirical
characterization of the causes why errors in feature models
appear. This could lead us to defining specific algorithms
that improve the performance of some steps in errors treat-
ment.

We proposed a general process to deal not only with dead
features, but with any other kind of error. It is our purpose to
extend our works to detect, explain and solving other types
of error.

Acknowledgments

This work was partially funded by the Spanish Ministry
of Science and Technology under grant TIC2003-02737-
C02-01 (AGILWEB). This paper is a result of the visit
of Pablo Trinidad to Cork Constraint Computation Center
(4C), as part of the collaboration between 4C and Univer-
sity of Seville. We would like to thank Barbara Smith and
Barry O’Sullivan for their useful comments.

References

[1] D. Batory. Feature models, grammars, and propositional for-
mulas. In J. H. Obbink and K. Pohl, editors,SPLC, volume
3714 of Lecture Notes in Computer Science, pages 7–20.
Springer, 2005.

[2] D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated
analysis of feature models: Challenges ahead.Communica-
tions of the ACM, Conditionally accepted, 2006.

[3] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling step-
wise refinement. IEEE Trans. Software Eng., 30(6):355–
371, 2004.

[4] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated
reasoning on feature models.LNCS, Advanced Informa-
tion Systems Engineering: 17th International Conference,
CAiSE 2005, 3520:491–503, 2005.

[5] K. Czarnecki and P. Kim. Cardinality-based feature mod-
eling and constraints: a progress report. InProceedings
of International Workshop on Software Factories, OOPSLA
2005, 2005.

[6] J. de Kleer, A. K. Mackworth, and R. Reiter. Characterizing
diagnoses. InAAAI, pages 324–330, 1990.

[7] M. J. G. de la Banda, P. J. Stuckey, and J. Wazny. Finding
all minimal unsatisfiable subsets. InPPDP, pages 32–43.
ACM, 2003.

[8] U. Junker. Quickxplain: Conflict detection for arbitrary con-
straint propagation algorithms. InIJCAI’01 Workshop on
Modelling and Solving problems with constraints (CONS-
1), Seattle, WA, USA, August 2001.

[9] U. Junker. Quickxplain: Preferred explanations and relax-
ations for over-constrained problems. In D. L. McGuinness
and G. Ferguson, editors,AAAI, pages 167–172. AAAI Press
/ The MIT Press, 2004.

[10] M. Mannion. Using First-Order Logic for Product Line
Model Validation. InProceedings of the Second Software
Product Line Conference (SPLC2), LNCS 2379, pages 176–
187, San Diego, CA, 2002. Springer.

[11] M. Raatikainen, T. Soininen, T. M̈annisẗo, and A. Mattila.
Characterizing configurable software product families and
their derivation.Software Process: Improvement and Prac-
tice, 10(1):41–60, 2005.

[12] R. Reiter. A logic for default reasoning.Artif. Intell., 13(1-
2):81–132, 1980.

[13] R. Reiter. A theory of diagnosis from first principles.Artifi-
cial Intelligence, 32(1):57–95, 1987.

[14] P. Trinidad, D. Benavides, and R. A. Cortés. Isolated fea-
tures detection in feature models. InConference on Ad-
vanced Information Systems Engineering (CAiSE’06) Fo-
rum, June 2006.

[15] E. Tsang.Foundations of Constraint Satisfaction. Academic
Press, 1995.

[16] T. von der Maßen and H. Lichter. Requiline: A requirements
engineering tool for software product lines. In F. van der
Linden, editor,PFE, volume 3014 ofLecture Notes in Com-
puter Science, pages 168–180. Springer, 2003.

[17] T. von der Massen and H. Lichter. Deficiencies in feature
models. In T. Mannisto and J. Bosch, editors,Workshop on
Software Variability Management for Product Derivation -
Towards Tool Support, 2004.

[18] W. Zhang, H. Zhao, and H. Mei. A propositional logic-based
method for verification of feature models. In J. Davies,
W. Schulte, and M. Barnett, editors,ICFEM, volume 3308
of Lecture Notes in Computer Science, pages 115–130.
Springer, 2004.


