
Business Family Engineering: Does it make sense?

Ildefonso Montero, Joaquín Peña, Antonio Ruiz-Cortés

Departamento de Lenguajes y Sistemas Informáticos

Av. Reina Mercedes s/n, 41012 Seville (Spain)

University of Seville

{monteroperez, joaquinp, aruiz}@us.es

Abstract

Nowadays most companies in whichever field
have a software system that helps managing all
the aspects of the company, from the strategic
management to daily activities. Companies are in
continuous evolution to adapt to market changes,
and consequently, the Information Technology
(IT) infrastructure that supports it must also
evolve. Thus, software companies are currently
supporting this evolution with ad hoc techniques.
 We think that, as it is being done for
traditional software systems (non-oriented to
business process) in the software product line
(SPL) field, institutionalized techniques for
performing a systematic reuse of business
processes across different businesses can be
introduced.
 In this paper, we explore the feasibility of
adapting SPL techniques, oriented to reuse
software, to Business-Driven Development
(BDD), oriented to reuse processes, across
different businesses; we call this approach
Business Family Engineering (BFE). As a result
of our study, we show some of the problems we
have identified and some of the key aspects
needed to enable this new field.

1. Introduction

Nowadays most companies in whichever field
have a software system that helps managing all
the aspects of the company, from the strategic
management to daily activities. Companies are in
continuous evolution to adapt to market changes,
and consequently, the Information Technology
(IT) infrastructure that supports it must also

evolve. Thus, software companies are currently
supporting this evolution with ad hoc techniques.

Research fields such as autonomic computing
(by means of self-* properties) or policy-based
management, try to provide solutions for the
evolution. Business-Driven Development (BDD)
is another research field, which is the focus of this
paper, that tries to solve this problem designing
software systems starting from the business
processes of the companies.

Business processes are designed to be
executed over a process engine. Of course, current
process engineers redesign the processes every
time that is needed using ad hoc techniques to
maximize the level or reuse from one version to
another. In addition, when dealing with several
businesses in a certain domain, many common
features can be found, and reuse across businesses
is also exploited.

There exist a field called software product
lines (SPL) that systematizes the reuse across the
set of similar products that a software company
produces. We think that such systematization can
be also applied in BPE improving the results
achieved by current ad hoc techniques.

Clemens et al. defines in [3] Software Product
Line (SPL) as follows: a set of software-intensive
systems, sharing a common, managed set of
features that satisfy the specific needs of a
particular market segment or mission and that are
developed from a common set of core assets in a
prescribed way. The main goal of SPL approach is
to obtain a reduction of the overall development
cost and time for the products derived from the
product line based on reuse. Basically, in SPL we
obtain a set of software systems, called products.
Each product contains common functionalities,

called features, and a set of specific features that
differentiates one product from another.

The idea of applying SPL to BDD, has been
explored by Schnieders et al. who define in [8]
Process Family Engineering (PFE) as a modern
software development approach, which allows for
the rapid and cost-effective development and
deployments of customer tailored business process
oriented systems. Basically, PFE follows the SPL
philosophy for managing the evolution of the
business process of a unique business (manage
only one software system). That is to say, each
product in PFE represents an evolution of the
process (at runtime).

Thus, PFE may be the solution to manage the
evolution of the business process of a company,
but to the best of our knowledge, there not exists
an approach to build a product line of BDD
systems.

In this paper, we expose the main concepts of
the approach needed to build a product line of
businesses, that we call Business Family
Engineering (BFE). In addition, from our analysis,
we conclude that PFE is useful for managing
single businesses, but it is not feasible for a set of
businesses (BFE). We expose these limitations
concluding that this approach can be used to
manage the evolution of each business in a BFE.

This paper is structured as follows: Section 2
presents the background needed about SPL and
PFE proposals; Section 3 presents the main
differences between SPL and PFE; Section 4
presents the main features of BFE; Section 5
presents a discussion about BFE as a realistic
solution in the scope of SPL for PFE systems; and
finally, in the last section, we draw the main
conclusions and the future research lines needed
to enable a business process family infrastructure.

2. Preliminaries

2.1. Software Product Lines

Pohl et al define in [5, 6] that SPL
development aims at and achieves pro-active,
constructive reuse, based on the idea to develop
software products which share a significant
amount of features based on a common platform.
The SPL approach is devoted to overcome
complexity providing all the techniques needed

for enabling the mass production of software in a
certain application domain. The variability
concept appears in SPL to represent the
differences and commonalities inside an
application domain. Variability is one of the
critical aspects of SPL and it must be managed at
all the stages of SPL development.

The software process of SPL is divided into
two main stages: domain engineering, which is in
charge of providing the reusable core assets that
are exploited during the derivation of products,
done at a second stage named application
engineering [6].

One of the most accepted techniques to
represent the set of products of a SPL are feature
models [4]. The main goal of feature modelling is
to identify commonalities and differences among
all products of a SPL. A feature model is a
compact representation of all potential products of
an SPL showing a set of features in an hierarchical
structure where it is shown which features are
mandatory, optional or alternative. In Figure 1 is
shown an example of an E-shop feature model,
where there are three mandatory features:
Products, Shopping Cart and Checkout. It
represents that all the products of the SPL
represented by this feature model must have the
features catalogued as mandatory.

2.2. Process Family Engineering

Process Family Engineering (PFE) is an approach
given by PESOA research group from Hasso
Plattner Institute for IT Systems Engineering in
[1]. In the same way that SPL approach provides
all the techniques needed for enabling the mass
production of software in a certain application
domain, PFE approach provides all the techniques
needed for enabling the mass production of
processes in a certain business. Each product
represents a set of processes enabled at a certain
moment of the execution. In PFE we obtain only
one software system, where the features are
processes, and where this system envolves at
runtime. Every evolution of the process represents
a product that contains a subset of all features.
However, the systems itself contains all the
features of the family.
 The main tool for representing the set of
processes contained into a business are feature
models, and the tool for representing an specific

Adquire Products

<< abstract >>
Calculate Sum

Calculate Sum

<< default >>

Calculate Sum

{feature: Personalized Shopping Cart}
Calculate
Discount

<< implements >> << implements >>

<< inheritance >>

Discount = 3%

Discount =
5%<< parameterization >>

Checkout
E‐Shop

Products Shopping Cart Checkout

Anonymous Personalized Credit Card Invoice

Mandatory
must have feature

Optional
optional feature

Dependency
right feature

depends on left feature

Feature Model Legend Extended BPMN Legend

Variation Point

{feature:} Feature related

Figure 1: Example of feature model and extended BPMN by PFE approach

process is Business Process Model Notation
(BPMN). It is defined by OMG in [2] as a flow
chart based notation for defining business
processes. BPMN provides (i) a graphical notation
based on Business Process Diagram (BPD),
which is a diagram used to design and manage
business processes; and (ii) a formal mapping to
an execution language: Business Process
Execution Language (BPEL). PESOA introduces
an extension of BPMN to represent variability in a
process [7].
 Figure 1 shows an example of a feature model
of an E-shop business and an extended BPMN to
represent a checkout process. Feature model
represents all the processes contained into the E-
shop business, if a process is denoted as
mandatory it must be present in all the possible
configurations of the business, for example:
Checkout. Each process is represented using
BPMN with the extensions proposed by PESOA.
As shown in Figure 1 variation point extension is
represented as a puzzle-piece graph notation and
for feature and processes relationship we see that
Calculate Sum can be implemented as a sequence
of Calculate Sum and Calculate Discount
subprocesses that is applied when the feature
Personalized Shopping Cart is selected.

3. Main differences between SPL and
PFE

In SPL a product is composed of a set of common
features and a set of variable features. Common
features appears in all products and variable
features appears under demand of products’s
consumers. Observing a certain product of a SPL,
although it is described as a set of fixed features,
some features can be in use in a certain moment
and some not. Thus, in SPL the evolution of the
system at runtime is not taken into account in the
feature model. In PFE each feature is a process

and all of them appear into the product, but at
runtime there exists a set of products based on
selection of features/processes.

As can be observed in Figure 2, where we
depict how SPL and PFE products are generated,
SPL products are implemented by software
artifacts that for each of them there exists a
feature selection phase that generates the final
products (a set of core and variable features). PFE
products are implemented by processes that for
each of them there exists an evolution in
execution time incrementing or decrementing the
variable set of features. Each product is a software
system based on processes.

4. Business Family Engineering

In this section, we define the main aspects of
BFE.

4.1. BFE Definition

Business Family Engineering (BFE) can be
defined as: a set of software systems driven by
business processes (hereafter business) where
each product of the family has a set of common
processes and a set of variable processes. The
formal definition of BFE can be represented as
follows: Let BF be a Business Family that is a set
of n > 0 businesses

BF = {B1,B2, ...,Bn}

where each B represents a business. Each business
B is a set of processes (denoted with P). Thus,
each Bi in BF can be defined as follows:

Bi = {P1, P2, ..., Pk}; k > 0; 1 ≤ i ≤ n

Given this it holds that there exists a set of
common processes between whichever set of
businesses. Let Bi and Bj be two businesses
contained in BF where 1 ≤ i, j ≤ n:

. . . .

Pr
oc

es
s F

am
ily

 E
ng

in
ee

rin
g

A
pp

lic
at

io
n

En
gi

ne
er

in
g

Process Family
Infrastructure

Analysis Design Implementation

Analysis Design Implementation

Process Family
Engineering

Software Product
Line

Software Artifact 1

Implemented by

. . . .

Software Artifact 2

Software Artifact n

Select features

Core Artifact

Variation 1 Variation 2

Core Artifact

Variation 1

Core Artifact

Variation 2

Software
System 1
(Product 1)

Software
System 2
(Product 2)

Software
System m
(Product m)

Process 1

Implemented by

. . . .

Process 2

Process n

Variation 2

Core Processes
Variation 2

Software
System
based on
processes

Select features

Variation 1

Core Processes

Core Processes

Variation 1

Figure 2: SPL and PFE approaches

. . . .

. . . .

Business Family
Engineering

Process 1

Implemented by

. . . .

Process 2

Process n

Select features

Process Process

Process c Process d

Core Processes

Variable Processes

Process Process

Process c Process d

Core Processes

Variable Processes

Process Process

Process c Process d

Core Processes

Variable Processes
Software System

based on processes m

Variation 2

Core Processes
Variation 2

Variation 1

Core Processes

Core Processes

Variation 1

Software System
based on processes 1

Figure 3: BFE approach

Bi ∩ Bj ≠ Ø

Thus, we can say that a business family can be
also defined as a set of core and variable
processes/features. Let CF be the set of common
processes or features and let VF be the set of
variable features, BF can be defined as a tuple
(CF, VF) as follows:

BF = (CF, V F)

In that way, a business Bi is defined formally as a
tuple containing all the CF and a subset of VF
denoted as SVF:

Bi = (CF, SVF Є VF)

4.2. Integration of BFE with PFE

PFE provides techniques to manage the evolution
of the business process of a company based on
SPL ideas and BFE provides a SPL of BDD
systems. In this section, we present our first steps
towards the integration of both approaches.
 Figure 3 depicts the integration between BFE
on PFE. As shown, each business contains a set of
core processes, CF, and a set of variable
processes, VF. However, in PFE the
processes/features appear and disappear at
runtime. As shown before, each configuration of
the set of processes enabled at a certain moment
represents a product. Thus, we can say that the CF
of a BF are always enabled at runtime, but the set
of processes in VF is not fixed at runtime.

Thus, as PFE defines, we can set up a product
line that takes into account this runtime
variability. For formalizing these concepts we
should redefine each business B of a BF.

B = (CF, SVF Є VF, F∆ :

: t, {Feature × ... × Feature} |→

|→ {Feature × ... × Feature})

where F∆ is a function that given an instant t

transform the set of SVFt into the new set of
variable features of the following time instant t+1,
that is to say SVFt+1, formally:

F∆ (t, SVFt) = SVFt+1 Є VF

• SVFt ≠ SVFt+1

Business Family
BF : { B1, B2, …, Bn }

Processes

: member of Core Features

Bi

Bj

Business Family
BF : { B1, B2, …, Bn }

Bi

Bj

Processes

Instant t + 1

Instant t

SVF t

SVF t+1

F (t, SVFt)

Figure 4: Evolution of a business into BFE

Figure 4 sketches a graphical representation of

F∆, where it is represented the transformation of
SVFt into SVFt+1. In an instant t there exists an
specific set of SVFt for business Bj that evolves in
instant t+1 to another different set SVFt+1. The
evolution is defined by the F∆ in t.

5. Discussion

In this section, we conduct an analysis about the
main problems identified in BFE approach. The
first problem is about combinatorial explosion.
The main reason about this problem is that BFE
consists on building a product line of PFE product
lines. Thus, there exists a SPL that grows very
rapidly.

The second problem is about using feature
models to represent process changes on runtime.
Feature model are designed to represent design
time variability, thus they are not adequate for
runtime variability.

In Figure 5 we present a case study about a
Restaurant Chain, that uses feature model to

represent different products. Pay attention on
Restaurant PNIS07 feature model. There exists a
process called Serve that depending on the
moment can be Serve Fast or Serve Normal, but
feature model is not expressive enough for
representing dynamic evolutions on runtime since
it does not support runtime variability.

Specific Processes

Restaurant Chain

Core Processes

Serve Cook

Restaurant
“PNIS05ʺ

Serve Cook

Serve Fast

Restaurant
“PNIS06ʺ

Serve Cook

Serve Normal

Restaurant
“PNIS07ʺ

Serve Cook

Serve
Fast

Serve
Normal

Figure 5: Case Study: Restaurant chain

Possible solutions to the identified problems

are:

• For combinatorial explosion: using one feature
model to BFE and another feature model for each
PFE, obtaining an hypercube structure, that
represents all the possible variations of products.
• For documenting dynamic evolutions: using
one feature model to BFE and another feature
model for all the possible products introducing an
extension of feature model ables to represent
runtime variability and that aglutinates the
variability of all PFE products. Thus we may
solve both identified problems.

6. Conclusions

The main conclusion of this paper is that BFE is
feasible. Its main benefit is that software
companies that provide BDD solutions, can reuse
process building a product line where a set of
common processes is extended with the processes
needed for each customer in a systematic way,
thus reducing costs (in time and money) and
improving the quality of their products, since they
are tested for several clients.
Another important conclusion is that PFE cannot
be used directly for BFE. PFE provides techniques
to manage the evolution of the business process of
a company based on SPL ideas, however all the
variable features of the process are added to the
final software system, enabling or disabling them
at runtime. While BFE needs techniques that
allow adding only those features that the customer
requires. In addition, techniques used in PFE
presents drawbacks. Mainly, feature models are
used to represent runtime variability, while these
models are devoted to static variability.
 As PFE is quite valuable for runtime
variability, we conclude that BFE must be
integrated with PFE, but a number of problems
arise. Mainly, as a result of having a product line
(BFE) of product lines (PFE) it occurs an state
explosion that hinders the feasibility of this
approach.

Acknowledgements

This work has been partially supported by the
European Commission (FEDER) and Spanish
Government under CICYT project Web-Factories
(TIN2006-00472).

References

[1] J. Bayer, W. Buhl, C. Giese, T. Lehner, A.
Ocampo, F. Puhlmann, E. Richter, A.
Schnieders, J. Weiland, and M.
Weske.Process family engineering. modeling
variant rich processes. Technical report.

[2] BPMI. Business process modeling notation

(BPMN) version 1.0 - may 3, 2004. OMG.

[3] P. Clements, L. Northrop, and L. M. Northrop.

Software Product Lines: Practices and

Patterns .Addison-Wesley Professional,
August 2001.

[4] K. Czarnecki and M. Antkiewicz. Mapping

Features to Models: A Template Approach
based on Superimposed Variants. 2005.

[5] G. Halmans and K. Pohl. Communicating the

variability of a software-product family to
customers. Inform., Forsch. Entwickl., 18(3-
4):113–131, 2004.

[6] K. Pohl, G. Böckle, and F. van der Linden.

Software Product Line Engineering:
Foundations, Principles and Techniques.
Springer, September 2005.

[7] F. Puhlmann, A. Schnieders, J. Weiland, and

M. Weske. Variability mechanisms for
process Models. Technical report.

