
From Requirements to Web System Design. An Automated

Approach using Graph Transformations ∗

Sergio Segura, David Benavides, Antonio Ruiz-Cortés and María José Escalona

Department of Computer Languages and Systems

University of Seville

Av. de la Reina Mercedes S/N, 41012 Seville, Spain

e-mail: {sergiosegura,benavides,aruiz,mjescalona}@us.es

Abstract

Building Web design models from require-
ments specification is recognised as a time-
consuming and error-prone task. In this con-
text, some MDA-based approaches propose us-
ing metamodels and CIM to PIM transforma-
tions in order to provide a systematic method
to transform Web requirements models into
Web design models. However, the specific
tool support for such transformation is still
very limited. In this paper we illustrate how
graph transformations can be used as a suit-
able technology and associated formalism to
automate the transformations from Web re-
quirement models to Web design models. In
particular, we clarify our proposal by detail-
ing how transforming instances of the WebRE
metamodel to instances of the UWE meta-
model using the AGG System.

1 Introduction

The success of software development mainly
relies on the ability to implement programs
fulfilling all the identified requirements. Such
task is traditionally delegated to skilful devel-
opers who base the design on its knowledge
and previous experience. However, this fre-
quently results on a time-consuming and error-
prone activity incrementing costs and reducing

∗This work has been partially supported by
the European Commission (FEDER) and Spanish
Government under CICYT project Web–Factories
(TIN2006-00472).

software quality.
Model Driven Development (MDD) [20] pro-

poses rising the abstraction level during soft-
ware development from code to models. The
main goal is to concentrate on the high-level
concepts while automating as much as possi-
ble the low-level details. Roughly speaking,
MDD is based on the definition of metamodels
and model transformations. A meta-model is
a special model establishing the constructs and
constraints to build models within a concrete
domain. On the other hand, model transfor-
mations set how a model can be transformed
into another model or even code. In this con-
text, model-to-model transformations are usu-
ally defined by means of metamodel mapping,
i.e. transformation rules relating pattern from
the source metamodel to patterns in the target
metamodel.

In [13] Koch et al. propose filling the gap be-
tween requirements and Web design by using
model transformations in the context of MDD.
In particular, they propose transforming Web
requirements model into Web system design
models by means of model transformations.
In this context, they illustrate their proposal
by defining a set of formal transformation
rules between models defined as instances of
the Web Requirements Engineering metamodel
(WebRE, [6]) and instances of the UML-based
Web Engineering metamodel (UWE, [11]). For
such purpose, they use the standard Query
View Transformation language (QVT, [10]).

Graph grammars and graph transformations
are a very mature approach used since more



than 30 years ago for the generation, manip-
ulation, recognition and evaluation of graphs
[19]. Most of visual languages can be inter-
preted as a type of graph (directed, labelled,
etc.). This makes graph transformations to be
a natural and intuitive way for transforming
models [7, 8, 14, 15]. In contrast with other
model transformation approaches [7], graph
transformations are defined in a visual way
and are provided with a set of mature tools
to define, execute and test transformations.

In this paper we take a first step toward au-
tomated tool support for the mapping from
requirement to Web design. For such end, we
show how graph transformations can be used
as a suitable technology and associated for-
malism to implement the transformations from
Web requirements models to Web design mod-
els. In order to illustrate our proposal we base
on the formal transformation rules proposed
by Koch et al. in [13]. In particular, we in-
troduce our proposal by detailing how imple-
menting one of such rules in the AGG system.

The application of graph transformation to
the Web engineering domain is not a novel
idea. Cáceres et al. [5] propose a method
to obtain the navigation model of a Web In-
formation System starting from the concep-
tual data model and the user requirements.
OOWS [22] also proposes graph transforma-
tion as a good strategy to transform require-
ments models into navigation design models.
In [21] Valderas et al. go even further using
graph transformations to produce Web proto-
types from Web requirements models. Com-
pared to them, we base our transformations
on MOF metamodels [17] and QVT transfor-
mation rules clarifying how graph transforma-
tions can fix with the standards used in the
context of MDA.

The remainder of this paper is structured as
follows: Section 2 gives an overview of graph
grammars and graph transformations. An in-
troduction to the WebRE and UWE meta-
models is presented in Section 3. In Section
4 we detail our proposal by using an example
inspired in the work of Koch et al.. Finally,
we describe our future work and summarize
our main conclusions in Section 5.

2 Graph Grammars and Graph

Transformations

Graph Grammars are a very mature approach
used since 30 years ago for the generation,
manipulation, recognition and evaluation of
graphs [19]. Since then, graph grammars has
been studied and applied in a variety of dif-
ferent domains such as pattern recognition,
syntax definition of visual languages, model
transformations, description of software archi-
tectures, etc. This development is documented
in several surveys, tutorials and technical re-
ports [1, 2, 3, 8, 14, 15].

Graph grammars can be considered as the
application of the classic Chomsky’s string
grammars concepts to the domains of graphs.
Hence, a graph grammar is composed by an
initial graph, a set of terminal labels and a set
of transformation rules (sometime also called
graph productions). A transformation rule is
composed mainly by a source graph or Left
Hand Side (LHS) and a target graph or Right
Hand Side (RHS). The application of a trans-
formation rule to a so-called host graph, also
called direct derivation, consists on looking for
an occurrence of the LHS graph in the host
graph. If such matching is found, the occur-
rence of the LHS in the graph is replaced by
the RHS of such rule. Thus, each rule appli-
cation transforms a graph by replacing a part
of it by another graph. The set of all graphs
labelled with terminal symbols that can be de-
rived from the initial graph by applying the set
of transformation rules iteratively is the lan-
guage specified by the graph grammar.

The application of transformation rules to a
given graph is called Graph Transformations.
Graph transformations are usually used as a
general rule-based mechanism to manipulate
graphs. Most of visual modelling languages
can be interpreted as a type of graph (directed,
labelled, attributed, etc.). This make graph
transformations to be recognized as a suitable
technology for the specification and applica-
tion of model transformations [7, 8, 14, 15].
Hence, as documented in the literature, the
reasons to select graph transformations as a
suitable approach for model transformations



are manifold:

• Graph transformations are a natural and
intuitive way of performing pattern-based
visual model transformations.

• The maturity of graph transformations
has provided it with a solid theoretical
foundation in form of useful properties.
Hence, for instance, the ”invertability”
property details under what conditions a
transformation rule can be inverted.

• There is a variety of mature tools to
define, execute and test transformations
rules. Fujaba 1 and the AGG System2 are
two of the most popular general-purpose
graph transformation tools within the re-
search community. Nevertheless, other
specific tools such as GReAT3 or VIA-
TRA24 are also starting to emerge as a
consequence of the increasing popularity
of graph transformations in the model-
driven development domain.

3 Web Metamodels

Model Driven Development (MDD) is mainly
oriented to the separation between platform
independent design and platform specific im-
plementations of applications. This is one
of the main reasons that explain the increas-
ing popularity of MDD in the Web Engineer-
ing domain [12] in which the problems caused
by the changing technologies are a routine.
In this context, the popularity of MDA [16]
has motivated the development of new MOF
[17] metamodels and UML profiles [18] making
possible the interoperability between different
development tools.

In [13] Koch et al. focus on the early
step of the MDA approach and uses two of
these metamodels to define the transforma-
tion from requirement models (CIM) to Web
design models (PIM). In particular, they use
the so-called Web Requirements Engineering

1http://wwwcs.uni-paderborn.de/cs/fujaba/
2http://tfs.cs.tu-berlin.de/agg/
3http://www.escherinstitute.org/Plone/tools
4http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-

home/subprojects/VIATRA2

metamodel (WebRE, [6]) and the UML-based
Web Engineering metamodel (UWE, [11]) as
the source and target metamodels respectively.
In the next sections an overview of both meta-
models is presented.

3.1 Web Requirements Metamodel

The Web Requirement Engineering meta-
model (WebRE, [6]) (Figure 1) summarizes
the main activities and elements used when
modeling Web system requirements. It is com-
posed by two packages: the WebRE Behaviour
package and the WebRE Structure package.

Figure 1: WebRE Metamodel (extracted from
[12])

The WebRE Behaviour package includes the
metaclasses to model the Web System be-
haviour requirements. It comprises the gen-
eral concepts of Web user, navigation, browse,
search, Web process and user transaction. A
WebUser is any user who interact with the
Web System, registered or not. The naviga-
tion of the Web user trought the system is
modelled by means of the Navigation meta-
class which consists on a set of browse activ-
ities that the Web user performs to reach a



target node. A Browse activity represents the
action of following a link. The special browse
activity Search models that the Web user per-
forms a query to the Web system. Finally, the
WebProcess metaclass is used to model naviga-
tions including user transactions like changing
a password or providing payment data.

The WebRE Structure package includes the
metaclasses to model how the Web System
manages and displays the information. Such
information is modeled at three levels: nodes,
pages and content. A Node is a point of
the navigation where the user finds informa-
tion. Nodes will be usually associated to one
or more Web pages modeled by means of the
metaclass WebUI. Finally, each piece of infor-
mation of a Web system is represented as an
instance of the metaclass Content.

3.2 Web Design Metamodel

The UML-based Web Engineering metamodel
(UWE, [11]) defines the elements to model the
high-level design concepts of Web systems re-
lated to content, navigation structure, busi-
ness process and presentation. As an exam-
ple, Figure 2 shows the metaclasses and as-
sociations of the UWE navigation package.
The main navigation elements are navigation
nodes and links modelled as instances of the
classes NavigationNode and Link respectively.
There are several kinds of navigation nodes
and links defined. Hence, for instance, navi-
gation classes present the content of the Web
application to the user meanwhile navigation
links are the link which take to them.

4 From Web Requirements to Web

Design

In this section we detail our proposal by de-
tailing how graph transformations can be used
to automate the mapping from Web require-
ments models to Web system design models.
Firstly, we introduce the AGG System. Next,
we present our proposal by detailing an exam-
ple.

4.1 The AGG System

In order to test our proposal we imple-
mented it in one of the most popular tool
within the graph grammar community: The
Attributed Graph Grammar System (AGG).
Roughly speaking, AGG is a free Java graph-
ical tool for editing and transforming graphs
by means of graph transformations. The AGG
System is a prototype implementation of the
algebraic approach to graph transformation
supporting Contextual Layered Graph Gram-
mars (CLGGs, [4]). In CLGGs the set of pro-
ductions is classified into ordered layers. To
transform a graph, productions are applied
layer by layer from layer 0 to layer N (cyclically
if needed) until no rules can be applied. AGG
provides a flexible graph editor and a useful
component to apply user-selected productions
to a given graph. In addition, the AGG sys-
tem can be used as a general purpose graph
transformation engine in any dedicated Java
applications employing graph transformation
methods. All this reasons made us to select
AGG as a suitable tool to implement our pro-
posal.

AGG graph transformation rules consist on
three parts: a left-hand and a right-hand side
graph, a mapping morphism between nodes
and edges on both sides and a set of Negative
Application Conditions (NACs). NACs are
graph patterns establishing under what con-
ditions the rule will not be applied. Figure 3
shows a screenshot of the AGG GUI. On the
left hand side a tree view display the working
graph and the rules of the proposed grammar.
In the upper central area the NAC (if any) and
the LHS and RHS graphs of the selected rule
are displayed. Finally, the central area is re-
served for the host graph (also called working
graph).

4.2 Automating Transformations

In order to detail our proposal we use an
example based on the work of Koch et al.
[13]. In particular, we present the set of AGG
transformation rules needed to transform au-
tomatically a Search activity from the require-
ment model (instance of WebRE) into a Query



Figure 2: UWE Metamodel: Navigation package (extracted from [12])

Figure 3: The AGG System



in the design navigation model (instance of
UWE). Figure 4 shows the formal definition
of such transformation in QVT. As detailed in
[13], each search activity at the requirement
level is transformed into a Query, an Index,
a NavigationClass and two Links relating the
query, the index and the navigation class. The
NavigationClass in the navigation model rep-
resents the results of the query. In a similar
way, the parameters of the search (Content)
are transformed into attributes (Navigation-
Attribute) of the query.

An important aspect to consider when work-
ing with AGG is that it works exclusively with
the graphs created using its editor and not
with external models. Thus, input models
must be represented as AGG graphs before ap-
plying transformations. In a similar way, once
the transformation is performed, the obtained
graph must be translated to the target model.
The translation of a model to an AGG graph
and vice versa is out of the scope of this paper.
We refer the interested reader to the work of
Valderas et al. [22] who propose using XML as
a suitable strategy for the translations model-
to-graph and graph-to-model in the context of
AGG.

Figure 5 show the set of AGG transforma-
tion rules implemented to perform the sample
QVT rule showed in Figure 4. From left to
right, the NAC, LHS and RHS graphs of each
rule are presented.

Objects used in requirement models can be
part of different rules creating different struc-
tures in the design model. This is known in
the literature as one-to-many transformations
[14]. When implementing this kind of trans-
formation the source pattern must not be re-
placed by the target one. Instead of that, it
is recommended using a helper structure to
link the source and target graph ’marking’ the
transformation [8, 14]. Such structures are
later used in the NACs to check if the trans-
formation rule has been already applied. The
oval nodes and dashed lines used in the rules
of Figure 5 represent such structure.

Rule 1 depicts the transformation of a
Search object into a Query. Firstly, AGG look
for a search object in the host graph (LHS).

Next, the transformation engine verify that
the search object is not linked to a query with
the same name by means of a ’S2Q’ node
(NAC), i.e. the transformation rule has not
been already applied. Finally, if the NAC is
not fulfilled, AGG create a query node with
the same name than the search object and link
them using a ’S2Q’ node (RHS).

Rule 2 illustrates how the parameters of the
search (Content instances) are transformed
into navigation attributes with the same name
representing the attributes of the query. Fi-
nally, Rule 3 shows how the results of the
search is transformed into an index, a navi-
gation class and two links relating the search,
the index and the navigation class.

Figure 6 depicts the result of executing the
set of AGG transformation rules to a sample
input requirement model.

5 Conclusions and Future Work

In this paper we take a first step toward auto-
mated tool support to transform Web require-
ments models into Web system design models.
For such end, we propose using graph transfor-
mation as a suitable technology and associated
formalism for implementing such transforma-
tions. In order to illustrate our proposal we
base on the transformation rules formally de-
fined by N. Koch et al. in [13]. In particu-
lar, we present the set of AGG transformation
rules needed to transform a Search activity in
the WebRE metamodel (requirements level) to
a Query in the UWE metamodel (design level).
In contrast with other related proposals, we
base our transformations on MOF metamod-
els and QVT transformation rules illustrating
how graph transformations can be used with
the standards used in the context of MDA.

Many challenges remain for our future work.
AGG is a suitable tool but it still has some
drawbacks. AGG does not work with stan-
dard notations such as MOF or UML making
necesary the translations of the metamodels to
its internal notation. Additionally, in contrast
with the QVT language, AGG rules can not
be structured by using inheritance and com-
position mechanisms making it a not scalable



Figure 4: QVT Transformation Rule: Search TO Query (extracted from [12])

Figure 5: AGG Transformation Rules: Search TO Query



Figure 6: Sample Transformation

proposal. In order to get over these difficul-
ties, we are studying other more powerful but
complex approaches such as MOMENT5.

Finally, we consider that integrating our
proposal in a CASE tool such as ArgoUWE6

or NDT-Tool [9] would be useful and we plan
to work in that direction too.

References

[1] Marc Andries, Gregor Engels, Annegret
Habel, Berthold Hoffmann, Hans-Jörg
Kreowski, Sabine Kuske, Detlef Plump,
Andy Schürr, and Gabriele Taentzer.
Graph transformation for specification
and programming. Science of Computer
Programming, 34(1):1–54, 1999.

[2] R. Bardohl, M. Minas, A. Schurr, and
G. Taentzer. Application of graph trans-
formation to visual languages. In H.
Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors, Handbook of Graph
Grammars and Computing by Graph
Transformation, volume II: Applications,
Languages and Tools. World Scientific,
1999.

5http://moment.dsic.upv.es/
6http://www.pst.informatik.uni-

muenchen.de/projekte/uwe/argouwe.shtml

[3] Luciano Baresi and Reiko Heckel. Tu-
torial introduction to graph transforma-
tion: A software engineering perspective.
In ICGT ’02: Proceedings of the First In-
ternational Conference on Graph Trans-
formation, pages 402–429, London, UK,
2002. Springer-Verlag.

[4] Paolo Bottoni, Gabriele Taentzer, and
Andy Schürr. Efficient parsing of visual
languages based on critical pair analysis
and contextual layered graph transforma-
tion. In VL ’00: Proceedings of the 2000
IEEE International Symposium on Visual
Languages (VL’00), page 59, Washing-
ton, DC, USA, 2000. IEEE Computer So-
ciety.

[5] Paloma Cáceres, Valeria de Castro,
Juan M. Vara, and Esperanza Mar-
cos. Model transformations for hypertext
modeling on web information systems. In
SAC ’06: Proceedings of the 2006 ACM
symposium on Applied computing, pages
1232–1239, New York, NY, USA, 2006.
ACM Press.

[6] María José Escalona Cuaresma and Nora
Koch. Metamodeling the requirements of
web systems. In WEBIST (1), pages 310–
317, 2006.



[7] K. Czarnecki and S. Helsen. Feature-
based survey of model transformation ap-
proaches. IBM Syst. J., 45(3):621–645,
2006.

[8] Karsten Ehrig, Esther Guerra, Juan
de Lara, Laszló Lengyel, Tihamér
Levendovszky, Ulrike Prange, Gabriele
Taentzer, Dániel Varró, and Szilvia
Varró-Gyapay. Model transformation
by graph transformation: A compara-
tive study. In MTiP 2005, Interna-
tional Workshop on Model Transforma-
tions in Practice (Satellite Event of MoD-
ELS 2005), 2005.

[9] Mejías M. Torres J. Escalona, M.J. De-
veloping system with ndt & ndt-tool. In
Proceeding of the 13th International Con-
ference on Information System Develop-
ment (ISD’2004), pages 149–159, 2004.

[10] Query QVT-Merge Group. Re-
vised Submission for MOF 2.0
Query/Views/Transformations RFP.
Object Management Group, 2004.
http://www.omg.org/docs/ad/04-04-
01.pdf.

[11] N. Koch and A. Kraus. The expres-
sive power of uml-based web engineer-
ing. In Second International Workshop on
Web-oriented Software Technology (IW-
WOST02), pages 105–119, June 2002.

[12] N. Koch, A. Vallecillo, and G. Rossi, ed-
itors. Workshop On Model-Driven Web
Engineering (MDWE 2005), July 2005.

[13] Nora Koch, Gefei Zhang, and María
José Escalona Cuaresma. Model transfor-
mations from requirements to web system
design. In ICWE, pages 281–288, 2006.

[14] T. Mens, P. van Gorp, G. Karsai, and
D. Varró. Applying a model trans-

formation taxonomy to graph transfor-
mation technology. In G. Karsai and
G. Taentzer, editors, GraMot 2005, Inter-
national Workshop on Graph and Model
Transformations, ENTCS, 2005. In press.

[15] Tom Mens. On the use of graph transfor-
mations for model refactoring. Generative
and Transformational Techniques in Soft-
ware Engineering. LNCS, 4143:219–257,
2006.

[16] OMG. MDA Guide Version 1.0.1, 2003.
http://www.omg.org/mda/specs.htm.

[17] OMG. Meta Object Facility (MOF) Core
Specification. Version 2.0, January 2006.
http://www.omg.org/docs/formal/06-
01-01.pdf.

[18] OMG. Unified Modeling Lan-
guage: Superstructure. Ver-
sion 2.1.1, February 2007.
http://www.omg.org/docs/formal/07-
02-05.pdf.

[19] Grzegorz Rozenberg, editor. Hand-
book of Graph Grammars and Comput-
ing by Graph Transformations, Volume 1:
Foundations. World Scientific, 1997.

[20] D.C. Schmidt. Model-Driven Engineer-
ing. IEEE Computer, February 2006.
ISSN. 0018-9162.

[21] P. Valderas, V. Pelechano, and O. Pas-
tor. A transformational approach to pro-
duce web application prototypes from a
web requirements model. International
Journal of Web Engineering and Technol-
ogy(IJWET), 3 No. 1:4 – 42, 2006.

[22] Pedro Valderas, Joan Fons, and Vicente
Pelechano. From web requirements to
navigational design - a transformational
approach. In ICWE, pages 506–511, 2005.


