
Toward Automated Refatoring of Feature Models using GraphTransformations ∗Sergio Segura, David Benavides, Antonio Ruiz-Cortés and Pablo TrinidadDepartment of Computer Languages and SystemsUniversity of SevilleAv. de la Reina Meredes S/N, 41012 Seville, Spaine-mail: {segura, benavides, aruiz, trinidad}�tdg.lsi.us.esAbstratSoftware Produt Line (SPL) development isan approah to develop families of softwaresystems in a systemati way. A Feature Model(FM) represent all the produts in a SPL interms of features. Applying refatoring to anSPL an have the highly negative e�et ofreduing the number of di�erents produtsin the SPL. Hene, it is aepted that notonly programs must be refatored but also itsassoiated FMs. In this paper we present a�rst proposal for automated support for FMrefatoring based on graph transformations.We also explain how we plan to integrate ourproposal in the FAMA plug-in and we larifyour ontribution with an example.Keywords: Feature Models, Refatoring,Feature Oriented Programming, Graph Trans-formations.1 Introdution and MotivationSoftware Produt Line (SPL) development [12℄is an approah to develop families of softwaresystems in a systemati way. Roughly speak-ing, an SPL an be de�ned as a set of softwareproduts that share a ommon set of features.A Feature Model (FM) represents all possibleproduts in an SPL in terms of features. A
∗This work has been partially supported bythe European Commission (FEDER) and SpanishGovernment under CICYT projet Web�Fatories(TIN2006-00472).

feature is an inrement in produt funtional-ity. FMs an be used in di�erent stages of SPLdevelopment suh as requirements engineering[17℄, arhiteture de�nition [22℄ or ode gener-ation [5℄.The term refatoring refers to the hangesmade to a program in order to enhane itsstruture in some way while preserving its be-haviour [15, 21℄. However, the traditional def-initions of refatoring do not over the intrin-si harateristis of SPLs in whih programsare frequently derived from a FM represent-ing all the produts in the SPL. In [1℄ Alveset al. study refatoring in the ontext of SPLand onlude that not only programs shouldbe refatored but also its assoiated FMs inorder to guarantee that the number of possi-ble produts of the SPL do not derease asonsequene of refatoring (this is what theyalled guarantee on�gurability improvement).The refatoring of FMs plays a key role inapproahes suh as Feature Oriented Program-ming (FOP) [6℄ in whih produts are gen-erated automatially by omposing programsspei�ed delaratively in terms of features.Suh features are modelled in a FM whih isused as the starting point for the generationof produts. In this ontext, the refatoringof programs ould be done ideally by refator-ing only its assoiated FM. For that purpose,multiple hallenges must be overome at theFM level and the ode level. In this paper weontribute at the model level by giving a �rststep toward automated tool support for FMrefatoring.



SPL refatoring requires a speial treatmentin order to avoid loosing on�guration alter-natives. For that purpose, two proposals hasbeen suggested in order to guarantee on�g-urability improvement [1℄: i) Analyzing theFMs to ensure that the �nal FM obtained af-ter refatoring preserves all the on�gurationsalternatives of the initial one and ii) Using ex-pliit and proved FM refatorings to guaran-tee that the transformations do not alter nega-tively the apaity of on�guration of the SPL.In order to provide automated tool sup-port for FM refatoring we studied the previ-ously mentioned proposals and analyzed howit ould be used for automating the refatoringproess. Next, we detail our main onlusions:
• Our experiene in the �eld of the auto-mated analysis of FMs [8℄ and the avail-able analyzing tools [10℄ and performanetests [9℄ let us to onsider automatedanalysis of FMs as a suitable mehanismto hek on�gurability improvement insmall and medium size FMs. For largerFMs the omputational omplexity of theanalysis operations needed ould resultexessive. However, this approah onlyan be used to hek the on�gurability ofa FM automatially but not for automat-ing the refatoring transformations in anyway.
• The seond option pointed by Alves et al.and detailed in Setion 3 refers to the pos-sibility of using a atalog of pattern-basedFM refatoring. FM refatorings are a setof visual pattern-based rules representingthe possible transformations that an beperformed on a FM without dereasing iton�gurability. In ontrast with the pre-vious proposal, this one does not imposeany limitation in the size of the FM andould be performed automatially usingany of the existing approahes for modeltransformations [14℄.Graph Transformations are a very matureapproah used sine 30 years ago for the gen-eration, manipulation, reognition and evalu-ation of graphs [23℄. Most of visual languages

an be interpreted as a type of graph (direted,labelled, et.). This makes graph grammar tobe a natural and intuitive way for transformingmodels. In ontrast with other model transfor-mation approahes [14℄, graph transformationsare de�ned in a visual way and are providedwith a set of tested tools to de�ne, exeuteand test transformations. All these harater-isti make graph transformations to be reog-nized as a suitable tehnology and assoiatedformalism for model refatoring [11, 20℄.In this paper, we propose to provide toolsupport for FM refatoring using model trans-formations. In partiular, we propose imple-menting the atalog provided by Alves et al.using graph transformations. In addition, wedetails how our proposal ould be integratedin the FAMA plug-in and larify it with anexample.The remainder of this paper is organized asfollow: in Setion 2 the main onepts of SPL,FMs and graph transformations are presented.An introdution to the harateristis of refa-toring in the ontext of SPL is introdued inSetion 3. In Setion 4 we present our pro-posal by giving details about how implement-ing the refatoring of FMs using graph trans-formations and how it ould be integrated inthe FAMA plug-in. Finally we desribe ourfuture work and summarize our onlusions inSetions 5 and 6 respetively.2 Preliminaries2.1 Software Produt Lines and FeatureModelsSoftware Produt line (SPL) development [12℄is an approah to develop families of softwaresystems in a systemati way. Software reuseand quality are its main goals. A SPL anbe de�ned as a set of software produts thatshare a ommon set of features. Widely knownexamples are ars or mobile phones produtlines. Feature models [18℄ are a key artefatfor variability management in the ontext ofSPL. A FM is a ompat representation of allthe possible produts of a SPL. Furthermore,it is ommonly aepted that FMs an be usedin di�erent stages of an SPL e�ort in order



to produe other assets suh as requirementsdouments [16, 17℄, arhiteture de�nition [22℄or piees of ode [13, 7℄.FMs are represented visually by means offeature diagrams. Roughly speaking, a fea-ture diagram is a tree-like struture in whihnodes represent features and onnetions illus-trate the relations between them. The rootfeature identi�es the SPL. The relationshipsbetween a parent feature and its hild featuresan be divided in:
• Mandatory. If a hild feature is manda-tory, it is inluded in all produts in whihits parent feature appears.
• Optional. If a hild feature is de�ned asoptional it an be optionally inluded inall produts in whih its parent featureappears.
• Alternative. A set of hild features arede�ned as alternative if only one featurean be seleted when its parent feature ispart of the produt.
• Or-Relation. A set of hild features aresaid to have an or-relation with their par-ent when one or more of them an be in-luded in the produts in whih its parentfeature appears.Notie that a hild feature an only ap-pear in a produt if its parent feature does.The root feature is a part of all the produtswithin the SPL. In addition to the parentalrelationships between features, a feature di-agram an also ontain ross-tree onstraintsbetween ouples of features. These are typi-ally of the form:
• Requires. If a feature A requires a featureB, the inlusion of A in a produt impliesthe inlusion of B in suh produt.
• Exludes. If a feature A exludes a featureB, both features an not be part of thesame produt.Figure 1 illustrates the visual notation offeature diagrams. A widely used example ofa FM from the automotive industry is shown

in Figure 2. The simpli�ed sample diagram il-lustrates how features are used to speify andbuild software for on�gurable ars. The soft-ware loaded in the ar ontrol system is de-termined by the ar's features. The samplediagram shows that every ar has a body, atransmission and an engine whereas the ruiseontrol is an optional feature. In a similarway, the types of transmission are spei�ed bymeans of an alternative relationship indiatingthat ars an have automati or manual trans-mission but not both of them. On the otherhand, an or-relation is used to express that aar an have an eletri engine, a petrol engineor both of them.
MANDATORY OPTIONAL OR

ALTERNATIVE REQUIRES EXCLUDES

A B A B

P

C

P

C

P

C1 C2 Cn

P

C1 C2 CnFigure 1: Feature diagram's visual notation
Cruise

Car

Body EngineTransmission

GasolineElectricAutomatic ManualFigure 2: A feature modelThe number of di�erent possible ombina-tions of features in a FM represent the on�g-urability of the assoiated SPL. Thus, the on-�gurability of a SPL establishes the set of dif-ferent produts that a ompany an o�er to itsustomers. Suh on�gurability an logiallyinrease or derease aording to the modi�-ations performed on the FM. Hene, for in-stane, in the FM showed in Figure 2 the num-ber of di�erent possible on�gurations is 12.However, if we onvert the �ruise� feature to



mandatory the number of produts dereaseto 6 meanwhile adding the option of havinga manual and automati transmission at thesame time rise the number of possible on�g-urations to 18.2.2 Graph Grammars and Graph Trans-formationsGraph Grammars are a very mature approahused sine 30 years ago for the generation,manipulation, reognition and evaluation ofgraphs [23℄. Sine then, graph grammars hasbeen studied and applied in a variety of di�er-ent domains suh as pattern reognition, syn-tax de�nition of visual languages, spei�ationof abstrat data types, model refatoring, de-sription of software arhitetures, et. Thisdevelopment is doumented in several surveys,tutorials and tehnial reports [2, 3, 4, 19, 20℄.Graph grammars an be onsidered as theappliation of the lassi Chomsky's stringgrammars onepts to the domains of graphs.Hene, a graph grammar is omposed by aninitial graph, a set of terminal labels and a setof transformation rules (sometime also alledgraph produtions). A transformation rule isomposed mainly by a soure graph or LeftHand Side (LHS) and a target graph or RightHand Side (RHS). The appliation of a trans-formation rule to a so-alled host graph, alsoalled diret derivation, onsists on looking fora math morphism between the LHS and thehost graph. If suh morphism is found, the o-urrene of the LHS in the graph is replaed bythe RHS of suh rule. Thus, eah rule appli-ation transforms a graph by replaing a partof it by another graph. The set of all graphslabelled with terminal symbols that an be de-rived from the initial graph by applying the setof transformation rules iteratively is the lan-guage spei�ed by the graph grammar.The appliation of transformation rules to agiven graph is alled Graph Transformations.Graph transformations are usually used as ageneral rule-based mehanism to manipulategraphs. Most of visual modelling languagesan be interpreted as a type of graph (di-reted, labelled, attributed, et.). This makegraph grammars and graph transformations

to be a natural and intuitive way to de�nethe syntax of visual languages [3℄, perform-ing pattern-based visual model transformation[19℄ or model refatoring [20℄.There exists a variety of tool for the de�ni-tion of graph grammars and the appliation ofgraph transformations. Fujaba 1 and the AGGSystem2 are two of the most popular general-purpose graph transformation tools within theresearh ommunity. Furthermore, other spe-i� tools suh as GReAT3 or VIATRA24 arealso starting to emerge as a onsequene of theinreasing popularity of model driven develop-ment based on graph transformations.There exist a wide variety of graph transfor-mation approahes depending on the type ofgraphs used (attributed, hypergraph, direted,et.) and how the transformation rules are ap-plied. A deep study of them is out of the sopeof this paper. A more detailed introdutionto graph grammars and graph transformationsan be found in [23℄.3 Refatoring Software ProdutLinesThe term refatoring was �rst introdued byOpdyke [21℄ in the ontext of objet ori-ented programming as behaviour-preservingprogram restruturing operations to supportthe design, evolution and reuse of objet-oriented appliation frameworks. A more gen-eral de�nition is given by M. Fowler [15℄ whodesribe it as �the proess of hanging softwaresystem in suh a way that it does not alter theexternal behaviour of the ode, yet improves itsinternal struture�. However, suh de�nitiondoes not onsider the speial harateristis ofSPL in whih programs are frequently derivedfrom a FM representing all the on�gurationvariants in a SPL. Hene, it is reognized thatin a SPL environment not only program shouldbe refatored but also FMs [1℄. In this ontext,the refatoring of programs and FMs an have1http://wwws.uni-paderborn.de/s/fujaba/2http://tfs.s.tu-berlin.de/agg/3http://www.esherinstitute.org/Plone/tools4http://dev.elipse.org/viewvs/indexteh.gi/gmt-home/subprojets/VIATRA2



the highly negative e�et of reduing the on-�gurability of the SPL.In order to over the intrinsi harateristisof SPL V. Alves et al. [1℄ propose a spei�refatoring de�nition for this ontext: �SPLrefatoring is a hange made to the stru-ture of a SPL in order to improve (mantainor inrease) its on�gurability, make it easierto understand, and heaper to modify withouthanging the observable behaviour of its origi-nal produts�.Alves et al. also identify two types of pro-grams refatoring in the ontext of SPL:1. Transforming a SPL into another one inwhih the behaviour is preserved and thestrutured enhaned in some way.2. Merging multiple programs into a newprodut line in whih the on�guration al-ternatives of the separated programs arejoined in the �nal SPL.In both ases, the problem of loosing on-�guration alternatives ould happen. In or-der to guarantee on�gurability improvementwhen refatoring a SPL, Alves et al. proposea atalog of sound FM refatorings. Suh FMrefatorings represent the possible transforma-tions that an be performed on a FM withoutreduing its on�gurability. The soundness ofsuh refatorings was proved using a formalsemanti in a theorem prover.A FM refatoring onsists of two templatesor patterns of FMs: the left-hand (LHS) andthe right-hand (RHS). The LHS and RHS tem-plates of a FM refatoring represent respe-tively the state of a part of a FM before andafter applying some kind of refatoring on it.The appliation of a refatoring to a FM on-sists on replaing all the ourrenes of theLHS by the RHS. The values of the variablesin both, LHS and RHS, must math in order toperform the refatoring. Figure 3 and Figure 4show two of the FM refatorings proposed byAlves et al.. The fragments of FMs plaed onthe left and right of the arrows represent theLHS and RHS patterns respetively. Figure 3depits a FM refatoring in whih an optionalfeature is removed and added to an or relation

plaed under the same parent feature. On theother hand, Figure 4 shows a FM refatoringin whih the FMs of two di�erent programsare merged into a single produt line.
Figure 3: An example of FM refatoring (extratedfrom [1℄).

Figure 4: A FM refatoring merging two existingprogram in a single produt line (extrated from[1℄).4 Our ProposalIn this setion we introdue our proposal.Firstly, we detail how graph transformationsan be used as a suitable tehnology and for-malism to perform FM refatoring automati-ally. Seondly, we onrete our ontributionby explaining how graph transformation ouldbe integrated in the FAMA plug-in in order too�er automated support for FM refatoring.Finally, we larify our proposal by means ofan example.



4.1 Automating Feature Model Refator-ing using Graph TransformationsIn this paper we propose using model transfor-mations as an appropriate mehanism to pro-vide automati support for FM refatoring. Inpartiular, we propose implementing the at-alog of FM refatorings provided by Alves etal. using graph transformations.Graph transformations are reognized asa suitable tehnology and formalism for thespei�ation and appliation of model refa-torings. In [20℄ Mens introdues the mainonepts of graph transformations theory andtools and show how using it for refatoringUML lass and statehart diagrams. A moregeneral ontribution is proposed by Biermannet al. [11℄ who use graph transformationsto apply refatoring on EMF (Elipse Mod-eling Framework) models. Hene, as dou-mented in the literature, the reasons to seletgraph transformations as a suitable approahfor model refatoring are manifold:
• Graph transformations are a natural andintuitive way of performing pattern-basedvisual model transformations.
• The maturity of graph transformationshas provided it with a solid theoretialfoundation in form of useful properties.Hene, for instane, the �invertability�property details under what onditions atransformation rule an be inverted.
• There are available tools to design, exe-ute and test the transformations rules.Example of them are the previously men-tioned AGG, Fujaba, GReAT or VIA-TRA2.In order to test our proposal we imple-mented it in one of the most popular toolwithin the graph grammar ommunity: TheAttributed Graph Grammar System (AGG).Roughly speaking, AGG is a free Java graph-ial tool for editing and transforming graphsby means of graph transformations. The AGGSystem is a prototype implementation of thealgebrai approah to graph transformation

supporting Contextual Layered Graph Gram-mars (CLGG). In CLGGs the set of produ-tions is lassi�ed into ordered layers. To trans-form a graph, produtions are applied layerby layer from layer 0 to layer N, ylially ifneeded, until none of the produtions an beapplied. AGG provides a �exible graph editorand a useful omponent to apply user-seletedprodutions to a given graph. In addition, theAGG system an be used as a general purposegraph transformation engine in any dediatedJava appliations employing graph transfor-mation methods. All this reasons made us toselet AGG as a suitable tool to implement ourproposal.AGG graph transformation rules onsist onthree main parts: a left-hand side graph(LHS), a right-hand side graph (RHS) anda set of Negative Appliation Conditions(NAC). NACs are graph-based patterns rep-resenting under what onditions the rule willnot be applied. Thus, the mapping fromthe FM refatorings to graph transformationsis straightforward sine both approah usepattern-based onepts. Figure 5 shows asreenshot of the AGG's visual editor display-ing the transformation rule assoiated to theFM refatoring showed in Figure 3. The map-ping onsists on translating the LHS and RHSpatterns of the FM refatoring to the LHS andRHS graphs of the AGG transformation rulerespetively. No NACs are needed in this ase.As illustrated in the �gure we have used anspei� visual syntax due to the restritionsimposed by the visual editor. In partiular,we have used solid arrows for the onnetionsin the or relation and a dashed arrow for theoptional one.
Figure 5: AGG transformation rule



4.2 Tooling Automated SupportIn this setion we onrete our proposal by de-tailing how we plan to integrate the automatisupport for FM refatoring in the FAMA plug-in.FAMA (FeAture Model Analyzer) [10℄ is amultiparadigm framework for the edition andautomated analysis of FMs. It integrates dif-ferent logi paradigms and solvers in order toperform the analysis operations. FAMA isimplemented as an extensible Elipse plug-inmaking it possible to integrate new solver andanalysis operations as required. In addition,it supports the import and export of FMs inXML/XMI format failitating the interoper-ability with other related tools. FAMA is es-peially appropriate for the edition and ma-nipulation of FMs in the early stages of SPLdevelopment. However, it ould be extendedto support others SPL development tasks suhas design modelling or feature omposition atthe ode level by means of feature�orientedprogramming tools.Aording to the kind of program refator-ings identi�ed in SPL we distinguish two typesof automati support to be provided:
• If the refatoring is applied to a sin-gle program and its FM, the possibletransformations to apply depend exlu-sively on the kind of refatoring to beperformed. In this ase, we propose asemi-automati solution implemented bymeans of a ontext-sensitive help wizard.Suh wizard ould suggest to the user thepossible refatoring transformations a-ording to the features involved on it.
• If the refatoring onsists on merging theFMs of multiple programs into a singleone, we onsider it an be automatizedompletely sine all the information re-quired by the transformation system isavailable. In this ase, we propose a trans-formation wizard for merging both FMsinto a single one.In both ases, we plan to use graph trans-formations to perform model transformationsand the AGG System as suitable graph

transformation engine for being integrated inFAMA.4.3 An ExampleA software ompany speialized in mobilephone ontrol systems provides a wide varietyof related produts to its ustomers. The om-pany has notied that all its produts sharesa ommon set of features and it has deidedto adopt a SPL strategy in order to reduedevelopment osts and time-to-market. As a�rst step, the software arhitet has deided todesign the FMs of two of its main programs.Figure 6(a) and Figure 6(b) depit the resul-tant FMs. Notie that the alternatives of on-�guration in both ases are minimum.After the �featurization�, the software arhi-tet has deide to refator one of the programsand its assoiated FM in order to inrease theon�gurability of the future SPL. Figure 7 de-pits an interfae prototype of how our pro-posal ould be integrated in the ustomizedtree view editor of FAMA. The �gure showshow a ontext-sensitive menu ould be used tosuggest the possible FM refatorings aord-ing to the seleted feature. In this ase, thesoftware arhitet has deided to onvert themandatory feature �wi�� to optional.As a natural step during the adoption of aSPL strategy the software arhitet feels theneed of merging both programs and its asso-iated FMs into a single produt line. In thisase, our proposal ould be also used to mergeautomatially both FMs into a single one pre-serving on�gurability. Figure 6() shows theresultant FM obtained after merging the FMsof both programs into a single produt line.5 Future WorkMultiples hallenges must be overome to pro-vide an e�ient automated tool support forFM refatoring based on model transforma-tions. In partiular, we have identi�ed threepromising fous of researh in suh diretion:
• Alves et al. mantain that refatoringsonsisting on merging multiple FMs into



Media

Mobile Control System (A)

Calls Messages

BluetoohSMS

Frequencies

Tri BandEMS Camera

Connectivity(a) FM of a mobile phone ontrol system (A) Quad Band

Media

Mobile Control System (B)

Calls

MP3

Messages

Wifi

Frequencies

MMS Camera

Connectivity

Bluetooh(b) FM of a mobile phone ontrol system (B)
Quad Band

Media

Mobile Control System

Calls

MP3Wifi

Frequencies

Camera

ConnectivityMessages

SMS EMS MMS Bluetooh Tri Band() Resultant FM after merging the FMs in 6(a) 6(b)Figure 6: SPL refatoring. Merging two programs into a single one

Figure 7: GUI prototype of the refatoring operations in FAMA



a single one an be performed by apply-ing a sequene of single FM refatoringsto the original FMs separately. However,we onsider that an spei� atalog of FMmerging refatorings would be a promis-ing approah in order to automate om-pletely the merging proess.
• FMs based on multipliities [13℄ (alsoalled ardinality-based FMs) are awidely used extension of the traditionalnotation presented in this paper. How-ever, no spei� FM refatorings havebeen proposed for them. Therefore, weonsider that a atalog of ardinality-based FMs refatorings would be an inter-esting approah for the SPL ommunity.
• The ontext-sensitive appliation of atransformation rule to a FM is not atrivial task. The possible mappings be-tween the seleted features and the pat-terns of the transformation rules must beanalyzed in order to o�er a good perfor-mane. Hene, we onsider that the se-letion of a suitable mapping strategy isan important issue and we plan to workin suh diretion too.6 ConlusionsIn this paper we present a proposal for au-tomated support for FM refatoring based onmodel transformations. In partiular, we pro-pose implementing the atalog of FM refa-torings provided by Alves et al. using graphtransformations. As part of our proposal we�rst introdued the mapping from a FM refa-toring to a graph transformation rule in theAGG system. Next, we proposed how graphtransformations ould be integrated in theFAMA plug-in to provide tool support for FMrefatoring. Finally, we provided an examplein order to make lear the interest of our on-tribution.Graph transformations are a mature, natu-ral, visual and intuitive means for manipulat-ing visual models. It has already been appliedsuessfully in the ontext of model refator-ing. In ontrast with other proposals, graph

transformations theory provides a solid formalfoundation and a set of solid tools. To the bestof our knowledge, this is the �rst work propos-ing automating FM refatoring by means ofmodel transformations.Referenes[1℄ Vander Alves, Rohit Gheyi, Tiago Mas-soni, Uirá Kulesza, Paulo Borba, andCarlos Luena. Refatoring produt lines.In GPCE '06: Proeedings of the 5thinternational onferene on Generativeprogramming and omponent engineering,pages 201�210, New York, NY, USA,2006. ACM Press.[2℄ Mar Andries, Gregor Engels, AnnegretHabel, Berthold Ho�mann, Hans-JörgKreowski, Sabine Kuske, Detlef Plump,Andy Shürr, and Gabriele Taentzer.Graph transformation for spei�ationand programming. Siene of ComputerProgramming, 34(1):1�54, 1999.[3℄ R. Bardohl, M. Minas, A. Shurr, andG. Taentzer. Appliation of graph trans-formation to visual languages. In H.Ehrig, G. Engels, H.-J. Kreowski, andG. Rozenberg, editors, Handbook of GraphGrammars and Computing by GraphTransformation, volume II: Appliations,Languages and Tools. World Sienti�,1999.[4℄ Luiano Baresi and Reiko Hekel. Tu-torial introdution to graph transforma-tion: A software engineering perspetive.In ICGT '02: Proeedings of the First In-ternational Conferene on Graph Trans-formation, pages 402�429, London, UK,2002. Springer-Verlag.[5℄ D. Batory. Feature models, grammars,and propositional formulas. In SoftwareProdut Lines Conferene, LNCS 3714,pages 7�20, 2005.[6℄ D. Batory. A tutorial on feature orientedprogramming and the ahead tool suite. In



Summer shool on Generative and Trans-formation Tehniques in Software Engi-neering, 2005.[7℄ D. Batory, J. Sarvela, andA. Raushmayer. Saling step-wisere�nement. IEEE Trans. Software Eng.,30(6):355�371, 2004.[8℄ D. Benavides, A. Ruiz-Cortés, andP. Trinidad. Automated reasoning onfeature models. LNCS, Advaned In-formation Systems Engineering: 17thInternational Conferene, CAiSE 2005,3520:491�503, 2005.[9℄ D. Benavides, S. Segura, P. Trinidad, andA. Ruiz-Cortés. A �rst step towards aframework for the automated analysis offeature models. In Managing Variabil-ity for Software Produt Lines: WorkingWith Variability Mehanisms, 2006.[10℄ D. Benavides, S. Segura, P. Trinidad, andA. Ruiz-Cortés. FAMA: Tooling a frame-work for the automated analysis of fea-ture models. In Proeeding of the First In-ternational Workshop on Variability Mod-elling of Software-intensive Systems (VA-MOS), pages 129�134, 2007.[11℄ E. Biermann, K. Ehrig, C. Köhler,G. Kuhns, G. Taentzer, and E. Weiss.Emf model refatoring based on graphtransformation onepts. In In Pro.Third International Workshop on Soft-ware Evolution through Transformations(SETra'06), volume 3 of Eletroni Com-muniations of the EASST, 2006.[12℄ P. Clements and L. Northrop. Soft-ware Produt Lines: Praties and Pat-terns. SEI Series in Software Engineering.Addison�Wesley, August 2001.[13℄ K. Czarneki and U.W. Eiseneker. Gen-erative Programming: Methods, Teh-niques, and Appliations. Addison�Wesley, may 2000. ISBN 0�201�30977�7.[14℄ K. Czarneki and S. Helsen. Feature-based survey of model transformation ap-proahes. IBM Syst. J., 45(3):621�645,2006.

[15℄ Martin Fowler. Refatoring - Improvingthe Design of Existing Code. Addison-Wesley, Reading/Massahusetts, 1999.[16℄ G. Halmans and K. Pohl. Communiat-ing the variability of a software�produtfamily to ustomers. Journal on Softwareand Systems Modeling, 2(1):15�36, 2003.[17℄ S. Jarzabek, W. Ong, and H. Zhang.Handling variant requirements in domainmodeling. The Journal of Systems andSoftware, 68(3):171�182, 2003.[18℄ K. Kang, S. Cohen, J. Hess, W. Novak,and S. Peterson. Feature�Oriented Do-main Analysis (FODA) Feasibility Study.Tehnial Report CMU/SEI-90-TR-21,Software Engineering Institute, CarnegieMellon University, November 1990.[19℄ T. Mens, P. van Gorp, G. Karsai, andD. Varró. Applying a model trans-formation taxonomy to graph transfor-mation tehnology. In G. Karsai andG. Taentzer, editors, GraMot 2005, Inter-national Workshop on Graph and ModelTransformations, ENTCS, 2005. In press.[20℄ Tom Mens. On the use of graph transfor-mations for model refatoring. Generativeand Transformational Tehniques in Soft-ware Engineering. LNCS, 4143:219�257,2006.[21℄ William F. Opdyke. Refatoring objet-oriented frameworks. PhD thesis, Cham-paign, IL, USA, 1992.[22℄ J. Peña, M. Hinhey, A. Ruiz-Cortés, andP. Trinidad. Building the ore arhi-teture of a multiagent system produtline: With an example from a future nasamission. In 7th International Workshopon Agent Oriented Software Engineering.LNCS, 2006.[23℄ Grzegorz Rozenberg, editor. Hand-book of Graph Grammars and Comput-ing by Graph Transformations, Volume 1:Foundations. World Sienti�, 1997.


