Toward Automated Refactoring of Feature Models using Graph
Transformations *

Sergio Segura, David Benavides, Antonio Ruiz-Cortés and Pablo Trinidad

Department of Computer Languages and Systems

University of Seville

Av. de la Reina Mercedes S/N, 41012 Seville, Spain

e-mail: {segura, benavides, aruiz, trinidad }Qtdg.Isi.us.es

Abstract

Software Product Line (SPL) development is
an approach to develop families of software
systems in a systematic way. A Feature Model
(FM) represent all the products in a SPL in
terms of features. Applying refactoring to an
SPL can have the highly negative effect of
reducing the number of differents products
in the SPL. Hence, it is accepted that not
only programs must be refactored but also its
associated FMs. In this paper we present a
first proposal for automated support for FM
refactoring based on graph transformations.
We also explain how we plan to integrate our
proposal in the FAMA plug-in and we clarify
our contribution with an example.

Keywords: Feature Models, Refactoring,
Feature Oriented Programming, Graph Trans-
formations.

1 Introduction and Motivation

Software Product Line (SPL) development [12]
is an approach to develop families of software
systems in a systematic way. Roughly speak-
ing, an SPL can be defined as a set of software
products that share a common set of features.
A Feature Model (FM) represents all possible
products in an SPL in terms of features. A

*This work has been partially supported by
the European Commission (FEDER) and Spanish
Government under CICYT project Web—Factories
(TIN2006-00472).

feature is an increment in product functional-
ity. FMs can be used in different stages of SPL
development such as requirements engineering
[17], architecture definition [22] or code gener-
ation [5].

The term refactoring refers to the changes
made to a program in order to enhance its
structure in some way while preserving its be-
haviour [15, 21]. However, the traditional def-
initions of refactoring do not cover the intrin-
sic characteristics of SPLs in which programs
are frequently derived from a FM represent-
ing all the products in the SPL. In [1] Alves
et al. study refactoring in the context of SPL
and conclude that not only programs should
be refactored but also its associated FMs in
order to guarantee that the number of possi-
ble products of the SPL do not decrease as
consequence of refactoring (this is what they
called guarantee configurability improvement).

The refactoring of FMs plays a key role in
approaches such as Feature Oriented Program-
ming (FOP) [6] in which products are gen-
erated automatically by composing programs
specified declaratively in terms of features.
Such features are modelled in a FM which is
used as the starting point for the generation
of products. In this context, the refactoring
of programs could be done ideally by refactor-
ing only its associated FM. For that purpose,
multiple challenges must be overcome at the
FM level and the code level. In this paper we
contribute at the model level by giving a first
step toward automated tool support for FM
refactoring.

SPL refactoring requires a special treatment
in order to avoid loosing configuration alter-
natives. For that purpose, two proposals has
been suggested in order to guarantee config-
urability improvement [1]: ¢) Analyzing the
FMs to ensure that the final FM obtained af-
ter refactoring preserves all the configurations
alternatives of the initial one and ¢7) Using ex-
plicit and proved FM refactorings to guaran-
tee that the transformations do not alter nega-
tively the capacity of configuration of the SPL.

In order to provide automated tool sup-
port for FM refactoring we studied the previ-
ously mentioned proposals and analyzed how
it could be used for automating the refactoring
process. Next, we detail our main conclusions:

e Our experience in the field of the auto-
mated analysis of FMs [8] and the avail-
able analyzing tools [10] and performance
tests [9] let us to consider automated
analysis of FMs as a suitable mechanism
to check configurability improvement in
small and medium size FMs. For larger
FMs the computational complexity of the
analysis operations needed could result
excessive. However, this approach only
can be used to check the configurability of
a FM automatically but not for automat-
ing the refactoring transformations in any
way.

e The second option pointed by Alves et al.
and detailed in Section 3 refers to the pos-
sibility of using a catalog of pattern-based
FM refactoring. FM refactorings are a set
of visual pattern-based rules representing
the possible transformations that can be
performed on a FM without decreasing it
configurability. In contrast with the pre-
vious proposal, this one does not impose
any limitation in the size of the FM and
could be performed automatically using
any of the existing approaches for model
transformations [14].

Graph Transformations are a very mature
approach used since 30 years ago for the gen-
eration, manipulation, recognition and evalu-
ation of graphs [23]. Most of visual languages

can be interpreted as a type of graph (directed,
labelled, etc.). This makes graph grammar to
be a natural and intuitive way for transforming
models. In contrast with other model transfor-
mation approaches [14], graph transformations
are defined in a visual way and are provided
with a set of tested tools to define, execute
and test transformations. All these character-
istic make graph transformations to be recog-
nized as a suitable technology and associated
formalism for model refactoring [11, 20].

In this paper, we propose to provide tool
support for FM refactoring using model trans-
formations. In particular, we propose imple-
menting the catalog provided by Alves et al.
using graph transformations. In addition, we
details how our proposal could be integrated
in the FAMA plug-in and clarify it with an
example.

The remainder of this paper is organized as
follow: in Section 2 the main concepts of SPL,
FMs and graph transformations are presented.
An introduction to the characteristics of refac-
toring in the context of SPL is introduced in
Section 3. In Section 4 we present our pro-
posal by giving details about how implement-
ing the refactoring of FMs using graph trans-
formations and how it could be integrated in
the FAMA plug-in. Finally we describe our
future work and summarize our conclusions in
Sections 5 and 6 respectively.

2 Preliminaries

2.1 Software Product Lines and Feature
Models

Software Product line (SPL) development [12]
is an approach to develop families of software
systems in a systematic way. Software reuse
and quality are its main goals. A SPL can
be defined as a set of software products that
share a common set of features. Widely known
examples are cars or mobile phones product
lines. Feature models [18] are a key artefact
for variability management in the context of
SPL. A FM is a compact representation of all
the possible products of a SPL. Furthermore,
it is commonly accepted that FMs can be used
in different stages of an SPL effort in order

to produce other assets such as requirements
documents [16, 17], architecture definition [22]
or pieces of code [13, 7].

FMs are represented visually by means of
feature diagrams. Roughly speaking, a fea-
ture diagram is a tree-like structure in which
nodes represent features and connections illus-
trate the relations between them. The root
feature identifies the SPL. The relationships
between a parent feature and its child features
can be divided in:

e Mandatory. If a child feature is manda-
tory, it is included in all products in which
its parent feature appears.

e Optional. If a child feature is defined as
optional it can be optionally included in
all products in which its parent feature
appears.

o Alternative. A set of child features are
defined as alternative if only one feature
can be selected when its parent feature is
part of the product.

o Or-Relation. A set of child features are
said to have an or-relation with their par-
ent when one or more of them can be in-
cluded in the products in which its parent
feature appears.

Notice that a child feature can only ap-
pear in a product if its parent feature does.
The root feature is a part of all the products
within the SPL. In addition to the parental
relationships between features, a feature di-
agram can also contain cross-tree constraints
between couples of features. These are typi-
cally of the form:

o Requires. If a feature A requires a feature
B, the inclusion of A in a product implies
the inclusion of B in such product.

o FEzxcludes. If a feature A excludes a feature
B, both features can not be part of the
same product.

Figure 1 illustrates the visual notation of
feature diagrams. A widely used example of
a FM from the automotive industry is shown

in Figure 2. The simplified sample diagram il-
lustrates how features are used to specify and
build software for configurable cars. The soft-
ware loaded in the car control system is de-
termined by the car’s features. The sample
diagram shows that every car has a body, a
transmission and an engine whereas the cruise
control is an optional feature. In a similar
way, the types of transmission are specified by
means of an alternative relationship indicating
that cars can have automatic or manual trans-
mission but not both of them. On the other
hand, an or-relation is used to express that a
car can have an electric engine, a petrol engine
or both of them.

MANDATORY OPTIONAL OR
]] =]
ALTERNATIVE REQUIRES EXCLUDES
2| B | EeE

Figure 1: Feature diagram’s visual notation

Transmission Engine Cruise

‘ Automatic ‘ Manual ‘ ‘ Electric ‘ ‘ Gasoline ‘

Figure 2: A feature model

The number of different possible combina-
tions of features in a FM represent the config-
urability of the associated SPL. Thus, the con-
figurability of a SPL establishes the set of dif-
ferent products that a company can offer to its
customers. Such configurability can logically
increase or decrease according to the modifi-
cations performed on the FM. Hence, for in-
stance, in the FM showed in Figure 2 the num-
ber of different possible configurations is 12.
However, if we convert the "cruise” feature to

mandatory the number of products decrease
to 6 meanwhile adding the option of having
a manual and automatic transmission at the
same time rise the number of possible config-
urations to 18.

2.2 Graph Grammars and Graph Trans-
formations

Graph Grammars are a very mature approach
used since 30 years ago for the generation,
manipulation, recognition and evaluation of
graphs [23]. Since then, graph grammars has
been studied and applied in a variety of differ-
ent domains such as pattern recognition, syn-
tax definition of visual languages, specification
of abstract data types, model refactoring, de-
scription of software architectures, etc. This
development is documented in several surveys,
tutorials and technical reports [2, 3, 4, 19, 20].

Graph grammars can be considered as the
application of the classic Chomsky’s string
grammars concepts to the domains of graphs.
Hence, a graph grammar is composed by an
initial graph, a set of terminal labels and a set
of transformation rules (sometime also called
graph productions). A transformation rule is
composed mainly by a source graph or Left
Hand Side (LHS) and a target graph or Right
Hand Side (RHS). The application of a trans-
formation rule to a so-called host graph, also
called direct derivation, consists on looking for
a match morphism between the LHS and the
host graph. If such morphism is found, the oc-
currence of the LHS in the graph is replaced by
the RHS of such rule. Thus, each rule appli-
cation transforms a graph by replacing a part
of it by another graph. The set of all graphs
labelled with terminal symbols that can be de-
rived from the initial graph by applying the set
of transformation rules iteratively is the lan-
guage specified by the graph grammar.

The application of transformation rules to a
given graph is called Graph Transformations.
Graph transformations are usually used as a
general rule-based mechanism to manipulate
graphs. Most of visual modelling languages
can be interpreted as a type of graph (di-
rected, labelled, attributed, etc.). This make
graph grammars and graph transformations

to be a natural and intuitive way to define
the syntax of visual languages [3]|, perform-
ing pattern-based visual model transformation
[19] or model refactoring [20].

There exists a variety of tool for the defini-
tion of graph grammars and the application of
graph transformations. Fujaba ' and the AGG
System? are two of the most popular general-
purpose graph transformation tools within the
research community. Furthermore, other spe-
cific tools such as GReAT? or VIATRA2? are
also starting to emerge as a consequence of the
increasing popularity of model driven develop-
ment based on graph transformations.

There exist a wide variety of graph transfor-
mation approaches depending on the type of
graphs used (attributed, hypergraph, directed,
etc.) and how the transformation rules are ap-
plied. A deep study of them is out of the scope
of this paper. A more detailed introduction
to graph grammars and graph transformations
can be found in [23].

3 Refactoring Software Product

Lines

The term refactoring was first introduced by
Opdyke [21] in the context of object ori-
ented programming as behaviour-preserving
program restructuring operations to support
the design, evolution and reuse of object-
oriented application frameworks. A more gen-
eral definition is given by M. Fowler [15] who
describe it as “the process of changing software
system in such a way that it does not alter the
external behaviour of the code, yet improves its
internal structure”. However, such definition
does not consider the special characteristics of
SPL in which programs are frequently derived
from a FM representing all the configuration
variants in a SPL. Hence, it is recognized that
in a SPL environment not only program should
be refactored but also FMs [1]. In this context,
the refactoring of programs and FMs can have

"http://wwwcs.uni-paderborn.de/cs/fujaba/
Zhttp://tfs.cs.tu-berlin.de/agg/
3http://www.escherinstitute.org/Plone/tools
*http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-
home/subprojects/VIATRA2

the highly negative effect of reducing the con-
figurability of the SPL.

In order to cover the intrinsic characteristics
of SPL V. Alves et al. [1] propose a specific
refactoring definition for this context: “SPL
refactoring is a change made to the struc-
ture of a SPL in order to improve (mantain
or increase) its configurability, make it easier
to understand, and cheaper to modify without
changing the observable behaviour of its origi-
nal products”.

Alves et al. also identify two types of pro-
grams refactoring in the context of SPL:

1. Transforming a SPL into another one in
which the behaviour is preserved and the
structured enhanced in some way.

2. Merging multiple programs into a new
product line in which the configuration al-
ternatives of the separated programs are
joined in the final SPL.

In both cases, the problem of loosing con-
figuration alternatives could happen. In or-
der to guarantee configurability improvement
when refactoring a SPL, Alves et al. propose
a catalog of sound FM refactorings. Such FM
refactorings represent the possible transforma-
tions that can be performed on a FM without
reducing its configurability. The soundness of
such refactorings was proved using a formal
semantic in a theorem prover.

A FM refactoring consists of two templates
or patterns of FMs: the left-hand (LHS) and
the right-hand (RHS). The LHS and RHS tem-
plates of a FM refactoring represent respec-
tively the state of a part of a FM before and
after applying some kind of refactoring on it.
The application of a refactoring to a FM con-
sists on replacing all the occurrences of the
LHS by the RHS. The values of the variables
in both, LHS and RHS, must match in order to
perform the refactoring. Figure 3 and Figure 4
show two of the FM refactorings proposed by
Alves et al.. The fragments of FMs placed on
the left and right of the arrows represent the
LHS and RHS patterns respectively. Figure 3
depicts a FM refactoring in which an optional
feature is removed and added to an or relation

placed under the same parent feature. On the
other hand, Figure 4 shows a FM refactoring
in which the FMs of two different programs
are merged into a single product line.

Refactoring 2. collapse aptional and or

Figure 3: An example of FM refactoring (extracted
from [1]).

Extractive 1. {merge optional and alternative}

Figure 4: A FM refactoring merging two existing
program in a single product line (extracted from

(1])-

4 Our Proposal

In this section we introduce our proposal.
Firstly, we detail how graph transformations
can be used as a suitable technology and for-
malism to perform FM refactoring automati-
cally. Secondly, we concrete our contribution
by explaining how graph transformation could
be integrated in the FAMA plug-in in order to
offer automated support for FM refactoring.
Finally, we clarify our proposal by means of
an example.

4.1 Automating Feature Model Refactor-
ing using Graph Transformations

In this paper we propose using model transfor-
mations as an appropriate mechanism to pro-
vide automatic support for FM refactoring. In
particular, we propose implementing the cat-
alog of FM refactorings provided by Alves et
al. using graph transformations.

Graph transformations are recognized as
a suitable technology and formalism for the
specification and application of model refac-
torings. In [20] Mens introduces the main
concepts of graph transformations theory and
tools and show how using it for refactoring
UML class and statechart diagrams. A more
general contribution is proposed by Biermann
et al. [11] who use graph transformations
to apply refactoring on EMF (Eclipse Mod-
eling Framework) models. Hence, as docu-
mented in the literature, the reasons to select
graph transformations as a suitable approach
for model refactoring are manifold:

e Graph transformations are a natural and
intuitive way of performing pattern-based
visual model transformations.

e The maturity of graph transformations
has provided it with a solid theoretical
foundation in form of useful properties.
Hence, for instance, the "invertability”
property details under what conditions a
transformation rule can be inverted.

e There are available tools to design, exe-
cute and test the transformations rules.
Example of them are the previously men-
tioned AGG, Fujaba, GReAT or VIA-
TRA2.

In order to test our proposal we imple-
mented it in one of the most popular tool
within the graph grammar community: The
Attributed Graph Grammar System (AGG).
Roughly speaking, AGG is a free Java graph-
ical tool for editing and transforming graphs
by means of graph transformations. The AGG
System is a prototype implementation of the
algebraic approach to graph transformation

supporting Conteztual Layered Graph Gram-
mars (CLGG). In CLGGs the set of produc-
tions is classified into ordered layers. To trans-
form a graph, productions are applied layer
by layer from layer 0 to layer N, cyclically if
needed, until none of the productions can be
applied. AGG provides a flexible graph editor
and a useful component to apply user-selected
productions to a given graph. In addition, the
AGG system can be used as a general purpose
graph transformation engine in any dedicated
Java applications employing graph transfor-
mation methods. All this reasons made us to
select AGG as a suitable tool to implement our
proposal.

AGG graph transformation rules consist on
three main parts: a left-hand side graph
(LHS), a right-hand side graph (RHS) and
a set of Negative Application Conditions
(NAC). NACs are graph-based patterns rep-
resenting under what conditions the rule will
not be applied. Thus, the mapping from
the FM refactorings to graph transformations
is straightforward since both approach use
pattern-based concepts. Figure 5 shows a
screenshot of the AGG'’s visual editor display-
ing the transformation rule associated to the
FM refactoring showed in Figure 3. The map-
ping consists on translating the LHS and RHS
patterns of the FM refactoring to the LHS and
RHS graphs of the AGG transformation rule
respectively. No NACs are needed in this case.
As illustrated in the figure we have used an
specific visual syntax due to the restrictions
imposed by the visual editor. In particular,
we have used solid arrows for the connections
in the or relation and a dashed arrow for the
optional one.

_: Rule_of GraGra

) .
8 2:Feature 3:Feature 4.Featurs 2:Feature 3:Feature 4:Feature

1 I |

r
]

1 q 1 ID

Figure 5: AGG transformation rule

4.2 Tooling Automated Support

In this section we concrete our proposal by de-
tailing how we plan to integrate the automatic
support for FM refactoring in the FAMA plug-
in.

FAMA (FeAture Model Analyzer) [10] is a
multiparadigm framework for the edition and
automated analysis of FMs. It integrates dif-
ferent logic paradigms and solvers in order to
perform the analysis operations. FAMA is
implemented as an extensible Eclipse plug-in
making it possible to integrate new solver and
analysis operations as required. In addition,
it supports the import and export of FMs in
XML/XMI format facilitating the interoper-
ability with other related tools. FAMA is es-
pecially appropriate for the edition and ma-
nipulation of FMs in the early stages of SPL
development. However, it could be extended
to support others SPL development tasks such
as design modelling or feature composition at
the code level by means of feature—oriented
programming tools.

According to the kind of program refactor-
ings identified in SPL we distinguish two types
of automatic support to be provided:

e If the refactoring is applied to a sin-
gle program and its FM, the possible
transformations to apply depend exclu-
sively on the kind of refactoring to be
performed. In this case, we propose a
semi-automatic solution implemented by
means of a context-sensitive help wizard.
Such wizard could suggest to the user the
possible refactoring transformations ac-
cording to the features involved on it.

e If the refactoring consists on merging the
FMs of multiple programs into a single
one, we consider it can be automatized
completely since all the information re-
quired by the transformation system is
available. In this case, we propose a trans-
formation wizard for merging both FMs
into a single one.

In both cases, we plan to use graph trans-
formations to perform model transformations
and the AGG System as suitable graph

transformation engine for being integrated in
FAMA.

4.3 An Example

A software company specialized in mobile
phone control systems provides a wide variety
of related products to its customers. The com-
pany has noticed that all its products shares
a common set of features and it has decided
to adopt a SPL strategy in order to reduce
development costs and time-to-market. As a
first step, the software architect has decided to
design the FMs of two of its main programs.
Figure 6(a) and Figure 6(b) depict the resul-
tant FMs. Notice that the alternatives of con-
figuration in both cases are minimum.

After the “featurization”, the software archi-
tect has decide to refactor one of the programs
and its associated FM in order to increase the
configurability of the future SPL. Figure 7 de-
picts an interface prototype of how our pro-
posal could be integrated in the customized
tree view editor of FAMA. The figure shows
how a context-sensitive menu could be used to
suggest the possible FM refactorings accord-
ing to the selected feature. In this case, the
software architect has decided to convert the
mandatory feature “wifi” to optional.

As a natural step during the adoption of a
SPL strategy the software architect feels the
need of merging both programs and its asso-
ciated FMs into a single product line. In this
case, our proposal could be also used to merge
automatically both FMs into a single one pre-
serving configurability. Figure 6(c) shows the
resultant FM obtained after merging the FMs
of both programs into a single product line.

5 Future Work

Multiples challenges must be overcome to pro-
vide an efficient automated tool support for
FM refactoring based on model transforma-
tions. In particular, we have identified three
promising focus of research in such direction:

e Alves et al. mantain that refactorings
consisting on merging multiple FMs into

‘ Mobile Control System (A) ‘ ‘ Mobile Control System (B) ‘

‘ Calls H Messages ‘ ‘ Connectivity H Frequencies H Media ‘ ‘ Calls H Messages ‘ ‘ Connectivity H Frequencies ‘ ‘ Media ‘
Q
‘ SMS ‘ ‘ EMS H Bluetooh ‘ ‘ Tri Band ‘ ‘ Camera ‘ MMS ‘ Bluetooh ‘ ‘ Quad Band ‘ ‘ Camera ‘

(a) FM of a mobile phone control system (A) (b) FM of a mobile phone control system (B)

‘ Mobile Control System ‘

Connectivity Frequencies

Messages

O
‘ SMS H EMS H MMS ‘ Bluetooh ‘ Wifi H Tri Band H Quad Band H MP3 H Camera ‘

(c) Resultant FM after merging the FMs in 6(a) 6(b)

Figure 6: SPL refactoring. Merging two programs into a single one

= -’I\- Feature Model
=)~ ™. Root : Mobile Control System B
= 1 Binary Relation : R-1
B Solitary Feature @ Calls
= '& Binary Relation : R-2
=l M Sglitary Feature : Messages
= -}. Binary Relation : R-3
M Solitary Feature : MMS
'%. Binary Relation : R-4
=l M Solitary Feature : Connectivity
= "_ Binary Relation : R-5

(]

M solitary Feature : Blue{ New Child 4
=™, Binary Relation : R-6 Mew Sibling
B Solitary Feature : Wifi Refactoring ¥ Convert Mandatory to Optional
=, Binary Relation : R-7 . Add Optional Mode
=, Binary Relation : R-3 </ Undo Delete

of Cut

(=i copy

Figure 7: GUI prototype of the refactoring operations in FAMA

a single one can be performed by apply-
ing a sequence of single FM refactorings
to the original FMs separately. However,
we consider that an specific catalog of FM
merging refactorings would be a promis-
ing approach in order to automate com-
pletely the merging process.

e FMs based on multiplicities [13] (also
called cardinality-based FMs) are a
widely used extension of the traditional
notation presented in this paper. How-
ever, no specific FM refactorings have
been proposed for them. Therefore, we
consider that a catalog of cardinality-
based FMs refactorings would be an inter-
esting approach for the SPL community.

e The context-sensitive application of a
transformation rule to a FM is not a
trivial task. The possible mappings be-
tween the selected features and the pat-
terns of the transformation rules must be
analyzed in order to offer a good perfor-
mance. Hence, we consider that the se-
lection of a suitable mapping strategy is
an important issue and we plan to work
in such direction too.

6 Conclusions

In this paper we present a proposal for au-
tomated support for FM refactoring based on
model transformations. In particular, we pro-
pose implementing the catalog of FM refac-
torings provided by Alves et al. using graph
transformations. As part of our proposal we
first introduced the mapping from a FM refac-
toring to a graph transformation rule in the
AGG system. Next, we proposed how graph
transformations could be integrated in the
FAMA plug-in to provide tool support for FM
refactoring. Finally, we provided an example
in order to make clear the interest of our con-
tribution.

Graph transformations are a mature, natu-
ral, visual and intuitive means for manipulat-
ing visual models. It has already been applied
successfully in the context of model refactor-
ing. In contrast with other proposals, graph

transformations theory provides a solid formal
foundation and a set of solid tools. To the best
of our knowledge, this is the first work propos-
ing automating FM refactoring by means of
model transformations.

References

[1] Vander Alves, Rohit Gheyi, Tiago Mas-
soni, Uir4d Kulesza, Paulo Borba, and
Carlos Lucena. Refactoring product lines.
In GPCE ’06: Proceedings of the bth
international conference on Generative
programming and component engineering,
pages 201-210, New York, NY, USA,
2006. ACM Press.

[2] Marc Andries, Gregor Engels, Annegret
Habel, Berthold Hoffmann, Hans-Jorg
Kreowski, Sabine Kuske, Detlef Plump,
Andy Schiirr, and Gabriele Taentzer.
Graph transformation for specification
and programming. Science of Computer
Programming, 34(1):1-54, 1999.

[3] R. Bardohl, M. Minas, A. Schurr, and
G. Taentzer. Application of graph trans-
formation to wvisual languages. In H.
Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors, Handbook of Graph
Grammars and Computing by Graph
Transformation, volume II: Applications,
Languages and Tools. World Scientific,
1999.

[4] Luciano Baresi and Reiko Heckel. Tu-
torial introduction to graph transforma-
tion: A software engineering perspective.
In ICGT ’02: Proceedings of the First In-
ternational Conference on Graph Trans-
formation, pages 402-429, London, UK,
2002. Springer-Verlag.

[5] D. Batory. Feature models, grammars,
and propositional formulas. In Software
Product Lines Conference, LNCS 3714,
pages 7-20, 2005.

[6

—

D. Batory. A tutorial on feature oriented
programming and the ahead tool suite. In

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

Summer school on Generative and Trans-
formation Techniques in Software Engi-
neering, 2005.

D. Batory, J. Sarvela, and
A. Rauschmayer. Scaling step-wise
refinement. IEEE Trans. Software Eng.,
30(6):355-371, 2004.

A. Ruiz-Cortés, and
P. Trinidad. Automated reasoning on
feature models. LNCS, Advanced In-
formation Systems Engineering: 17th
International Conference, CAiISE 2005,
3520:491-503, 2005.

D. Benavides, S. Segura, P. Trinidad, and
A. Ruiz-Cortés. A first step towards a
framework for the automated analysis of
feature models. In Managing Variabil-
ity for Software Product Lines: Working
With Variability Mechanisms, 2006.

D. Benavides, S. Segura, P. Trinidad, and
A. Ruiz-Cortés. FAMA: Tooling a frame-
work for the automated analysis of fea-
ture models. In Proceeding of the First In-
ternational Workshop on Variability Mod-
elling of Software-intensive Systems (VA-
MOS), pages 129-134, 2007.

E. Biermann, K. Ehrig, C. Kbohler,
G. Kuhns, G. Taentzer, and E. Weiss.
Emf model refactoring based on graph
transformation concepts. In In Proc.
Third International Workshop on Soft-
ware Evolution through Transformations
(SETra’06), volume 3 of Electronic Com-
munications of the EASST, 2006.

D. Benavides,

P. Clements and L. Northrop. Soft-
ware Product Lines: Practices and Pat-
terns. SEI Series in Software Engineering.
Addison-Wesley, August 2001.

K. Czarnecki and U.W. Eisenecker. Gen-
erative Programming: Methods, Tech-
niques, and Applications. Addison—
Wesley, may 2000. ISBN 0-201-30977-7.

K. Czarnecki and S. Helsen. Feature-
based survey of model transformation ap-
proaches. IBM Syst. J., 45(3):621-645,
2006.

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

Martin Fowler. Refactoring - Improving
the Design of Exzisting Code. Addison-
Wesley, Reading/Massachusetts, 1999.

G. Halmans and K. Pohl. Communicat-
ing the variability of a software—product
family to customers. Journal on Software
and Systems Modeling, 2(1):15-36, 2003.

S. Jarzabek, W. Ong, and H. Zhang.
Handling variant requirements in domain

modeling. The Journal of Systems and
Software, 68(3):171-182, 2003.

K. Kang, S. Cohen, J. Hess, W. Novak,
and S. Peterson. Feature—Oriented Do-
main Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie
Mellon University, November 1990.

T. Mens, P. van Gorp, G. Karsai, and
D. Varr6. Applying a model trans-
formation taxonomy to graph transfor-
mation technology. In G. Karsai and
G. Taentzer, editors, GraMot 2005, Inter-
national Workshop on Graph and Model
Transformations, ENTCS, 2005. In press.

Tom Mens. On the use of graph transfor-
mations for model refactoring. Generative
and Transformational Techniques in Soft-
ware Engineering. LNCS, 4143:219-257,
2006.

William F. Opdyke. Refactoring object-
oriented frameworks. PhD thesis, Cham-
paign, IL, USA, 1992.

J. Peiia, M. Hinchey, A. Ruiz-Cortés, and
P. Trinidad. Building the core archi-
tecture of a multiagent system product
line: With an example from a future nasa
mission. In 7th International Workshop

on Agent Oriented Software Engineering.
LNCS, 2006.

Grzegorz Rozenberg, editor. Hand-
book of Graph Grammars and Comput-
ing by Graph Transformations, Volume 1:
Foundations. World Scientific, 1997.

