
Toward Automated Refa
toring of Feature Models using GraphTransformations ∗Sergio Segura, David Benavides, Antonio Ruiz-Cortés and Pablo TrinidadDepartment of Computer Languages and SystemsUniversity of SevilleAv. de la Reina Mer
edes S/N, 41012 Seville, Spaine-mail: {segura, benavides, aruiz, trinidad}�tdg.lsi.us.esAbstra
tSoftware Produ
t Line (SPL) development isan approa
h to develop families of softwaresystems in a systemati
 way. A Feature Model(FM) represent all the produ
ts in a SPL interms of features. Applying refa
toring to anSPL 
an have the highly negative e�e
t ofredu
ing the number of di�erents produ
tsin the SPL. Hen
e, it is a

epted that notonly programs must be refa
tored but also itsasso
iated FMs. In this paper we present a�rst proposal for automated support for FMrefa
toring based on graph transformations.We also explain how we plan to integrate ourproposal in the FAMA plug-in and we 
larifyour 
ontribution with an example.Keywords: Feature Models, Refa
toring,Feature Oriented Programming, Graph Trans-formations.1 Introdu
tion and MotivationSoftware Produ
t Line (SPL) development [12℄is an approa
h to develop families of softwaresystems in a systemati
 way. Roughly speak-ing, an SPL 
an be de�ned as a set of softwareprodu
ts that share a 
ommon set of features.A Feature Model (FM) represents all possibleprodu
ts in an SPL in terms of features. A
∗This work has been partially supported bythe European Commission (FEDER) and SpanishGovernment under CICYT proje
t Web�Fa
tories(TIN2006-00472).

feature is an in
rement in produ
t fun
tional-ity. FMs 
an be used in di�erent stages of SPLdevelopment su
h as requirements engineering[17℄, ar
hite
ture de�nition [22℄ or 
ode gener-ation [5℄.The term refa
toring refers to the 
hangesmade to a program in order to enhan
e itsstru
ture in some way while preserving its be-haviour [15, 21℄. However, the traditional def-initions of refa
toring do not 
over the intrin-si
 
hara
teristi
s of SPLs in whi
h programsare frequently derived from a FM represent-ing all the produ
ts in the SPL. In [1℄ Alveset al. study refa
toring in the 
ontext of SPLand 
on
lude that not only programs shouldbe refa
tored but also its asso
iated FMs inorder to guarantee that the number of possi-ble produ
ts of the SPL do not de
rease as
onsequen
e of refa
toring (this is what they
alled guarantee 
on�gurability improvement).The refa
toring of FMs plays a key role inapproa
hes su
h as Feature Oriented Program-ming (FOP) [6℄ in whi
h produ
ts are gen-erated automati
ally by 
omposing programsspe
i�ed de
laratively in terms of features.Su
h features are modelled in a FM whi
h isused as the starting point for the generationof produ
ts. In this 
ontext, the refa
toringof programs 
ould be done ideally by refa
tor-ing only its asso
iated FM. For that purpose,multiple 
hallenges must be over
ome at theFM level and the 
ode level. In this paper we
ontribute at the model level by giving a �rststep toward automated tool support for FMrefa
toring.



SPL refa
toring requires a spe
ial treatmentin order to avoid loosing 
on�guration alter-natives. For that purpose, two proposals hasbeen suggested in order to guarantee 
on�g-urability improvement [1℄: i) Analyzing theFMs to ensure that the �nal FM obtained af-ter refa
toring preserves all the 
on�gurationsalternatives of the initial one and ii) Using ex-pli
it and proved FM refa
torings to guaran-tee that the transformations do not alter nega-tively the 
apa
ity of 
on�guration of the SPL.In order to provide automated tool sup-port for FM refa
toring we studied the previ-ously mentioned proposals and analyzed howit 
ould be used for automating the refa
toringpro
ess. Next, we detail our main 
on
lusions:
• Our experien
e in the �eld of the auto-mated analysis of FMs [8℄ and the avail-able analyzing tools [10℄ and performan
etests [9℄ let us to 
onsider automatedanalysis of FMs as a suitable me
hanismto 
he
k 
on�gurability improvement insmall and medium size FMs. For largerFMs the 
omputational 
omplexity of theanalysis operations needed 
ould resultex
essive. However, this approa
h only
an be used to 
he
k the 
on�gurability ofa FM automati
ally but not for automat-ing the refa
toring transformations in anyway.
• The se
ond option pointed by Alves et al.and detailed in Se
tion 3 refers to the pos-sibility of using a 
atalog of pattern-basedFM refa
toring. FM refa
torings are a setof visual pattern-based rules representingthe possible transformations that 
an beperformed on a FM without de
reasing it
on�gurability. In 
ontrast with the pre-vious proposal, this one does not imposeany limitation in the size of the FM and
ould be performed automati
ally usingany of the existing approa
hes for modeltransformations [14℄.Graph Transformations are a very matureapproa
h used sin
e 30 years ago for the gen-eration, manipulation, re
ognition and evalu-ation of graphs [23℄. Most of visual languages


an be interpreted as a type of graph (dire
ted,labelled, et
.). This makes graph grammar tobe a natural and intuitive way for transformingmodels. In 
ontrast with other model transfor-mation approa
hes [14℄, graph transformationsare de�ned in a visual way and are providedwith a set of tested tools to de�ne, exe
uteand test transformations. All these 
hara
ter-isti
 make graph transformations to be re
og-nized as a suitable te
hnology and asso
iatedformalism for model refa
toring [11, 20℄.In this paper, we propose to provide toolsupport for FM refa
toring using model trans-formations. In parti
ular, we propose imple-menting the 
atalog provided by Alves et al.using graph transformations. In addition, wedetails how our proposal 
ould be integratedin the FAMA plug-in and 
larify it with anexample.The remainder of this paper is organized asfollow: in Se
tion 2 the main 
on
epts of SPL,FMs and graph transformations are presented.An introdu
tion to the 
hara
teristi
s of refa
-toring in the 
ontext of SPL is introdu
ed inSe
tion 3. In Se
tion 4 we present our pro-posal by giving details about how implement-ing the refa
toring of FMs using graph trans-formations and how it 
ould be integrated inthe FAMA plug-in. Finally we des
ribe ourfuture work and summarize our 
on
lusions inSe
tions 5 and 6 respe
tively.2 Preliminaries2.1 Software Produ
t Lines and FeatureModelsSoftware Produ
t line (SPL) development [12℄is an approa
h to develop families of softwaresystems in a systemati
 way. Software reuseand quality are its main goals. A SPL 
anbe de�ned as a set of software produ
ts thatshare a 
ommon set of features. Widely knownexamples are 
ars or mobile phones produ
tlines. Feature models [18℄ are a key artefa
tfor variability management in the 
ontext ofSPL. A FM is a 
ompa
t representation of allthe possible produ
ts of a SPL. Furthermore,it is 
ommonly a

epted that FMs 
an be usedin di�erent stages of an SPL e�ort in order



to produ
e other assets su
h as requirementsdo
uments [16, 17℄, ar
hite
ture de�nition [22℄or pie
es of 
ode [13, 7℄.FMs are represented visually by means offeature diagrams. Roughly speaking, a fea-ture diagram is a tree-like stru
ture in whi
hnodes represent features and 
onne
tions illus-trate the relations between them. The rootfeature identi�es the SPL. The relationshipsbetween a parent feature and its 
hild features
an be divided in:
• Mandatory. If a 
hild feature is manda-tory, it is in
luded in all produ
ts in whi
hits parent feature appears.
• Optional. If a 
hild feature is de�ned asoptional it 
an be optionally in
luded inall produ
ts in whi
h its parent featureappears.
• Alternative. A set of 
hild features arede�ned as alternative if only one feature
an be sele
ted when its parent feature ispart of the produ
t.
• Or-Relation. A set of 
hild features aresaid to have an or-relation with their par-ent when one or more of them 
an be in-
luded in the produ
ts in whi
h its parentfeature appears.Noti
e that a 
hild feature 
an only ap-pear in a produ
t if its parent feature does.The root feature is a part of all the produ
tswithin the SPL. In addition to the parentalrelationships between features, a feature di-agram 
an also 
ontain 
ross-tree 
onstraintsbetween 
ouples of features. These are typi-
ally of the form:
• Requires. If a feature A requires a featureB, the in
lusion of A in a produ
t impliesthe in
lusion of B in su
h produ
t.
• Ex
ludes. If a feature A ex
ludes a featureB, both features 
an not be part of thesame produ
t.Figure 1 illustrates the visual notation offeature diagrams. A widely used example ofa FM from the automotive industry is shown

in Figure 2. The simpli�ed sample diagram il-lustrates how features are used to spe
ify andbuild software for 
on�gurable 
ars. The soft-ware loaded in the 
ar 
ontrol system is de-termined by the 
ar's features. The samplediagram shows that every 
ar has a body, atransmission and an engine whereas the 
ruise
ontrol is an optional feature. In a similarway, the types of transmission are spe
i�ed bymeans of an alternative relationship indi
atingthat 
ars 
an have automati
 or manual trans-mission but not both of them. On the otherhand, an or-relation is used to express that a
ar 
an have an ele
tri
 engine, a petrol engineor both of them.
MANDATORY OPTIONAL OR

ALTERNATIVE REQUIRES EXCLUDES

A B A B

P

C

P

C

P

C1 C2 Cn

P

C1 C2 CnFigure 1: Feature diagram's visual notation
Cruise

Car

Body EngineTransmission

GasolineElectricAutomatic ManualFigure 2: A feature modelThe number of di�erent possible 
ombina-tions of features in a FM represent the 
on�g-urability of the asso
iated SPL. Thus, the 
on-�gurability of a SPL establishes the set of dif-ferent produ
ts that a 
ompany 
an o�er to its
ustomers. Su
h 
on�gurability 
an logi
allyin
rease or de
rease a

ording to the modi�-
ations performed on the FM. Hen
e, for in-stan
e, in the FM showed in Figure 2 the num-ber of di�erent possible 
on�gurations is 12.However, if we 
onvert the �
ruise� feature to



mandatory the number of produ
ts de
reaseto 6 meanwhile adding the option of havinga manual and automati
 transmission at thesame time rise the number of possible 
on�g-urations to 18.2.2 Graph Grammars and Graph Trans-formationsGraph Grammars are a very mature approa
hused sin
e 30 years ago for the generation,manipulation, re
ognition and evaluation ofgraphs [23℄. Sin
e then, graph grammars hasbeen studied and applied in a variety of di�er-ent domains su
h as pattern re
ognition, syn-tax de�nition of visual languages, spe
i�
ationof abstra
t data types, model refa
toring, de-s
ription of software ar
hite
tures, et
. Thisdevelopment is do
umented in several surveys,tutorials and te
hni
al reports [2, 3, 4, 19, 20℄.Graph grammars 
an be 
onsidered as theappli
ation of the 
lassi
 Chomsky's stringgrammars 
on
epts to the domains of graphs.Hen
e, a graph grammar is 
omposed by aninitial graph, a set of terminal labels and a setof transformation rules (sometime also 
alledgraph produ
tions). A transformation rule is
omposed mainly by a sour
e graph or LeftHand Side (LHS) and a target graph or RightHand Side (RHS). The appli
ation of a trans-formation rule to a so-
alled host graph, also
alled dire
t derivation, 
onsists on looking fora mat
h morphism between the LHS and thehost graph. If su
h morphism is found, the o
-
urren
e of the LHS in the graph is repla
ed bythe RHS of su
h rule. Thus, ea
h rule appli-
ation transforms a graph by repla
ing a partof it by another graph. The set of all graphslabelled with terminal symbols that 
an be de-rived from the initial graph by applying the setof transformation rules iteratively is the lan-guage spe
i�ed by the graph grammar.The appli
ation of transformation rules to agiven graph is 
alled Graph Transformations.Graph transformations are usually used as ageneral rule-based me
hanism to manipulategraphs. Most of visual modelling languages
an be interpreted as a type of graph (di-re
ted, labelled, attributed, et
.). This makegraph grammars and graph transformations

to be a natural and intuitive way to de�nethe syntax of visual languages [3℄, perform-ing pattern-based visual model transformation[19℄ or model refa
toring [20℄.There exists a variety of tool for the de�ni-tion of graph grammars and the appli
ation ofgraph transformations. Fujaba 1 and the AGGSystem2 are two of the most popular general-purpose graph transformation tools within theresear
h 
ommunity. Furthermore, other spe-
i�
 tools su
h as GReAT3 or VIATRA24 arealso starting to emerge as a 
onsequen
e of thein
reasing popularity of model driven develop-ment based on graph transformations.There exist a wide variety of graph transfor-mation approa
hes depending on the type ofgraphs used (attributed, hypergraph, dire
ted,et
.) and how the transformation rules are ap-plied. A deep study of them is out of the s
opeof this paper. A more detailed introdu
tionto graph grammars and graph transformations
an be found in [23℄.3 Refa
toring Software Produ
tLinesThe term refa
toring was �rst introdu
ed byOpdyke [21℄ in the 
ontext of obje
t ori-ented programming as behaviour-preservingprogram restru
turing operations to supportthe design, evolution and reuse of obje
t-oriented appli
ation frameworks. A more gen-eral de�nition is given by M. Fowler [15℄ whodes
ribe it as �the pro
ess of 
hanging softwaresystem in su
h a way that it does not alter theexternal behaviour of the 
ode, yet improves itsinternal stru
ture�. However, su
h de�nitiondoes not 
onsider the spe
ial 
hara
teristi
s ofSPL in whi
h programs are frequently derivedfrom a FM representing all the 
on�gurationvariants in a SPL. Hen
e, it is re
ognized thatin a SPL environment not only program shouldbe refa
tored but also FMs [1℄. In this 
ontext,the refa
toring of programs and FMs 
an have1http://www
s.uni-paderborn.de/
s/fujaba/2http://tfs.
s.tu-berlin.de/agg/3http://www.es
herinstitute.org/Plone/tools4http://dev.e
lipse.org/view
vs/indexte
h.
gi/gmt-home/subproje
ts/VIATRA2



the highly negative e�e
t of redu
ing the 
on-�gurability of the SPL.In order to 
over the intrinsi
 
hara
teristi
sof SPL V. Alves et al. [1℄ propose a spe
i�
refa
toring de�nition for this 
ontext: �SPLrefa
toring is a 
hange made to the stru
-ture of a SPL in order to improve (mantainor in
rease) its 
on�gurability, make it easierto understand, and 
heaper to modify without
hanging the observable behaviour of its origi-nal produ
ts�.Alves et al. also identify two types of pro-grams refa
toring in the 
ontext of SPL:1. Transforming a SPL into another one inwhi
h the behaviour is preserved and thestru
tured enhan
ed in some way.2. Merging multiple programs into a newprodu
t line in whi
h the 
on�guration al-ternatives of the separated programs arejoined in the �nal SPL.In both 
ases, the problem of loosing 
on-�guration alternatives 
ould happen. In or-der to guarantee 
on�gurability improvementwhen refa
toring a SPL, Alves et al. proposea 
atalog of sound FM refa
torings. Su
h FMrefa
torings represent the possible transforma-tions that 
an be performed on a FM withoutredu
ing its 
on�gurability. The soundness ofsu
h refa
torings was proved using a formalsemanti
 in a theorem prover.A FM refa
toring 
onsists of two templatesor patterns of FMs: the left-hand (LHS) andthe right-hand (RHS). The LHS and RHS tem-plates of a FM refa
toring represent respe
-tively the state of a part of a FM before andafter applying some kind of refa
toring on it.The appli
ation of a refa
toring to a FM 
on-sists on repla
ing all the o

urren
es of theLHS by the RHS. The values of the variablesin both, LHS and RHS, must mat
h in order toperform the refa
toring. Figure 3 and Figure 4show two of the FM refa
torings proposed byAlves et al.. The fragments of FMs pla
ed onthe left and right of the arrows represent theLHS and RHS patterns respe
tively. Figure 3depi
ts a FM refa
toring in whi
h an optionalfeature is removed and added to an or relation

pla
ed under the same parent feature. On theother hand, Figure 4 shows a FM refa
toringin whi
h the FMs of two di�erent programsare merged into a single produ
t line.
Figure 3: An example of FM refa
toring (extra
tedfrom [1℄).

Figure 4: A FM refa
toring merging two existingprogram in a single produ
t line (extra
ted from[1℄).4 Our ProposalIn this se
tion we introdu
e our proposal.Firstly, we detail how graph transformations
an be used as a suitable te
hnology and for-malism to perform FM refa
toring automati-
ally. Se
ondly, we 
on
rete our 
ontributionby explaining how graph transformation 
ouldbe integrated in the FAMA plug-in in order too�er automated support for FM refa
toring.Finally, we 
larify our proposal by means ofan example.



4.1 Automating Feature Model Refa
tor-ing using Graph TransformationsIn this paper we propose using model transfor-mations as an appropriate me
hanism to pro-vide automati
 support for FM refa
toring. Inparti
ular, we propose implementing the 
at-alog of FM refa
torings provided by Alves etal. using graph transformations.Graph transformations are re
ognized asa suitable te
hnology and formalism for thespe
i�
ation and appli
ation of model refa
-torings. In [20℄ Mens introdu
es the main
on
epts of graph transformations theory andtools and show how using it for refa
toringUML 
lass and state
hart diagrams. A moregeneral 
ontribution is proposed by Biermannet al. [11℄ who use graph transformationsto apply refa
toring on EMF (E
lipse Mod-eling Framework) models. Hen
e, as do
u-mented in the literature, the reasons to sele
tgraph transformations as a suitable approa
hfor model refa
toring are manifold:
• Graph transformations are a natural andintuitive way of performing pattern-basedvisual model transformations.
• The maturity of graph transformationshas provided it with a solid theoreti
alfoundation in form of useful properties.Hen
e, for instan
e, the �invertability�property details under what 
onditions atransformation rule 
an be inverted.
• There are available tools to design, exe-
ute and test the transformations rules.Example of them are the previously men-tioned AGG, Fujaba, GReAT or VIA-TRA2.In order to test our proposal we imple-mented it in one of the most popular toolwithin the graph grammar 
ommunity: TheAttributed Graph Grammar System (AGG).Roughly speaking, AGG is a free Java graph-i
al tool for editing and transforming graphsby means of graph transformations. The AGGSystem is a prototype implementation of thealgebrai
 approa
h to graph transformation

supporting Contextual Layered Graph Gram-mars (CLGG). In CLGGs the set of produ
-tions is 
lassi�ed into ordered layers. To trans-form a graph, produ
tions are applied layerby layer from layer 0 to layer N, 
y
li
ally ifneeded, until none of the produ
tions 
an beapplied. AGG provides a �exible graph editorand a useful 
omponent to apply user-sele
tedprodu
tions to a given graph. In addition, theAGG system 
an be used as a general purposegraph transformation engine in any dedi
atedJava appli
ations employing graph transfor-mation methods. All this reasons made us tosele
t AGG as a suitable tool to implement ourproposal.AGG graph transformation rules 
onsist onthree main parts: a left-hand side graph(LHS), a right-hand side graph (RHS) anda set of Negative Appli
ation Conditions(NAC). NACs are graph-based patterns rep-resenting under what 
onditions the rule willnot be applied. Thus, the mapping fromthe FM refa
torings to graph transformationsis straightforward sin
e both approa
h usepattern-based 
on
epts. Figure 5 shows as
reenshot of the AGG's visual editor display-ing the transformation rule asso
iated to theFM refa
toring showed in Figure 3. The map-ping 
onsists on translating the LHS and RHSpatterns of the FM refa
toring to the LHS andRHS graphs of the AGG transformation rulerespe
tively. No NACs are needed in this 
ase.As illustrated in the �gure we have used anspe
i�
 visual syntax due to the restri
tionsimposed by the visual editor. In parti
ular,we have used solid arrows for the 
onne
tionsin the or relation and a dashed arrow for theoptional one.
Figure 5: AGG transformation rule



4.2 Tooling Automated SupportIn this se
tion we 
on
rete our proposal by de-tailing how we plan to integrate the automati
support for FM refa
toring in the FAMA plug-in.FAMA (FeAture Model Analyzer) [10℄ is amultiparadigm framework for the edition andautomated analysis of FMs. It integrates dif-ferent logi
 paradigms and solvers in order toperform the analysis operations. FAMA isimplemented as an extensible E
lipse plug-inmaking it possible to integrate new solver andanalysis operations as required. In addition,it supports the import and export of FMs inXML/XMI format fa
ilitating the interoper-ability with other related tools. FAMA is es-pe
ially appropriate for the edition and ma-nipulation of FMs in the early stages of SPLdevelopment. However, it 
ould be extendedto support others SPL development tasks su
has design modelling or feature 
omposition atthe 
ode level by means of feature�orientedprogramming tools.A

ording to the kind of program refa
tor-ings identi�ed in SPL we distinguish two typesof automati
 support to be provided:
• If the refa
toring is applied to a sin-gle program and its FM, the possibletransformations to apply depend ex
lu-sively on the kind of refa
toring to beperformed. In this 
ase, we propose asemi-automati
 solution implemented bymeans of a 
ontext-sensitive help wizard.Su
h wizard 
ould suggest to the user thepossible refa
toring transformations a
-
ording to the features involved on it.
• If the refa
toring 
onsists on merging theFMs of multiple programs into a singleone, we 
onsider it 
an be automatized
ompletely sin
e all the information re-quired by the transformation system isavailable. In this 
ase, we propose a trans-formation wizard for merging both FMsinto a single one.In both 
ases, we plan to use graph trans-formations to perform model transformationsand the AGG System as suitable graph

transformation engine for being integrated inFAMA.4.3 An ExampleA software 
ompany spe
ialized in mobilephone 
ontrol systems provides a wide varietyof related produ
ts to its 
ustomers. The 
om-pany has noti
ed that all its produ
ts sharesa 
ommon set of features and it has de
idedto adopt a SPL strategy in order to redu
edevelopment 
osts and time-to-market. As a�rst step, the software ar
hite
t has de
ided todesign the FMs of two of its main programs.Figure 6(a) and Figure 6(b) depi
t the resul-tant FMs. Noti
e that the alternatives of 
on-�guration in both 
ases are minimum.After the �featurization�, the software ar
hi-te
t has de
ide to refa
tor one of the programsand its asso
iated FM in order to in
rease the
on�gurability of the future SPL. Figure 7 de-pi
ts an interfa
e prototype of how our pro-posal 
ould be integrated in the 
ustomizedtree view editor of FAMA. The �gure showshow a 
ontext-sensitive menu 
ould be used tosuggest the possible FM refa
torings a

ord-ing to the sele
ted feature. In this 
ase, thesoftware ar
hite
t has de
ided to 
onvert themandatory feature �wi�� to optional.As a natural step during the adoption of aSPL strategy the software ar
hite
t feels theneed of merging both programs and its asso-
iated FMs into a single produ
t line. In this
ase, our proposal 
ould be also used to mergeautomati
ally both FMs into a single one pre-serving 
on�gurability. Figure 6(
) shows theresultant FM obtained after merging the FMsof both programs into a single produ
t line.5 Future WorkMultiples 
hallenges must be over
ome to pro-vide an e�
ient automated tool support forFM refa
toring based on model transforma-tions. In parti
ular, we have identi�ed threepromising fo
us of resear
h in su
h dire
tion:
• Alves et al. mantain that refa
torings
onsisting on merging multiple FMs into



Media

Mobile Control System (A)

Calls Messages

BluetoohSMS

Frequencies

Tri BandEMS Camera

Connectivity(a) FM of a mobile phone 
ontrol system (A) Quad Band

Media

Mobile Control System (B)

Calls

MP3

Messages

Wifi

Frequencies

MMS Camera

Connectivity

Bluetooh(b) FM of a mobile phone 
ontrol system (B)
Quad Band

Media

Mobile Control System

Calls

MP3Wifi

Frequencies

Camera

ConnectivityMessages

SMS EMS MMS Bluetooh Tri Band(
) Resultant FM after merging the FMs in 6(a) 6(b)Figure 6: SPL refa
toring. Merging two programs into a single one

Figure 7: GUI prototype of the refa
toring operations in FAMA



a single one 
an be performed by apply-ing a sequen
e of single FM refa
toringsto the original FMs separately. However,we 
onsider that an spe
i�
 
atalog of FMmerging refa
torings would be a promis-ing approa
h in order to automate 
om-pletely the merging pro
ess.
• FMs based on multipli
ities [13℄ (also
alled 
ardinality-based FMs) are awidely used extension of the traditionalnotation presented in this paper. How-ever, no spe
i�
 FM refa
torings havebeen proposed for them. Therefore, we
onsider that a 
atalog of 
ardinality-based FMs refa
torings would be an inter-esting approa
h for the SPL 
ommunity.
• The 
ontext-sensitive appli
ation of atransformation rule to a FM is not atrivial task. The possible mappings be-tween the sele
ted features and the pat-terns of the transformation rules must beanalyzed in order to o�er a good perfor-man
e. Hen
e, we 
onsider that the se-le
tion of a suitable mapping strategy isan important issue and we plan to workin su
h dire
tion too.6 Con
lusionsIn this paper we present a proposal for au-tomated support for FM refa
toring based onmodel transformations. In parti
ular, we pro-pose implementing the 
atalog of FM refa
-torings provided by Alves et al. using graphtransformations. As part of our proposal we�rst introdu
ed the mapping from a FM refa
-toring to a graph transformation rule in theAGG system. Next, we proposed how graphtransformations 
ould be integrated in theFAMA plug-in to provide tool support for FMrefa
toring. Finally, we provided an examplein order to make 
lear the interest of our 
on-tribution.Graph transformations are a mature, natu-ral, visual and intuitive means for manipulat-ing visual models. It has already been appliedsu

essfully in the 
ontext of model refa
tor-ing. In 
ontrast with other proposals, graph

transformations theory provides a solid formalfoundation and a set of solid tools. To the bestof our knowledge, this is the �rst work propos-ing automating FM refa
toring by means ofmodel transformations.Referen
es[1℄ Vander Alves, Rohit Gheyi, Tiago Mas-soni, Uirá Kulesza, Paulo Borba, andCarlos Lu
ena. Refa
toring produ
t lines.In GPCE '06: Pro
eedings of the 5thinternational 
onferen
e on Generativeprogramming and 
omponent engineering,pages 201�210, New York, NY, USA,2006. ACM Press.[2℄ Mar
 Andries, Gregor Engels, AnnegretHabel, Berthold Ho�mann, Hans-JörgKreowski, Sabine Kuske, Detlef Plump,Andy S
hürr, and Gabriele Taentzer.Graph transformation for spe
i�
ationand programming. S
ien
e of ComputerProgramming, 34(1):1�54, 1999.[3℄ R. Bardohl, M. Minas, A. S
hurr, andG. Taentzer. Appli
ation of graph trans-formation to visual languages. In H.Ehrig, G. Engels, H.-J. Kreowski, andG. Rozenberg, editors, Handbook of GraphGrammars and Computing by GraphTransformation, volume II: Appli
ations,Languages and Tools. World S
ienti�
,1999.[4℄ Lu
iano Baresi and Reiko He
kel. Tu-torial introdu
tion to graph transforma-tion: A software engineering perspe
tive.In ICGT '02: Pro
eedings of the First In-ternational Conferen
e on Graph Trans-formation, pages 402�429, London, UK,2002. Springer-Verlag.[5℄ D. Batory. Feature models, grammars,and propositional formulas. In SoftwareProdu
t Lines Conferen
e, LNCS 3714,pages 7�20, 2005.[6℄ D. Batory. A tutorial on feature orientedprogramming and the ahead tool suite. In



Summer s
hool on Generative and Trans-formation Te
hniques in Software Engi-neering, 2005.[7℄ D. Batory, J. Sarvela, andA. Raus
hmayer. S
aling step-wisere�nement. IEEE Trans. Software Eng.,30(6):355�371, 2004.[8℄ D. Benavides, A. Ruiz-Cortés, andP. Trinidad. Automated reasoning onfeature models. LNCS, Advan
ed In-formation Systems Engineering: 17thInternational Conferen
e, CAiSE 2005,3520:491�503, 2005.[9℄ D. Benavides, S. Segura, P. Trinidad, andA. Ruiz-Cortés. A �rst step towards aframework for the automated analysis offeature models. In Managing Variabil-ity for Software Produ
t Lines: WorkingWith Variability Me
hanisms, 2006.[10℄ D. Benavides, S. Segura, P. Trinidad, andA. Ruiz-Cortés. FAMA: Tooling a frame-work for the automated analysis of fea-ture models. In Pro
eeding of the First In-ternational Workshop on Variability Mod-elling of Software-intensive Systems (VA-MOS), pages 129�134, 2007.[11℄ E. Biermann, K. Ehrig, C. Köhler,G. Kuhns, G. Taentzer, and E. Weiss.Emf model refa
toring based on graphtransformation 
on
epts. In In Pro
.Third International Workshop on Soft-ware Evolution through Transformations(SETra'06), volume 3 of Ele
troni
 Com-muni
ations of the EASST, 2006.[12℄ P. Clements and L. Northrop. Soft-ware Produ
t Lines: Pra
ti
es and Pat-terns. SEI Series in Software Engineering.Addison�Wesley, August 2001.[13℄ K. Czarne
ki and U.W. Eisene
ker. Gen-erative Programming: Methods, Te
h-niques, and Appli
ations. Addison�Wesley, may 2000. ISBN 0�201�30977�7.[14℄ K. Czarne
ki and S. Helsen. Feature-based survey of model transformation ap-proa
hes. IBM Syst. J., 45(3):621�645,2006.

[15℄ Martin Fowler. Refa
toring - Improvingthe Design of Existing Code. Addison-Wesley, Reading/Massa
husetts, 1999.[16℄ G. Halmans and K. Pohl. Communi
at-ing the variability of a software�produ
tfamily to 
ustomers. Journal on Softwareand Systems Modeling, 2(1):15�36, 2003.[17℄ S. Jarzabek, W. Ong, and H. Zhang.Handling variant requirements in domainmodeling. The Journal of Systems andSoftware, 68(3):171�182, 2003.[18℄ K. Kang, S. Cohen, J. Hess, W. Novak,and S. Peterson. Feature�Oriented Do-main Analysis (FODA) Feasibility Study.Te
hni
al Report CMU/SEI-90-TR-21,Software Engineering Institute, CarnegieMellon University, November 1990.[19℄ T. Mens, P. van Gorp, G. Karsai, andD. Varró. Applying a model trans-formation taxonomy to graph transfor-mation te
hnology. In G. Karsai andG. Taentzer, editors, GraMot 2005, Inter-national Workshop on Graph and ModelTransformations, ENTCS, 2005. In press.[20℄ Tom Mens. On the use of graph transfor-mations for model refa
toring. Generativeand Transformational Te
hniques in Soft-ware Engineering. LNCS, 4143:219�257,2006.[21℄ William F. Opdyke. Refa
toring obje
t-oriented frameworks. PhD thesis, Cham-paign, IL, USA, 1992.[22℄ J. Peña, M. Hin
hey, A. Ruiz-Cortés, andP. Trinidad. Building the 
ore ar
hi-te
ture of a multiagent system produ
tline: With an example from a future nasamission. In 7th International Workshopon Agent Oriented Software Engineering.LNCS, 2006.[23℄ Grzegorz Rozenberg, editor. Hand-book of Graph Grammars and Comput-ing by Graph Transformations, Volume 1:Foundations. World S
ienti�
, 1997.


