
Open Source Tools for Software Product Line Development ∗

Sergio Segura, David Benavides, Antonio Ruiz-Cortés and Pablo Trinidad
Department of Computer Languages and Systems

University of Seville

email:{segura, benavides, aruiz, trinidad}@tdg.lsi.us.es

Abstract

Open-Source (OS) software development differs widely
from close-source development practices because of a num-
ber of reasons: project organization, distributed develop-
ers, code-centric, etc. These characteristics force the de-
velopment tools used in the context of OS development to
fulfill a set of requirements such as being extensible, multi-
platform, version control support, etc. In this paper we
set the basis for a discussion about the features that a suc-
cess OS tool for the development of Software Product Lines
(SPLs) should provide. As a starting point, we analyse the
projects of four major OS development tool and summarize
its main features in a reference feature model. Next, we in-
troduce some the most popular OS feature modeling tools
available in the SPL community and check how they sup-
port the identified features.

1 Introduction

The combination of SPL engineering and OS software
development is expected to become a profitable strategy for
intra-organizational reuse improving product quality, costs
and time-to-market [5]. In this context, providing the OS
community with efficient SPL development tools emerges
as an inevitable step for powering the promising relation
between both fields.

In [8] we presented FAMA, a framework for the visual
edition and automated analysis of feature models. Cur-
rently, we are considering releasing it as an OS project.
However, we found that running a success OS project is a
hard task which motivates multiples questions:

• What features should be supported by a success devel-
opment tool?, i.e. multi-platform, extensible, etc.

∗This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web–Factories
(TIN2006-00472)

• What kind of enabling tool should be provided? Are
the services provided by OS repositories enough?

• How powering the communication between developers
and users? Are mailing lists and wikis the only suitable
mechanisms?

• What kind of documentation should be provided?
Which formats are used in the OS community?

• Do SPL development practices require any specific
tool support?

Detailed instructions about how running an OS project
are well documented in the literature [10]. However, not
all such instructions are always followed in practice. In a
similar way, the support tools and features provided by the
different OS projects usually differ from each other.

In this paper we try to answer previous questions setting
the basis for a discussion about the features that a success
OS tool for the development of SPLs should provide. As a
starting point, we analyse the project of four success OS de-
velopment tools and summarize its main features in a refer-
ence feature model. Next, we analyse some of the intrinsic
characteristics of SPL that should be considered when de-
signing an efficient OS tool for SPL development. Finally,
we introduce some of the most popular OS feature model-
ing tools available in the SPL community and check how
they support the identified features.

The remainder of this paper is organized as follow: in
Section 2, OS development tools are analyzed and a feature
model summarizing its main features is presented. Specific
requirements of SPL development tools are studied in Sec-
tion 3. Section 4 overviews the features supported by some
popular OS feature modeling tools. Finally, we summarize
our main conclusions in Section 5.

2 Open Source Development Tools

In this section we explore the general features that a suc-
cess OS development tool project should provide. In partic-
ular, we focus our analysis on three directions:



1. Features supported by the tool. Hence, for instance,
a success OS development tool should be extensible,
multi-language, updatable, etc.

2. Set of enabling tools and technologies that make pos-
sible the development and collaboration between the
developers of the project. This is a crucial aspect in
OS development since developer will not contribute to
the project if they do not have efficient mechanisms
to do it. Some examples of these kinds of tools and
technologies are Concurrent Version Systems (CVS)
or Wikis.

3. Documentation provided by the project and formats in
which it is published, i.e. Frequently Asked Questions
(FAQ), Tutorials, etc.

Notice that although we focus our analysis on the rele-
vant features that a success OS development tools should
support, such features are general enough to be applicable
for any kind of OS project.

In order to collect the information about the required fea-
tures we propose analyzing the projects of four major OS
development tools with solid reputation in the software in-
dustry. In particular, we propose studying a representative
set of different kind of development tools composed by two
general purpose IDEs (Eclipse, Netbeans) a Web develop-
ment framework (Apache Struts) and a specific purpose IDE
(ArgoUML). The main goal is to obtain a reference feature
model with the features that a success OS development tool
project should support. In the next sections, the analyzed
OS projects are presented.

2.1 Eclipse

Eclipse [4] is a Java-based, extensible, development
framework. It is based on a core plug-in architecture and
a set of services for building Integrated Development En-
vironments (IDE). Hence, with a suitable set of plug-ins,
Eclipse can be used as a powerful cross-platform IDE for
multiple kind of development such as programming, visual
modeling, or text edition. The Eclipse Project was origi-
nally developed by IBM back in 2001. Today, the project
is leaded by the Eclipse Foundation, a non-for-profit cor-
poration of software industry vendors which manages and
directs Eclipse’s ongoing development.

The Eclipse Foundation provides a complete infrastruc-
ture for the development and usage of Eclipse. Control ac-
cess to the source code is managed using a CVS code repos-
itory. Bugs and open issues are reported and managed us-
ing a set of Bugzilla databases. All the information about
the project is published in the official Web site including
abundant documentation for users and developers such as
tutorials or FAQs.

Eclipse can be easily extended and updated from the In-
ternet using a wizard integrated in the tool. In a similar way,
documentation and multi-language support are also avail-
able as a part of the framework.

The collaboration and communication between develop-
ers is also supported by the Eclipse Foundation by means of
several mailing lists, newsgroups and an official Wiki.

2.2 Netbeans

TheNetBeans IDE[6] is a multi-platform IDE for soft-
ware developers. All the functions of the IDE are provided
by modules. Each module provides a well defined function,
such as support for the Java language, editing, or support
for the CVS versioning system. Modules also allow Net-
Beans to be extended with new features such as support for
other programming languages or visual modeling. The Net-
Beans IDE was released as an OS project in June 2000 by
Sun which still today continues acting as the steward of the
project.

Netbeans is available in multiple languages and can be
easily downloaded and updated from the Internet. Its source
code is available within a CVS code repository which can
also be examined from the Web Site. Bugs are reported and
managed using an issue tracking system. The documenta-
tion for users and developers in mainly composed by tutori-
als and FAQs. Finally, communication between developers
and users is mainly powered by several mailing lists and
wikis.

2.3 Apache Struts

Apache Struts[1] is a Web application framework for
developing J2EE Web applications. It provides a set of
extensible components to encourage developers to adopt a
Model-View-Controller (MVC) architecture. Although it is
distributed as a jar package, there exist multiples extensions
for well known IDEs which make use of it. Struts was do-
nated to the Apache Foundation in 2000 becoming a top
level project of the Apache Software Foundation in 2005.

The Apache Software Foundation provides multiple
mechanisms to attract contributions to the projects. Such
mechanism includes a SVN code repository, an issue
tracker, an official Web site for publishing information and
multiple download sites. Documentation is mainly pub-
lished by mains of tutorials and FAQs. Additionally, de-
velopers and users can communicate each other’s using any
of the multiple mailing lists, wikis or the issue tracker.

2.4 ArgoUML

ArgoUML [2] is an UML modeling tool. It runs on any
Java platform and is available in multiple languages. Ar-
goUML was born in the academic field and was released



as an OS project in 1999. Since then, it has evolved and
has been used as the base for other modeling tools such as
Poseidon for UML1 or MyEclipse2.

ArgoUML code is stored in a SVN repository. Issues and
defects are managed using an issue tracker. The tool can
be downloaded from the Web site of the project which also
give access to abundant documentation in form of FAQs,
tutorials and a cookbook. The collaboration between users
and developers of ArgoUML is mainly carried out by means
of mailing lists and the issue tracker.

2.5 A Reference Feature Model

Figure 1 depicts a feature model summarizing the fea-
tures identified in the studied OS projects. The features de-
tected in all the projects are modeled as mandatory mean-
while the features identified only in some of them are de-
fined as optional.

According to the model, success OS development tools
projects should provide, at least:

• A set of enabling tools for supporting the development
and diffusion of the project. In particular, OS projects
should include a dedicated Web site, a control version
system and a bug/issue tracker.

• Support for specific features such as being extensible,
updatable, multi–platform and multi–language. Addi-
tionally, it is also desirable to provide built–in support
for control version as a part of the development tool.

• Documentation in different formats for both, users and
developers. Common formats are FAQs/How–to, tuto-
rials and cookbooks.

• Mechanisms to power the communication and collab-
oration between users and developers. Frequent mains
for such purpose are mailing lists, wikis and news-
groups.

3 Software Product Line Development Tools

SPL development practices are frequently very differ-
ent from the one used when developing individual software
products. Therefore, such characteristics should be taken
into consideration when analyzing the features that a suit-
able OS tool for SPL development should support. In [11],
Gurp gives a step forward in this context by exposing two
major problems detected in SPL tools when comparing it
with OS tools:

1www.gentleware.com/
2http://www.myeclipseide.com/

• Lack of integration. In contrast with the OS envi-
ronment in which tools usually integrate into other
tools, SPL development tools tend to be stand–alone.
This force to use different tools on the different stages
of SPL development making the synchronization be-
tween models, source code and documentation a time–
consuming and error–prone activity. Additionally, the
lack of integration commonly lead to interoperability
problems between different development tools.

• Specific purpose. SPL development tools are not usu-
ally general purpose. By contrast, OS developer tend
to use general purpose tools in which they find all they
need.

In order to overcome the problems pointed by Gurp we
suggest that OS SPL development tools should be integrated
into other general purpose tool widely extended in the OS
community such Eclipse or Netbeans. The advantages of
doing this are manifold:

• SPL developers can use a single tool in all the stages
of development overcoming the integration and inter-
operability problems derived from using different de-
velopment tools.

• It is not necessary to start the development of the tool
from scratch. Hence, for instance, the Eclipse plat-
form provides all the frameworks and services needed
for building complete IDEs as plug–ins of the Eclipse
IDE. Furthermore, plug-ins deployed in Eclipse are au-
tomatically multi–platform, updatable and partially ex-
tensible.

• The barrier of entry for new contributors is lower since
they are probably familiar with the tool.

4 OS Software Product Line Development
Tools

In this section we overview some of the OS tools avail-
able in the SPL community and check how they support the
identified features. In particular, we introduce three popular
OS feature modeling tools and check if they support the fea-
tures presented in Figure 1. Additionally, we check if such
tool are integrated into other general purpose tools avoiding
the problems described in Section 3.

Feature Model Plug-in (FMP)[7] is implemented as an
OS Eclipse plug–in. The project is hosted in an OS repos-
itory which provide it with a standard set of support tools
such as a CVS, mailing lists or a bug tracker. Additionally,
the project provides a dedicated Web site3 with information
about the tool and documentation in different formats. FMP

3http://gp.uwaterloo.ca/fmp/



OS Development Tool Project

Communication

Mailing Lists

Enabling Tools Tool

WikisVersion Control

SVN CVS

Bug/Issue tracker

Multi-platform

CVS Viewer Multi-language

Version Control Support

Extensible

Updatable

Documentation

FAQs

Cookbooks

Tutorials

NewsgroupsWeb Site

Figure 1. OS Development Tool Project

is distributed directly as a downloadable plug-in making the
automated updating of the tool not possible. In addition,
specific extension mechanisms or tutorial for developers are
not available.

XFeature[9] is an XML-based feature modeling tool im-
plemented as an extensible and updatable Eclipse plug–in.
Although the project is recognized as an open source effort,
it does not provide mechanism to support it such as a CVS
or mailing lists. Documentation in different formats can be
found on the Web site of the tool4.

CaptainFeature[3] is a feature modeling tool imple-
mented as a stand-alone Java application. It cannot be up-
dated automatically. Similarly, it does not provide exten-
sion mechanisms or development tutorials. The project is
hosted in a OS repository which provides it with common
support tools. The documentation of the tool is represented
by a simple user guide accessible from the help menu in the
tool.

Table 1 summarizes the features supported by the pre-
sented tools.

5 Conclusions

In this paper we set the basis for a discussion about
the features that a success OS tools for SPL development
should provide. In particular, we first study four major OS
development tools and summarize its main features in a ref-
erence feature model. Next, we argue about the intrinsic
characteristics of SPL development and suggest that SPL
development tools should be integrated into other general
purpose tools. Finally, we overview some popular OS fea-
ture modeling tools and check how they support the identi-
fied features.

4http://www.pnp-software.com/XFeature/

The work reveals that none of the studied tools provide
all the features identified as mandatory. Additionaly, it also
shows that although OS repositories offer a good basic sup-
port they do not provide all a success OS project needs.

Although our approach is not the result of a rigorous
analysis, we consider it clarify some of the multiple aspects
that should be considered when running an OS project.
Hence, if we finally decide to release FAMA as an OS tool,
we will definitely work to provide the identified features.

References

[1] Apache Struts. http://struts.apache.org/.

[2] ArgoUML. http://argouml.tigris.org/.

[3] CaptainFeature. https://sourceforge.net/projects/cap-
tainfeature/.

[4] Eclipse. http://www.eclipse.org/.

[5] ITEA COSI Project. http://www.itea-cosi.org.

[6] Netbeans. http://www.netbeans.org/.

[7] M. Antkiewicz and K. Czarnecki. FeaturePlugin: fea-
ture modeling plug-in for Eclipse. Ineclipse ’04: Pro-
ceedings of the 2004 OOPSLA workshop on eclipse
technology eXchange, pages 67–72, New York, NY,
USA, 2004. ACM Press.

[8] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cort́es. FAMA: Tooling a framework for the auto-
mated analysis of feature models. InProceeding of
the First International Workshop on Variability Mod-
elling of Software-intensive Systems (VAMOS), pages
129–134, 2007.



FMP XFeature CaptainFeature

Tool

Extensible + + -
Updatable - + -

Multi-language - - -
Multi-platform + + +

Version Control Support - - -
Integrated into other tool + + -

Enabling Tools

Dedicated Web Site + + -
Control Version System + - +

C.V. Web Interface + - +
Bug/Issue Tracker + + +

Documentation

FAQ / HOW-TO + + -
Tutorials + + +

Cookbooks - - -

Communication

Mailing Lists + - -
Wikis - - -

Newsgroups - - -

Table 1. OS Feature Modelling Tools

[9] V. Cechticky, A.Pasetti, O. Rohlik, and W. Schaufel-
berger. Xml-based feature modelling.LNCS, Software
Reuse: Methods, Techniques and Tools: 8th ICSR
2004. Proceedings, 3107:101–114, 2004.

[10] K. Fogel. Producing Open Source Software: How to
Run a Successful Free Software Project. O’Reilly Me-
dia, Inc., 2005.

[11] Jilles van Gurp. OSS Product Family Engineering.
In First International Workshop on Open Source Soft-
ware and Product Lines (OSSPL), Baltimore, Mary-
land, USA, August 2006.


