
A Taxonomy of Variability in Web Service Flows ∗

Sergio Segura, David Benavides, Antonio Ruiz-Cortés and Pablo Trinidad
Department of Computer Languages and Systems

University of Seville

email:{segura, benavides, aruiz, trinidad}@tdg.lsi.us.es

Abstract

The combination of Software Product Lines (SPL) and
Service-Oriented Architectures (SOA) development prac-
tices is expected to become a new development paradigm
maximizing reuse and business integration. However, mul-
tiples issues must be still addressed in order to clarify the
connections between both fields. One of the key questions to
answer is how SPL practices can be used to support service-
oriented applications. In this context, identifying and man-
aging the points of variability in composite Web services
emerges as an inevitable step for making possible such in-
tegration. In this position paper we give a first step toward
such direction by introducing a comprehensible overview of
the main variability points in Web service flows.

1 Introduction

Software Product Lines (SPL)[8] and Service-Oriented
Architectures (SOA)[18] approaches to software develop-
ment pursue different goals from a common perspective:
software reuse. On the one hand, SPL focus on manag-
ing commonalities and variabilities among a set of related
software systems. On the other hand, SOA enable assem-
bly, orchestration and maintenance of service-based solu-
tions implementing business processes.

Contributions about the connections between both devel-
opment approaches, SPL and SOA, are starting to emerge in
the SPL community [22]. However, multiple issues must
be still addressed for studying how SPL practices could
support the development of service–oriented systems. In
this context, a relevant issue to be analyzed is how manag-
ing variations for specific customers or market segments in
SOA.

Service–oriented applications are not tied to an specific
technology. However, most common implementation of

∗This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web–Factories
(TIN2006-00472)

SOA-based systems use Web services as a suitable inte-
gration technology. A Web service is a software system
designed to support interoperable machine-to-machine in-
teraction over a network using Web standards protocols
[2]. The main goal is to achieve interoperability among
applications in a language and platform independent man-
ner. However, the real strength of Web services is obtained
when combining them and orchestrating them in order to
deliver added-value services. In this context, Web Ser-
vice Flows (WS-flow) are a common way for implementing
composite Web services in SOA. WS-flows are composite
Web services implemented using a process-based approach.
Roughly speaking, a WS-flow process defines an executable
business process in which participants are Web services.

Research in the field of variability in conventional Web
services [12, 16, 19] and process workflow [7, 10, 11, 15,
20] is merely addresed in the literature. In [13] a high-
level classification of approaches to WS-flow adaptability is
presented. A more technological classification of WS-flow
variability points in service invocation is introduced by the
IBM staff in [9]. However, an explicit classification of the
main variability points in WS-flow is still missed.

In this paper we give a first step toward a proposal for
managing variability in WS-flow in the context of SPL
and SOA. In particular, we first introduce WS-flow and
BPEL. Secondly, we describe and classify the main vari-
ability points in WS-flow. The goal is to provide the starting
point for a base of knowledge about variability in WS-flows
that can be later used for both,i) evaluating the different
mechanisms for implementing variability in WS-flow and
ii) identifying factors that affect the selection of such vari-
ability mechanisms.

The remainder of this paper is organized as follow: in
Section 2 WS-flows and BPEL are introduced. The main
variability points identified in WS-flows are described in
Section 3. Finally, we summarize our main conclusions and
describe our future work in Section 4.

2 Web Service Flows

A Web Service Flow (WS-flow)is a composite Web ser-
vice implemented using a process-based approach [13].
Similarly to conventional process workflow, WS-flows
specify set of tasks which are executed by the participants of
a process. Additionally, a WS-flow defines the execution or-
der of tasks, the data exchange among the participants and
the business rules. In contrast with traditional workflows,
the main characteristic of a WS-flow is that it works with
a single type of participants: Web services. Figure 1 de-
picts an example of a WS-flow of a travel agency for travel
arrangement. The WS-flow invokes the Web services of dif-
ferent airlines, car rental companies and hotels offering to
the customer a value-added service for travel reservation.

There exist multiple proposed languages for defin-
ing WS-flows such as WSCI [21], BPML [4] or BPEL
[14]. However, theBusiness Process Execution Language
(BPEL) is recognized asde facto standard in this area.
BPEL introduces basic and structured activities, control
structures such as loops and conditional branches, syn-
chronous and asynchronous communication, etc. Although
BPEL processes are defined in XML format, most devel-
opment IDEs provide a graphical notation for it. Once a
BPEL process is defined it can be executed in any BPEL-
compliant execution engine such as activeBPEL [1]. The
execution engine orchestrates the invocations to the partici-
pants Web services according to the process definition.

3 Variability in WS-Flows

In this section we explore the main variability points in
WS-flow. In particular, we focus on the variability in the in-
vocation of services and the workflow structure. Variability
in other advanced aspects of services such as security is out
of the scope of this paper because of space constraints.

3.1 Service invocation

A service invocation is an activity in which the work-
flow invokes another service and exchange messages with
it returning control back to the workflow. Figure 2 summa-
rizes the main variability points identified in the invocation
of services using a feature model. In particular, we have
identified four main variability points:

• Binding Time. The selection of the service to invoke
can be performed either during the development or the
execution of the workflow. In the first case, the service
reference is defined in design-time forcing to redeploy
the workflow if changes in the participants need to be
done. On the other hand, most flexible approaches pro-
pose selecting participants in run-time making the ap-

plication adaptable to changes in the execution envi-
ronment. Additionally, partner selection during run-
time can be performed either by the user or automati-
cally according to some selection policies.

Figure 3 shows a possible implementation of run-time
automated partner selection using a so-called service
registry [3]. First, the information of the services (e.g.,
different airlines Web services) is registered in a ser-
vice registry. Then, the workflow send a query to the
registry to determine a matching service according to a
set of parameters (e.g., a service with time of response
≤ 10s) and the predefined selection policies. Finally,
the service reference obtained as a result of the query
is used to invoke the matching service.

2. Query
1. Register
 Services
 Information

3. Uses

Service Registry

Figure 3. Service Registry

• Partner Selection Criteria. Selection criteria help to
determine which of the available services offering the
same functionality will be selected for its invocation
[17]. In this context, two main variability points are
identified:

Evaluation Context. Selection criteria can be either
hard-coded in the workflow or delegated to an exter-
nal entity. The first option is very limited since work-
flow and selection criteria are highly coupled. On the
other hand, defining the selection criteria in an inde-
pendent manner is a preferred approach since it allows
managing changes more efficiently. Figure 4 depicts
an example in which the selection criteria are defined
out of the scope of the workflow. Notice that changes
in the selection criteria would be welcome since they
would not affect the workflow.

Definition Time. Selection criteria can be modified ei-
ther in design-time or run-time. Similarly to the part-
ner selection, the first option force to redeploy the
workflow to responds to changes meanwhile the sec-
ond alternative is much more flexible since it allows
adapting the process workflow dynamically.

• Messages Exchange. Messages exchange between ex-
ecutable service workflows and other services are typ-
ically performed using two different communication

Client

Figure 1. A possible WS-flow for Travel Arrangement

Service Invocation

Partner Selection Protocol

Partner Selection Criteria

Message Exchange

Evaluation Context Definition Time

Hard-coded Delegated

Synchronous Asynchronous SOAP/HTTP

SOAP/JMS SOAP/SMTP

XML/HTTP

Design-time Run-time

User-Driven Automated Run-timeDesign-time

Binding Time

Figure 2. Variability Points in Service Invocation

If from = Europe

If from = Asia
Trader

If from = Africa

Figure 4. Workflow-independent selection
criteria

patterns: synchronous or asynchronous. Synchronous
request/response message exchange consists on send-
ing a request message to the service and wait for it to
response. Although this is the most common and nat-
ural approach, it is clearly not feasible if the services
require significant time to response since it blocks the
workflow processing. Hence, when the participant ser-
vices can take a long time to response and such re-
sponse is not needed for workflow processing, an asyn-
chronous pattern is typically used.

In the asynchronous model the communication is per-
formed between two workflows, the so-called service
provider and service requestor or client. In this situa-
tion, the client need not block on the call. Instead, the
client implements a callback interface, and once the re-
sults are available, the service provider simply makes
a callback invocation on the client. Figure 5 illustrates
an example of asynchronous messages exchange.

Request

Call-back

Service ProviderClient

Figure 5. Asynchronous Model

• Protocols. Multiples protocols can be used for ser-
vice interactions over a network, i.e. SOAP/HTTP,
SOAP/JMS, XML/HTTP, etc. Thus, the selection of
a suitable set of protocols for the communication with
services is a key variability point.

3.2 Process Workflow Structure

The process workflow structure determines all the as-
pects related to the way in which the process is executed:
the execution order, the data exchange between participants,
the business rules, the errors treatment, etc. Hence, two
main variability points are identified in this context:

• Control Flow. The workflow structure determines the
tasks to be executed, the execution order and even
the type of participant in the process. Therefore, the
control flow will commonly have locations likely to
change in response to changes in the business process.
Hence, for instance, suppose the travel agency decides
to change the order in which flight fares are consulted
for certain customers, e.g. prioritizing low-cost air-
lines for young people.

• Data Flow. During the execution of a WS-flow partic-
ipants exchange different kind of data in XML format.
Similarly to the control flow, data is likely to change as
consequence of changes in the business process. As an
example, suppose the travel agency is asked to provide
additional security information in the cases in which
passengers travel to a specific country.

4 Conclusions and Future Work

In this paper we expose the need for an explicit clas-
sification of variability in WS-flow as a starting point for
handling variability through services in the context of SPL
and SOA. In particular, we identified and classify the main
variability points in the invocation of services and the work-
flow structure. In some cases the distinction between
development-time and run-time is exposed explicitly be-
cause of its relevance. However, we emphasize that the time
in which variability is resolved will depend mainly of the
technology used.

Many challenges remain for our future work. Once the
main variability points are identified is time to consider
the available technological approaches for implementing it.
Hence, we are already evaluating the different implementa-
tion proposals paying special attention to the way in which
they support the variability points presented in this paper.

Finally, our main goal is to develop a prototype devel-
opment tool for the generation of a SPL of composite Web
services. Although our work is still immature we plan to
develop a framework for the automated or semi-automated
generation of BPEL code from a given extended feature
model [6]. The framework will implement a core business
process in which variable parts will be generated automat-
ically according to the feature selection. For such purpose,
we will start by associating features and feature attributes

to Web services and Quality-of-Service (QoS) parameters
respectively [5].

References

[1] ActiveBPEL. www.activebpel.org/.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.Web
Services: Concepts, Architectures and Applications.
Springer-Verlag, 2004.

[3] D. Ardagna and B. Pernici. Adaptive Service Com-
position in Flexible Processes.IEEE Transactions on
Software Engineering, 33(6):369–384, 2007.

[4] A. Arkin. Business Process Modeling Language
(BPML). Version 1.0, 2002. http://www.bpmi.org/.

[5] D. Benavides, A. Duŕan, M.A. Serrano, and
C. Montes-Oca. Quality of service variability in sys-
tem families based on web services. InSimposio de In-
formática y Telecomunicaciones SIT 2002, pages 205–
218, Sevilla, Spain, 2002.

[6] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Auto-
mated reasoning on feature models.LNCS, Advanced
Information Systems Engineering: 17th International
Conference, CAiSE 2005, 3520:491–503, 2005.

[7] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and
M. Shan. Adaptive and Dynamic Service Composi-
tion in eFlow. InConference on Advanced Informa-
tion Systems Engineering, volume 1789, pages 13–31.
Springer Verlag, 2000.

[8] P. Clements and L. Northrop.Software Product Lines:
Practices and Patterns. SEI Series in Software Engi-
neering. Addison–Wesley, August 2001.

[9] G. Goldszmidt and C. Osipov. Make composite
business services adaptable with points of variability.
choosing the right implementation. IBM, April 2007.
http://www.ibm.com/developerworks/library/ar-
cbspov1/.

[10] Y. Han, A. Sheth, and Chr. Bussler. A Taxonomy of
Adaptive Workflow Management. InCSCW-98 Work-
shop, Towards Adaptive Workflow Systems, 1998.

[11] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and
M. Teschke. A comprehensive approach to flexibility
in workflow management systems.SIGSOFT Softw.
Eng. Notes, 24(2):79–88, 1999.

[12] A. Ruokonen J. Jiang and T. Systa. Pattern-based Vari-
ability Management in Web Service Development.
IEEE, November 2005.

[13] D. Karastoyanova and A. Buchmann. Extending Web
Service Flow Models to Provide for Adaptability. In
Proceedings of the OOPSLA ’04 Workshop on ”Best
Practices and Methodologies in Service-oriented Ar-
chitectures: Paving the Way to Web-services Success”,
Vancouver, Canada, October 2004.

[14] OASIS. Web Services Business Process Execution
Language Version 2.0, May 2006. http://www.oasis-
open.org/.

[15] M. Reichert and P. Dadam. ADEPT flex -supporting
dynamic changes of workflows without losing control.
Journal of Intelligent Information Systems, 10(2):93–
129, 1998.

[16] S. Robak and B. Franczyk. Modeling Web Services
Variability with Feature Diagrams. InRevised Pa-
pers from the NODe 2002 Web and Database-Related
Workshops on Web, Web-Services, and Database Sys-
tems, pages 120–128, London, UK, 2003. Springer-
Verlag.

[17] A. Ruiz-Cort́es, O. Mart́ın-Dı́az, A. Duŕan-Toro, and
M. Toro. Improving the automatic procurement of
web services using constraint programming.Int. J.
Cooperative Inf. Syst, 14(4):439–468, 2005.

[18] E. Thomas. Service-Oriented Architecture: A Field
Guide to Integrating Xml and Web Services. Prentice
Hall, 2004.

[19] N. Yasemin Topaloglu and R. Capilla. Modeling the
Variability of Web Services from a Pattern Point of
View. In ECOWS, pages 128–138, 2004.

[20] van der Aalst, W. M. P., and S. Jablonski. Dealing
with workflow change: identification of issues and so-
lutions. International Journal of Computer Systems
Science and Engineering, 15(5):267–276, September
2000.

[21] W3C. Web service choreography interface 1.0, Au-
gust 2002. http://www.w3.org/TR/wsci/.

[22] C. Wienands. Synergies between Service-Oriented
Architecture and Software Product Lines, 2006.
Siemens Corporate Research. Princeton, NJ.

