
Feature Model to Orthogonal Variability Model
Transformation towards Interoperability between Tools

Fabricia Roos-Frantz1, David Benavides2 and Antonio Ruiz-Cort́es2

1 Unijuı́, Departmento de Tecnologia - Ijuı́, RS, Brasil
frfrantz@unijui.edu.br

2 University of Seville, ETSI Inforḿatica. Avda. Reina Mercedes, s/n. Sevilla 41012, Spain
{benavides, aruiz}@us.es

Abstract. Documenting and managing the variability among products of a prod-
uct line is an essential task in software product line engineering. FeatureModel
(FM) and Orthogonal Variability Model (OVM) are both modelling languages
employed for this purpose. In this position paper we propose a transformation
between FM and OVM models, thus allowing the interoperability between their
modelling tools, particularly analysis tools. The current model transformation
tools, particularly those that permit manipulating models from developmenten-
vironment such as Eclipse, and yet those with support to deal with metamodels,
seem to be highly appropriate to carry out this task. Therefore we intend touse
MOMENT2, which is a model transformation engine that provides support for
graph transformation language, as a way of validating our proposal. Tothe best
of our knowledge, there is no proposal for the automated transformation of FM
into OVM, not to mention a solution based on model transformation.

Key words: Sofwtare Product Lines, Transformations, Feature Models, Orthog-
onal Variability Model

1 Introduction and Motivation

Software Product Line (SPL) Engineering paradigm [11,8] isone of the most recent
ways of software reuse. Documenting and managing the variability among products of a
product line is an essential task in this development paradigm. For this purpose, we can
use variability models such as Feature Models (FM) and Orthogonal Variability Model
(OVM), among others. The former is a common approach employed to represent an
SPL by means of a hierarchical decomposition of features, which yields a feature tree
or DAG (directed acyclic graph), comprising common and variable features of a system
family. The latter is a more recent approach used to documentvariability in design
and realisation artifacts [10,9]. Its main goal is to explicitly define and manage the
variability of a SPL without take into account the common features.

In this position paper we propose a FM to OVM transformation in order to provide,
in the near future, the interoperability among tools that support both variability mod-
elling languages. In such transformation we transform the variable features of a FM into
an OVM, thus providing an explicit view of variability of thesoftware product line.



In 2006, a report by the Forrester consulting company [3] coined a term that has
become one of the most relevant topics in the software engineering community: Appli-
cation Lifecycle Management (ALM). ALM is defined as “the coordination of devel-
opment life–cycle activities, including requirements, modeling, development, build, and
testing, through: 1) enforcement of processes that span these activities; 2) management
of relationships between development artifacts used or produced by these activities;
and 3) reporting on progress of the development effort as a whole”. In our current re-
search scenario we aim at developing a reference architecture for ALM environments
promoting process–quality standards compliance and integrating software engineering
tools keeping traceability among artifacts. In this scenario, which focuses on ALM en-
vironment, it is necessary to have in place a FM to OVM transformation. For instance,
it will be of practical importance being able to have interoperability between FM and
OVM, proving a tool that can work with a variability model in different views. One
view of all products in an SPL with their variabilities and commonalities represented
with FMs and another view of an SPL, where only the variation points are considered.

2 Problem statement: Interoperability between FM and OVM
tools

2.1 Multiple views

When a designer is defining and exploiting the variability in asoftware product line,
he/she might be interested in having multiple views of this variability. By means of a
feature model the designer can visualise all the features that a given product line can
provide in its products. Common and variable features both are defined in such model.
However, if he/she wants to manage and visualise only the variation points of such
product line, it would be more visible if this information could be visualised explicitly.
Hence, OVM would be highly suitable to show the variable features, since it expresses
only the variation points. Fig. 1 illustrates how the variability of a product line repre-
sented by a FM would be represented by means of variation points in an OVM.

2.2 Automated analysis tools

The automated analysis of SPL can be considered as the computer-aided extraction
of information from variability models that can be helpful for SPL engineers, designers,
programmers and managers. For instance, one of them may wantto know how many po-
tential products are represented in a model, or even to know whether a specific product
belongs to the model. Automated reasoning is an important task in the context of SPL,
since it is practically impossible to do it manually, and on top of that it is error prone. In
addition, the variability models are one of the main artifacts of the domain engineering
activity and therefore their analysis in an early stage of development is essential to the
success of the SPL.

In spite of the automated analysis is a challenge to be reached in SPL Engineering,
only recently researchers have paid attention to the reasoning on these models, how-
ever their work has focused on FMs. Although the automated analysis of OVMs has



Fig. 1. Different views of variability in an SPL.

been proposed [2], it only deals with a small number of analysis operations, which are
implemented using a specific logical representation and solver.

As there are already some automated analysis tools designedto work on FMs, we
wonder if it is possible to reuse these tools, or part of those, to analyse OVM models.
The automated analysis of OVM could be thought as a subset of the automated analysis
of FMs so that the analysis of a specific OVM model can yield thesame results as
the analysis of the equivalent FM. Then, we believe that by means of a transformation
between FM and OVM we do not need to design a new analysis tool for OVM models,
but we could reuse the existing FM analysis tools.

3 First step towards a solution: FM to OVM transformation

Our first goal is to obtain the OVM equivalent from a given FM. As previously
mentioned, the FMs document both the common and variable features of a SPL. The
common features are those that form part of all products in a SPL, and the variable
features are those that form part of some products, i.e. the variability. However, OVM
only documents the variability of a SPL. Therefore, in orderto transform a FM into an
OVM, it is necessary that every variability represented in the FM is transformed into a
variation point in the OVM.

This section describes a possible way to transform FM into OVM. We propose a
FM2OVM algorithm in such a way that the variable parts of a FM is transformed into
an OVM. Hence, the target model leaves aside the commonalities and gives an explicit
view of the variability represented in the source FM. To our transformation we use the
metamodel presented in [7] as the abstract syntax of FM (cf. Fig. 2).

As OVM metamodel we propose a metamodel based on the OVM abstract syntax
defined by Metzger et al. in [2] (cf. Fig. 3). It was adapted in order to use the same
concepts used in the FM metamodel aforementioned, e.g.Set, Binary, Groupedand
Solitary. The element variation point has two types of relations,SetandBinary. The
former is equivalent to thealternative choice, which has at least 2grouped variantsand



Fig. 2. FM metamodel [7]

a cardinality. The latter, is equivalent tomandatoryor optional, which has onesolitary
variant. The OVM model may or may not have constraints. Some Object Constraint
Language (OCL) statements were included to ensure some properties, as for instance
the OCL atcontext Set. It ensures that the attributeCard.maxis less than or equal to the
number of grouped variant in thesetrelation and thatCard.minis greater than or equals
to 0, andCard.minis less than or equals toCard.max.

Our transformation algorithm has four preconditions: (1) the FM must be syntacti-
cally correct, it must satisfy the metamodel FM; (2) the FM must be valid, it represents
at least one product [6,5,4]; (3) the FM does not have dead features, i.e. features that
do not appear in any product [12,4]; and, (4) the FM has variability, at least one of its
features is a variant feature, i.e. features that do not appear in all the products [4].

In addition to the preconditions, there are some postconditions. We consider that
the translation is satisfactory if: (1) the target OVM modelis syntactically correct ac-
cording to the metamodel in Fig. 3; and, (2) the products of the source model without
core features are the same as the ones of the target model without core features (those
features that are common to all products).

The activity diagram of Fig. 4 illustrates how we propose to transform a FM into
an OVM. We use the activity diagram as a tool to facilitate theunderstanding of the
transformation algorithm, in fact it represents the main steps of our algorithm. In the
following we describe the corresponding activities and thechoices which determine
the succession of them. The algorithm traverses the tree in preorder and performs the
following operations recursively at each node, starting with the root node:

“Select Feature n in FM:” the algorithm visits the node;“n in core features or n
is the root?”concerns the distinction between features that are common to all products
(core features) and those that are not (variabilities). Whenn is a CF or root it does not
become an element in OVM;“Transform parent(n) in VP:”when n is not a CF, its



Fig. 3. OVM metamodel based on [2].

parent will be transformed in a VP;“parent(n) in core feature?”when transforming the
parent(n) in VP, the type of such VP depends of it is a variability or a commonality;“Set
VP type as OPTIONAL VP:”when parent(n) is a variability, then VP is Setted as OP-
TIONAL VP; “Set VP type as MANDATORY VP:”when parent(n) is a commonality,
then VP is setted as MANDATORY VP;“n is solitary feature?” the type of n deter-
mines the type of variant when transforming n into variant;“Transform n in GROUPED
VARIANT:” the grouped feature n in FM will be transformed in grouped variant; “Set
relationship between VP and V as SET:”when a variant is a grouped variant, the rela-
tionship with its parent VP is SET;“Set cardinality:” when the relationship is SET, it
has a cardinality;“Transform n in SOLITARY VARIANT:”the solitary feature n in FM
will be transformed into solitary variant;“n with cardinality [1..1]?” the cardinality of
a solitary feature determines if the variant will be optional or mandatory;“Set relation-
ship between VP and V as OPTIONAL:”when solitary feature with cardinality [0..1] is
transformed into variant, the relationship with its parentVP is OPTIONAL; “Set rela-
tionship between VP and V as MANDATORY:”when solitary feature with cardinality
[1..1] is transformed into variant, the relationship with its parent VP is MANDATORY.

Now we can use the examples in Fig. 5 and 6 to illustrate the transformation. Taking
into account that the FM fulfils the preconditions, we are able to translate a FM into an
OVM. Then, by applying the algorithm transformation (cf. Fig. 4) from the FM in Fig. 5
we obtain the OVM in Fig. 6. The resulting OVM is syntactically correct and if we omit



Fig. 4. FM2OVM algorithm.

all the CF of the FM set products and also of the OVM set products, we have two
equivalent set of products, namely:

Fig. 5. An example of a mobile phone product line using FM.

P1= {SMS,Symbian} P10= {MMS,WinCE,Calculator}
P2= {SMS,WinCE} P11= {SMS,MMS,Symbian,Calculator}
P3= {MMS,Symbian} P12= {SMS,MMS,WinCE,Calculator}
P4= {MMS,WinCE} P13= {SMS,Symbian,Calculator,Currency Exchange}
P5= {SMS,MMS,Symbian} P14= {SMS,WinCE,Calculator,Currency Exchange}
P6= {SMS,MMS,WinCE} P15= {MMS,Symbian,Calculator,Currency Exchange}



Fig. 6. OVM example: mobile phone product line.

P7= {SMS,Symbian,Calculator} P16= {MMS,WinCE,Calculator,Currency Exchange}
P8= {SMS,WinCE,Calculator} P17= {SMS,MMS,Symbian,Calculator,Currency Exchange}
P9= {MMS,Symbian,Calculator} P18= {SMS,MMS,WinCE,Calculator,Currency Exchange}

It therefore follows that given a FM, which represent a PL (a set of products with
commonalities and variabilities), the translation FM2OVMresults an OVM which rep-
resent the same PL as the source FM, but representing only thePL variability.

4 Discussions and Open Issues

We propose a transformation between FM and OVM models, thus allowing the in-
teroperability between their modelling tools, particularly analysis tools. The current
model transformation tools, particularly those that permit manipulating models from
development environment such as Eclipse, and yet those withsupport to deal with
metamodels, seem to be highly appropriate to carry out this task. We intend to use the
MOMENT2 tooling [1], which provides a model transformationengine that provides
support for graph transformation language. MOMENT2 is an algebraic model manage-
ment framework that permits manipulating models in the Eclipse Modeling Framework
(EMF). To the best of our knowledge, there is no proposal for the automated transfor-
mation of FM into OVM, and not to mention a solution based on model transformation.

When defining our algorithm we have found that the main issue tofulfil the post-
conditions concerns the structural difference between FM and OVM diagrams. The
translation of a tree into OVM is not a straight task due to it usually has more than
two levels. Regardless the technique used to do this transformation, this problem comes
forward. We need to work more in it to achieve a satisfactory transformation.

Bidirectional transformation. Although most of the model-to-model transformation
tools do not provide support to bidirectional transformation, we intend to achieve
the transformation between FM and OVM in both directions. This is essential in
our research work on automated analysis of OVM. We intend to use FAMA Frame-
work [13] to analyse OVM, which is a tool for the automated analysis of FMs. Its
main goal is to provide an extensible framework where current research on variabil-
ity model automated analysis might be developed and easily integrated into a final
product. FAMA receives as input a model conforms to a FM metamodel and per-
forms several analysis operations on this FM by using different solvers. We aim at



using model-to-model transformation in order to generate atarget model conforms
to a FM metamodel from a source model conforms to an OVM metamodel, and
thus to be able to analyse this resulting FM by using FAMA. Such analysis could
be thought as a subset of the automated analysis of FMs so thatthe analysis of a
specific OVM model can yield the same results as the analysis of the equivalent
FM.

Deal with commonalities. Another issue concerns how to deal with the commonalities
that are not transformed. If we are interested in maintaining the traceability between
both diagrams we need to preserve the common features in someway.

5 Conclusions and Future Work

In our scenario of research it is useful to have the transformation FM2OVM, and
up to now to the best of our knowledge, there is no work providing such solution. Such
transformation would allow us provide a tool support to workwith the interoperability
between both languages. In this paper we proposed a FM to OVM transformation, in
which we transform the variable parts of a FM into variation points and variants in an
OVM. In this way, we obtain a view of the variability of a FM by means of an OVM
allowing the variability tools work with multiples views ofthe variability.

To achieve an automated FM2OVM engine by means of model-to-model transfor-
mation techniques, we first need better define the OVM metamodel, and then to define
the transformation rules between the elements of both metamodels.

As future work we intend to develop a study case by using MOMENT2 engine to
transform FM into OVM. In addition, we aim at developing a bidirectional transforma-
tion due to it is essential to achieve a more complete solution for our problem.

Acknowledgement. This work was partially supported by Spanish Government under
CICYT project Web-Factories (TIN2006-00472) and project SETI (TIN2009-07366)
and by the Andalusian Government under project ISABEL (TIC-2533) and Evangelis-
cher Entwicklungsdienst e.V. (EED).

References

1. Boronat A., Heckel R., Carsı́ J. A., Gómez A., Ramos I., and
Meseguer J. Moment2: A formal framework for model management.
http://www.cs.le.ac.uk/people/aboronat/tools/moment2/.

2. Metzger A., Pohl K., Heymans P., Schobbens P., and Saval G. Disambiguating the docu-
mentation of variability in software product lines: A separation of concerns, formalization
and automated analysis. In15th IEEE Int’l Requirements Engineering Conference, pages
243–253, 2007.

3. Schwaber C. The changing face of application life-cycle management. Forrester Research,
2006.

4. Benavides D.On the automated analysis of software product lines using feature models.
PhD thesis, University of Sevilla, 2007.



5. Benavides D., Ruiz-Cortés A., Trinidad P., and Segura S. A survey on the automated analyses
of feature models. InJISBD, pages 367–376, 2006.

6. Benavides D., Trinidad P., and Ruiz-Cortés A. Automated reasoning on feature models. In
Advanced Information Systems Engineering: 17th International Conference, CAiSE 2005,
volume 3520 ofLNCS, pages 491–503. Springer–Verlag, 2005.

7. Benavides D., Trujillo S., and Trinidad P. On the modularization of feature models. InIn
First European Workshop on Model Transformation, 2005.

8. Pohl K., B̈ockle G., and F. J. van der Linden.Software Product Line Engineering: Funda-
tions, Principles and Techniques. Springer–Verlag, Berlin, DE, 2005.

9. Bencomo N.Supporting the Modelling and Generation of Reflective Middleware Families
and Applications using Dynamic Variability. PhD thesis, Lancaster University, 2008.

10. Loughran N., Śanchez P., Garcia A., and Fuentes L. Language support for managing vari-
ability in architectural models. InSoftware Composition, pages 36–51, 2008.

11. Clements P and Northrop L.Software Product Lines: Practices and Patterns.SEI Series en
Software Engineering. Addison–Wesley, August 2001.

12. Trinidad P., Benavides D., Durán A., Ruiz-Cort́es A., and Toro M. Automated error analysis
for the agilization of feature modeling.J. of Systems and Software, 81(6):883–896, 2008.

13. Trinidad P., Benavides D., Ruiz-Cortés A., Segura S., and Jimenez A. Fama framework. In
Software Product Line Conference Tool Demonstrations (in press), 2008.


