Feature Model to Orthogonal Variability M odel
Transfor mation towar ds I nter oper ability between Tools

Fabricia Roos-Frantz David Benavidesand Antonio Ruiz-Co#és

1 Unijui, Departmento de Tecnologia - ljiRS, Brasil
frfrantz@inijui.edu. br
2 University of Seville, ETSI Inforratica. Avda. Reina Mercedes, s/n. Sevilla 41012, Spain
{benavi des, aruiz}@is.es

Abstract. Documenting and managing the variability among products of a prod-
uct line is an essential task in software product line engineering. Fddtadel
(FM) and Orthogonal Variability Model (OVM) are both modelling langusge
employed for this purpose. In this position paper we propose a tranafan
between FM and OVM models, thus allowing the interoperability between their
modelling tools, particularly analysis tools. The current model transiton
tools, particularly those that permit manipulating models from developerent
vironment such as Eclipse, and yet those with support to deal with ma&is)o
seem to be highly appropriate to carry out this task. Therefore we inteaskto
MOMENTZ2, which is a model transformation engine that provides sugpor
graph transformation language, as a way of validating our proposaheTbest

of our knowledge, there is no proposal for the automated transformatieM

into OVM, not to mention a solution based on model transformation.

Key words: Sofwtare Product Lines, Transformations, Feature Models, Orthog-
onal Variability Model

1 Introduction and Motivation

Software Product Line (SPL) Engineering paradigm [11,8}is of the most recent
ways of software reuse. Documenting and managing the viiyaimong products of a
product line is an essential task in this development pgradi-or this purpose, we can
use variability models such as Feature Models (FM) and @ahal Variability Model
(OVM), among others. The former is a common approach emglégeepresent an
SPL by means of a hierarchical decomposition of featuregiwyields a feature tree
or DAG (directed acyclic graph), comprising common andalale features of a system
family. The latter is a more recent approach used to docuwembility in design
and realisation artifacts [10,9]. Its main goal is to exglijcdefine and manage the
variability of a SPL without take into account the commonttees.

In this position paper we propose a FM to OVM transformationrider to provide,
in the near future, the interoperability among tools thatpsut both variability mod-
elling languages. In such transformation we transform grable features of a FM into
an OVM, thus providing an explicit view of variability of treoftware product line.

In 2006, a report by the Forrester consulting company [3hedia term that has
become one of the most relevant topics in the software eagimgecommunity: Appli-
cation Lifecycle Management (ALM). ALM is defined athé coordination of devel-
opment life—cycle activities, including requirementsdeling, development, build, and
testing, through: 1) enforcement of processes that spasethetivities; 2) management
of relationships between development artifacts used odyred by these activities;
and 3) reporting on progress of the development effort as a@l@hin our current re-
search scenario we aim at developing a reference architeftuALM environments
promoting process—quality standards compliance andratieg software engineering
tools keeping traceability among artifacts. In this scenavhich focuses on ALM en-
vironment, it is necessary to have in place a FM to OVM tramsfdion. For instance,
it will be of practical importance being able to have intexability between FM and
OVM, proving a tool that can work with a variability model inffégrent views. One
view of all products in an SPL with their variabilities andnamonalities represented
with FMs and another view of an SPL, where only the variatiom{s are considered.

2 Problem statement: Interoperability between FM and OVM
tools

2.1 Multipleviews

When a designer is defining and exploiting the variability so&ware product line,
he/she might be interested in having multiple views of tlagability. By means of a
feature model the designer can visualise all the featurgsatlyiven product line can
provide in its products. Common and variable features brgtdafined in such model.
However, if he/she wants to manage and visualise only thiati@m points of such
product line, it would be more visible if this informationuad be visualised explicitly.
Hence, OVM would be highly suitable to show the variabledegs, since it expresses
only the variation points. Fig. 1 illustrates how the vaili of a product line repre-
sented by a FM would be represented by means of variationgioian OVM.

2.2 Automated analysistools

The automated analysis of SPL can be considered as the cemgidéd extraction
of information from variability models that can be helpfatfSPL engineers, designers,
programmers and managers. For instance, one of them maymkardw how many po-
tential products are represented in a model, or even to kniosthver a specific product
belongs to the model. Automated reasoning is an importaftitethe context of SPL,
since it is practically impossible to do it manually, and op bf that it is error prone. In
addition, the variability models are one of the main artdaaf the domain engineering
activity and therefore their analysis in an early stage ektigoment is essential to the
success of the SPL.

In spite of the automated analysis is a challenge to be readol®&PL Engineering,
only recently researchers have paid attention to the réagam these models, how-
ever their work has focused on FMs. Although the automatedyais of OVMs has

Feature Model 7 OVM
(commonalities and variabilities) : variabilities

IR) .
Mobile Phone
Y\
| [“’
Utility Functions = OVMView : :
H - : N~ [1..2]

Fig. 1. Different views of variability in an SPL.

been proposed [2], it only deals with a small number of anglyperations, which are
implemented using a specific logical representation angesol

As there are already some automated analysis tools desigveark on FMs, we
wonder if it is possible to reuse these tools, or part of thasanalyse OVM models.
The automated analysis of OVM could be thought as a subskeéafutomated analysis
of FMs so that the analysis of a specific OVM model can yield same results as
the analysis of the equivalent FM. Then, we believe that bgmeef a transformation
between FM and OVM we do not need to design a new analysisao@V¥M models,
but we could reuse the existing FM analysis tools.

3 First step towardsa solution: FM to OVM transfor mation

Our first goal is to obtain the OVM equivalent from a given FMs Areviously
mentioned, the FMs document both the common and variabtaerésaof a SPL. The
common features are those that form part of all products ifPla, @nd the variable
features are those that form part of some products, i.e.dhahility. However, OVM
only documents the variability of a SPL. Therefore, in ordetransform a FM into an
OVM, it is necessary that every variability representechim EM is transformed into a
variation point in the OVM.

This section describes a possible way to transform FM intdlOWe propose a
FM20VM algorithm in such a way that the variable parts of a FMransformed into
an OVM. Hence, the target model leaves aside the commasaéitid gives an explicit
view of the variability represented in the source FM. To gansformation we use the
metamodel presented in [7] as the abstract syntax of FM (gf.2}.

As OVM metamodel we propose a metamodel based on the OVMaabsiyntax
defined by Metzger et al. in [2] (cf. Fig. 3). It was adapted rdey to use the same
concepts used in the FM metamodel aforementioned,SefBinary, Groupedand
Solitary. The element variation point has two types of relatid®dstand Binary. The
former is equivalent to thalternative choicewhich has at least @rouped variantand

Depends

1
—— Feature Model |g—— Constraint <]_|:
o.x Excludes

1
I
; Feature . Relations
1 0.x
1] [| #
Root Solitary Grouped Binary Set
0-x 1 | () ¥
2.% |
Attribute
Mame : String T
Diomain : {int, boal,real nat} Cardinality

Fig. 2. FM metamodel [7]

a cardinality. The latter, is equivalentreandatoryor optional which has oneolitary
variant The OVM model may or may not have constraints. Some Objecsstaint
Language (OCL) statements were included to ensure someniex as for instance
the OCL atcontext Setit ensures that the attribu@ard.maxis less than or equal to the
number of grouped variant in tisetrelation and tha€ard.minis greater than or equals
to 0, andCard.minis less than or equals ©ard.max

Our transformation algorithm has four preconditions: {i§ EM must be syntacti-
cally correct, it must satisfy the metamodel FM; (2) the FMsirioe valid, it represents
at least one product [6,5,4]; (3) the FM does not have deadres i.e. features that
do not appear in any product [12,4]; and, (4) the FM has vditiakat least one of its
features is a variant feature, i.e. features that do notappell the products [4].

In addition to the preconditions, there are some postcimmdit We consider that
the translation is satisfactory if: (1) the target OVM modesyntactically correct ac-
cording to the metamodel in Fig. 3; and, (2) the products efgburce model without
core features are the same as the ones of the target modeltwitbre features (those
features that are common to all products).

The activity diagram of Fig. 4 illustrates how we proposertmsform a FM into
an OVM. We use the activity diagram as a tool to facilitate tinelerstanding of the
transformation algorithm, in fact it represents the maepstof our algorithm. In the
following we describe the corresponding activities and ¢heices which determine
the succession of them. The algorithm traverses the treeergler and performs the
following operations recursively at each node, startintpwlie root node:

“Select Feature n in FM:"the algorithm visits the nodén in core features or n
is the root?” concerns the distinction between features that are comaalhproducts
(core features) and those that are not (variabilities). Whisna CF or root it does not
become an element in OVMTransform parent(n) in VP:"when n is not a CF, its

| U_I]epends_UPl | 'U_Em:ludes_'U'Pl

- UP_CDnstrairrt_UPl | U_Cons"traint_'u‘Pl | ¥_Constraint_V |-

VP_Depends VP V_Depends_\V
VP_Excludes_VP | ? | | V_Excludes_V
1

- icontex Wariant
OVM Model Constraints, ; 2 irve: 4 ariant:: alinstances()
b 0.* _ | eisUnigueCnsme)

2 1 Variant [~

Variation Poin‘tl

| Grouped Uarian‘tl | Solitary Uariantl

context Set

context Wariation Point - -—— Ny max: group-=size)) ==

inv: Yariation Poirt :: allnstances() "7 7 eard max and

-= izUnigquelname] inv: card min == 0 and card.
A min == card max

| Mandatoryl | Omionall

Fig. 3. OVM metamodel based on [2].

parent will be transformed in a VPparent(n) in core feature?’when transforming the
parent(n) in VP, the type of such VP depends of it is a vaiigtil a commonality;'Set

VP type as OPTIONAL VP:When parent(n) is a variability, then VP is Setted as OP-
TIONAL VP; “Set VP type as MANDATORY VPwhen parent(n) is a commonality,
then VP is setted as MANDATORY VPn is solitary feature?” the type of n deter-
mines the type of variant when transforming n into variéfitansform n in GROUPED
VARIANT:” the grouped feature n in FM will be transformed in groupedavdr“Set
relationship between VP and V as SEWhen a variant is a grouped variant, the rela-
tionship with its parent VP is SETSet cardinality:” when the relationship is SET, it
has a cardinality; Transform n in SOLITARY VARIANTthe solitary feature n in FM
will be transformed into solitary variarttn with cardinality [1..1]?” the cardinality of

a solitary feature determines if the variant will be optiosramandatory;'Set relation-
ship between VP and V as OPTIONAlwhen solitary feature with cardinality [0..1] is
transformed into variant, the relationship with its parértis OPTIONAL;“Set rela-
tionship between VP and V as MANDATORMHhen solitary feature with cardinality
[1..1] is transformed into variant, the relationship withparent VP is MANDATORY.

Now we can use the examples in Fig. 5 and 6 to illustrate timstoamation. Taking
into account that the FM fulfils the preconditions, we areedbltranslate a FM into an
OVM. Then, by applying the algorithm transformation (cfgF) from the FM in Fig. 5
we obtain the OVM in Fig. 6. The resulting OVM is syntactigatbrrect and if we omit

Select each feature nin FM

nin .
core features or n is the root?

parent(n) in
core features?

et VP type as OPTIONAL VP) (Set VP type as MANDATORY VP)

n is solitary feature?

lyes]

Cl'ranform n in GROUPED VARIAND qransform nin SOLITARY VARIAND
n with cardinalty
[1.1]?

lyes]

Y
set relationship between VP and V (set relationship between VP and V
as OPTIONAL as MANDATORY ‘
L

g d

@t relationship between VP and V as SED [no]

Set cardinality

Fig. 4. FM20OVM algorithm.

all the CF of the FM set products and also of the OVM set pra&juee have two
equivalent set of products, namely:

Mobile Phone e

Solitary feature
with cardinality[1..1] ©

Solitary Feature
with cardinality[0..1]*

_ Feature group with ©
> cardinality <n.m>

(or<1..13 whén not :
cardinality) :

Requires

Excludes

Core Features (CF) = {Mobile Phone, Utility Functions, Calls, Messaging, Alarm clock, Ringing tones, Settings, OS}

Fig. 5. An example of a mobile phone product line using FM.

P1= {SMS,Symbian P10= {MMS,WinCE,Calculato}

P2= {SMS,WinCg P11= {SMS,MMS,Symbian,Calculatpr

P3= {MMS,Symbiar} P12= {SMS,MMS,WinCE,Calculatdr

P4= {MMS,WIinCE} P13= {SMS,Symbian,Calculator,Currency Exchahge
P5= {SMS,MMS,Symbianh P14= {SMS,WinCE,Calculator,Currency Excharjge

P6= {SMS,MMS,WinCE P15= {MMS,Symbian,Calculator,Currency Exchange

_/ [I 2] Mandatory Optional :

Allemame s <=

/P Variant

Core Features (CF) = {Messaging, Utility Functions, OS}

Fig. 6. OVM example: mobile phone product line.

P7={SMS,Symbian,Calculatyr P16= {MMS,WIinCE,Calculator,Currency Exchange
P8={SMS,WinCE,Calculatdr P17= {SMS,MMS,Symbian,Calculator,Currency Exchahge
P9={MMS,Symbian,Calculatdgr P18= {SMS,MMS,WIinCE,Calculator,Currency Excharge

It therefore follows that given a FM, which represent a PLéaaf products with
commonalities and variabilities), the translation FM20Vé4ults an OVM which rep-
resent the same PL as the source FM, but representing onBLtkariability.

4 Discussions and Open | ssues

We propose a transformation between FM and OVM models, thusiag the in-
teroperability between their modelling tools, particlyfaanalysis tools. The current
model transformation tools, particularly those that pémmanipulating models from
development environment such as Eclipse, and yet those swipport to deal with
metamodels, seem to be highly appropriate to carry outalisis. MWe intend to use the
MOMENT2 tooling [1], which provides a model transformatiengine that provides
support for graph transformation language. MOMENT2 is @elataic model manage-
ment framework that permits manipulating models in thegsdiModeling Framework
(EMF). To the best of our knowledge, there is no proposalterautomated transfor-
mation of FM into OVM, and not to mention a solution based ordeidransformation.

When defining our algorithm we have found that the main issuelfib the post-
conditions concerns the structural difference between M @VM diagrams. The
translation of a tree into OVM is not a straight task due tositially has more than
two levels. Regardless the technique used to do this trematmn, this problem comes
forward. We need to work more in it to achieve a satisfactmapsformation.

Bidirectional transformation. Although most of the model-to-model transformation
tools do not provide support to bidirectional transformatiwe intend to achieve
the transformation between FM and OVM in both directionsisTit essential in
our research work on automated analysis of OVM. We intend&RAMA Frame-
work [13] to analyse OVM, which is a tool for the automated lgsia of FMs. Its
main goal is to provide an extensible framework where cumesearch on variabil-
ity model automated analysis might be developed and eas#giated into a final
product. FAMA receives as input a model conforms to a FM metéghand per-
forms several analysis operations on this FM by using difiesolvers. We aim at

using model-to-model transformation in order to generateget model conforms
to a FM metamodel from a source model conforms to an OVM metietn@nd

thus to be able to analyse this resulting FM by using FAMA.lBaalysis could
be thought as a subset of the automated analysis of FMs sththanalysis of a
specific OVM model can yield the same results as the analydisecequivalent
FM.

Deal with commonalities. Another issue concerns how to deal with the commonalities
that are not transformed. If we are interested in maintgittie traceability between
both diagrams we need to preserve the common features inwaye

5 Conclusionsand Future Work

In our scenario of research it is useful to have the transdition FM20VM, and
up to now to the best of our knowledge, there is no work proxdiuch solution. Such
transformation would allow us provide a tool support to watikh the interoperability
between both languages. In this paper we proposed a FM to Q&hformation, in
which we transform the variable parts of a FM into variatiaints and variants in an
OVM. In this way, we obtain a view of the variability of a FM byeaans of an OVM
allowing the variability tools work with multiples views difie variability.

To achieve an automated FM20OVM engine by means of modeladettransfor-
mation techniques, we first need better define the OVM metaimadd then to define
the transformation rules between the elements of both neetals.

As future work we intend to develop a study case by using MONIENNgine to
transform FM into OVM. In addition, we aim at developing aibédtional transforma-
tion due to it is essential to achieve a more complete saidtoour problem.

Acknowledgement. This work was partially supported by Spanish Governmeneund
CICYT project Web-Factories (TIN2006-00472) and projeEfTE§(TIN2009-07366)
and by the Andalusian Government under project ISABEL (PE33) and Evangelis-
cher Entwicklungsdienst e.V. (EED).

References
1. Boronat A., Heckel R., Cars J. A, CGomez A., Ramos [, and
Meseguer J. Moment2: A formal framework for model management.

http://www.cs.le.ac.uk/people/aboronat/tools/moment2/.

2. Metzger A., Pohl K., Heymans P., Schobbens P., and Saval iGanibiguating the docu-
mentation of variability in software product lines: A separation of corgefiormalization
and automated analysis. Ibth IEEE Int'l Requirements Engineering Conferengages
243-253, 2007.

3. Schwaber C. The changing face of application life-cycle managerfrerrester Research,
2006.

4. Benavides D.On the automated analysis of software product lines using feature models
PhD thesis, University of Sevilla, 2007.

10.

11.

12.

13.

. Benavides D., Ruiz-Cdrs A., Trinidad P., and Segura S. A survey on the automated analyses

of feature models. 1dISBD, pages 367-376, 2006.

. Benavides D., Trinidad P., and Ruiz-GzstA. Automated reasoning on feature models. In

Advanced Information Systems Engineering: 17th International CanfereCAISE 2005
volume 3520 oLNCS pages 491-503. Springer—Verlag, 2005.

. Benavides D., Trujillo S., and Trinidad P. On the modularization of featoodels. Inn

First European Workshop on Model Transformati@005.

. Pohl K., Bickle G., and F. J. van der Linde&oftware Product Line Engineering: Funda-

tions, Principles and TechniqueSpringer—\Verlag, Berlin, DE, 2005.

. Bencomo N.Supporting the Modelling and Generation of Reflective Middleware Families

and Applications using Dynamic VariabilitPhD thesis, Lancaster University, 2008.
Loughran N., 8nchez P., Garcia A., and Fuentes L. Language support for rimaneayi-
ability in architectural models. I8oftware Compositigrpages 36-51, 2008.

Clements P and Northrop ISoftware Product Lines: Practices and Patter&&E| Series en
Software Engineering. Addison—Wesley, August 2001.

Trinidad P., Benavides D., Dam A., Ruiz-Corés A., and Toro M. Automated error analysis
for the agilization of feature modeling. of Systems and Softwafi(6):883—896, 2008.
Trinidad P., Benavides D., Ruiz-CestA., Segura S., and Jimenez A. Fama framework. In
Software Product Line Conference Tool Demonstrations (in prés§)8.

