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Abstract Two implementations of a homology algorithm based on the Forman’s discrete
Morse theory combined with the coreduction method are presented. Their efficiency is
compared with other implementations of homology algorithms.
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1 Introduction

Homology theory is already more than 100 years old but, despite its origins in the theory of differen-
tial equations, until late 20th century it was considered a purely theoretical part of mathematics.
However, in recent years homological methods found their way into the applied sciences. This
causes growing demand for efficient homology algorithms. In principle, homology is an algebraic
method and Smith diagonalization of integer matrices is the classical tool for computing homol-
ogy. Unfortunately, because the size of inputs in many practical problems is hundred thousands
and more, Smith diagonalization, which is supercubical, is to slow for many applications. Among
such applications are in particular many problems in material science [6, 13, 21, 26] and imaging
[5, 12, 24, 25, 28, 27]. Based on these limitations of the Smith normal form algorithm, it is not
surprising that more efficient algorithms for the computation of homology have been developed
over the years, see for example [7, 8, 9, 11, 16, 17, 15, 19, 20, 22], as well as the references therein.

Among the many ways to overcome this problem the fundamental one is to try to improve the
efficiency of Smith diagonalization [8]. However, when computing homology of spaces there is an
alternative based on the so called reduction methods. The idea is to transform the original input
into one which is considerably smaller and still has the same homology, and then to apply the
Smith normal form algorithm as a last step. A variety of different reduction methods have been
proposed such as elementary reductions, acyclic subspace reductions [20], as well as coreductions
[19]. Implementations of these algorithms are available from [1, 2].

Several researchers agree that the discrete Morse theory for finite, regular CW complexes,
developed by R. Forman [10], may potentially be used as a powerful reduction method (see in
particular [23]). However, since the ideas are not algebraic but geometric, their implementation is
not straightforward. Maybe this is the reason that although the discrete Morse theory is already
12 years old, we know of no implementation, and particularly no competitive implementation, of
a homology algorithm based on the discrete Morse theory.

The aim of this paper is to show that in practice applying the discrete Morse theory to com-
puting homology of spaces indeed leads to very efficient algorithms. We present two recently
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coded implementations of such homology algorithms in which the construction of the discrete
Morse function utilizes the concept of coreductions introduced in [19]. Here we briefly describe
the algorithm and show the efficiency of the two implementations. Theoretical foundations of the
presented method, including a computational approach to maps induced in homology based on
discrete Morse theory will be presented in [14].

2 Discrete Morse Theory

We begin with briefly recalling the fundamentals of the discrete Morse theory as developed by R.
Forman [10].

Let K be the collection of cells of a finite, regular, CW complex which we will also denote by
K. We denote by dimσ the dimension of the cell σ ∈ K and we write Kn for the subcollection of
cells of dimension n. The adherence relation is defined by

τ ≺ σ ⇔ τ ⊂ σ and dim τ = dimσ − 1

and the adherence digraph by
(K, { (σ, τ) | τ ≺ σ }).

We also write

bdK σ := { τ | τ ≺ σ },
cbdK σ := { ρ | σ ≺ ρ }.

Forman [10] defines f : K → Z to be a discrete Morse function if for every σ ∈ K

c+(σ) := card { ρ ∈ cbdσ | f(ρ) ≤ f(σ) } ≤ 1

and
c−(σ) := card { τ ∈ bdσ | f(τ) ≥ f(σ) } ≤ 1.

A cell σ ∈ K is critical if c+(σ) = c−(σ) = 0. A discrete vector field V on K is a collection of pairs
(τ,σ) ∈ K2 such that τ ≺ σ and each element of K is in at most one pair in V . The V -digraph of
K is the adherence graph of K with the direction reversed on the elements of V .

Theorem 2.1 (Forman, 1998) If f : K → Z is a discrete Morse function then

{ (τ,σ) ∈ K2 | τ ≺ σ and f(τ) ≥ f(σ) }

is a discrete vector field on K, called the gradient vector field of f .

Theorem 2.2 (Forman, 1998) A discrete vector field V is the gradient vector field of a discrete
Morse function if and only if the V -digraph of K is acyclic, ie. contains no non-trivial directed
loops.

We now assume that a discrete Morse function f on K is given and V is the associated gradient
vector field. We introduce the following sets

Q(K) := Q(K, V ) := { τ ∈ K | ∃σ ∈ K (τ,σ) ∈ V },
K(K) := K(K, V ) := {σ ∈ K | ∃τ ∈ K (τ,σ) ∈ V },
A(K) := A(K, V ) := K \Q(K, V ) \K(K, V ).

Note that A(K) consists precisely of critical elements of K. The fact that V is a gradient vector
field causes that the elements of Q(K) and K(K) appear in pairs, which allows us to define the
pairing:

Q(K) ∪K(K) + σ → σ∗ ∈ Q(K) ∪K(K)
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such that if σ ∈ Q(K) then σ∗ ∈ K(K) and if σ ∈ K(K) then σ∗ ∈ Q(K).
Let C(K) be the chain complex of K (see [18, Chapter IX.5]) and let 〈·, ·〉 denote the scalar

product associated with the free basis K. If τ ≺ σ, then τ has a non-zero coefficient in the
boundary chain of σ, called the incidence number of the pair (σ, τ). We denote it by κ(σ, τ). The
weight of a pair (σ, τ) ∈ K2 is defined by

w(σ, τ) :=






κ(σ, τ) τ ≺ σ

−κ(τ,σ)−1 τ . σ

0 otherwise.

A path from σ ∈ K to τ ∈ K is a sequence α = (α0,α1, . . . ,αn) ∈ Kn+1 such that (αi−1,αi) ∈ V ,
α0 = σ and αn = τ . The path α is alternating if

dimαi = dimα0 − (i mod 2).

We denote the set of all paths from σ ∈ K to τ ∈ K by PV (σ, τ) and the set of alternating paths
from σ ∈ K to τ ∈ K by P a

V (σ, τ). The weight of a path α = (α0,αa, . . . ,αn) is given by

w(α) :=
n∏

i=1

w(αi−1,αi).

We define the Morse complex (M,∆) :=
(
Mq(K, V ),∆q(K, V )q∈Z

)
of a gradient vector field

V on K by

Mq := {σ ∈ A(K) | dimσ = q } (1)

〈∆qσ, τ〉 :=
∑

α∈Pa
V (σ,τ)

w(α). (2)

The central theorem of the discrete Morse theory is the following theorem.

Theorem 2.3 (Forman, 1998)
H∗(K) ∼= H∗(M,∆).

Now, in many applied situations one expects the Morse complex (M,∆) to be much smaller
than the original complex K. Therefore, computing the homology of the Morse complex instead
of the original complex may substantially reduce the amount of necessary algebraic computations
and consequently lead to a particularly efficient homology algorithm. However, for this to work
one needs an efficient method of constructing a discrete Morse function.

3 Discrete Morse Function Construction based on coreduc-
tions as a tool for computing homology.

The coreduction homology algorithm, in the sequel referred to as CR homology algorithm, pre-
sented in [19] is among the most efficient homology algorithms for cubical sets available so far.
Recall that a pair (σ, τ) ∈ K2 is called a coreduction pair if bdK s = {t}. It is proved in [19] that in
the context of so called S-complexes (see [19, Section 2]) a coreduction pair may be removed from
K without changing the homology of K. Roughly speaking, the CR homology algorithm consists
in removing coreducton pairs as long as they are available. However, one easily sees that in a
compact CW complex no coreduction pairs exists. Nevertheless, if K is a CW complex and v is a
vertex of K then K \ {v} is an S-complex which admits coreduction pairs. Since we have

H(K \ {v}) ∼= H(K, {v}) ∼= H̄(K) (3)
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Algorithm 3.1 discreteMorseFunction(CW complex K)
V := L := A := K := Q := dom f := ∅;
while K 1= ∅ do

if L = ∅ then
n := min { q | Kq 1= ∅ };
move an element r from Kn to A;
define f(r) as 1 + max { f(r′) | r′ ∈ dom f, r′ ≺ r };
enqueue(L, cbdK r);

else
s:=dequeue(L);
if bdK s = {t} then

move s from K to K and t from K to Q;
insert (s, t) to V ;
define f(s) and f(t) as 1 + max { f(s′) | s′ ∈ dom f, s′ ≺ s };
enqueue(L, cbdK t);

else if bdK s = ∅ then
enqueue(L, cbdK s);

endif ;
endif ;

endwhile ;

Table 1: Discrete Morse Function by coreduction method

with H̄(K) standing for the reduced homology of K and

Hn(K) =

{
Z⊕ H̄0(K) if n = 0,

H̄n(K) otherwise,
(4)

it is sufficient to compute H(K \ {v}) instead of H(K). We refer the reader to [19] for details.
The efficiency of the CR homology algorithm crucially depends on the amount of cells left after

all available coreduction pairs are removed. One can show that if after removing a vertex from a
connected CW-complex K all available coreduction pairs have been removed then the remaining
complex has no vertices. Then, often removing an edge causes that the coreduction pairs reappear.
However, in this case there is no simple relation between the homology before and after removing
an edge as in the case of formulas (3) and (4). But the coreduction technique may be used to
construct a discrete Morse function on K. The respective algorithm is presented in Table 1.

Theorem 3.2 Algorithm 3.1 runs in linear time.

The coreduction based, discrete Morse theory homology algorithm, referred in the sequel as
DMT algorithm, consists in applying Algorithm 3.1 to a a finite, regular, CW complex K followed
by the construction of the respective Morse complex and computation of its homology by algebraic
methods. Note that a straightforward, naive implementation of formula (2) may lead to heavy
computations and consequently the gains from the approach may not show up. An algorithm for
the boundary operator ∆ used in our implementations is considerably more efficient than Forman’s
sum over paths formula. It will be presented elsewhere.

4 Numerical experiments

We have two independent implementations of CR algorithm and DMT algorithm. The first is by
S. Harker and will be available soon from CHOMP [2]. The other is by H. Wagner, M. Juda, P.
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T × S1 (S1)3 S1 ×K T × T
dim 5 6 6 6

size in millions 0.07 0.10 0.40 2.36
H0 Z Z Z Z
H1 Z3 0 Z2 + Z2 Z4

H2 Z3 0 Z+ Z2 Z6

H3 Z Z Z4

H4 Z
Linbox::Smith 130 350 > 600 > 600

RedHom::Shave+Linbox::Smith 0.5 0.1 2.2 > 600
ChomP 1.3 1.7 10 56

RedHom::CR 0.03 0.04 0.26 2.5
ChomP::DMT 0.06 0.15 1.6 5.9

ChomP::CR+DMT 0.04 0.16 1.7 3
RedHom::CR+DMT 0.02 0.08 0.5 1.1

Table 2: The homology and the timings in seconds for a collection of cubical manifolds. The
consecutive rows contain: the manifolds, the embedding dimension, the number of cells counted in
millions, the homology groups and the timings for various implementations of homology algorithms.

P0001 P0050 P0100
dim 3 3 3

size in millions 75.56 73.36 71.64
H0 Z7 Z2 Z
H1 Z6554 Z2962 Z1057

H2 Z2

Linbox::Smith > 600 > 600 > 600
RedHom::Shave+Linbox::Smith > 600 > 600 > 600

ChomP 400 360 310
RedHom::CR 36 34 33
ChomP::DMT 110 110 100

ChomP::CR+DMT 45 43 42
RedHom::CR+DMT 26 25 24

Table 3: The homology and the timings in seconds for a collection of cubical sets arising from the
numerical simulation of Cahn-Hillard partial differential equation. The consecutive rows contain:
the names of sets, the embedding dimension, the number of cells counted in millions, the homology
groups and the timings for various implementations of homology algorithms.

D$lotko and M. Mrozek and will be available soon as RedHom sublibrary [3] of CAPD [1]. Both
implementations are written in C++.

We have compared the performance of these implementations, as well as the combination of
CR followed by DMT, with our earlier best algorithms and with the classical approach utilizing
Smith diagonalization available form LinBox [4].

We chose four collections of sets for our tests: a collection of five and six dimensional cubical
manifolds, a collection of huge cubical sets arising from numerical simulations of Cahn-Hillard
partial differential equation and a collection of random cubical sets in dimension four.

For comparison purposes we chose the following implementations of homology algorithms

Linbox::Smith - the classical homology algorithm based on the LinBox [4] implementation of
Smith diagonalization
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d4s8f50 d4s12f50 d4s16f50 d4s20f50
dim 4 4 4 4

size in millions 0.07 0.34 1.04 2.48
H0 Z2 Z2 Z2 Z2

H1 Z2 Z17 Z30 Z51

H2 Z174 Z1389 Z5510 Z15401

H3 Z2 Z15 Z71 Z179

Linbox::Smith 120 > 600 > 600 > 600
RedHom::Shave+Linbox::Smith 4 > 600 > 600 > 600

ChomP 1 8.3 41 170
RedHom::CR 0.08 1.4 15 140
ChomP::DMT 0.05 0.38 1.8 5.3

ChomP::CR+DMT 0.03 0.16 0.56 1.4
RedHom::CR+DMT 0.03 0.16 0.58 2.9

Table 4: The homology and the timings in seconds for a collection of random cubical sets. The
consecutive rows contain: the names of sets, the embedding dimension, the number of cells counted
in millions, the homology groups and the timings for various implementations of homology algo-
rithms.

RedHom::Shave+Linbox::Smith - as Linbox::Smith but preprocessed by the method of
shaving in the spirit of [20, Section 7] in order to speed up the computations

ChomP - the main homology engine available from CHOMP [2] based on the implementation by
P. Pilarczyk

RedHom::CR - the implementation by M. Mrozek of the CR homology algorithm [19] for Red-
Hom sublibrary of CAPD [1] and CHOMP [2].

ChomP::DMT - the implementation by. S. Harker of DMT homology algorithm for CHOMP
[2].

ChomP::CR+DMT - a combination of the CR homology algorithm followed by DMT homology
algorithm implemented by S. Harker for CHOMP [2].

RedHom::CR+DMT - a combination of the CR homology algorithm followed by DMT homol-
ogy algorithm implemented by H. Wagner, M. Juda, P. D$lotko and M. Mrozek for RedHom
sublibrary [3] of CAPD [1].

The homology of the examples and the timings for the selected implementations are presented
in Tables 2, 3 and 4. The tests were performed on a 3.0GHz Intel Xeon processor with 16GB of
RAM running Linux. Note that in the case of Linbox based implementations we present only the
timing of the Smith diagonalization of the matrices of boundary maps. In this case the actual
time needed to compute the homology is longer, since the time needed to generate the matrices of
boundary maps and (in the case of RedHom::Shave+Linbox::Smith) the preprocessing time
should be added.

Tables 2, 3 and 4 indicate that DMT homology algorithm may be a valuable alternative to the
existing methods, although a combination of CR homology algorithm followed by DMT homology
algorithm may be even better. Most likely this is because DMT homology algorithm, unlike
CR homology algorithm, requires storing all the coreduction pairs processed, because they are
needed in the construction of the Morse complex. On the other hand, in the case of CR homology
algorithm each spotted coreduction pair may be immediately removed.

The implementations are primarily aimed at cubical sets but they are written using generic
methods so we tested them also on a collection of three simplicial complexes. The results are
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random set Björner set S5

dim 4 2 5
size in millions 4.8 1.9 4.3

H0 Z Z Z
H1 Z39 0 0
H2 Z84 Z 0
H3 0
H4 Z

ChomP 830 310 2100
RedHom::CR+DMT 65 11 100

Table 5: The homology and the timings in seconds for a collection of simplicial complexes. The
consecutive rows contain: the names of sets, the embedding dimension, the number of cells counted
in millions, the homology groups and the timings for various implementations of homology algo-
rithms.

available in Table 5. We also tested these examples with the classical Smith diagonalization
method based on [4] but in each case we failed to get results either due to lack of memory of very
long waiting times. However, these results are very preliminary and DMT homology algorithm
must be tested on a larger collection of simplicial complexes to draw some conclusions.

Summing up, allthough we cannot claim that discrete Morse theory provides a universal solu-
tion for fast homology computations, we believe that DMT homology algorithm, and particularly
the combination of CR and DMT homology algorithms may be very helpful in computing homology
of many huge sets appearing in concrete problems.
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subspace. Computers & Mathematics with Applications, 55(11):2395–2412, 2008.

[21] Marian Mrozek and Thomas Wanner. Coreduction homology algorithm for inclusions and
persistent homology. Computers and Mathematics with Applications, accepted.

[22] Samuel Peltier, Adrian Ion, Yll Haxhimusa, Walter Kropatsch, and Guillaume Damiand.
Computing homology group generators of images using irregular graph pyramids. Lecture
Notes in Computer Science, 4538(3):283–294, 2007.

[23] Francis Sergeraert. W-reductions. personal communication.

[24] A. Szymczak, A. Stillman, A. Tannenbaum, and K. Mischaikow. Coronary vessel trees from
3d imagery: A topological approach. Med Image Anal., 10(4):548–559, 2006.

[25] A. Verri and C. Uras. Metric-topological approach to shape representation and recognition.
Image Vision Comput., 14:189–207, 1996.

[26] Thomas Wanner, Edwin R. Fuller Jr., and David M. Saylor. Homological characterization of
microstructure response fields in polycrystals. Acta Materialia, 58(1):102–110, 2010.
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