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Abstract We obtain the number of non-homologically equivalent excellent discrete Morse
functions defined on compact orientable surfaces.This work is a continuation of the study
which has been done in [2, 4] for graphs.
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1 Introduction

At the end of the last century, R. Forman [6] developed a discrete version of Morse theory that
turned out to be a fruitful and efficient method for the study of the topology of discrete objets,
which play a central role in many different fields of pure and applied mathematics. Essentially, a
discrete Morse function on a simplicial complex is a way to assign a real number to each simplex,
without any continuity hypothesis, in such a way that the natural order given by the dimension of
the simplices is respected, except at most in one (co)face of the given simplex. As in the smooth
setting, discrete Morse theory allows to establish a link between the topology of the level sets of
the function and its critical simplices. This provides a useful tool to deal with shape recognition
problems by methods that are grounded in Morse theory: Reeb graphs, persistent homology or
Morse Shape descriptors in the sense of [1].

The critical simplices of any discrete Morse function defined on a triangulation K of a sur-
face are of two kinds: the essential ones which are linked to the Betti numbers of |K| and the
superfluous ones which represent the appearance of a connected component or a 1-cycle which
will disappear later. Although the induced gradient vector field by a discrete Morse function
codifies the qualitative properties of this function, it does not gives us information about the
essential (or superfluous) nature of critical simplices. Thus, the gradient field does not allow us
to perceive the noise level of the function. While every discrete Morse function defined on any
compact connected and orientable surface has a unique critical vertex and a unique critical 2-
simplex, which are those simplices where the function reach its global minimum and maximum
respectively, we distinguish between essential and superfluous edges by means of the notion of
persistence pairs. With this purpose, we associate with each pair (K, f) three finite sequences of
positive integers, called the homological sequences of the function. Their values correspond to the
Betti numbers of the natural filtration induced by the critical values of f. Thus, the homology
sequences capture the process of birth and death of homology classes through the filtration. This
allows us to compare the evolutions of the level subsets of two discrete Morse functions on a closed
orientable surface: they are called homologically equivalent if their homological sequences coincide.

Inspired by the results of Nicolaescu [11] on the number of smooth functions on the 2-sphere,

we study the size of the set of discrete Morse functions defined on a compact orientable surface
with a given number of critical simplices. The size of this set is equal to the number of different
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possibilities of placing the births and deaths for a given number of persistence pairs. We establish
links between the homological sequences of such functions and certain reticular walks in Z>q X Z>q,
whose number is computed. It is worthwhile to mention that the proof is constructive, in the
sense that it indicates precisely the procedure to obtain an excellent discrete Morse function from
sequences satisfying certain conditions.

2 Preliminaries

In this paper we are going to deal with discrete Morse functions defined on compact triangulated
surfaces. We introduce here the basic notions of Discrete Morse theory, (see [7] for more details).
A discrete Morse function on a finite simplicial complex K is a function f : K — R such
that, for any p-simplex o € K:

(M1) card{r®**D > o/f(7) < f(0)} < 1.
(M2) card{v® ) < 0/f(v) > f(0)} < 1.
A psimplex o € K is said to be a_critical simplex with respect to f if:
(C1) card{r®*tV) > o/f(1) < f(o)} = 0.
(C2) card{v®=Y < a/f(v) > f(o)} = 0.

A value of a discrete Morse function on a critical simplex is called critical value.
Given ¢ € R the level subcomplex K (c) is the subcomplex of K consisting of all simplices 7
with f(7) < ¢, as well as all of their faces, that is,

K(c) = U UO’
I (

7)<c o<T

Theorem 2.1. [7] Let f be a discrete Morse function defined on a finite simplicial 2-complex K
and let b, be the p-th Betti number of K with p =0,1,2. Then:

(T1) mp(f) = mp-1(f) + - £ mo = by — bp—1 + -+~ £ b,
(12) my(f) = by,
(13) mo(f) — ma(f) +ma(f) = bo — b1 + b2 = x(K),

where my(f) denotes the number of critical p-simplices of f on K.

Given a discrete Morse function defined on a finite simplicial complex K, we say that a
pair of simplices (a(p) < B(”“)) is in the gradient vector field induced by f if and only if

f(a(p)) < f(g(p+1)).

Given a gradient vector field V on K, a V-path is a sequence of simplices

O[(()p)’ ﬁép+1), agp)7 BYD-H)7 o 5£p+1)7 afﬁ)y o

such that, for each i > 0, the pair (QZ(P) < prﬂ)) €V and ﬂi(pH) > 0‘1@1 + az(-p).

Theorem 2.2. [7] A discrete vector field V' is the gradient vector field of a discrete Morse function
if and only if there are no non-trivial closed V -paths.

Notice that the numbers of critical p-simplices of a discrete Morse function f are determined
by its induced gradient vector field V;. However, the changes on the topology of their level
subcomplexes are not detected by V;.
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Two discrete Morse functions f and g defined on a simplicial complex K are equivalent if
every pair of simplices a® and gtV in K such that o® < g®+1 verify that

fla) < f(B) if and only if g(a) < g(B)

The next result states that any two equivalent discrete Morse functions have the same gradient
vector field and conversely.

Theorem 2.3. [3] Two discrete Morse functions f and g defined on a simplicial complex K are
equivalent if and only if f and g induce the same gradient vector field.

3 Excellent discrete Morse functions on a compact orienta-
ble surface

As we have just seen in Section 2, the changes on the topology of the level subcomplexes of a
simplicial complex are lost if we deal with gradient vector fields. Thus, it does not seem reasonable
for our purposes to consider two discrete Morse functions defined on a simplicial complex as
indistinguishable if they are equivalent, that is, if they induce the same gradient vector field. For
this reason, it is convenient to deal with functions whose critical values are different and so, we
assume that two such functions are “equal” if their level subcomplexes have the same homology.

Definition 3.1. A discrete Morse function is called excellent if all its critical values are different.

Definition 3.2. Two excellent discrete Morse functions f and g defined on a finite simplicial
complex K with critical values ag < a1 < -+ < aym—1 and ¢g < ¢1 < -+ < ¢p—1 respectively will
be called homologically equivalent if for all ¢ = 0,...,m — 1 the level subcomplexes K (a;) and
K(¢;) have the same Betti numbers.

Definition 3.3. Let f be an excellent discrete Morse function defined on a connected compact
triangulated surface K with m critical simplices and critical values ag, a1, ...,an_1. We denote
the level subcomplexes K (a;) by K; for alli =0,1,...,m —1. The homological sequences of f
are the three sequences By, By, B2 : {0,1,...,m —1} — N containing the homological information
of the level subcomplexes Ko, K1, ..., Kp_1, that is, By(i) = by(K;) = dim(H,(K;)) for each
1=0,1,....m—1and p=20,1,2.

Remark 3.4. The homological sequences of f satisfy:

—_

. |Bp(i+1) = By(i)] =0or 1, foreachi=0,1,...,m—2and p=0,1, 2;
2. By(0) = Bo(m —2) = Bo(m — 1) = by =1, By(i) > 0;

3. B1(0) =0, By(m —2) = Bi(m —1) = by;

4. By(i) =0, for each i =0,1,...,m —2, Bo(m —1) = 1.

Lemma 3.5. For eachi=0,1,...,m — 2 it holds one and only one of the following identities:
(HOT) Bo(i+ 1) = Bo(i) + 1.
(HO~) Bo(i+1) = By(i) — 1
(HIt) Bi(t+1) = B1(i) + 1.
(HI7) Bi(i+1)=By(i) — 1.
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It is interesting to point out that identities (HOT) and (HO™) of the above Lemma reveal the
appearance of a new connected component and the join of two connected components, respectively,
in the process of obtention of K by level subcomplexes. Analogously, identities (H17) and (H17)
reveal the creation of a new 1-cycle of K and the destruction of a 1-cycle by gluing a triangle in
this process, respectively.

Notice that two excellent discrete Morse functions are homologically equivalent if and only if
their homological sequences are the same.

Remark 3.6. We can regard the sequence of the points (Bo(i) — 1, B1(7)), ¢ = 0,1,...,m — 2 in
the plane as a walk on Z>q x Zx( of m — 2 steps, each in a direction North, South, East or West,
from (0,0) to (0,b1) (see Figure 1). For example, the walk in Figure 1 corresponds to a excellent
discrete Morse function defined on the torus with the following homological sequences:

Bo: 1, 2, 2, 3, 4, 4, 4, 5 6, 6, 5 4 3 2 2 1, 1, 1
By: 0 0, 1, 1, 1, 2, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2
By: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
The number w/,_,(0,b1) of such different walks was obtained in [8]
A
L
i

Figure 1: A walk of 16 steps from (0,0) to (0, 2).

4 Persistent Morse Homology and the essential and super-
fluous critical simplices

Now we shall consider two different kinds of critical simplices: the essential critical simplices
are those critical simplices which arise forced by the topology of the considered surface and the
non-essential critical simplices are the remaining critical simplices, that is, those critical simplices
which produce temporary changes in the topology of the level subcomplexes during the process of
building the surface given by the excellent discrete Morse function defined on it.

Definition 4.1. Let f be an excellent discrete Morse function defined on a connected compact
triangulated surface K with critical values ap < -+ < a,,,—1. We say that a critical vertex v is
an essential vertex if f(v) is the global minimum of f on K, that is, f(v) = ag. We say that
a critical triangle T' is an essential triangle if f(T") is the global maximum of f on K, that is,
f(T) = am—1. Otherwise, if a critical vertex or triangle is not an essential one, we say that it is a
superfluous or cancellable vertex or triangle.

Notice that it is straightforward to prove that a critical vertex or triangle is essential if and
only if it represents the basic element of Hy(K) or Hy(K), respectively. But it is not so simple
introduce the concepts of cancellable and essential critical edges. If we only take into account
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the critical values, it is not possible to distinguish those critical edges which complete a 1-cycle
representing a basic element of H;(K) not considered until this point. We will use the notion of
homological persistence to detect the changes of the homology groups in the sequence of the level
subcomplexes and so, we will be able to determine if a critical edge is essential or not.

Let f be an excellent discrete Morse function defined on a connected compact triangulated
surface K with m critical simplices and critical values ag,ay,...,am_1. Let K; i =0,1,...,m—1
be the level subcomplexes of K by f. For 0 <p < g¢<m—1,let ¥ : H,(K,) — H.(K,) denote
the homomorphism induced by inclusion K, C K.

Definition 4.2. Let o be a critical simplex such that f(o) = a,. The predecessor of ¢ is the
critical simplex o_ such that f(o_) = a;_;1.

Let ¢ and 7 be critical simplices of dimension d and d + 1, respectively, such that f(o) = a, <
f(r) = a4 (since K is the dimension 2, it is only possible that d = 0 or 1). If we consider the
predecessors of o and 7 we obtain the sequence

iZil"p ipvqfl iqflyq

Ho(Ky-1) = Ha(Kp) ——— Ha(K,1) — Ha(K,)
induced by the inclusions K, C K, € K,_1 C K.

Definition 4.3. We say that a equivalence class h € Hy(K)) is born at o if h ¢ Im (z";_l’p).
Moreover, we say that a equivalence class h € Hy(K,) that is born at o dies entering 7 if
(k) € Tm (#77) and 77 () ¢ Im (57071,

Definition 4.4. If there exists a equivalence class h that is born at ¢ and dies entering 7, then
(o,7) is called a persistence pair.

Notice that the essential vertex v is not in any persistence pair. It can be justified since the
equivalence class that is born in v never dies. Analogously we can prove that an essential critical
triangle is not in any persistence pair. We shall use this idea in the next definition.

Definition 4.5. Let f be an excellent discrete Morse function defined on a connected compact
triangulated surface K. We say that a critical edge e is an superfluous or cancellable edge
if there exists a cancellable vertex or a cancellable triangle such that, together with e, give rise
to a persistence pair. Otherwise, if a critical edge is not a cancellable one, we say that it is an
essential edge.

Notice that it is easy to prove that a critical edge e is essential if and only if e is completing a
1-cycle which represents a basic element of Hy(K) not considered until this point.

5 Counting excellent discrete Morse functions on a compact
orientable surface

We present one result which computes the number of all non-homologically equivalent excellent
discrete Morse functions with a given number of critical elements defined on a connected compact
orientable triangulated surface.

Theorem 5.1. The number of homology equivalence classes of excellent discrete Morse functions
with m = by + by + by + 2k critical elements on a connected compact orientable surface M is:

a0 = (") (1) - () (D)
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Sketch of proof. By Remark 3.6, the number of homology equivalence classes of excellent discrete
Morse functions with m critical simplices is less than or equal to w!, _5(0,b1).

Now, we are going to prove the equality. Let M be a connected compact orientable surface and
let By, B; and Bs be sequences satisfying Remark 3.4 and Lemma 3.5. We obtain an excellent
discrete Morse function f on M with these homological sequences as follows: First, we consider a
particular triangulation of M and we choose the m simplices which will be the critical elements of
the Morse function. Next, we construct a discrete vector field V' with no non-trivial closed V-paths
and not containing the simplices chosen. Finally we obtain an excellent discrete Morse function
f on M whose homological sequences are the given ones and such that the gradient vector field
induced by fis V. O

Remark 5.2. For §? (b; = 0) this calculation was done in the differentiable setting in [11] obtaining
the same number of these equivalence classes:

w’ (0,0) = Ck0k+1

m—2
where Cy, = %H (Qkk) denotes the k-th Catalan number.

In the following example we show some of the constructions carried out in the the proof of the
above theorem:

Example 5.3. Let us define an excellent discrete Morse function on the torus with m = 10 critical
elements and whose homological sequences are:

Bo: 1, 2, 2 3 3 3 2 2 1, 1
By: 0, 0, 1, 1, 2, 3, 3, 2, 2, 2
By: 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
First, we consider a particular triangulation of the torus: we take two triangulated discs, one

of these with a hole where we realize the usual identifications, and we glue both discs by their
boundaries.

78 10 11

24 18
3 22 21 20 9 23 22 21 20 19

Notice that we triangulate the torus to have enough simplices to choose in a convenient way the
m simplices which will be the critical elements of the Morse function. We select a triangle T in
the right disc and one vertex vy and two edges e; and ez in the internal boundary of the left disc
to will be the essential critical elements. We take the remaining selected simplices in the left disc
as it can be seen in the pictures below (the triangles in gray and the vertices and edges in dark):
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Next, we take into account the collapses K — {T'} \, L and L N\, L — S to construct a discrete
vector field V' with no non-trivial closed V-paths and not containing the simplices chosen, where
S is the set of the superfluous simplices and L is the subcomplex in the following picture:

Vo

ez ey

The discrete vector field V is denoted by arrows in the following pictures:

VALATA
/

|
fAR
/

/

In several steps we define an excellent discrete Morse function on the subcomplex L with m—1 =9
critical elements and whose homological sequences are:

Bo: 1, 2, 2, 3,3, 3, 2 2 1
By: 0, 0, 1, 1, 2, 3, 3, 2, 2
By: 0, 0, 0, 0, 0, 0, O, 0, O

Next, we can extend this function to K — {T'} by the discrete vector field V. Finally, we define f
on the triangle T' as the greatest critical value of f.
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As we can see in the last picture, the excellent Morse function f has the given homological
sequences.

Remark 5.4. The procedure to obtain an excellent discrete Morse function from sequences that will
be their homological sequences is linear. We consider a triangulation of the surface whose number
of simplices is a linear function of m. From such triangulation we consider particular collapses and
by using them, we get the discrete vector field V' in linear time. Finally, each simplex is visited
once when we define the discrete Morse function.
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