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A bst r ac t This paper is focused on the study of perfect discrete Morse functions on a
2-simplicial complex. These are those discrete Morse functions such that the number of
critical i-simplices coincides with the i-th Betti number of the complex. In particular, we
establish conditions under which a 2-complex admits a perfect discrete Morse function and
conversely, we get topological properties of a 2-complex admitting such kind of functions.
This approach is more general than the known results in the literature [7], since our study
is not restricted to surfaces. These results can be considered as a first step in the study of
perfect discrete Morse functions on 3-manifolds.

K e y wo r ds perfect discrete Morse function, Betti number, simplicial complex.

1 I nt ro d uct ion
Since it was introduced, Morse theory has been a powerful tool in the study of smooth manifolds
by means of differential geometry techniques. Basically, it allows us to describe the topology of a
manifold in terms of the cellular decomposition generated by the critical points of a scalar smooth
map defined on it.

At the end of the last century, R. Forman [4] developed a discrete version of Morse theory that
turned out to be a fruitful and efficient method for the study of the topology of discrete objects,
such as simplicial and cellular complexes, which play a central role in many different fields of pure
and applied mathematics.

Essentially, a discrete Morse function on a simplicial complex is a way to assign a real number
to each simplex of a complex, without any continuity, in such a way that for each simplex the
natural order given by the dimension simplices is respected, except at most in one (co)face of the
given simplex. As in the smooth setting, changes in the topology of the level subcomplexes are
deeply related to the presence of critical simplices of the function, and the analysis of the evolution
of the homology of these complexes can be a very useful tool in computer vision to deal with shape
recognition problems by means of topological shape descriptors. In our opinion, there are many
advantages of using Forman’s theory. First, it can be applied to discrete objects more general than
manifolds. Second, it is more suitable in the digital context on topics like pattern recognition,
shape classification and recognition, thinning 2D-objects where usually discretized functions are
used.

Optimal discrete Morse functions has been widely studied in the literature [6, 7]. However, this
question is not usually considered as an optimization problem in terms of obtaining discrete Morse
functions with as less critical simplices as possible. On the contrary, this problem is mainly settled
as a problem of perfect discrete Morse functions, that is, those functions satisfying mi( f ) = bi(M ),
where mi( f ) is indicating the number of i-critical simplices of f on K and bi(K ; F ) is the i-th
Betti number of M . In this setting is interesting to point out that there are complexes which do
not admit perfect discrete Morse functions. It can be explained by two main reasons: either a
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wrong selection of the field of coefficients of the Betti numbers (so it can be sorted out by choosing
a suitable field) or the considered complex is homologically trivial (acyclic) but not homotopically
trivial (non-contractible). In this sense, since we consider the problem on general 2-complexes,
not just on surfaces as in [7], our results are useful to find examples of 2-complexes on which is
not possible to define perfect discrete Morse functions. These kind of 2-complexes are interesting
since the notions of perfect and optimal discrete Morse function are not equivalent on them.

2 P reli m inar ies
We recall that a CW-complex is built by gluing together certain basic building blocks called cells.
A cell is a topological space that is homeomorphic to a ball.

The n-skeleton of a CW-complex is the union of the cells whose dimension is at most n.
A finite CW-complex is a space obtained by defining the n-skeleton inductively. We begin by

taking the 0-skeleton to be a discrete space. Given the (n − 1)-skeleton and a collection of closed
n-cells, we define maps from the boundary Sn−1 of each n-cell into the (n − 1)-skeleton. Next, we
define the n-skeleton to be the identification space obtained from the union of the (n − 1)-skeleton
and the closed n-cells by identifying each point in the boundary of an n-cell with its image.

Let K be a triangulated n-CW-complex and  be a n-simplex of K . If there exists a (n − 1)-
dimensional face  of  such that  is not a face of any other n-simplex in K , we say that there is
an elementary collapse from K to K − {  ,  } . The inverse operation is called an elementary
expansion from K − {  ,  } to K . If K = K 0  K 1  · · ·  K m = L are simplicial complexes
such that there is an elementary collapse from K i−1 to K i , i = 1, ..., m, we say that K collapses
to L , denoted by K  L . Equivalently, the inverse operation is called an expansion from L to
K , denoted by K  L .

From now on, if necessary, we will denote the dimension of a simplex by a super-index indicating
it. Every Given a simplicial complex K , a discrete Morse function is a function f : K −  R
such that, for any p-simplex   K :

(M1) card {  (p+1) >  / f (  ) ≤ f (  ) } ≤ 1.

(M2) card {  (p−1) <  / f (  ) ≥ f (  ) } ≤ 1.

A p-simplex   K is said to be a critical simplex with respect to f if:

(C1) card {  (p+1) >  / f (  ) ≤ f (  ) } = 0.

(C2) card {  (p−1) <  / f (  ) ≥ f (  ) } = 0.

A value of a discrete Morse function on a critical simplex is called critical value.

Given c  R, the level subcomplex K (c) is the subcomplex of K consisting of all simplices
 with f (  ) ≤ c, as well as all of their faces, that is,

K (c) =
⋃

f(τ)≤c

⋃

σ≤τ

 

Given two values of f , ak < al, the relationship between two level subcomplexes K (ak) and
K (al) is the following (see [5]):

• If the interval [ak , al] does not contain any critical value, then K (al) collapses to K (ak) or
equivalently, K (ak) expands to K (al).

• If the interval [ak , al] contains a critical value corresponding to a critical simplex of dimen-
sion i, then K (al) has the same simple homotopy type as K (ak) with an i-cell attached.
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A discrete vector field V on K is a collection of pairs (  (p) <  (p+1)) of simplices of K such
that each simplex is in at most one pair of V . A V -path is a sequence of simplices

 (p)0 ,  (p+1)
0 ,  (p)1 ,  (p+1)

1 , . . . ,  (p+1)
r ,  (p)r+1 , . . . ,

such that, for each i ≥ 0, the pair (  (p)i <  (p+1)
i )  V and  (p+1)

i >  (p)i+1  =  (p)i .
Given a discrete Morse function f on K , the gradient vector field induced by f is the set

of pairs of simplices (  (p) <  (p+1)) such that f (  ) ≥ f (  ).

Theorem 2.1. [5] A discrete vector field V is the gradient vector field of a discrete Morse function
if and only if there are no non-trivial closed V -paths.

Theorem 2.2. [5] Let f be a discrete Morse function defined on K and let bp be the p-th Betti
number of K with p = 0, 1, . . . , n (where n is the dimension of K ). Then:

(I1) mp( f ) − mp−1( f ) + · · · ± m0 ≥ bp − bp−1 + · · · ± b0,

(I2) mp( f ) ≥ bp,

(I3) m0( f ) − m1( f ) + · · · + (−1)nmn( f ) = b0 − b1 + · · · + (−1)nbn =  (K ),

where mp( f ) denotes the number of critical p-simplices of f on K .

Notice that these inequalities are still valid for the case of Betti numbers with general coeffi-
cients, that is, using any field F instead of Z.

A discrete Morse function f defined on K is optimal if it has the least possible number of
critical simplices, that is, mi( f ) ≤ mi(g) with 1 ≤ i ≤ n for every discrete Morse function g on K .

The Morse-Smale characteristic of a complex K is defined as

 (K ) = min { µ( f ) : f  FM (K ) }

where µ( f ) =
∑n

p=0 mp( f ) and Fm(K ) denotes the set of discrete Morse functions defined on
K . Notice that  (K ) = µ( f ) for all optimal discrete Morse function f .

In an analogous way we define the numbers  i(K ) by

 i(K ) = min { mi( f ) : f  FM (K ) }

It is obvious that  (K ) ≥
∑

 i(K ) and  (K ) ≥ 1.

Notice that if K is a compact connected orientable surface without boundary then:

•  (K ) is an even number.

•  (K ) = 2 if and only if K = S2.

A discrete Morse function f is called F -perfect if mp( f ) = bp(K ; F ) with p = 0, . . . , n where
F is the field of coefficients used for computing the indicated Betti number.

Notice that every F -perfect discrete Morse function is optimal. However the converse is not
true, that is, there exist optimal discrete Morse functions which are not F -perfect. Finally, we
will introduce two examples of gradient vector fields on the torus and dunce hat respectively that
illustrate the difference between both kind of functions. In particular, notice that the second
example makes clear that the minimality of the number of critical simplices is not linked to the
Betti numbers of the complex.
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Figure 1: A gradient vector field on the torus induced by a perfect discrete Morse function.
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Figure 2: A gradient vector field on the dunce hat induced by an optimal (non-perfect) discrete
Morse function.

3 Z-p erfect discrete M orse fu nct ions on 2-com plexes
We will start the study of the existence of perfect discrete Morse functions on 2-complexes by
considering the case of homology with integer coefficients.
Next result proves that every 1-dimensional complex admits Z-perfect discrete Morse functions.

Proposition 3.1. Every connected graph admits a Z-perfect discrete Morse function.

Proof. Let us consider a spanning tree T in G . It is well known that b1(G) can be regarded as the
number of edges { e1 , . . . , em } out of T . Let v be any vertex of T . Since T is collapsible to v then,
by means of Lemma 4.3 of [4], there is a discrete Morse function g on T such that v is its unique
critical simplex. Now, if we consider any edge ei not in T , by putting f (ei) > max { f (ui), f (vi) }
where ui and vi are the vertices of ei, we get an extension f of g to G with one critical vertex v
and b1(G) critical edges ei.

Since the spanning tree is built in linear time and in the above proof every simplex is visited
at most once, it is possible to define an algorithm which constructs a Z-perfect discrete Morse
function on G whose time complexity is linear.
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The above proposition can be extended to any 2-complex which collapses to a graph in the
following way

Corollary 3.2. Let K be a 2-complex which collapses to a graph G contained in K . Then K
admits a Z-perfect discrete Morse function.

It is interesting to point out that since every surface with boundary collapses to a graph then
such kind of surfaces admit a Z-perfect discrete Morse function.

Next result shows us how collapsibility of a general complex can be put in terms of its Morse-
Smale characteristic.

Lemma 3.3. Let K be complex. Then K is collapsible if and only if  (K ) = 1.

Proof. If K is collapsible then the collapsing strategy gives us a discrete vector field which is
induced by a discrete Morse function on K with just a unique critical simplex (a critical vertex).
Conversely, given a discrete Morse function on K with just one critical simplex, its induced vector
field can be interpreted as a collapsing strategy to a vertex in K .

Now we are going to give several results on the links between the existence of Z-perfect discrete
Morse functions on a given 2-complex with some trivial homology groups and its simple homotopy
type.

Proposition 3.4. Let K be a compact connected 2-complex admitting a Z-perfect discrete Morse
function. The following results hold:

1. If K is acyclic then it is collapsible.

2. If H1(K ) = 0 and H2(K )  = 0 then K has the same simple homotopy type as a wedge of
spheres S2.

3. If H1(K )  = 0 and H2(K ) = 0 then K has the same simple homotopy type as a graph.

Proof. 1. Since K is acyclic and considering that it admits a Z-perfect discrete Morse function
f then mi( f ) = bi(K ;Z) = 0 with i = 1, 2 and m0( f ) = b0(K ;Z) = 1. Thus, by Lemma 3.3
we conclude that K is collapsible.

2. Since H1(K ) = 0, H2(K )  = 0 and taking into account that it admits a Z-perfect discrete
Morse function f then mi( f ) = 0 with i = 0, 1 and m2( f ) = b2(K ;Z) ≥ 1. Thus, by means
of Corollary 3.5 of [4], K has the same simple homotopy as a wedge of m2( f ) 2-spheres.

3. Since H1(K )  = 0 and H2(K ) = 0 and considering that it admits a Z-perfect discrete Morse
function f then mi( f ) = 0 with i = 0, 2 and m1( f ) = b1(K ;Z) ≥ 1. Thus, by means of
Corollary 3.5 of [4], K has the same simple homotopy as a graph.

Corollary 3.5. Let K be a compact connected 2-complex. If K is acyclic and non-collapsible then
K does not admit Z-perfect discrete Morse functions.

Let co(K ) be the minimal number of 2-simplices  1 , . . . ,  co(K) that need to be removed from
K so that K − {  1 , . . . ,  co(K) } collapses to a graph. Next theorem establishes how co(K ) and the
existence of Z-perfect discrete Morse functions are related.

Theorem 3.6. Let K be a compact connected 2-complex. Then K admits a Z-perfect discrete
Morse function if and only if co(K ) = b2(K ;Z).
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Proof. Let us suppose that K admits a Z-perfect discrete Morse function f . Thus mi( f ) = bi(K ;Z)
with i = 0, 1, 2, so, in particular, m2( f ) = b2(K ;Z). By removing the m2( f ) critical 2-simplices
we get a subcomplex K ′ with b2(K ′;Z) = 0. Notice that the restriction of f to K ′ is a Z-perfect
discrete Morse function and hence, by Proposition 3.4, we obtain that K ′ has the same simple
homotopy type as a graph, that is, K ′ collapses to a graph. Hence we get co(K ) ≤ b2(K ;Z). In
order to conclude that co(K ) = b2(K ;Z), let us assume that we remove m 2-simplices from K
with m < m2( f ). In this case the resulting subcomplex K ′′ satisfies that b2(K ′′;Z) ≥ 1 and thus
it does not collapse to a graph.

Conversely, let us suppose that co(K ) = b2(K ;Z). Let G be the graph on which the subcomplex
K ′ (obtained by removing co(K ) 2-complexes from K ) collapses. Starting from a Z-perfect discrete
Morse function g on G , it can be extended to a Z-perfect discrete Morse function f ′ on K ′. Finally,
we extend f ′ to K by assigning to every remaining 2-simplex a value greater than all the values
of its bounding 1-simplices and we obtain a Z-perfect discrete Morse function on K .

Corollary 3.7. Let K be a compact connected surface without boundary. Then K admits a
Z-perfect discrete Morse function if and only if K is orientable.

Proof. This results follows from the fact that every surface has co(K ) = 1 (see [8]) and since K is
orientable then b2(K ) = 1.

Remark 3.8. The above corollary can be extended in a straightforward way to 2-pseudomanifolds,
that is, a 2-pseudomanifold K admits a Z-perfect discrete Morse function if and only if K is ori-
entable.

4 F -p erfect discrete M orse fu nct ions on 2-com plexes
In this section we are going to introduce the general problem of the existence of F -perfect dis-
crete Morse functions on 2-complexes where F is any field. This problem arises in a natural way
when we study why a given 2-complex does not admit Z-perfect discrete Morse functions. It is
essentially due to two main influences: either to the nature of the first fundamental group of the
complex or to the existence of torsion elements in the first homology group of the complex.

In the first case we find examples as Dunce hat, Bing’s house and more generally any acyclic
and non-collapsible 2-complex. All of these complexes have in common that they are homologi-
cally but not homotopically trivial. In fact we are going to prove that these kind of complexes do
not admit any kind of F -perfect Morse functions for any field F .

Theorem 4.1. If K is an acyclic and non-collapsible connected 2-complex then K does not admit
any F -perfect discrete Morse function for all field F .

Proof. Let us suppose that there exist a F -perfect discrete Morse function defined on K . Since
K is acyclic, we get that bi(K ; F ) = 0 with i = 1, 2 and it implies that f must satisfy mi( f ) = 0
with i = 1, 2 and m0( f ) = 1. Thus, by means of Lemma 3.3 we conclude that K is collapsible,
which is a contradiction.

Notice that in the second case, although these kind of complexes do not admit Z-perfect discrete
Morse functions, they admit F -perfect functions for a suitable field F . In particular, Corollary 3.7
characterizes those surfaces admitting Z-perfect discrete Morse functions as orientable surfaces.
However, next result shows the influence of a change of coefficients in the existence of perfect
discrete Morse functions.
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Proposition 4.2. Any non-orientable compact connected surface without boundary admits a Z2-
perfect function.

Proof. Let K be a triangulated non-orientable compact connected surface without boundary. By
removing a 2-simplex, we obtain a 2-complex K ′ which collapses to a graph G , so we can define
a discrete Morse function f ′ on K ′ satisfying m0( f ′) = 1, m1( f ′) = h and m2( f ′) = 0. Repeating
the argument of the converse of the proof of Theorem 3.6, we obtain a discrete Morse function f
on K with m0( f ) = 1, m1( f ) = h and m2( f ) = 1. Finally, since b0(K ;Z2) = 1, b1(K ;Z2) = h
and b2(K ;Z2) = 1, we conclude that f is a Z2-perfect discrete Morse function.

Corollary 4.3. Any compact connected surface admits a Z2-perfect function.

Remark 4.4. Moreover, any pseudo-projective space, that is, the space obtained by gluing a 2-ball
to S1 by means of a map of degree p, admits Zp-perfect functions. It can be proved by repeating
the argument of the proof of Proposition 4.2.

5 C onclusions an d fu t u re wor k
The existing results in the literature on optimal discrete Morse functions are mainly restricted to
triangulated surfaces. In this sense, our work extends this study to the case of general simplicial
2-complexes. In our opinion, this point of view is interesting for two main reasons: First, in our
setting the notions of optimal and perfect discrete Morse functions are not equivalent. Then a new
problem arises: how to determine an optimal discrete Morse function on a given 2-complex, for
example, on an acyclic non-contractible one. On the other hand, our approach can be regarded
as a first step in the study of perfect discrete Morse functions on triangulated 3-manifolds. It can
be carried out by collapsing the considered 3-manifold to a 2-complex, the so called spine of the
3-manifold, and then we reduce the problem to get a perfect function on a 2-complex.

R eferences
[1] D. Andrica. Critical point theory and some applications. Cluj University Press, Romania, 2005.

[2] R. Ayala, L. M. Fernández, and J. A. Vilches. Characterizing equivalent discrete Morse func-
tions. Bull. Braz. Math. Soc. (N.S.), 40(2):225–235, 2009.

[3] R. Ayala, L. M. Fernández, and J. A. Vilches. The number of critical elements of discrete
Morse functions on non-compact surfaces. Topology Appl., 157(1):90–101, 2010.

[4] R. Forman. Morse Theory for cell complexes. Adv. Math., 134(1):90–145, 1998.

[5] R. Forman. A user’s guide to discrete Morse theory. Sém. Lothar. Combin., 48, 2002. Art.
B48c, 35 pp.

[6] P. Hersh. On optimizing discrete Morse functions. Adv. in Appl. Math., 35(3):294–322, 2005.

[7] T. Lewiner, H. Lopes, and G. Tavares. Optimal discrete Morse functions for 2-manifolds.
Comput. Geom., 26(3):221–233, 2003.

[8] J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Menlo Park, 1984.

25



26


