
Abstract. In this paper we consider a new class of continuous location
problems where the ‘‘distances’’ are measured by gauges of closed (not nec-
essarily bounded) convex sets. These distance functions do not satisfy the
definiteness property and therefore they can be used to model those situations
where there exist zero-distance regions. We prove a geometrical character-
ization of these measures of distance as the length of shortest paths between
points using only a subset of directions of their unit balls. We also charac-
terize the complete set of optimal solutions for this class of continuous single
facility location problems and we give resolution methods to solve them. Our
analysis allows to consider new models of location problems and generalizes
previously known results.

Key words: Continuous location, Convex analysis

1 Introduction

Location models are among the important problems in Applied Mathe-
matics and Operations Research. They appear in different areas such as
industrial engineering, systems analysis, computer science, transportation
planning, . . . Typical situations within the scope of location analysis are to
locate items, activities, warehouses, machines to optimize transportation
cost, to locate a silicon junction on an electronic chip to minimize distance
covered, to determine the position of emergency units to minimize response
time, . . . (See e.g. Drezner [2] for different applications.) Another impor-
tant application is in mathematical statistics. If the existing facilities are
drawn according to a probability distribution, location analysis is used to
search for good estimators minimizing different error measures (see e.g.
Flury [8]).
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Many different elements may affect the formulation of a location problem:
number of facilities to be located, space where the problem is considered
(discrete, continuous, network, . . .), type of objective function, nature of the
service provided (attractive or repulsive), characteristics of the existing
facilities, . . . (See Hamacher and Nickel [9] for a classification of Location
Problems and Drezner and Hamacher [3] for an up to date collection of
papers on location analysis.)

Up to now most of the references in the literature concerning continuous
location problems have considered distances induced by norms (see e.g.
Drezner [2] or Drezner and Hamacher [3]). In the last years, there are also a
number of papers that consider the use of gauges defined by the Minkowski
functional of a compact convex set (not necessarily symmetric) containing the
origin in its interior (see e.g. Durier and Michelot [4]; Fliege [7]; or Rodriguez-
Chia et al. [18]). These functions have been used in Location Theory to model
situations where the symmetry property of a norm does not make sense. In
this paper, we want to analyze more general models where the definiteness
property of the gauge of a compact convex set is relaxed. Relaxing definite-
ness introduces the existence of zero-distance regions. It is easy to see that a
gauge of a closed convex set containing the origin has a zero-distance region
(different from the zero-vector) if and only if its unit ball is unbounded.
(Figure 1 shows several distance level curves with respect to some zero-
distance regions.)
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Fig. 1. Distance level curves with respect to zero-distance regions
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The simplest location problem with zero-distance regions that one can
consider consists of locating a new facility minimizing the sum of the
distances with respect to a given set of lines (see Robert and Toussaint [16]).
This problem is the dual of a very well-known problem consisting of locating
a line minimizing the distances to a given set of points (see Morris and
Norback [14], [15]; Megiddo and Tamir [13]; Love, Morris and Wesolowsky
[12]; Schöbel [19] or Robert and Toussaint [16]). After a first analysis, this
problem reduces to a linear programming problem (see Subsection 4.1 for
further details). Nevertheless, although this problem is easy to solve, the
general model presents an interesting structure worth to be investigated.

Our aim in this paper is to analyze Location Problems in a general
framework where gauges of closed (not necessarily bounded) convex sets are
used to model distances. Gauges of compact convex sets have a very inter-
esting property: The distance between two points is the shortest path between
them using only fundamental directions of the unit ball. First, we prove that
this geometrical interpretation can be extended to gauges of closed convex
sets by considering trip directions of a specific convex subset of the unit ball.
Second, we give a geometrical characterization of the set of optimal solutions
for this family of problems.

It is worth noting that all the literature of location analysis based on
gauges of compact convex sets can be seen as a particular case of this
approach. Besides, new types of location problems can be considered and
solved.

The paper is organized as follows. Section 2 is devoted to the mathe-
matical preliminaries. That section also includes a proof of the geometrical
interpretation of distances measured by gauges of closed convex sets. In
Section 3 a general location problem with gauges of closed convex sets is
introduced and those cases where the optimal objective value is either 0 or
unbounded are discussed. Section 4 deals with the geometrical characteriza-
tion of the set of optimal solutions. Two particularly interesting cases are
included: the Weber problem and the minimax problem. The last section is
devoted to some concluding remarks.

2 Mathematical preliminaries

In this paper everything takes place in the Euclidean space Rn where the inner
product is denoted by �; �h i. We will consider gauges of closed (not necessarily
bounded) convex sets as measures of distance. Thus, in this section we recall
the concept of gauge and we relate it to some other concepts of convex
analysis. (Further details can be found in Hiriart-Urruty and Lemaréchal [10],
or Rockafellar [17].)

Let C be a closed convex set containing the origin. The function u defined
by

uðxÞ :¼ inffa > 0 : x 2 aCg ð1Þ
is called the gauge of C. The set C will be called the unit ball associated with u.
For convenience, we set uðxÞ :¼ þ1 if x 2 aC for no a > 0.

The expression (1) is the definition of gauge used in convex analysis (see
Definition V.1.2.4 in Hiriart-Urruty and Lemaréchal [10]). Nevertheless, the
term gauge has been used in Location Theory (since the seminal paper by
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Witzgall [22]) to denote the functional u associated to a compact convex set
containing the origin in its interior. In this paper, we use the term gauge in
its full dimension: it denotes the functional u associated to a closed
(not necessarily bounded) convex set containing the origin (not necessarily in
its interior).

Notice that the gauge function u is finite if and only if the zero vector
lies in the interior of its unit ball C. If zero lies on the boundary of C, the
set of points where uðxÞ ¼ þ1 is the complementary set of the conical hull
of C, RnnconeðCÞ. On the other hand, it is easy to see that a gauge function
u verifies the definiteness property if and only if its unit ball is bounded.
Thus, in general the definiteness property is not satisfied by gauges of
closed convex sets. This remark leads us to recall the concept of asymptotic
cone.

Let u be the gauge of a closed convex set C containing the origin, the
asymptotic cone of u is given by

C1 :¼ fx 2 Rn : uðxÞ ¼ 0g: ð2Þ
It is worth nothing that C1 is a closed convex cone determined by the
directions of recession of C (see pages 108 and 203 in Hiriart-Urruty and
Lemaréchal Part I [10]) i.e.,

C1 ¼ fd 2 Rn : xþ kd 2 C 8 x 2 C; 8 k > 0g: ð3Þ
Let u be the gauge of a closed convex set C containing the origin. We define
the ‘‘distance’’ from y to x by uðx� yÞ. This ‘‘distance’’ function verifies the
following properties:

1. uðx� yÞ � 0 8 x; y 2 Rn.
2. uðx� yÞ ¼ 0 () x� y 2 C1.
3. uðx� yÞ � uðx� zÞ þ uðz� yÞ 8 x; y; z 2 Rn.

Notice that if the unit ball C is bounded, C1 ¼ f0g and thus, uðx� yÞ ¼ 0 if
and only if x ¼ y. If in addition C is symmetric with respect to the origin, u is
a norm and we have the additional property uðx� yÞ ¼ uðy � xÞ.

For the sake of readability we show several examples of gauges with
unbounded unit ball (see Figure 2).

Fig. 2. Examples of gauges with unbounded unit ball C
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Example 1. Quadratic gauges. Let Q be a symmetric positive semi-definite
matrix in Rn�n. A quadratic gauge is defined by

uðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qx; xh i

p
for all x 2 Rn:

If Q 2 R2�2, Q ¼ q11 q12
q12 q22

� �
with q11 > 0, q22 > 0, and q11q22 ¼ q212; then

uðx1; x2Þ ¼ j q11ffiffiffiffiffi
q11

p x1 þ q12ffiffiffiffiffi
q11

p x2j. The unit ball is given by C ¼ fðx1; x2Þ 2 R2 :

j q11ffiffiffiffiffi
q11

p x1 þ q12ffiffiffiffiffi
q11

p x2j � 1g; and the asymptotic cone is C1 ¼ fðx1; x2Þ 2 R2 :

x2 ¼ � q11
q12

x1g.
Notice that if u is a quadratic gauge in R2, its unit ball C is a symmetric

strip and its asymptotic cone C1 is a line passing through the origin.

Example 2. Polyhedral gauges. Let si 2 Rn for i ¼ 1; . . . ; p and let
C ¼ fx 2 Rn : si; xh i � bi; bi � 0 8 i ¼ 1; . . . ; pg be a closed convex poly-
hedron containing the origin. The function u defined by (1) is called a
polyhedral gauge. The asymptotic cone of u is a closed convex cone given by
C1 ¼ fx 2 Rn : si; xh i � 0 8 i ¼ 1; . . . ; pg:

Once the concept of gauge of a closed convex set has been introduced the
next step is to characterize how to evaluate it. There are two alternative ways
to evaluate a gauge. The first one is by means of the polar set of its unit ball.

Let C be a closed convex set containing the origin. The polar set of C is
given by

C� ¼ fs 2 Rn : s; ch i � 1 8 c 2 Cg: ð4Þ
It is well-know that the gauge of a closed convex set C containing the origin is
the support function of the polar set C� (see Theorem 14.5 in Rockafellar
[17]). Therefore,

uðxÞ ¼ sup
c2C�

c; xh i: ð5Þ

The second alternative to evaluate the gauge u of a closed convex set
containing the origin gives us a geometrical interpretation of this value as the
length of a particular shortest path. We show that uðxÞ is the shortest path
from the origin to the point x using only trip directions of a subset of points of
the gauge unit ball.

In what follows we denote by extðCÞ, ðCÞext1 , convðCÞ, and coneðCÞ, the set
of extreme points, the set of extreme directions, the convex hull, and the
conical hull of the set C, respectively. By L? is denoted the orthogonal
subspace to a linear subspace L.

Definition 1. A convex set C has linearity zero if it contains no lines.

Lemma 1. Let C be a closed convex set with non-zero linearity, let L be the
linearity subspace of C, and let C0 ¼ C \ L?. Then, the set C can be expressed as

C ¼ convðextðC0ÞÞ þ coneððC0Þext1 Þ þ L: ð6Þ
Notice that C0 is a closed convex set with zero linearity, and that C ¼ C0 þ L.
Thus, the proof is a direct consequence of Theorem 18.5 in Rockafellar [17].

The following theorem gives us an interpretation of the gauge of a closed
convex set C as the shortest path between points using only displacement in
the directions given by the extreme points of C0.
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Theorem 1. Let C be a closed convex set containing the origin, with linearity
subspace L, and let C0 ¼ C \ L?. Suppose the extreme points of C0 are
extðC0Þ :¼ fbigi2I , the extreme directions of C0 are ðC0Þext1 :¼ fdjgj2J , and
fv1; . . . ; vpg is a basis of L. Then, for each point x there exist fki : ki � 0gi2I ,
flj : lj � 0gj2J , and fdk : dk 2 Rgpk¼1 such that the gauge ofC at point x given by

uðxÞ ¼ inf
X
i2I

ki : x ¼
X
i2I

kibi þ
X
j2J

ljdj þ
Xp
k¼1

dkvk

( )
: ð7Þ

Moreover, if I0ðxÞ :¼ fi : ki > 0g and J0ðxÞ :¼ fj : lj > 0g, then jI0ðxÞjþ
jJ0ðxÞj � nþ 1.

Proof. By Lemma 1 we know that for each x 2 C there exist fk0i : k0i � 0gi2I
verifying

P
i2I k0i ¼ 1, fl0j : l0j � 0gj2J , and fd0k : d0k 2 Rgpk¼1 such that the

point x can be written as

x ¼
X
i2I

k0ibi þ
X
j2J

l0jdj þ
Xp
k¼1

d0kvk:

In addition, by Caratheodory’s Theorem we know that any point of C0 can be
expressed as a convex combination of at most nþ 1 extreme points and
directions of C0. Therefore, if I0ðxÞ :¼ fi : k0i > 0g and J0ðxÞ :¼ fj : l0j > 0g,
then jI0ðxÞj þ jJ0ðxÞj � nþ 1.

On the other hand, we know from (1) that

uðxÞ ¼ inffa > 0 :
x
a
2 Cg:

Combining both results we obtain that there exist fk0i : k0i � 0gi2I verifyingP
i2I k0i ¼ 1, fl0j : l0j � 0gj2J , and fd0k : d0k 2 Rgpk¼1 such that

uðxÞ ¼ inf a > 0 :
x
a
¼

X
i2I

k0ibi þ
X
j2J

l0jdj þ
Xp
k¼1

d0kvk

( )

and moreover, jI0ðxaÞj þ jJ0ðxaÞj � nþ 1. Take ki ¼ ak0i for all i 2 I , then we have
that

P
i2I ki ¼ a. Take in addition lj ¼ al0j for all j 2 J and dk ¼ ad0k for all k ¼

1; . . . ; p, thus we obtain that for each x there exist fki : ki � 0gi2I , flj : lj �
0gj2J , and fdk : dk 2 Rgpk¼1 such that the gauge of C at point x is given by

uðxÞ ¼ inf
X
i2I

ki : x ¼
X
i2I

kibi þ
X
j2J

ljdj þ
Xp
k¼1

dkvk

( )
:

Moreover, I0ðxÞ ¼ I0ðxaÞ, J0ðxÞ ¼ J0ðxaÞ and thus jI0ðxÞj þ jJ0ðxÞj � nþ 1: h

This characterization extends a previous result given by Ward and
Wendell [20] stating that the block norm of a point x is the length of one of
the shortest paths from the origin to x using only trip directions of the unit
ball. In Theorem 1 we show that the same interpretation can be applied to a
particular expansion of the point x in terms of extreme points and directions
of a specific convex subset of the unit ball and a basis of the linearity subspace
of C. It is worth noting that if the set C has zero linearity, the last term in the
expansion of x disappears. Nevertheless, this does not modify neither the
interpretation nor the evaluation of uðxÞ.
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Finally, we conclude this section including the expression of the subdif-
ferential set of the gauge of a closed convex set. We will need this set in
Section 4. (For more details see Hiriart-Urruty and Lemaréchal [10].)

Let @uðxÞ be the subdifferential set of the function u at point x, let u� be
the conjugate of the function u, and let NCðxÞ be the normal cone to the set C
at point x. It is well-known that for any closed convex function u, s 2 @uðxÞ if
and only if x 2 @u�ðsÞ (see Corollary 1.4.4 in Hiriart-Urruty and Lemaréchal,
Part II [10]). The subdifferential set of the conjugate function u� is given by

@u�ðsÞ ¼ NC� ðsÞ if s 2 C�.
; if s 62 C�

	
ð8Þ

Then, since C� is closed, for each x such that uðxÞ < þ1 we have that

@uðxÞ ¼ fs 2 C� : x 2 NC� ðsÞg ð9Þ
¼ fs 2 C� : x; sh i ¼ uðxÞg: ð10Þ

Notice that if x ¼ 0, then @uð0Þ ¼ C� and if x 2 C1, then 0 2 @uðxÞ. Notice
also that if u is a quadratic gauge, C� is orthogonal to C1 and thus,
@uðxÞ ¼ C� for all x 2 C1.

3 Problem formulation

Throughout this paper A is a finite subset of Rn, which represents the set of
existing facilities. Each facility a 2 A has associated a gauge ua whose unit
ball is a closed convex set containing the origin. The distance from an existing
facility a 2 A to a new facility x 2 Rn is assumed to be given by uaðx� aÞ. We
are looking for the location of a new facility x 2 Rn that minimizes a glob-
alizing function c, which depends on the weighted distance from each existing
facility to the new facility.

We are given a set of existing facilities A :¼ fa1; . . . ; amg. Let
w ¼ fwa1 ; . . . ;wamg be a set of positive weights; and let c : Rm�!R be a
monotone gauge of a closed convex set containing the origin. Recall that a
function c is a monotone gauge on Rm if cðuÞ � cðvÞ for every u and v in Rm

satisfying juij � jvij for each i ¼ 1; . . . ;m (see Johnson and Nylen [11] for
further details on monotone norms). The mathematical formulation of the
problem is

P c
wðAÞ min

x2Rn
F ðxÞ ¼ cðwa1ua1ðx� a1Þ; . . . ;wamuamðx� amÞÞ:

We will denote by F � the optimal objective value of Problem P c
wðAÞ and as it is

usual, the set of minimizers of P c
wðAÞ will be denoted by M c

wðAÞ.
The following remark shows that interesting, well-know problems in

Location Theory are particular cases of this general location problem.

Remark 1. For cðxÞ ¼
Pm

i¼1 jxij the problem becomes a generalization of the
usual Weber problem (see e.g. Wesolowsky [21]). For cðxÞ ¼ maxi jxij we get a
generalization of the center problem (see e.g. Elzinga and Hearn [6]). Finally,
for cðxÞ ¼ k

Pm
i¼1 jxij þ ð1� kÞmaxi jxij with 0 < k < 1 we have a general-

ization of the cent-dian problem (see e.g. Carrizosa et al. [1]).

One of the goals in this paper is to characterize the whole set of optimal
solutions of Problem P c

wðAÞ. This problem has the novelty with respect to
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previous formulations in Location Theory that its optimal objective value
may be 0 or unbounded. First of all, we characterize these extreme cases and
next we proceed to the non-degenerate cases.

For every a 2 A we denote by Ca the unit ball of ua, by C�a the polar
set of Ca and by ðCaÞ1 the asymptotic cone of ua. In the same way, we
denote by Cc and by ðCcÞ1 the unit ball and the asymptotic cone of c,
respectively.

Lemma 2. Suppose that the globalizing function c is the gauge of a bounded
closed convex set. Then, the optimal objective value of Problem P c

wðAÞ is zero if
and only if the following condition is fulfilled:

S :¼
\m
i¼1

ðai þ ðCaiÞ1Þ 6¼ ;: ð11Þ

In addition, in this case Mc
wðAÞ ¼ S.

Proof. If S 6¼ ;, there exists x� 2 Rn such that x� � ai 2 ðCaiÞ1 8 i ¼ 1; . . . ;m.
Then, uaiðx� � aiÞ ¼ 0 8 i ¼ 1; . . . ;m and thus F ðx�Þ ¼ cð0Þ ¼ 0. Therefore,
since cðxÞ � 0 for all x 2 Rn, the optimal objective value is zero and
S ¼ M c

wðAÞ.
Conversely, if F � ¼ 0, there exists x� 2 Rn such that F ðx�Þ ¼ 0. Thus, since

c is the gauge of a compact convex set, waiuaiðx� � aiÞ ¼ 0 8 i ¼ 1; . . . ;m.
Therefore, x� � ai 2 ðCaiÞ1 8 i ¼ 1; . . . ;m and the condition is fulfilled. h

Lemma 3. Suppose that the globalizing function c is the gauge of an unbounded
closed convex set. Then, the optimal objective value of Problem P c

wðAÞ is zero if
and only if the following condition is fulfilled:

T :¼ x 2 Rn : ðwa1ua1ðx� a1Þ; . . . ;wamuamðx� amÞÞ 2 ðCcÞ1
� �

6¼ ;: ð12Þ
In addition, in this case we have that M c

wðAÞ ¼ T .

Proof. If T 6¼ ;, it is straightforward to see that F � ¼ 0 and that M c
wðAÞ ¼ T .

Conversely, if F � ¼ 0, there exists x� 2 Rn such that F ðx�Þ ¼ 0. Thus,
ðwa1ua1ðx� � a1Þ; . . . ;wamuamðx� � amÞÞ 2 ðCcÞ1 and the result follows. h

Notice that S � T . Thus, if the globalizing function c is the gauge of an
unbounded closed convex set, condition (11) is also a sufficient condition for
F � ¼ 0.

Lemma 4. Suppose that the globalizing function c is the gauge of a bounded
closed convex set containing the origin in its interior. Then, the optimal objective
value for Problem P c

wðAÞ is unbounded if and only if

\m
i¼1

ðai þ coneðCaiÞÞ ¼ ;: ð13Þ

Proof. If
Tm

i¼1ðai þ coneðCaiÞÞ ¼ ;, then for all x 2 Rn there exists
i0 2 f1; . . . ;mg such that x� ai0 62 coneðCai0

Þ and thus uai0
ðx� ai0Þ ¼ þ1.

Therefore, since the unit ball of c is bounded, F ðxÞ ¼ þ1 8x 2 Rn.
Conversely, if F � ¼ þ1, then F ðxÞ ¼ þ1 8 x 2 Rn. Thus, since the unit

ball of c contains the origin in its interior, for all x 2 Rn there exists
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i0ðxÞ 2 f1; . . . ;mg such that uai0ðxÞ
ðx� ai0ðxÞÞ ¼ þ1 and then

x 2 RnnconeðCai0ðxÞ
Þ. Therefore, the condition holds. h

Notice that condition (13) only holds if the origin is in the boundary of at
least two unit balls of the gauges associated with the existing facilities.
Otherwise, there are at least m� 1 facilities (assume without loss of generality
indexed by i ¼ 1; . . . ;m� 1) such that coneðCaiÞ ¼ Rn for all i ¼ 1; . . . ;m� 1.
Then,

Tm
i¼1ðai þ coneðCaiÞÞ can not be the empty set.

Lemma 5. Suppose that the globalizing function c is the gauge of an unbounded
closed convex set. Then, the optimal objective value for Problem P c

wðAÞ is
unbounded if the following condition holds:

8x 2 Rn ðwa1ua1ðx� a1Þ; . . . ;wamuamðx� amÞÞ 2 RmnconeðCcÞ: ð14Þ

Proof. We know that if x 62 coneðCcÞ, then cðxÞ ¼ þ1 and therefore the re-
sult follows. h

Notice that condition (14) is a sufficient but not necessary condition for
F � ¼ þ1. We can see this assertion in the following example.

Example 3. We are given two existing facilities a1 ¼ ð�1; 0Þ and a2 ¼ ð1; 0Þ in
R2. The unit ball of ua1 is the halfspace Ca1 ¼ fðx; yÞ 2 R2 : x � 0g and the
unit ball of ua2 is the halfspace Ca2 ¼ fðx; yÞ 2 R2 : x � 0g. Let c be the

polyhedral gauge in R2 whose unit ball is Cc ¼ fðx; yÞ 2 R2 : x � 1; y � 1g
(see Figure 3). Notice that coneðCcÞ ¼ R2. Nevertheless,

� if x � �1, then ua1ðx; yÞ ¼ 0 and ua2ðx; yÞ ¼ þ1 8y 2 R;
� if �1 < x < 1, then ua1ðx; yÞ ¼ þ1 and ua2ðx; yÞ ¼ þ1 8y 2 R;
� if x � 1, then ua1ðx; yÞ ¼ þ1 and ua2ðx; yÞ ¼ 0 8y 2 R.

Therefore, F ðx; yÞ ¼ þ1 8ðx; yÞ 2 coneðCcÞ.
In the next section we study the non-degenerate cases. Then, we assume

that conditions (11), (12), (13) and (14) are not fulfilled.

4 Geometrical description of optimal sets

In this section we look for a geometrical characterization of the set of optimal
solutions M c

wðAÞ of the problem P c
wðAÞ introduced in Section 3. In doing that,

Fig. 3. Counter-example
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we recall the concept of an elementary convex set (see Durier and Michelot
[4]). Through this section we will assume that F � is different from 0 and þ1,
otherwise it will be stated explicitly.

Definition 2. Let p ¼ ðpaÞa2A be a family of elements of Rn such that pa 2 C�a
for each a 2 A; let NaðpaÞ be the normal cone to C�a at pa; and let

Cp ¼
\
a2A
ðaþ NaðpaÞÞ: ð15Þ

A nonempty convex set C is said to be an elementary convex set if there exists a
family p such that Cp ¼ C.

As an illustration of this definition we show some examples in Figure 4.
Notice that if u is a quadratic gauge of an unbounded closed convex set and
uaðxÞ ¼ uðxÞ for all a 2 A, then the elementary convex sets are parallel strips
or lines passing through the existing facilities. If uaðxÞ 6¼ ubðxÞ with a 6¼ b,
the elementary convex sets are polyhedra, their facets and their vertices.
Obtaining the elementary convex sets for the third case, where the poly-
hedral gauge was described in Figure 2, only consists of computing the
normal cone to C� at any point of its boundary. In this case the elementary
convex sets are polyhedra, their facets and some of their vertices. It is worth
noting that the existing facilities may not be elementary convex sets.

Fig. 4. Examples of elementary convex sets
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In order to give a geometrical description of the set M c
wðAÞ we will use the

condition: x 2 M c
wðAÞ if and only if 0 2 @F ðxÞ. Thus, we start with a charac-

terization of the subdifferential set @F ðxÞ, which makes use of the Theorem
VI.4.3.1 in Hiriart-Urruty and Lemaréchal [10]. This result requires mono-
tonicity of the outer component of the composition between the functions.
We recall that a function f on Rm is said to be monotone if f ðuÞ � f ðvÞ for
every u; v 2 Rm verifying ui � vi 8 i ¼ 1; . . . ;m. Notice that a monotone
gauge on Rm is not a monotone function in the above sense. For this reason
we will introduce the function cþ.

Let Q and �QQ be two sets in Rm defined by Q ¼ fu 2 Rm : ui > 0
8i ¼ 1; . . . ;mg and �QQ ¼ fu 2 Rm : ui � 0 8i ¼ 1; . . . ;mg. We assume c to be
a monotone gauge on �QQ, i.e., cðuÞ � cðvÞ for every u and v in Rm satisfying
0 � ui � vi for each i ¼ 1; . . . ;m.

Proposition 1. Let c be a monotone gauge on �QQ. Then, the function

cþðuÞ ¼ cðmaxðu1; 0Þ; . . . ;maxðum; 0ÞÞ ð16Þ
is a sublinear, monotone function in Rm. Moreover, @cþðuÞ  �QQ 8u 2 �QQ.

The proof runs parallel to Proposition 3.6 in Durier [5] and therefore is
omitted.

Since cþ is a sublinear function, cþ is the support function of the polar set
of its ‘‘unit ball’’. Let B ¼ fu 2 Rm : cþðuÞ � 1g be the unit ball of cþ, and let
B� be the polar set of B. The subdifferential set of the function cþ at a point
u 2 �QQ; u 6¼ 0 is

@cþðuÞ ¼ fk ¼ ðk1; . . . ; kmÞ : ki � 0 8i ¼ 1; . . . ;m; k 2 B�;

k; uh i ¼ cþðuÞg: ð17Þ

Lemma 6. An element x� 2 Rn belongs to @F ðxÞ if and only if there exist pa1 2
C�a1 ; . . . ; pam 2 C�am and k ¼ ðk1; . . . ; kmÞ 2 B� with ki � 0 8 i ¼ 1; . . . ;m such
that x 2 ai þ NaiðpaiÞ 8 i ¼ 1; . . . ;m,

Pm
i¼1 kiwaiuaiðx� aiÞ ¼ F ðxÞ, and

x� ¼
Pm

i¼1 kiwaipai .

Proof. Let UðxÞ ¼ ðwa1ua1ðx� a1Þ; . . . ;wamuamðx� amÞÞ, then
F ðxÞ ¼ ðcþ ! UÞðxÞ, F being a convex function. Thus, by Theorem VI.4.3.1 in
Hiriart-Urruty and Lemaréchal [10] we have that

@F ðxÞ ¼
Xm
i¼1

kiqai : ðk1; . . . ; kmÞ 2 @cþðUðxÞÞ;
(

qai 2 @ðwaiuaiðx� aiÞÞ 8i ¼ 1; . . . ;m

)
: ð18Þ

On the other hand, we know from (17) that @cþðUðxÞÞ ¼ fk ¼
ðk1; . . . ; kmÞ : k 2 B�; ki � 0 8i ¼ 1; . . . ;m; k;UðxÞh i ¼ cþðUðxÞÞ ¼ F ðxÞg.
Finally, qai ¼ waipai with pai 2 @uaiðx� aiÞ and @uaiðx� aiÞ ¼ fpai 2 C�ai :
x 2 ai þ NaiðpaiÞg for all i ¼ 1; . . . ;m. Thus, the result follows. h

Let us now introduce some notation. For J � f1; . . . ;mg, J 6¼ ;, and
p ¼ ðpaiÞi2J with pai 2 C�ai let
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CJ ðpÞ ¼ fx 2 Rn : pai ; x� aih i ¼ uaiðx� aiÞ 8i 2 Jg ð19Þ
¼

\
i2J
ðai þ NaiðpaiÞÞ; ð20Þ

and for k ¼ ðk1; . . . ; kmÞ 2 B� let

DJ ðkÞ ¼ fx 2 Rn : F ðxÞ ¼ �
X
i2J

kiwai pai ; aih ig ð21Þ

¼ fx 2 Rn : F ðxÞ ¼
X
i2J

kiwaiuaiðx� aiÞg: ð22Þ

Lemma 7. A point x 2 Rn belongs to M c
wðAÞ if and only if there exist

J � f1; . . . ;mg; J 6¼ ;, p ¼ ðpaiÞi2J with pai 2 C�ai , and k ¼ ðk1; . . . ; kmÞ 2 B�

with ki > 0 8i 2 J and ki ¼ 0 8i 62 J satisfying
P

i2J kiwaipai ¼ 0 such that
x 2 CJ ðpÞ \ DJ ðkÞ:

Proof. Let x 2 Rn. We know that x 2 M c
wðAÞ if and only if 0 2 @F ðxÞ.

Therefore, by Lemma 6 there exist pa1 2 C�a1 ; . . . ; pam 2 C�am ;
k ¼ ðk1; . . . ; kmÞ 2 B� with ki � 0 8i ¼ 1; . . . ;m such that

x 2 ai þ NaiðpaiÞ 8 i ¼ 1; . . . ;m; ð23ÞXm
i¼1

kiwaiuaiðx� aiÞ ¼ F ðxÞ; and ð24Þ

0 ¼
Xm
i¼1

kiwaipai : ð25Þ

The assertion (23) implies that pai ; x� aih i ¼ uaiðx� aiÞ 8i ¼ 1; . . . ;m. Then,
by (24) we have that F ðxÞ ¼

Pm
i¼1 kiwai pai ; xh i �

Pm
i¼1 kiwai pai ; aih i and by (25)

we obtain F ðxÞ ¼ �
P

i2J kiwai pai ; aih i: Let J ¼ fi : ki > 0g, then
x 2 CJ ðpÞ \ DJ ðkÞ.

Note that J 6¼ ; because if ki ¼ 0 8i ¼ 1; . . . ;m, then F ðxÞ ¼ 0 and we have
assumed that F � 6¼ 0. h

The next theorem deals with the simultaneous characterization of all the
points of the optimal solution set M c

wðAÞ. Once we have proved the previous
technical lemmas the proof runs parallel to Theorem 4.3 in Durier [2] and
therefore is omitted.

Theorem 2

1. If M c
wðAÞ is nonempty, then there exist J � f1; . . . ;mg; J 6¼ ;; ðpaiÞi2J with

pai 2 C�ai and k ¼ ðk1; . . . ; kmÞ 2 B� with ki > 0 8i 2 J and ki ¼ 0 8i 62 J
satisfying

P
i2J kiwaipai ¼ 0 such that

M c
wðAÞ ¼ CJ ðpÞ \ DJ ðkÞ:

2. If there exist J � f1; . . . ;mg; J 6¼ ;; ðpaiÞi2J with pai 2 C�ai and
k ¼ ðk1; . . . ; kmÞ 2 B� with ki > 0 8i 2 J and ki ¼ 0 8i 62 J satisfyingP

i2J kiwaipai ¼ 0 such that CJ ðpÞ \ DJ ðkÞ 6¼ ;; then

M c
wðAÞ ¼ CJ ðpÞ \ DJ ðkÞ:
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This theorem shows that the set of optimal solutions of our problem can
be obtained as the intersection between two sets: the first one is an elementary
convex set and the second one is the set where the objective function admits a
linear representation as function of its arguments.

Example 4. We are given three existing facilities A ¼ fa1; a2; a3g on the plane.
Assume that uaiðxÞ i ¼ 1; 2; 3 are quadratic gauges and that there exist i 6¼ j
with uaiðxÞ 6¼ uajðxÞ. We want to find the points minimizing the sum of
the weighted ‘‘distances’’ to the three given facilities. Thus, the problem is
formulated as

min
X3

i¼1

waiuaiðx� aiÞ

Notice that, since the asymptotic cone ðCaiÞ1 of uai is a straight line passing
through ai for all i ¼ 1; 2; 3, this problem is equivalent to find the points that
minimize the sum of the weighted Euclidean distances to three given straight
lines.

In order to solve this problem, notice that the globalizing function c is the
l1-norm. Then, B� is the unit ball of the l1-norm. Thus, there exist
k ¼ ð1; 1; 1Þ 2 B�, J ¼ f1; 2; 3g, and pai 2 C�ai for i ¼ 1; 2; 3 satisfyingP3

i¼1 waipai ¼ 0 such that

Ml1
w ðAÞ ¼ CJ ðpÞ \ DJ ðkÞ ¼ CJ ðpÞ \ R2 ¼ CJ ðpÞ ¼

\3
i¼1

ðai þ NaiðpaiÞÞ:

Therefore, the optimal solution set is an elementary convex set. In addition,
the function uaiðx� aiÞ increases in the direction orthogonal to the line
ai þ ðCaiÞ1 for all i ¼ 1; 2; 3. Thus, since uaiðxÞ 6¼ uajðxÞ for some i 6¼ j,
Ml1

w ðAÞ has to be a bounded elementary convex set. Otherwise, uai0
ðx� ai0Þ

goes to infinity for some i0 ¼ 1; 2; 3.

� Suppose uai 6¼ uaj 8i 6¼ j with i; j ¼ 1; 2; 3. Two subcases can occur:

– The lines ai þ ðCaiÞ1 for i ¼ 1; 2; 3 intersect at a single point. Then, by
Lemma 2 this point is the minimizer and the optimal objective value is
zero.

– The lines ai þ ðCaiÞ1 for i ¼ 1; 2; 3 intersect delimiting a triangle. In
this case, the bounded elementary convex sets are: 1) that triangle; 2) its
facets; and 3) its vertices.
The optimal point is that vertex giving the smaller objective function
value. If two vertices give the same minimum value the whole facet is
optimal. If the three vertices attain the same objective value the optimal
solution set is the triangle itself.

� Suppose ua1 ¼ ua2 6¼ ua3 . In this case, the bounded elementary convex sets
are: 1) the segment on the line a3 þ ðCa3Þ1 bounded by the lines a1 þ ðCa1Þ1
and a2 þ ðCa2Þ1; and 2) its extreme points.

If the objective function value is the same at both extreme points the optimal
solution set is the whole segment. Otherwise, the optimal point is that extreme
point giving the smaller objective function value.
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Two remarkable applications (consequences) of Theorem 2 lead to two
characterizations of optimal solution sets of well-known problems in Loca-
tion Theory: The Weber problem and the minimax problem.

4.1 The Weber problem with gauges of closed convex sets

Let uai be the gauge of a closed (not necessarily bounded) convex set Cai
containing the origin. The mathematical formulation of the Weber problem is

P l1
w ðAÞ min

x2Rn
F ðxÞ ¼

Xm
i¼1

waiuaiðx� aiÞ:

This problem was already solved by Durier and Michelot [4] for functions uai
being gauges of compact convex sets. The results obtained by Durier and
Michelot are still valid for gauges of closed convex sets except for the fact that
the optimal solution set Ml1

w ðAÞ need not be a bounded set. In addition, as
we have already seen before, the optimal objective value may be zero or
unbounded.

Corollary 1. If
Tm

i¼1ðai þ coneðCaiÞÞ 6¼ ;, then Ml1
w ðAÞ is a closed elementary

convex set Cp given by a family p ¼ ðpaiÞai2A such that
Pm

i¼1 waipai ¼ 0. Con-
versely, let Cp be an elementary convex set associated with a family p ¼ ðpaiÞai2A
such that

Pm
i¼1 waipai ¼ 0, then Cp ¼ Ml1

w ðAÞ.

Proof. Notice that the globalizing function c is the l1-norm. Then, ifTm
i¼1ðai þ coneðCaiÞÞ 6¼ ;, by Lemma 4 Ml1

w ðAÞ 6¼ ;. On the other hand, B� is
the unit ball of the l1-norm. Thus, taking k ¼ ð1; . . . ; 1Þ 2 B� and
J ¼ f1; . . . ;mg we have that DJ ðkÞ ¼ Rn: Therefore, by Theorem 2 the opti-
mal solution set reduces to a closed elementary convex set given by a family
ðpaiÞi¼1;...;m such that

Pm
i¼1 waipai ¼ 0. h

Notice that Ml1
w ðAÞ need not be compact. For instance, ifTm

i¼1ðai þ ðCaiÞ1Þ 6¼ ;, it may exist fxngn2N  
Tm

i¼1ðai þ ðCaiÞ1Þ with
jjxnjj�!þ1 if n�!þ1 and in addition, by Lemma 2 the optimal objective
value is zero.

In the special case that all the gauges are polyhedral we can solve the
Weber problem using a natural reformulation as a linear program.

The Weber problem with polyhedral gauges

Assume that uai is the gauge of a closed convex polyhedron Cai for all
i ¼ 1; . . . ;m. Thus, the polar set C�ai is a closed convex polyhedron as well (see
Corollary 19.2.2 in Rockafellar [17]), and then C�ai has a finite number of ex-
treme points and extreme directions (see Corollary 19.1.1 in Rockafellar [17]).

As we have seen in (5), uai is the support function of C�ai . First consider the
case where C�ai has zero linearity. Therefore, uai can be written as (see
Example V.3.4.3 in Hiriart-Urruty and Lemaréchal [10])

uaiðxÞ ¼
max

bai2extðC�ai Þ
bai ; xh i if dai ; xh i � 0 8dai 2 ðC�aiÞ

ext
1 ,

þ1 otherwise

(
ð26Þ
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where extðC�aiÞ and ðC�aiÞ
ext
1 stand for the set of extreme points and extreme

directions of C�ai , respectively.
Now suppose that C�ai has non-zero linearity. By Lemma 1 C�ai ¼ C�ai0 þ L�ai

where L�ai is the linearity subspace of C�ai and C�ai0 ¼ C�ai \ L�?ai . It is straight-
forward to see that if C�ai is a polyhedron, C�ai0 is also a polyhedron, and then
C�ai0 has a finite number of extreme points and extreme directions. On the
other hand, a necessary condition for uaiðxÞ < þ1 is that x 2 L�?ai (see The-
orem 14.6 in Rockafellar [17]). Thus, uai can be written as

uaiðxÞ ¼
max

bai2extðC�ai0Þ
bai ; xh i

if dai ; xh i � 0 8dai 2 ðC�ai0Þ
ext
1 ;

and vai ; xh i ¼ 0 8vai 2 BL�ai
;

þ1 otherwise

8><
>: ð27Þ

where BL�ai
is a basis of L�ai , and extðC�ai0Þ and ðC�ai0Þ

ext
1 stand for the set of

extreme points and extreme directions of C�ai0, respectively.
Let zai be an auxiliary variable such that

maxf bai ; x� aih i : bai 2 extðC�ai0Þg � zai :

Then, Problem P l1
w ðAÞ with polyhedral gauges can be written as

min
Xm
i¼1

waizai

s.t. bai ; x� aih i � zai 8bai 2 extðC�ai0Þ; and 8i ¼ 1; . . . ;m;

dai ; x� aih i � 0 8dai 2 ðC�ai0Þ
ext
1 ; and 8i ¼ 1; . . . ;m;

vai ; x� aih i ¼ 0 8vai 2 BL�ai
; and 8i ¼ 1; . . . ;m:

This problem can be solved with any linear programing algorithm. In par-
ticular, interior point algorithms provide polynomial time resolution meth-
ods. Notice that similar LP-formulations have been obtained for other
location problems with polyhedral gauges of compact convex sets. The
interested reader is referred to Rodriguez-Chia et al. [18] and the references
therein.

On the other hand, we can also obtain another reformulation of Problem
Pl1
w ðAÞ with polyhedral gauges as a linear program making use of the geo-

metrical interpretation of any gauge given by Theorem 1.
Let Cai be a closed convex polyhedron, with linearity subspace Lai , and

let Cai0 ¼ Cai \ L?ai . Suppose the extreme points of Cai0 are extðCai0Þ :¼
fb1ai ; . . . ; b

Ri
ai g, the extreme directions of Cai0 are ðCai0Þ

ext
1 :¼ fd1

ai ; . . . ; d
Ji
aig, and

fv1ai ; . . . ; v
pi
aig is a basis of Lai . By Theorem 1 we know that

uaiðx� aiÞ ¼min
XRi

r¼1

krai

s.t. x� ai ¼
XRi

r¼1

kraib
r
ai þ

XJi
j¼1

lj
aid

j
ai þ

Xpi
k¼1

dkai v
k
ai ;

krai ; l
j
ai � 0 8i; r; j; and dkai 2 R; 8k:
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Therefore, we can rewrite Problem Pl1
w ðAÞ with polyhedral gauges as

min
Xm
i¼1

XRi

r¼1

waik
r
ai

s.t. x� ai ¼
XRi

r¼1

kraib
r
ai þ

XJi
j¼1

lj
aid

j
ai þ

Xpi
k¼1

dkai v
k
ai 8i ¼ 1; . . . ;m;

krai ; l
j
ai � 0 8i; r; j; and dkai 2 R 8k:

4.2 The minimax problem with gauges of closed convex sets

A second consequence of Theorem 2 is the geometrical description of the set
of optimal solutions for the particular case of the minimax problem. The
mathematical formulation of the problem is

P l1
w ðAÞ min

x2Rn
F ðxÞ ¼ max

i¼1;...;m
waiuaiðx� aiÞ:

We introduce the following notation. For J � f1; . . . ;mg; J 6¼ ;, and s > 0
we let

EJ ðsÞ ¼fx 2 Rn : waiuaiðx� aiÞ ¼ s 8i 2 J ; and

waiuaiðx� aiÞ � s 8i 62 Jg:
ð28Þ

Corollary 2

1. If
Tm

i¼1ðai þ coneðCaiÞÞ 6¼ ;, then there exist s > 0,
J � f1; . . . ;mg; J 6¼ ;; ðpaiÞi2J with pai 2 C�ai ; and k ¼ ðk1; . . . ; kmÞ with
ki > 0 8i 2 J and ki ¼ 0 8i 62 J satisfying

P
i2J ki ¼ 1, andPm

i¼1 kiwaipai ¼ 0 such that Ml1
w ðAÞ ¼ CJ ðpÞ \ EJ ðsÞ: Moreover, s is the

optimal value of F and s ¼ �
P

i2J kiwai pai ; aih i.
2. If there exist s > 0, J � f1; . . . ;mg; J 6¼ ;; ðpaiÞi2J with pai 2 C�ai ; and k ¼
ðk1; . . . ; kmÞ 2 B� with ki > 0 8i 2 J ; and ki ¼ 0 8i 62 J satisfyingP

i2J ki ¼ 1, and
Pm

i¼1 kiwaipai ¼ 0 such that CJ ðpÞ \ EJ ðsÞ 6¼ ;, then
Ml1

w ðAÞ ¼ CJ ðpÞ \ EJ ðsÞ; and s ¼ �
P

i2J kiwai pai ; aih i is the optimal value
of F .

Proof. Notice that the globalizing function c is the l1-norm. Then, ifTm
i¼1ðai þ coneðCaiÞÞ 6¼ ;, by Lemma 4 Ml1

w ðAÞ 6¼ ;. On the other hand, B� is
the unit ball of the l1-norm. Therefore, ki > 0 8i 2 J , ki ¼ 0 8i 62 J ,
and

P
i2J ki ¼ 1 implies k 2 B�. Thus, if

P
i2J ki ¼ 1, the condition

waiuaiðx� aiÞ ¼ s 8i 2 J and waiuaiðx� aiÞ � s 8i 62 J is equivalent to
F ðxÞ ¼ s ¼

P
i2J kis ¼

P
i2J kiwaiuaiðx� aiÞ. Hence, the proof can be

obtained by Theorem 2 taking into account that in this case DJ ðkÞ ¼ EJ ðsÞ
for s ¼ F ðxÞ. h

In the special case that all the gauges are polyhedral we can also solve the
minimax problem using a natural reformulation as a linear program.
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The minimax problem with polyhedral gauges

Assume the same notation as in (27). It is easy to see that the resolution of
Problem P l1

w ðAÞ with polyhedral gauges reduces to solve the following
equivalent problem:

min z

s.t. wai bai ; x� aih i � z 8bai 2 extðC�ai0Þ; and 8i ¼ 1; . . . ;m;

dai ; x� aih i � 0 8dai 2 ðC�ai0Þ
ext
1 ; and 8i ¼ 1; . . . ;m;

vai ; x� aih i ¼ 0 8vai 2 BL�ai
; and 8i ¼ 1; . . . ;m:

5 Concluding remarks

In this paper we deal with a new approach of single facility location problems
based on gauges of unbounded closed convex sets. This analysis generalizes
previous approaches based on gauges of bounded sets. Geometrically this
problems can be seen as if the existing facilities are chosen between a given set
of dimensional structures. We have characterized the whole set of optimal
solutions of these problems and we have provided extensions to new models
of location problems.
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