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1 Introduction

A nonautonomous difference inclusion

xt+1 ∈ Ft (xt) (1)

arises naturally in a variety of ways. An important source of applications is based

on single valued control systems of the form

xt+1 = ft (xt, ut) (2)

with controls ut taking values in a nonempty compact set Ut, thus (2) generates a

nonautonomous difference inclusion of the form (1) with Ft(x) := ft(x, Ut). Other

sources of examples are the discretization or time–1 mappings of differential control

systems or differential equations without uniqueness [3, 7, 8, 9].

The mappings Ft, which are usually assumed to be compact valued and upper

semi continuous, may vary in some regular or completely arbitrarily fashion. The

discrete–time system generated by (1) is thus nonautonomous and no longer enjoys

a setvalued semigroup property, so many of the concepts of autonomous systems

are either too restrictive or inappropriate for an investigation of their asymptotic

behaviour. The concept of a nonautonomous pullback attractor, which consists

of a family of nonempty compact subsets rather than a single subset and “pull-

back” attracts from asymptotically earlier starting times, was introduced in [7] for

nonautonomous difference inclusion. In the autonomous case this pullback attrac-

tor reduces to as single set which is attracting in the usual forward sense. Szegö

and Treccani [10] call it a strong attractor for their continuous time setvalued semi-

groups. They also distinguish another type of attractor for autonomous setvalued

systems, which they call a weak attractor. The difference is that only one or more

trajectories for each starting point must be attracted to or remain in the weak at-

tractor rather than all trajectories in the case of the strong attractors. This situation

is of particular interest in control systems.

Our aim in this paper is to introduce and investigate a pullback version of a weak

attractor for setvalued difference processes generated by nonautonomous difference

inclusions. We define these setvalued difference processes in Section 2 and recall the

definitions and basic results of strong autonomous and nonautonomous attractors in

Section 3. Then in Section 4 we introduce the concept of a weak pullback attractor

in terms of weakly invariant and weakly pullback attracting families of nonempty

compact subsets of the state space. We state our first main result in Section 5, that
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the existence of a weak pullback attractor follows from that of a weakly positively

invariant weakly pullback absorbing family of nonempty compact subsets, and indi-

cate why other seemingly more natural constructions of the components subsets are

not appropriate. Our second main result on the upper semi continuous convergence

of weak pullback attractors is stated in Section 6. We then give five examples in

Section 7 to illustrate some of the features and peculiarities of weak pullback at-

tractors. The proofs of our main results and some supporting lemmata are given at

the end of the paper in Section 8.

We require the following definitions and terminology [1]. The distance of a point

x ∈ Rd from a nonempty compact set A is defined by

dist(x,A) = min
a∈A
‖x− a‖.

The Hausdorff separation H∗(A,B) of nonempty compact subsets A, B of Rd is

defined by

H∗(A,B) := max
a∈A

dist(a,B) = max
a∈A

min
b∈B
‖a− b‖

and H(A,B) = max {H∗(A,B), H∗(B,A)} denotes the Hausdorff metric on the

space H(Rd) of nonempty compact subsets of Rd. An open ε–neighbourhood of

A ∈ H(Rd) is defined by Nε(A) = {x ∈ Rd : dist(x,A) < ε} and a closed ε–

neighbourhood of A by Nε[A] = {x ∈ Rd : dist(x,A) ≤ ε}.
A mapping F : Rd 7→ H(Rd) is upper semi continuous at x0 if for all ε > 0

there exists a δ = δ(ε, x0) > 0 such that F (x) ⊂ Nε(F (x0)) for all x ∈ Nδ({x0}) or

alternatively if

lim
xn→x0

H∗(F (xn), F (x0)) = 0

for all sequences xn → x0. Denote the space of all upper semi continuous mappings

F : Rd 7→ H(Rd) by USC(Rd,H(Rd)) and define Z2
+ = {(i, j) ∈ Z2 |i ≥ j}.

For any A ∈ H(Rd) define F (A) := ∪a∈AF (a) and define the set composition of

two mappings F , G : Rd 7→ H(Rd) as F ◦ G(x) := F (G(x)) for all x ∈ Rd. Note

that F ◦G ∈ USC(Rd,H(Rd)) if F , G ∈ USC(Rd,H(Rd)).

For simplicity we shall present our results for a Euclidean state space Rd, though

they are in fact valid for more general metric or Banach state spaces since we do

not use the local compactness property of Rd in our proofs.

2 Setvalued difference processes

As in the singlevalued case, a natural nonautonomous generalization of an au-

tonomous system defined in terms of a semigroup of mappings is a two–parameter
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semigroup or process.

Definition 2.1 A mapping Φ : Z2
+ × Rd 7→ H (Rd) is called a setvalued difference

process on Rd if Φ(t, t0, ·) ∈ USC(Rd,H(Rd)) for all (t, t0) ∈ Z2
+ and

Φ(t0, t0, x) = {x}, (3)

Φ(t2, t0, x) = Φ (t2, t1,Φ(t1, t0, x)) , (4)

for all t0 ≤ t1 ≤ t2 in Z and all x ∈ Rd.

Thus nonautonomous difference inclusion (1) with mappings Ft ∈ USC(Rd,H(Rd))

for t ∈ Z generates a setvalued difference process with the mappings Φ(t, t0, ·) ∈
USC(Rd,H(Rd)) defined by

Φ(t0, t0, x) := {x} and Φ(t, t0, x) := Ft−1 ◦ · · · ◦ Ft0(x)

for all x ∈ Rd and t0 < t in Z. Conversely, a setvalued difference process Φ generates

a nonautonomous difference inclusion (1) with mappings Fn defined by Ft(x) :=

Φ(t+ 1, t, x) for all x ∈ Rd and t ∈ Z.

A trajectory of a setvalued difference process Φ is a single valued mapping φ :

[T0, T1] ∩ Z 7→ Rd, for some T0 < T1 in Z, which satisfies

φ(t) ∈ Φ(t, t0, φ(t0)) for all T0 ≤ t0 ≤ t ≤ T1.

Note that, due to (4) , the concatenation of trajectories on adjacent time sets

[T0, T1] ∩ Z and [T1, T2] ∩ Z forms a trajectory on the union [T0, T2] ∩ Z of these

times sets.

A trajectory defined on all of Z is called an entire trajectory.

3 Attractors of setvalued difference processes

An attractor for an autonomous difference inclusion, i.e., (1) with Ft ≡ F , is a

nonempty compact subset A of Rd which is invariant, i.e., satisfies F (A) = A, and

is attracting in the sense that

lim
n→∞

H∗(F n(D), A) = 0

for every nonempty bounded set D of Rd; here F n denotes the n fold composition of

F with itself. As for singlevalued dynamical systems, the existence of an attractor

is implied by that of a more easily determinable absorbing set, i.e., a nonempty
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compact subset B of Rd such that for every nonempty bounded set D of Rd there

exists a nonnegative integer ND such that F n(D) ⊆ B for all n ≥ ND. The fol-

lowing theorem is a setvalued generalization of a well known result for singlevalued

semigroups.

Theorem 3.1 Let F ∈ USC(Rd,H(Rd)) and suppose that the autonomous differ-

ence inclusion with mapping F has an absorbing set B ∈ H(Rd). Then it has a

unique attractor A defined by

A =
⋂
m≥0

⋃
n≥m

F n(B).

The concepts of an absorbing set and attractor are somewhat more complicated

in the nonautonomous difference case, with the obvious generalisations being too

restrictive for most situations. As in the case of singlevalued difference equations

[5], families of sets rather than individual sets should be considered.

Definition 3.2 A family B = {Bt, t ∈ Z} of nonempty compact subsets of Rd is

called a pullback absorbing family for a setvalued difference process Φ on Rd if for

every t0 ∈ Z and every nonempty bounded subset D of Rd there exists an Nt0,D ∈
Z+ such that

Φ (t0, t0 − n,D) ⊆ Bt0

for all n ≥ Nt0,D.

Definition 3.3 A family A = {At, t ∈ Z} of nonempty compact subsets of Rd is

called a pullback attractor of a setvalued difference process Φ on Rd if it is strictly

invariant, i.e.,

Φ (t, t0, At0) = At for any t ≥ t0, (5)

and pullback attracts bounded sets, i.e.,

lim
n→∞

H∗ (Φ(t0, t0 − n,D), At0) = 0 (6)

for every t0 ∈ Z and every bounded subset D of Rd.

Property (5) is a generalisation of the positive invariance property of a semigroup.

Note that the pullback convergence property (6) does not describe the convergence of

Φ(t, t0, D) as t→∞. See [4, 5, 6] for a discussion on these properties in the context

of singlevalued processes. The following theorem from [7, 9] is a generalisation of

Theorem 3.1 to the nonautonomous case.
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Theorem 3.4 Let Φ be a setvalued difference process with a positive invariant and

uniformly bounded pullback absorbing family B = {Bt, t ∈ Z}. Then there exists

the minimal negatively invariant (strictly if Φ is lower semicontinuous) pullback

attractor A = {At, t ∈ Z} which is determined by

At0 =
⋂
m≥0

⋃
n≥m

Φ (t0, t0 − n,Bt0−n) (7)

for each t0 ∈ Z.

If the pullback absorbing family B is not assumed or known to be positively invariant

then one can also obtain the minimal negatively invariant attractor for each t0 ∈ Z
by ⋃

bounded
D⊂Rd

⋂
m≥0

⋃
n≥m

Φ (t0, t0 − n,D) (8)

It was shown in [4] for singlevalued difference equations that a pullback attractor

always has a forward invariant pullback absorbing family. The proof can be adapted

to the difference inclusion case under consideration here.

4 Weak attractors of difference inclusion processes

The preceding concepts of invariance and attraction for setvalued difference pro-

cesses are nonautonomous counterparts of what Szegö and Treccani [10] called strong

invariance and attractors of continuous time autonomous setvalued systems or semi-

groups. Essentially, the invariance and attraction holds with respect to all possible

trajectories emanating from each starting point.

For setvalued systems arising from control systems, one is often interested in

situations where just one, or a few, rather than all trajectories emanating from each

starting point satisfy a given property. This is also of interest for systems generated

by differential equations without uniqueness such as x′ = x1/3, for which the set {0}
is only “weakly” positively invariant due to the nonuniqueness of solutions with the

initial value x(0) = 0.

Szegö and Treccani also introduced corresponding concepts of weak invariance

and weak attraction for such continuous time autonomous setvalued systems. In

the discrete time case under consideration here these read as follows: A nonempty

compact subset A is weakly positively invariant if for each x0 ∈ A there exists a

trajectory φ with φ(0) = x0 such that φ(t) ∈ A for all t ≥ 0. A nonempty compact

subset A is weakly attracting if for each x0 ∈ Rd, there exists a trajectory φ with φ(0)
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= x0 such that dist(φ(t), A) → 0 as t → ∞. Finally, a nonempty compact subset

A is called a weak attractor if it is weakly positively invariant and weakly attracting.

Our aim in this paper is to introduce and investigate pullback versions of these

weak concepts for setvalued difference processes. As with the strong concepts of

invariance and attraction above, it is also less restrictive here to consider families of

sets rather than individual sets.

Definition 4.1 A family A = {At, t ∈ Z} of nonempty compact subsets of Rd is

said to be weakly positively invariant for a setvalued difference process Φ on Rd if

for every t0 ∈ Z and every x0 ∈ At0 there exists a trajectory φ : [t0,∞) ∩ Z → Rd

of Φ with φ(t0) = x0 such that φ(t) ∈ At for all t ≥ t0. The family A = {At, t ∈ Z}
is said to be weakly invariant if for every t0 ∈ Z and every x0 ∈ At0 there exists an

entire trajectory φ : Z → Rd of Φ with φ(t0) = x0 such that φ(t) ∈ At for all t ∈ Z.

Definition 4.2 A weakly invariant family A = {At, t ∈ Z} of nonempty compact

subsets of Rd is called a weak pullback attractor of a setvalued difference process Φ

on Rd if it is weakly pullback attracting, i.e., for any t0 ∈ Z, any nonempty bounded

subset D of Rd and any sequence dn ∈ D there exist sequences of integers tn → ∞
as n → ∞ and trajectories φn : [t0 − tn, t0] ∩ Z → Rd of Φ with φn(t0 − tn) = dn
such that

lim
n→∞

dist (φn(t0), At0) = 0. (9)

Note that a strong pullback attractor, if it exists, is also a weak pullback attractor.

5 Existence of weak pullback attractors

Our first main result is to show that the existence of a weak pullback attractor

follows from that of a more easily determined weak pullback absorbing family.

Definition 5.1 A weakly positively invariant family B = {Bt, t ∈ Z} of nonempty

compact subsets of Rd is called a weak pullback absorbing family of a setvalued dif-

ference process Φ on Rd if for t0 ∈ Z and any bounded subset D of Rd there exists

an integer Nt0,D such that for each n ≥ Nt0,D and dn ∈ D there exists a trajectory

φn : [t0 − n, t0] ∩ Z → Rd of Φ with φn(t0 − n) = dn and φn(t0) ∈ Bt0.

Note, by the weak positive invariance of B the trajectories φn can be extended to

remain in B for t ≥ t0, i.e., with φn(t) ∈ Bt for each t ≥ t0.
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Theorem 5.2 Let Φ be a setvalued difference process with a weak pullback absorbing

family B = {Bt, t ∈ Z}. Then Φ has a maximal weak pullback attractor A =

{At, t ∈ Z} relative to B, which is uniquely determined by

At0 =
{
a0 ∈ Rd ; ∃ tn →∞ as n→∞ and trajectories

φn : [t0 − tn, t0] ∩ Z→ Rd such that φn(t) ∈ Bt (10)

for t ∈ [t0 − tn, t0] ∩ Z and lim
n→∞

φn(t0) = a0

}
for each t0 ∈ Z.

The maximal weak pullback attractor A = {At, t ∈ Z} here apparently consists

of the entire trajectories that “move” or remain in B for the entire time set Z, i.e.,

satisfy φ(t) ∈ Bt for each t ∈ Z; we will prove this in Lemma 8.1. It is thus the

maximal weakly invariant family which is contained in B and is unique in this sense.

However, as our examples in Section 7 will show, a setvalued inclusion process may

have several different pullback absorbing families either with overlapping or with

disjoint component sets. Each of these absorbing families contains a maximal weak

pullback attractor relative to itself, the component sets of which may overlap or be

disjoint. Uniqueness of weak pullback attractors is thus not a universal property as

in the case of a strong pullback attractor, the uniqueness of the weak pullback attrac-

tor being only relative to its given absorbing family. In particular, this means that

steady state or periodic trajectories need not be contained in a given weak pullback

attractor. Some of our examples are in fact an autonomous system, so this is a pe-

culiarity of weak attractors in general rather than a characteristic of nonautonomity.

Our assumption that a weakly pullback absorbing family is weakly positively

invariant is an interesting distinction between strong and weak pullback absorbing

families. As we saw above, the strong positive invariance of a strong pullback ab-

sorbing is not essential to ensure the existence of a strong pullback attractor. In the

weak case we need it to ensure the existence of a weak pullback attractor which is

weakly invariant. A closely related issue is our construction (10) of the component

sets of the weak pullback attractor, with other seemingly natural definitions failing

to be weakly invariant with or without the assumed weak positively of the weakly

pullback absorbing family.

For instance, suppose that the weak pullback absorbing family B = {Bt, t ∈ Z}
is weakly positive invariant. Then the family A∗ = {A∗t , t ∈ Z} defined by

A∗t0 :=
⋂
m≥0

(⋃
n≥m

Φ(t0, t0 − n,Bt0−n)
⋂

Bt0

)
(11)
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is weakly pullback attracting with At ⊂ A∗t ⊂ Bt for all t ∈ Z, where At is defined by

(10). The positive weak invariance ofA∗ follows from this inclusion, but the inclusion

A∗t ⊂ Φ(t, t0, A
∗
t0

)
⋂
Bt is generally false, so negative weak invariance usually does

not hold, cf. Lemma 8.1.

On the other hand, if we do not assume that B = {Bt, t ∈ Z} is positively weakly

invariant, then we might define the family A∗ = {A∗t , t ∈ Z} by

A∗t0 =
⋃

bounded
D⊂Rd

⋂
m≥0

(⋃
n≥m

Φ(t0, t0 − n,D)
⋂

Bt0

)
.

This family A∗ weakly pullback attracts all bounded subsets of Rd and satisfies A∗t
⊂ Bt for all t ∈ Z, but need not be either positively or negatively weakly invariant.

(A sufficient condition for the positive weak invariance is that Φ(t, t0, ·) be lower

semi continuous for any pair (t, t0) ∈ Z2
+, see e.g. [2]).

6 Upper semi continuity of weak pullback attrac-

tors

Our second main result is to establish the upper semi continuous dependence of

weak pullback attractors under perturbation. For this we consider a perturbed

nonautonomous difference inclusion

xt+1 ∈ F ε
t (xt) (12)

with the F ε
t ∈ USC(Rd,H(Rd)) such that

H∗ (F ε
t (x), Ft(x)) ≤ ε (13)

for all x ∈ Rd and n ∈ Z. Let Φε be the setvalued difference process generated by

the perturbed nonautonomous difference inclusion (12).

Theorem 6.1 Suppose that the setvalued difference process Φ generated by the un-

perturbed nonautonomous difference inclusion (1) has a weakly positive invariant

weakly pullback absorbing family B = {Bt, t ∈ Z} and suppose that the perturbed

setvalued difference process Φε generated by the perturbed nonautonomous differ-

ence inclusion (12) satisfying (13) has a weakly positive invariant weakly pullback

absorbing family Bε = {Bε
t , t ∈ Z} such that

lim
ε→0

H∗
(
Bε
t0
, Bt0

)
= 0 (14)
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for all t0 ∈ Z. Then the maximal weak pullback attractor Aε = {Aεt, t ∈ Z} of

Φε relative to Bε converges upper semi continuously to the maximal weak pullback

attractor A = {At, t ∈ Z} of Φ relative to B in the sense that

lim
ε→0

H∗
(
Aεt0 , At0

)
= 0. (15)

for each t0 ∈ Z.

The following structural conditions on the unperturbed nonautonomous differ-

ence inclusion (1) provide simple conditions ensuring the existence of a nearby

weakly positively invariant weak pullback absorbing family. (The conditions need

to be strengthened by, say, the compactness or asymptotic compactness of the set-

valued inclusion process when the state space is a Banach space instead of just

Rd).

Let K be a nonempty compact subset of Rd for which there exists a γ ∈ [0, 1)

such that

min
y∈Ft(x)

dist(y,K) ≤ γ dist(x,K)

for all x ∈ Rd and t ∈ Z. We can take Kε = Nε[K] := {x ∈ Rd : dist(x,K) ≤ ε}
for a sufficiently small ε. Then the family B = {Bt, t ∈ Z} with Bt ≡ Kε for all t

∈ Z is both weakly positively invariant and weakly absorbing uniformly in both the

forward and pullback sense.

More generally, given a family K = {Kt, t ∈ Z} of nonempty compact sets we

can obtain a weakly positively invariant and weakly pullback absorbing family Kε

= {Kε
t , t ∈ Z} with appropriately defined Kε

t if we have

min
y∈Ft(x)

dist(y,Kt) ≤ γt,t−1 dist(x,Kt−1)

for a sequence of positive constants {γt,t−1, t ∈ Z} such that

ρ(t, t0) sup
x∈D

dist(x,Kt0)→ 0, t0 → −∞

for all fixed t ∈ Z and bounded subsets set D of Rd, where ρ(t, t0) = γt,t−1·. . .·γt0+1,t0 .

7 Examples

We consider five examples which illustrate the properties and some of the peculiar-

ities of weak invariance and weak pullback attractors.

Our first three examples are, in fact, autonomous difference inclusions, i.e., of

the form xt+1 ∈ F (xt), in which case pullback attraction coincides with the usual
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forward attraction and a weak pullback attractor is a weak attractor in the sense of

Szegö and Treccani [10].

For our first example, we consider

F (x) :=

 [0, 1] if x = 0

{x+ 1} otherwise
, x ∈ R,

which is motivated by the time–1 mapping of the solution of the differential equation

without uniqueness x′ = x1/3. The set {0} here is weakly invariant but not strongly

invariant. It is neither strongly nor weakly attracting.

For our second example, we take

F (x) = x+ [−1, 1], x ∈ R.

Here any set of the form B = [a, b] with finite a ≤ b is weakly positively invariant

and weakly absorbing. The weak maximal attractor A relative to B is the set B

itself. If we take two disjoint sets B1 and B2 of this form, then we have two disjoint

maximal weak attractors relative to these absorbing sets, namely A1 = B1 and A2

= B2. Alternatively, if B1 ⊂ B2, then we have A1 ⊂ A2. This system thus has

many possible weak attractors, each of which is maximal relative to its absorbing

set. Moreover, some of these weak attractors may be disjoint.

For our third example, we take

F (x) =

[
1

2
x, 2x

]
, x ∈ R.

Here the set {0} is strongly invariant and hence weakly invariant. It is weakly at-

tracting, but is not strongly attracting. In fact, any set of the form B = [a, b] with

finite a < 0 < b is weakly positively invariant and weakly absorbing. The weak

maximal attractor A relative to B is the set B itself. If we take two sets B1 ⊂ B2

of this form, then we have two maximal weak attractors relative to these absorb-

ing sets, namely A1 = B1 ⊂ A2 = B2. The weak attractor {0} is unique in that it

can only be approach asymptotically from outside, i.e, it is not its own absorbing set.

Our fourth example is properly nonautonomous with pullback attraction but not

forward attraction. We define

Ft(x) :=

 [0, 1] if x = 0

{2tx} otherwise
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for each t ∈ Z. The setvalued difference inclusion process here is given by

Φ(t, t0, 0) :=

 [0, 1] if t = t0 + 1[
0,max

{
1, 2(t+t0)(t−t0−1)/2

}]
if t ≥ t0 + 2

with Φ(t, t− k, x) = 2k(2t−k−1)/2x for x 6= 0 and k ∈ Z+ with Φ(t0, t0, x) = {x}. In

particular,

Φ(t, t− k, x) = 2k(2t−k−1)/2x −→ 0 for k →∞,

so the family A = {At, t ∈ Z} with At ≡ {0} for all t ∈ Z is a weak pullback attrac-

tor. It is weakly but not strongly invariant and weakly but not strongly pullback

attracting.

For our final example we consider the nonautonomous difference inclusion (1)

with

Ft(x) = 2tx+ [−1,+1],

for which the difference inclusion process is given by

Φ(t0, t0, x) = {x}, Φ(t, t− k, x) = 2k(2t−k−1)/2x+ [−Dt,k, Dt,k] ,

where Dt,k = 1 +
∑k−2

j=1 2j(2t−j−1)/2, which is finite for each k ∈ Z. Since Dt,k → Dt

= 1 +
∑∞

j=1 2j(2t−j−1)/2 < ∞ as k → ∞, this process has the strong pullback (but

not forward) attractor A = {At, t ∈ Z} with At = [−Dt, Dt].

In addition, the family A∗ = {A∗t , t ∈ Z} with A∗t ≡ [−1, 1] for all t ∈ Z is a

weak (but not strong) pullback attractor. In particular, it is only weakly positively

invariant. In fact, any family Aα of subintervals Aαt ≡ [−α, α] for all t ∈ Z with α

∈ [0, 1] is also a weak pullback attractor. Such weak pullback attractors may thus

be useful in investigating the internal structure of a strong pullback attractor.

8 Proofs

We will need the following lemmata in the proof of Theorem 6.1

Lemma 8.1 Suppose that a setvalued difference process Φ has a weak pullback ab-

sorbing family B = {Bt, t ∈ Z} and a weak pullback attractor A = {At, t ∈ Z}.
Then an entire trajectory φ of Φ satisfies φ(t) ∈ Bt for all t ∈ Z if and only if φ(t)

∈ At for all t ∈ Z.
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Proof: Suppose that φ is an entire trajectory with φ(t) ∈ Bt for each t ∈ Z. Fix

t0 ∈ Z. Then there is a sequence of trajectories φn : [t0 − n, t0] ∩ Z → Rd, namely

φn ≡ φ, with φn(t) = φ(t) ∈ Bt for each t ∈ [t0 − n, t0] ∩ Z. In particular, φn(t0)

≡ φ(t0) → φ(t0) as n → ∞. By the definition, φ(t0) ∈ At0 . Since t0 was otherwise

arbitrary, we thus have φ(t) ∈ At for all t ∈ Z. The converse follows from the fact

that At ⊂ Bt for all t ∈ Z.

Lemma 8.2 Suppose that H∗ (Bn, B)→ 0 as n→∞ for nonempty compact subsets

B, B1 , B2, . . .. Then for any sequence bn ∈ Bn, n ∈ Z+, there exists a convergent

subsequence bnj
→ b∗ ∈ B as nj → ∞.

Proof: Clearly dist (bn, B) ≤ H∗ (Bn, B) for all n ∈ Z+ and since B is compact,

there exist b∗n ∈ B such that dist (bn, B) = ‖bn − b∗n‖. By the compactness of B

again, there exists a convergent subsequence b∗nj
→ b∗ ∈ B as nj →∞. Then bnj

→
b∗ too as nj → ∞ since

‖bnj
− b∗‖ ≤ ‖bnj

− b∗nj
‖+ ‖b∗nj

− b∗‖ = dist
(
bnj
, B
)

+ ‖b∗nj
− b∗‖

for all nj ∈ Z+.

Lemma 8.3 Suppose F and F ε ∈ USC(Rd,H(Rd)) with ε > 0 are such that F ε(x)

⊂ Nε (F (x)) for all x ∈ Rd. Then

H∗ (F εn (xn) , F (x∗)) −→ 0 as n→∞

for any convergent sequences xn → x∗ in Rd and εn → 0 as n → ∞.

Proof: For every ν > 0 there exists an Kν ∈ Z such that ‖xn − x∗‖ < ν/2 and 0 <

εn < ν/2 for all n ≥ Kν . Thus

xn ∈ Nν/2 (x∗) and F εn (xn) ⊂ Nεn (F (xn)) ⊂ Nν/2 (F (xn))

for all n ≥ Kν . Since F ∈ USC(Rd,H(Rd)) there exists a δ(ν/2, x∗) > 0 such that

F (xn) ⊂ Nν/2 (F (x∗)) for all xn with ‖xn − x∗‖ < δ(ν/2, x∗). Thus we have

F εn (xn) ⊂ Nν/2 (F (xn)) ⊂ Nν/2

(
Nν/2 (F (x∗))

)
= Nν (F (x∗))

for all n ≥ max
{
Kν/2, Kδ(ν/2,x∗)

}
.

8.1 Proof of Theorem 5.2

We divide the proof into three parts.
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8.1.1 Existence and compactness

Fix t0 ∈ Z. By the weak positive invariance of B = {Bt, t ∈ Z}, there exist trajec-

tories φn : [t0 − n, t0] ∩ Z → Rd with φn(t) ∈ Bt for each t ∈ [t0 − n, t0] ∩ Z and all

n ∈ Z+. In particular, φn(t0) ∈ Bt0 for each n ∈ Z+. Since Bt0 is compact, there

exists a convergent subsequence φnj
(t0) → a0 ∈ Bt0 . Taking this subsequence to be

the original sequence in the definition (10) of At0 , we have a0 ∈ At0 , which proves

that At0 is nonempty.

To show that At0 is compact, we need only to show that it is closed because At0
is a subset of the compact set Bt0 . Suppose that ak ∈ At0 and ak → a∗ as k → ∞.

Then for each k ∈ Z+ there exist subsequences tk,n →∞ as n→∞ and trajectories

φk,n : [t0 − tk,n, t0] ∩ Z → Rd with φk,n(t) ∈ Bt for each t ∈ [t0 − tk,n, t0] ∩ Z and n

∈ Z+ for which limk→∞ φk,n(t0) = ak. Pick nk so that

‖φk,nk
(t0)− ak‖ ≤

1

k
and tk+1,nk+1

≥ tk,nk
+ 1

for each k ∈ Z+. Then

‖φk,nk
(t0)− a∗‖ ≤ ‖φk,nk

(t0)− ak‖+ ‖ak − a∗‖ ≤
1

k
+ ‖ak − a∗‖ → 0

as k → ∞. Write φ̄k ≡ φk,nk
and t̄k ≡ tk,nk

. Then φ̄k : [t0 − t̄k, t0] ∩ Z → Rd with

φ̄k(t) ∈ Bt for each t ∈ [t0 − t̄k, t0] ∩ Z and k ∈ Z+. Moreover, t̄k → ∞ as k → ∞
with φ̄k(t0) → a∗ as k → ∞. Thus a∗ ∈ At0 , so At0 is closed and hence compact.

8.1.2 Weak invariance

Let us first prove that the family A = {At, t ∈ Z} is weakly positively invariant.

Fix t0 ∈ Z and take x0 ∈ At0 . Then, there exists tn → +∞ and trajectories φn :

[t0 − tn, t0] ∩ Z → Rd with φn(t) ∈ Bt for each t ∈ [t0 − tn, t0] ∩ Z and n ∈ Z+ for

which limn→∞ φn(t0) = x0. Since B is weakly positively invariant, each trajectory

φn can be extended to [t0 − tn,∞) ∩ Z so that φn(t) ∈ Bt for all t ≥ t0. By the

compactness of each Bt, we can find a (diagonal) subsequence n′k → ∞ as k → ∞
such that φn′k(t) → φ̄(t) ∈ Bt for each t ≥ t0. Obviously φ̄(t0) = x0 ∈ At0 since the

original subsequence φnk
(t0) → x0. By the construction, φ̄(t) ∈ At for all t ≥ t0.

The mapping φ̄ : [t0,∞) ∩ Z → Rd is a trajectory of the setvalued mapping Φ

since dist
(
φ̄(t+ 1), Ft(φ̄(t))

)
= 0, i.e., φ̄(t+ 1) ∈ Ft(φ̄(t)) for all t ≥ t0. This follows

from

dist
(
φ̄(t+ 1), Ft(φ̄(t))

)
≤

∥∥φ̄(t+ 1)− φn′k(t+ 1)
∥∥+ dist

(
φn′k(t+ 1), Ft(φn′k(t))

)
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+H∗
(
Ft(φn′k(t)), Ft(φ̄(t))

)
=

∥∥φ̄(t+ 1)− φn′k(t+ 1)
∥∥+H∗

(
Ft(φn′k(t)), Ft(φ̄(t))

)
−→ 0 as n′k →∞,

for each t ≥ t0, since φn′k(t+ 1) ∈ Ft(φn′k(t)) for the trajectories φn′k .

Now t0 ∈ Z and x0 ∈ At0were arbitrary, so A = {At, t ∈ Z} is weakly positively

invariant.

A similar argument holds with a little more care for all t ≤ t0. This will show

the weak invariance. Fix an N ∈ Z+ and take k large enough so that nk ≥ N in the

above subsequence of trajectories φnk
: [t0−nk, t0]∩Z→ Rd with φnk

(t) ∈ Bt for t ∈
[t0−nk, t0]∩Z and φnk

(t0)→ x0. We now restrict these trajectories to the common

definition interval [t0−N, t0]∩Z ⊂ [t0−nk, t0]∩Z. Since each Bt is compact, there

is a convergent subsequence with φn′k(t) → φ̄(t) ∈ Bt for each t ∈ [t0 − N, t0] ∩ Z.

Obviously φ̄(t0) = x0. By a diagonal subsequence argument we have a (diagonal)

subsequence such that φn′k(t) → φ̄(t) ∈ Bt for all t ≤ t0. It then follows as above

that φ̄ is a trajectory of the setvalued difference process Φ with φ̄(t) ∈ At for all t ≤
t0. Concatenating the two parts of φ̄ to all of Z gives us an entire trajectory φ̄ of the

setvalued difference process Φ with φ̄(t) ∈ At for all t ∈ Z. Thus A = {At, t ∈ Z}
is weakly invariant.

8.1.3 Weak pullback attraction

Fix t0 ∈ Z and a bounded subset D of Rd. Since B = {Bt, t ∈ Z} is a weakly

pullback absorbing family for the setvalued difference process Φ on Rd, for every n

∈ Z+ there is an integer Nt0−n,D ∈ Z+ such that for each k ≥ Nt0−n,D and dn ∈ D
there exists a trajectory φk,n of Φ on [t0 − k − n, t0 − n] ∩ Z with φk,n(t0 − k − n)

= dn and bk,n = φk,n(t0 − n) ∈ Bt0−n for all k ≥ Nt0−n,D and n ∈ Z+. Since B is

weakly positively invariant, each φk,n can be extended indefinitely so that φk,n(t) ∈
Bt for all t ≥ t0 − n. In particular, φk,n(t0) ∈ Bt0 and Bt0 is compact, so there is a

subsequence kn < kn+1 → ∞ as n → ∞ with kn ≥ Nt0−n,D and kn+1 ≥ Nt0−n−1,D

such that φkn,n(t0) → a∗ ∈ Bt0 as n → ∞.

Write φ̄n ≡ φkn,n and tn ≡ n + kn. Then φ̄n is defined on [t0 − tn,∞) ∩ Z with

φ̄n(t0 − tn) = dkn ∈ D and φ̄n(t0) → a∗ as k → ∞. By the construction a∗ ∈ At0 ,
so limn→∞ dist

(
φ̄n(t0), At0

)
= 0. Thus property (9) holds and A = {At, t ∈ Z} is

weakly pullback attracting.
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8.2 Proof of Theorem 6.1

Let A = {At, t ∈ Z} be the maximal weak pullback attractor in B = {Bt, t ∈ Z}
of the unperturbed setvalued difference process Φ and let Aε = {Aεt, t ∈ Z} be the

maximal weak pullback attractor in Bε = {Bε
t , t ∈ Z} of the perturbed setvalued

difference process Φε. Suppose for some t0 ∈ Z that

lim
ε→0

H∗
(
Aεt0 , At0

)
6= 0.

Then there exists an η0 > 0 and a subsequence εj → 0 as j → ∞ such that

H∗
(
A
εj
t0 , At0

)
≥ η0 (16)

for all j ∈ Z+. We will show that this leads to a contradiction.

Let aεj ∈ Aεt0 be such that dist (aεj , At0) = H∗
(
A
εj
t0 , At0

)
, so dist (aεj , At0) ≥ η0

for j ∈ Z+, which is possible since Aεt0 is compact. By Lemma 8.1 there is an entire

trajectory φεj of the perturbed setvalued difference process Φεj such that φεj(t) ∈
A
εj
t ⊂ B

εj
t for each t ∈ Z with φεj(t0) = aεj . Since for each t, the B

εj
t and Bt are

compact with H∗
(
B
εj
t , Bt

)
→ 0 as εj → 0 , by Lemma 8.2 there exists a convergent

(diagonal) subsequence φε
′
j(t) → φ̄(t) ∈ Bt as ε′j → 0 for each t ∈ Z. Obviously aεj

= φε
′
j(t0) → φ̄(t0), so from (16) we have

dist
(
φ̄(t0), At0

)
≥ η0/2. (17)

We will show that φ̄ is a trajectory of the unperturbed setvalued difference

process Φ. We have

dist
(
φ̄(t+ 1), Ft(φ̄(t))

)
≤

∥∥∥φ̄(t+ 1)− φε′j(t+ 1)
∥∥∥+ dist

(
φε
′
j(t+ 1), F

ε′j
t (φε

′
j(t))

)
+H∗

(
F
ε′j
t (φε

′
j(t)), Ft(φ̄(t))

)
=

∥∥∥φ̄(t+ 1)− φε′j(t+ 1)
∥∥∥+H∗

(
F
ε′j
t (φε

′
j(t)), Ft(φ̄(t))

)
for each t ≥ t0, since φε

′
j(t+ 1) ∈ F ε′j

t (φεj(t)) for the trajectories φε
′
j of F ε′j .

¿From above

φε
′
j(t+ 1)→ φ̄(t+ 1), φε

′
j(t)→ φ̄(t) as ε′j → 0.

Since the setvalued mappings F
ε′j
t and Ft are upper semi continuous and the F

ε′j
t

converge upper semi continuously to Ft, it follows by Lemma 8.3 that

H∗
(
F
ε′j
t (φε

′
j(t)), Ft(φ̄(t))

)
−→ 0 as ε′j → 0.
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Thus dist
(
φ̄(t+ 1), Ft(φ̄(t))

)
= 0 for all t ∈ Z, i.e., φ̄(t+ 1) ∈ Ft(φ̄(t)) for all t ∈ Z,

which means that φ̄ is an entire trajectory of the unperturbed setvalued difference

process Φ with φ̄(t) ∈ Bt for each t ∈ Z. By Lemma 8.1 it follows that φ̄(t) ∈ At
for each t ∈ Z. However, this contradicts (17) and hence (16). This contradiction

means that the Aεt converge upper semi continuously to At for each t ∈ Z.
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