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Abstract. Existence and uniqueness of solution for a globally modified ver-

sion of Navier-Stokes equations containing infinite delay terms are established.
Moreover, we also analyze the stationary problem and, under suitable addi-

tional conditions, we obtain global exponential decay of the solutions of the

evolutionary problem to the stationary solution.
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1. Introduction and statement of the problem. Let Ω ⊂ R3 be an open
bounded set with regular boundary Γ, and let N ∈ (0,+∞) be fixed. Let us define
FN : [0,+∞)→ (0, 1] by

FN (r) := min
{

1,
N

r

}
, r ∈ [0,+∞),

and consider the following system of globally modified Navier-Stokes equations on
Ω with homogeneous Dirichlet boundary condition

∂u

∂t
− ν∆u+ FN (‖u‖) [(u · ∇)u] +∇p = f(t) in (τ, T∗)× Ω,

∇ · u = 0 in (τ, T∗)× Ω,

u = 0 on (τ, T∗)× Γ,

u(τ, x) = u0(x), x ∈ Ω,

(1)

where ν > 0 is the kinematic viscosity, u the velocity field of the fluid, p the pres-
sure, τ ∈ R an initial time, u0 the initial velocity field, f(t) a given external force
field, and T∗ ∈ (τ,+∞] a given final time.

The system (1) is indeed a globally modified version of the Navier-Stokes sys-
tem – the modifying factor FN (‖u‖) depends on the norm ‖u‖=‖∇u‖(L2(Ω))3×3 ,
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2 P. MARÍN-RUBIO, A. M. MÁRQUEZ-DURÁN & J. REAL

which in turn depends on ∇u over the whole domain Ω and not just at or near the
point x ∈ Ω under consideration. Essentially, it prevents large gradients dominating
the dynamics and leading to explosions. It violates the basic laws of mechanics,
but mathematically the system (1) is a well defined system of equations, just like
the modified versions of the Navier-Stokes equations of Leray and others with other
mollifications of the nonlinear term, see the review paper [8]. It is worth mentioning
that a global cut off function involving the D(A1/4) norm for the two dimensional
stochastic Navier-Stokes equations is used in [9], and a cut-off function similar to
the one we will use here was considered in [23].

The system (1) was introduced and studied in [1] (see also [2, 14, 15, 16, 3] and
the review paper [13]). However, there are situations in which the model is better
described if some terms containing delays appear in the equations. These delays
may appear, for instance, when one wants to control the system by applying a force
which takes into account not only the present state but the complete history of the
solutions. Therefore, in this paper we are interested in the case in which terms
containing infinite delays appear. We consider the following version:

∂u

∂t
− ν∆u+ FN (‖u‖) [(u · ∇)u] +∇p = f(t) + g(t, ut) in (τ, T∗)× Ω,

∇ · u = 0 in (τ, T∗)× Ω,

u = 0 on (τ, T∗)× Γ,

u(τ + s, x) = φ(s, x), s ∈ (−∞, 0], x ∈ Ω,

(2)

where g is another external force containing some hereditary characteristic and φ
is a given function defined in the interval (−∞, 0].

Our goal is to establish the existence and uniqueness of solution for the above
problem and to study its asymptotic behaviour (for a similar goal in Navier-Stokes
models with finite delay cf. [5, 6, 7], and for ODEs and PDEs with unbounded
delay terms cf. [4, 18]).

The structure of the paper is the following: in Section 2 we recall some spaces
useful for the abstract framework and some properties and estimates related to
the operators involved in the model. In Section 3 the existence and uniqueness of
solution for the (evolutionary) problem is given. The stationary problem is treated
in Section 4, where we also prove that under adequate assumptions, any solution of
the evolutionary problem has an exponential decay toward the stationary solution.

2. Preliminaries. To set our problem in the abstract framework, we consider the
following usual abstract spaces (see [17] and [21, 22]):

V =
{
u ∈ (C∞0 (Ω))3 : div u = 0

}
,

H = the closure of V in (L2(Ω))3 with inner product (·, ·) and associate norm |·| ,
where for u, v ∈ (L2(Ω))3,

(u, v) =
3∑
j=1

∫
Ω

uj(x)vj(x) dx,
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V = the closure of V in (H1
0 (Ω))3 with scalar product ((·, ·)) and associate norm

‖·‖ , where for u, v ∈ (H1
0 (Ω))3,

((u, v)) =
3∑

i,j=1

∫
Ω

∂uj
∂xi

∂vj
∂xi

dx.

We will use ‖·‖∗ for the norm in V ′ and 〈·, ·〉 for the duality pairing between V ′

and V. Finally, we will identify every u ∈ H with the element fu ∈ V ′ given by

〈fu, v〉 = (u, v) ∀ v ∈ V.
It follows that V ⊂ H ⊂ V ′, where the injections are dense and compact.

We consider the linear continuous operator A : V → V ′ defined by

〈Au, v〉 = ((u, v)) ∀u, v ∈ V. (3)

Denoting D(A) = {u ∈ V : Au ∈ H}, with inner product (u, v)D(A) = (Au,Av),
then, by the regularity of Γ, D(A) = (H2(Ω))3 ∩ V, and Au = −P∆u,∀u ∈ D(A),
is the Stokes operator (P is the ortho-projector from (L2(Ω))3 onto H).

Let us denote

λ1 = inf
v∈V \{0}

‖v‖2

|v|2
> 0,

the first eigenvalue of the Stokes operator.
Now we define the trilinear form b on V × V × V by

b(u, v, w) =
3∑

i,j=1

∫
Ω

ui
∂vj
∂xi

wj dx, ∀u, v, w ∈ V,

and we denote

bN (u, v, w) = FN (‖v‖)b(u, v, w), ∀u, v, w ∈ V.
The form bN is linear in u and w, but it is nonlinear in v. Evidently we have

bN (u, v, v) = 0, for all u, v ∈ V. We will also make use of the following inequality
(see [21] and [10])

|b(u, v, w)| ≤ 2−1|u|1/4‖u‖3/4‖v‖|w|1/4‖w‖3/4, ∀u, v, w ∈ V. (4)

In particular, this implies that there exists a constant C1 > 0 only dependent on Ω
(namely, C1 = (2λ1/4

1 )−1) such that

|b(u, v, w)| ≤ C1 ‖u‖‖v‖‖w‖, ∀u, v, w ∈ V.
Thus by the definition of FN , if we denote

〈BN (u, v), w〉 = bN (u, v, w), ∀u, v, w ∈ V,
we have

‖BN (u, v)‖∗ ≤ NC1 ‖u‖, ∀u, v ∈ V. (5)
We recall (see [21]) that there exists a constant C2 > 0 depending only on Ω

such that
|b(u, v, w)| ≤ C2‖u‖1/2|Au|1/2‖v‖|w|, (6)

for all u ∈ D(A), v ∈ V,w ∈ H, and

|b(u, v, w)| ≤ C2‖u‖‖v‖|w|1/2‖w‖1/2, (7)

for all u, v, w ∈ V. (See [20] for the proof of (7)).
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Let X be a Banach space. The notation BX(a, r) will be used to denote the open
ball of center a and radius r in the space X. Given a function u : (−∞, T∗)→ X,
for each t < T∗ we denote by ut the function defined on (−∞, 0) by the relation
ut(s) = u(t+ s), s ∈ (−∞, 0).

One possibility to deal with infinite delays, and which we will use here (cf.
[18, 11, 12]), is to consider, for any γ > 0, the space :

Cγ(H) =
{
ϕ ∈ C((−∞, 0];H) : ∃ lim

s→−∞
eγsϕ(s) ∈ H

}
,

which is a Banach space with the norm

‖ϕ‖γ := sup
s∈(−∞,0]

eγs|ϕ(s)|.

In order to state the problem in the correct framework, let us first establish some
initial assumptions on some terms in the equation:

We will assume that f ∈ L2(τ, T ; (L2(Ω))3) for all T ∈ (τ, T∗] ∩ R.
For the term g, in which the delay is present, we assume that g : (τ, T∗) ×

Cγ(H)→ (L2(Ω))3 satisfies
(g1) For any ξ ∈ Cγ(H) the mapping (τ, T∗) 3 t 7→ g(t, ξ) is measurable,
(g2) g(t, 0) = 0 for all t ∈ (τ, T∗),
(g3) there exists a constant Lg > 0 such that for any t ∈ (τ, T∗) and all ξ, η ∈

Cγ(H),
|g(t, ξ)− g(t, η)| ≤ Lg‖ξ − η‖γ .

Remark 1. (i) Condition (g2) is not really a restriction, since otherwise, if |g(·, 0)| ∈
L2(τ, T ) for all T ∈ (τ, T∗] ∩R, we could redefine f̂(t) = f(t) + g(t, 0) and ĝ(t, ·) =
g(t, ·)− g(t, 0). In this way the problem is exactly the same and f̂ and ĝ satisfy the
required assumptions.

(ii) Conditions (g2) and (g3) imply that

|g(t, ξ)| ≤ Lg‖ξ‖γ ,
so that |g(·, ξ)| ∈ L∞(τ, T∗).

We will denote Pm the orthogonal projector of H onto the vector space generated
by the first m eigenfunctions of the Stokes problem in Ω with homogeneous Dirichlet
boundary conditions.

An example of operator satisfying assumptions (g1)-(g3) is given here.

Example 1. We consider the operator g : (τ, T∗)× Cγ(H)→ (L2(Ω))3 defined as
follows:

g(t, ξ) :=
∫ 0

−∞
G(t, s, ξ(s))ds ∀t ∈ (τ, T∗),∀ξ ∈ Cγ(H),

where the function G : (τ, T∗)× (−∞, 0)×R3 → R3 satisfies the following assump-
tions:

(a) G(t, s, 0) = 0 for all (t, s) ∈ (τ, T∗)× (−∞, 0).
(b) There exists a function κ : (−∞, 0)→ (0,+∞) such that

‖G(t, s, u)−G(t, s, v)‖R3 ≤ κ(s)‖u− v‖R3

∀u, v ∈ R3, ∀(t, s) ∈ (τ, T∗),×(−∞, 0),
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(c) and the function κ satisfies that κ(·)e−(γ+ε)· ∈ L2((−∞, 0)) for some ε > 0.
Namely, the operator g defines an element of (L2(Ω))3 in the following way:

g(t, ξ)(x) =
∫ 0

−∞
G(t, s, ξ(s)(x))ds ∀x ∈ Ω.

We check now that g satisfies the assumption (g3), and using (a) above, we
obtain that it is well defined as a map with values in (L2(Ω))3:

∫
Ω

(∫ 0

−∞
κ(s)‖ξ(s)(x)− η(s)(x)‖R3ds

)2

dx

=
∫

Ω

(∫ 0

−∞
κ(s)e−(γ+ε)se(γ+ε)s‖ξ(s)(x)− η(s)(x)‖R3ds

)2

dx

≤
∫

Ω

(∫ 0

−∞
κ2(s)e−2(γ+ε)sds

)(∫ 0

−∞
e2(γ+ε)s‖ξ(s)(x)− η(s)(x)‖2R3ds

)
dx

=
(∫ 0

−∞
κ2(s)e−2(γ+ε)sds

)∫
Ω

(∫ 0

−∞
e2(γ+ε)s‖ξ(s)(x)− η(s)(x)‖2R3ds

)
dx

= Cκ

∫ 0

−∞

∫
Ω

e2(γ+ε)s‖ξ(s)(x)− η(s)(x)‖2R3dxds

≤ Cκ

[
sup

s∈(−∞,0]

e2γs

∫
Ω

‖ξ(s)(x)− η(s)(x)‖2R3dx

]∫ 0

−∞
e2εsds

= Cκ‖ξ − η‖2γ
1
2ε

= Lg‖ξ − η‖2γ ,

where we have denoted Cκ = ‖κ(·)e−(γ+ε)·‖2L2(−∞,0) and Lg = Cκ/(2ε).

3. Existence of solutions. In this section we establish existence of solution for
(2) by a compactness method using a Faedo-Galerkin scheme.

Definition 1. A weak solution of (2) is a function u ∈ C((−∞, T ];H)∩L2(τ, T ;V )
for all T ∈ (τ, T ∗] ∩ R, with uτ = φ and such that for all v ∈ V,

d

dt
(u(t), v) + ν((u(t), v)) + bN (u(t), u(t), v) = (f(t), v) + (g(t, ut), v),

in the sense of D′(τ, T ∗).

Remark 2. If u is a solution of (2) in the sense given above, then u satisfies an
energy equality, namely:

|u(t)|2 + 2ν
∫ t

s

‖u(r)‖2dr

= |u(s)|2 + 2
∫ t

s

[(f(r), u(r)) + (g(r, ur), u(r))] dr ∀s, t ∈ [τ, T∗] ∩ R.

First, we will prove the uniqueness of weak solutions for our model in a similar
way as done in [20] for the model without delay. We will only include the detailed
estimates which involve the delay term.
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Theorem 1. Under the above assumptions, there exists at most a weak solution u
of (2).

The proof is similar to, but a bit more complicated than for the 2D-Navier-Stokes
equations and depends on the following

Lemma 1. ([20]) For every u, v ∈ V, and each N > 0,

1. 0 ≤ ‖u‖FN (‖u‖) ≤ N,
2. |FN (‖u‖)− FN (‖v‖)| ≤ 1

N FN (‖u‖)FN (‖v‖)‖u− v‖.

Proof of Theorem 1: Let u, v be two weak solutions with the same initial conditions
and set w = v − u. Then, using the energy equality, we obtain

1
2
d

dt
|w|2 + ν‖w‖2 + 〈NL(u, v), w〉 = (g(t, vt)− g(t, ut), w), t ∈ (τ, T∗),

where we have set 〈NL(u, v), w〉 = FN (‖u‖)b(u, u, w)−FN (‖v‖)b(v, v, w). From the
properties of the trilinear form b it easily follows that

〈NL(u, v), w〉 = FN (‖u‖)b(w, u,w) + (FN (‖u‖)− FN (‖v‖))b(v, u, w)
+FN (‖v‖)b(v, w,w).

Now using Lemma 1, formula (7) and Young’s inequality (see [20] for the details)
there exists a constant C3 > 0, which depends on C2 and ν, such that,

| 〈NL(u, v), w〉 | ≤ ν‖w‖2 + C3N
4|w|2.

Consequently, taking (g3) into account, we obtain
d

dt
|w(t)|2 ≤ 2C3N

4|w(t)|2 + 2Lg‖wt‖γ |w(t)|, t ∈ (τ, T∗).

Observe that w(s) = 0 if s ≤ τ. Therefore, for t ∈ (τ, T∗) :

‖wt‖γ = sup
θ≤0

eγθ|w(t+ θ)| ≤ sup
θ∈[τ−t,0]

|w(t+ θ)|.

Thus we obtain

|w(t)|2 ≤ 2C3N
4

∫ t

τ

|w(s)|2ds+ 2Lg
∫ t

τ

sup
r∈[τ,s]

|w(r)||w(s)|ds

≤ (2C3N
4 + 2Lg)

∫ t

τ

sup
r∈[τ,s]

|w(r)|2ds,

for any t ∈ [τ, T∗).
Now we deduce that

sup
r∈[τ,t]

|w(r)|2 ≤ (2C3N
4 + 2Lg)

∫ t

τ

sup
r∈[τ,s]

|w(r)|2ds,

for any t ∈ [τ, T∗), whence the Gronwall lemma finishes the proof.

Our main result is the following

Theorem 2. Suppose that f ∈ L2(τ, T ; (L2(Ω))3) for all T ∈ (τ, T∗] ∩ R, g :
(τ, T∗)× Cγ(H)→ (L2(Ω))3 satisfying the assumptions (g1)–(g3), and φ ∈ Cγ(H)
are given, and that 2γ > νλ1. Then, there exists a unique weak solution u of (2),
which in fact is a strong solution in the sense that

u ∈ C((τ, T ];V ) ∩ L2(τ + ε, T ;D(A)),
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for all 0 < ε < T∗ − τ and any T ∈ (τ + ε, T∗] ∩ R.
Moreover, if φ(0) ∈ V, then u satisfies

u ∈ C([τ, T ];V ) ∩ L2(τ, T ;D(A)),

for all T ∈ (τ, T∗] ∩ R.

Proof. We split the proof in several steps.

Step 1: A Galerkin scheme. Let us consider {vj} ⊂ V, the orthonormal basis
of H of all the eigenfunctions of the Stokes operator. Denote Vm = span[v1, . . . , vm]
and consider the projector Pmu =

∑m
j=1(u, vj)vj .

Define also

um(t) =
m∑
j=1

αm,j(t)vj

where the upper script m will be used instead of (m) for short since no confusion
is possible with powers of u, and where the coefficients αm,j are required to satisfy
the following system:

d

dt
(um(t), vj) + ν((um(t), vj)) + bN (um(t), um(t), vj)

= (f(t), vj) + (g(t, umt ), vj), 1 ≤ j ≤ m, (8)

where the equations are understood in the sense of D′(τ, T∗), and the initial condi-
tions is um(τ + s) = Pmφ(s) for s ∈ (−∞, 0].

The above system of ordinary functional differential equations with infinite delay
fulfills the conditions for existence and uniqueness of local solution of [12, Th.1.1,
p.36].

Next, we will deduce a priori estimates that assure that the solutions do exist
for all time t ∈ [τ, T∗] ∩ R.

Step 2: A priori estimates. Multiplying (8) by um we obtain

1
2
d

dt
|um(t)|2+

νλ1

2
|um(t)|2+

ν

2
‖um(t)‖2 ≤ (f(t), um(t)) + (g(t, umt ), um(t))

≤ |f(t)||um(t)|+ Lg‖umt ‖γ |um(t)|

≤ ν

4
‖um(t)‖2 +

|f(t)|2

νλ1
+ Lg‖umt ‖2γ .

Hence

|um(t)|2 +
ν

2

∫ t

τ

e−νλ1(t−s)‖um(s)‖2ds

≤ e−νλ1(t−τ)|u(τ)|2 + 2
∫ t

τ

e−νλ1(t−s)
(
|f(s)|2

νλ1
+ Lg‖ums ‖2γ

)
ds. (9)

Further

‖umt ‖2γ ≤ max

{
sup

θ∈(−∞,τ−t]
e2γθ|φ(θ + t− τ)|2, sup

θ∈[τ−t,0]

[
e2γθ−νλ1(t−τ+θ)|u(τ)|2

+2e2γθ

∫ t+θ

τ

e−νλ1(t+θ−s)
(
|f(s)|2

νλ1
+ Lg‖ums ‖2γ

)
ds

]}
.
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On the one hand

sup
θ∈(−∞,τ−t]

eγθ|φ(θ + t− τ)| = sup
θ≤0

eγ(θ−(t−τ))|φ(θ)|

= e−γ(t−τ)‖φ‖γ .

On the other hand, as we are assuming that 2γ > νλ1,

sup
θ∈[τ−t,0]

e2γθ−νλ1(t−τ+θ)|u(τ)|2 ≤ e−νλ1(t−τ)|u(τ)|2

and

sup
θ∈[τ−t,0]

e2γθ

∫ t+θ

τ

e−νλ1(t+θ−s)
(
|f(s)|2

νλ1
+ Lg‖ums ‖2γ

)
ds

≤
∫ t

τ

e−νλ1(t−s)
(
|f(s)|2

νλ1
+ Lg‖ums ‖2γ

)
ds.

Collecting these inequalities we deduce

‖umt ‖2γ ≤ e−νλ1(t−τ)‖φ‖2γ + 2
∫ t

τ

e−νλ1(t−s)
(
|f(t)|2

νλ1
+ Lg‖ums ‖2γ

)
ds.

By the Gronwall lemma we have

‖umt ‖2γ ≤ e−(νλ1−2Lg)(t−τ)‖φ‖2γ +
2
νλ1

∫ t

τ

e−(λ1ν−2Lg)(t−s)|f(s)|2ds.

Then we obtain the following estimates: for any R > 0 and T ∈ (τ, T∗] ∩ R, there
exists a constant C = C(τ, T,R), depending on some constants of the problem
(namely, λ1, ν, Lg and f), and on τ, T and R, such that

‖umt ‖2γ ≤ C(τ, T,R) ∀t ∈ [τ, T ], ∀ ‖φ‖γ ≤ R, ∀m ≥ 1. (10)

In particular, this implies that

{um} is bounded in L∞(τ, T ;H) ∀T ∈ (τ, T∗] ∩ R. (11)

Now, it follows from (9) and (10) that

ν

2
e−νλ1(T−τ)

∫ T

τ

‖um(s)‖2ds

≤ ν

2

∫ T

τ

e−νλ1(T−s)‖um(s)‖2ds

≤ |u(τ)|2 + 2
∫ T

τ

e−νλ1(T−s)
(
|f(s)|2

νλ1
+ Lg‖ums ‖2γ

)
ds

≤ R2 + 2
∫ T

τ

e−νλ1(T−s)
(
|f(s)|2

νλ1
+ LgC(τ, T,R)

)
ds,

so that we conclude the existence of another constant (relabelled the same) C(τ, T,R)
such that

‖um‖2L2(τ,T ;V ) ≤ C(τ, T,R) ∀ ‖φ‖γ ≤ R ∀m ≥ 1, ∀T ∈ (τ, T∗] ∩ R. (12)

Now, observe that (8) is equivalent to

dum

dt
= −νAum − PmBN (um, um) + Pmf(t) + Pmg(t, umt ). (13)
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From (5), (11), (12) and (13), by the choice of the basis one also deduces that

‖(um)′‖2L2(τ,T ;V ′) ≤ C(τ, T,R) ∀ ‖φ‖γ ≤ R ∀m ≥ 1, ∀T ∈ (τ, T∗] ∩ R. (14)

So, this implies the existence of a

u ∈ L∞(τ, T ;H) ∩ L2(τ, T ;V ) with u′ ∈ L2(τ, T ;V ′), ∀T ∈ (τ, T∗] ∩ R,
and a subsequence of {um} which converges weak-star to u in L∞(τ, T ;H), weakly
to u in L2(τ, T ;V ), with {(um)′} converging weakly to u′ in L2(τ, T ;V ′) for all
T ∈ (τ, T∗] ∩ R.

Observe in particular that u ∈ C([τ, T ];H) for all T ∈ (τ, T∗] ∩ R.
By a compactness result (cf. [17, Ch.1,Th.5.1]), one can then deduce that a

subsequence in fact converges strongly to u in L2(τ, T ;H) and a.e. in (τ, T ) with
values in H and a.e. in (τ, T )× Ω for all T ∈ (τ, T∗] ∩ R.

Step 3: Some more a priori estimates. The estimates obtained above are
not enough to pass to the limit and deduce that u is a solution of (2). Namely, we
have two main difficulties. On the one hand, we need to pass to the limit in g(um),
this will be done in Step 4, proving that actually umt → ut in Cγ(H). On other
hand, the weak convergence in L2(τ, T ;V ) is not enough to ensure that

‖um(t)‖ → ‖u(t)‖
or at least

FN (‖um(t)‖)→ FN (‖u(t)‖) for a.a. t,
which is needed to manage the nonlinear term BN (um, um).

In order to sort out this last trouble, we need to find a stronger estimate. We
proceed now with that. Take the inner product of the Galerkin ODE (8) with Aum

and obtain
1
2
d

dt
‖um(t)‖2 + ν|Aum(t)|2 + bN (um(t), um(t), Aum(t))

= (f(t), Aum(t)) + (g(t, umt ), Aum(t)). (15)

Obviously,

(f(t), Aum(t)) ≤ |f(t)||Aum(t)| ≤ ν

8
|Aum(t)|+ 2

ν
|f(t)|2

and

|(g(t, umt ), Aum(t))| ≤ ν

8
|Aum(t)|2 +

2
ν
|g(t, umt )|2.

By (6), Lemma 1 and Young’s inequality, it follows

|bN (um(t), um(t), Aum(t))| ≤ N

‖um(t)‖
C2‖um(t)‖3/2|Aum(t)|3/2

= NC2‖um(t)‖1/2|Aum(t)|3/2

≤ ν

4
|Aum(t)|2 + CN‖um(t)‖2,

with CN =
27(NC2)4

4ν3
.

Thus (15) simplifies to
d

dt
‖um(t)‖2 + ν|Aum(t)|2 ≤ 4

ν
|f(t)|2 +

4
ν
|g(t, umt )|2 + 2CN‖um(t)‖2. (16)
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Integrating between s and t with τ ≤ s ≤ t ≤ T and for all T ∈ (τ, T∗] ∩ R, we
deduce that

‖um(t)‖2 + ν

∫ t

s

|Aum(r)|2dr

≤ ‖um(s)‖2 +
4
ν

∫ T

τ

|f(r)|2 + |g(r, umr )|2dr

+2CN
∫ T

τ

‖um(r)‖2dr, ∀τ ≤ s ≤ t ≤ T, ∀T ∈ (τ, T∗] ∩ R.

Now, integrating once more between τ and t we obtain

(t− τ)‖um(t)‖2 ≤
∫ T

τ

‖um(s)‖2ds+
4(T − τ)

ν

∫ T

τ

|f(r)|2 + |g(r, umr )|2dr

+2CN (T − τ)
∫ T

τ

‖um(r)‖2dr, ∀τ≤s≤ t≤T, ∀T ∈ (τ, T∗] ∩ R.

The important fact is that the right hand side of the above expression is bounded
by some constant Cτ,T , which is independent of m.

Thus, these two inequalities imply (first the last one, and then using the previous
one) that for any ε ∈ (0, T − τ), and for any t ∈ [τ + ε, T ) with T ∈ (τ + ε, T∗] ∩R
one obtains additional estimates for {um}. Namely,

{um} is bounded in L∞(τ+ε, T ;V )∩L2(τ+ε, T ;D(A)), ∀T ∈ (τ+ε, T∗]∩R. (17)

Moreover, observe that if φ(0) ∈ V, then, thanks to the fact that ‖um(τ)‖ =
‖Pmφ(0)‖ ≤ ‖φ(0)‖, from (16), (11) and (12), one deduces directly that

{um} is bounded in L∞(τ, T ;V ) ∩ L2(τ, T ;D(A)), ∀T ∈ (τ, T∗] ∩ R. (18)

We extract some consequences from above assuming again that φ(0) ∈ H. As
D(A) ⊂ V ⊂ H with compact injection, by [17, Th.5.1,Ch.1], from the convergences
obtained in Step 2, (17), and using a sequence of positive values εn ↓ 0 and a
diagonal argument, we deduce that there exists an element

u ∈ L∞(−∞, T ;H) ∩ L2(τ, T ;V ) ∩ L∞(τ + ε, T ;V ) ∩ L2(τ + ε, T ;D(A))

for all T ∈ (τ, T∗] ∩ R, and any ε > 0, any T > τ + ε > τ , and a subsequence of
{um}, that we will also denote by {um}, such that they satisfy

um ⇀ u weak in L2(τ, T ;V ),

um
∗
⇀ u weak-star in L∞(τ, T ;H),

um → u a.e. in (τ, T )× Ω,

um → u strong in L2(τ + ε, T ;V ),

um ⇀ u weak in L2(τ + ε, T ;D(A)),

um
∗
⇀ u weak-star in L∞(τ + ε, T ;V ),

for all T ∈ (τ, T∗] ∩ R, and any T > τ + ε > τ .
Also, as um converges to u in L2(τ + ε, T ;V ) for all T > τ + ε > τ , we can

assume, eventually extracting a subsequence, that

‖um(t)‖ → ‖u(t)‖ a.e. in (τ, T∗),

and therefore
FN (‖um(t)‖)→ F (‖u(t)‖) a.e. in (τ, T∗). (19)
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Step 4: Convergence in Cγ(H) and existence of solution. We will prove
now that actually the convergences obtained for {um} to u in the above steps can
be improved. Indeed, we will see that

umt → ut in Cγ(H), ∀t ∈ (−∞, T∗] ∩ R.

It is not difficult to check that this holds if we prove the following:

Pmφ→ φ in Cγ(H), (20)
um → u in C([τ, T ];H) ∀T ∈ (τ, T∗] ∩ R. (21)

A similar result was proved in [18], however there are some differences between
both arguments, so for the sake of completeness, we reproduce the proof here.

Step 4.1: Approximation in Cγ(H) of the initial datum. We check now
the convergence claimed in (20). For the delay initial datum φ ∈ Cγ(H), we have
used the projections in the Galerkin scheme in Step 1.

Indeed, if not, there would exist ε > 0 and a subsequence, that we relabel the
same, such that

eγθm |Pmφ(θm)− φ(θm)| > ε. (22)

One can assume that θm → −∞, otherwise if θm → θ, then Pmφ(θm)→ φ(θ), since
|Pmφ(θm)− φ(θ)| ≤ |Pmφ(θm)−Pmφ(θ)|+ |Pmφ(θ)− φ(θ)| → 0 as m→ +∞. But
with θm → −∞ as m→ +∞, if we denote x = lim

θ→−∞
eγθφ(θ), we obtain that

eγθm |Pmφ(θm)− φ(θm)|
= |Pm(eγθmφ(θm))− eγθmφ(θm)|
≤ |Pm(eγθmφ(θm))− Pmx|+ |Pmx− x|+ |x− eγθmφ(θm)| → 0.

This is a contradiction with (22), so (20) holds.

Step 4.2: convergence of um to u in C([τ, T ];H) for all T ∈ (τ, T∗] ∩ R.
Hereon consider a fixed value (but otherwise arbitrary) T ∈ (τ, T∗] ∩ R.

From the strong convergence of {um} to u in L2(τ, T ;H) obtained at the end of
Step 2, we deduce that

um(t)→ u(t) in H a.e. t ∈ (τ, T∗] ∩ R.

Since

um(t)− um(s) =
∫ t

s

(um)′(r)dr in V ′, ∀s, t ∈ [τ, T ],

from (14) we have that {um} is equi-continuous on [τ, T ] with values in V ′. By the
compactness of the injection of H into V ′, from (11) and the equi-continuity in V ′,
by the Ascoli-Arzelà theorem we have that

um → u in C([τ, T ];V ′). (23)

Again from (11) we obtain that for any sequence {tm} ⊂ [τ, T ], with tm → t, one
has

um(tm) ⇀ u(t) weakly in H, (24)

where we have used (23) in order to identify which is the weak limit.
Now, we are ready to prove (21) by a contradiction argument. If it would not

be so, then, taking into account that u ∈ C([τ, T ];H), there would exist ε > 0, a
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value t0 ∈ [τ, T ] and subsequences (relabelled the same) {um} and {tm} ⊂ [τ, T ]
with lim

m→+∞
tm = t0 such that

|um(tm)− u(t0)| ≥ ε ∀m. (25)

To prove that this is absurd, we will use an energy method.
Observe that the following energy inequality holds for all um:

1
2
|um(t)|2 +

ν

2

∫ t

s

‖um(r)‖2dr

≤
∫ t

s

(f(r), um(r))dr +
1
2
|um(s)|2 + C4(t− s), ∀s, t ∈ [τ, T ], (26)

where C4 = D
2νλ1

and D corresponds to the upper bound∫ t

s

|g(r, umr )|2dr ≤ D(t− s), for all τ ≤ s ≤ t ≤ T,

by (g2), (g3) and (11).
On the other hand, from (11), (g2) and (g3), we deduce the existence of ξg ∈

L2(τ, T ; (L2(Ω))3), which we cannot identify by the moment, such that {g(um)}
converges weakly to ξg in L2(τ, T ; (L2(Ω))3).

Then, taking into account (11), (12) and (19), reasoning as in [1] for the case
without delays (see also [17] for the case of the Navier-Stokes system), we can pass
to the limit in equation (13) and deduce that u is solution of

d

dt
(u(t), v) + ν((u(t), v)) + 〈BN (u, u), v〉 = (f(t), v) + (ξg(t), v), ∀v ∈ V. (27)

Therefore, it satisfies the energy equality

|u(t)|2 + 2
∫ t

s

ν‖u(r)‖2dr

= |u(s)|2 + 2
∫ t

s

(f(r), u(r)) + (ξg(r), u(r))dr, ∀s, t ∈ [τ, T ].

Of course, for the weak limit ξg we have the estimate∫ t

s

|ξg(r)|2dr ≤ lim inf
m→+∞

∫ t

s

|g(r, umr )|2dr

≤ D(t− s), ∀τ ≤ s ≤ t ≤ T.

So, we have that u also satisfies the inequality (26) with the same constant C4.
Now, consider the functions Jm, J : [τ, T ]→ R defined by

Jm(t) =
1
2
|um(t)|2 −

∫ t

τ

(f, um(r))dr − C4t,

J(t) =
1
2
|u(t)|2 −

∫ t

τ

(f, u(r))dr − C4t.

From the inequalities fulfilled by {um} and u, it is clear that Jm and J are non-
increasing (and continuous) functions. Moreover, by the convergence of um to u
a.e. in time with values in H, and weakly in L2(τ, T ;H), it holds that

Jm(t)→ J(t) a.e. t ∈ [τ, T ]. (28)
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Now we will prove that
um(tm)→ u(t0) in H, (29)

which contradicts (25). Firstly, recall from (24) that

um(tm) ⇀ u(t0) weakly in H. (30)

So, we have that
|u(t0)| ≤ lim inf

m→+∞
|um(tm)|.

Therefore, if we show that

lim sup
m→+∞

|um(tm)| ≤ |u(t0)|, (31)

we obtain that limm→+∞ |um(tm)| = |u(t0)|, which jointly with (30) imply (29).
Now, observe that the case t0 = τ follows directly from (26) with s = τ and

the definition of um(τ) = Pmφ(0). So, we may assume that t0 > τ. This is im-
portant, since we will approach this value t0 from the left by a sequence {t̃k}, i.e.
limk→+∞ t̃k ↗ t0, being {t̃k} values where (28) holds. Since u(·) is continuous at
t0, there is kε such that

|J(t̃k)− J(t0)| < ε/2, ∀k ≥ kε.
On other hand, taking m ≥ m(kε) such that tm > t̃kε

, as Jm is non-increasing and
for all t̃k the convergence (28) holds, one has that

Jm(tm)− J(t0) ≤ |Jm(t̃kε
)− J(t̃kε

)|+ |J(t̃kε
)− J(t0)|,

and obviously, taking m ≥ m′(kε), it is possible to obtain |Jm(t̃kε)− J(t̃kε)| < ε/2.
It can also be deduced from Step 2 that∫ tm

τ

(f, um(r))dr →
∫ t0

τ

(f, u(r))dr,

so we conclude that (31) holds. Thus, (29) and finally (21) are also true, as we
wanted to check.

Now, we are ready to pass to the limit in the equations satisfied by the {um}
and to complete the information obtained in (27).

Assume initially that φ(0) ∈ H. The first clear consequence from the convergence
proved above, since g satisfies (g3), is that

g(·, um· )→ g(·, u·) in L2(τ, T ; (L2(Ω))3), ∀T ∈ (τ, T∗] ∩ R.
Thus, we can identify ξg(t) = g(t, ut) in (27). Therefore u is a solution of (2).

Finally, if φ(0) ∈ V, from (18) and analogous arguments to those given above we
conclude that u ∈ C([τ, T ];V ) ∩ L2(τ, T ;D(A)), for all T ∈ (τ, T∗] ∩ R.

Proposition 1 (Continuity of solutions with respect to initial data). Under the
assumptions of Theorem 2, the solutions obtained for (2) are continuous with respect
to the initial condition φ, and more exactly, there exists a constant C3 > 0, only
dependent on ν and the constant C2 appearing in (7), such that if ui, for i = 1, 2,
are the corresponding solutions to initial data φi ∈ Cγ(H), i = 1, 2, the following
estimate holds:

max
r∈[τ,t]

|u1(r)− u2(r)|2 ≤
(
|φ1(0)− φ2(0)|2 +

Lg
2γ
‖φ1 − φ2‖2γ

)
×e(3Lg+2C3N

4)(t−τ), (32)
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for all t ∈ [τ, T∗] ∩ R.

Proof. If we proceed as in the Proof of Theorem 1 we have that there exists a
constant C3 > 0 which depends on C2 and ν, such that ,

d

dt
|u1(t)− u2(t)|2 ≤ 2C3N

4|u1(t)− u2(t)|2 + 2Lg‖u1
t − u2

t‖γ |u1(t)− u2(t)|, (33)

for all t ∈ [τ, T∗] ∩ R. As for s ∈ [τ, t] one has

‖u1
s − u2

s‖γ = sup
θ≤0

eγθ|u1(s+ θ)− u2(s+ θ)|

= max

{
sup

θ∈(−∞,τ−s]
eγθ|φ1(s+ θ − τ)− φ2(s+ θ − τ)|,

sup
θ∈[τ−s,0]

eγθ|u1(s+ θ)− u2(s+ θ)|

}

≤ max
{
eγ(τ−s)‖φ1 − φ2‖γ , max

θ∈[τ,s]
|u1(θ)− u2(θ)|

}
,

we conclude from (33) that for all t ∈ [τ, T∗] ∩ R,

|u1(t)− u2(t)|2 ≤ |u1(τ)− u2(τ)|2 + 2Lg‖φ1 − φ2‖γ
∫ t

τ

eγ(τ−s)|u1(s)− u2(s)|ds

+2Lg
∫ t

τ

|u1(s)− u2(s)| max
θ∈[τ,s]

|u1(θ)− u2(θ)|ds

+2C3N
4

∫ t

τ

|u1(s)− u2(s)|2ds.

If we now substitute t by r ∈ [τ, t] and consider the maximum when varying this r,
from the above we can conclude that

max
r∈[τ,t]

|u1(r)− u2(r)|2 ≤ |u1(τ)− u2(τ)|2 +
Lg
2γ
‖φ1 − φ2‖2γ

+
∫ t

τ

(
3Lg + 2C3N

4
)

max
r∈[τ,s]

|u1(r)− u2(r)|2ds.

Hence, by the Gronwall lemma we obtain (32).

4. Stationary solutions and their stability. In this section we are interested
in proving that the problem (2), with some obvious restrictions, admits stationary
solutions, and that under additional assumptions, in fact the stationary solution is
unique and is globally asymptotically exponentially stable.

The restrictions we must impose to give sense to a stationary solution are that
f ∈ (L2(Ω))3 and g and are now autonomous, i.e. without dependence on time, and
we must clarify how g acts over a fixed element of H. This is done with a slight abuse
of notation in the following sense: we consider g(w) as g(w̃), where w̃ ∈ Cγ(H) is
the element that has the only value w for all time t ≤ 0 [observe that w̃ is a well
defined element of Cγ(H) and that ‖w̃‖γ = |w|; so we will continue denoting directly
w instead of w̃ since no confusion arises]. Of course, as an immediate consequence
of the assumptions for g, it follows that

|g(x1)− g(x2)| ≤ Lg|x1 − x2|, ∀x1, x2 ∈ H.
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So, consider the following equation,
du

dt
+ νAu+BN (u, u) = f + g(ut) ∀t ≥ 0, (34)

where A is the operator given by (3). By a stationary solution to (34) we mean an
element u∗ ∈ V such that

ν((u∗, v)) + bN (u∗, u∗, v) = (f, v) + (g(u∗), v) ∀v ∈ V. (35)

Theorem 3. Under the above assumptions and notation, if λ1ν > Lg, then:
(a) The problem (34) admits at least one stationary solution u∗, which indeed

belongs to D(A). Moreover, any such stationary solution satisfies the estimate

(ν − λ−1
1 Lg)‖u∗‖ ≤ λ−1/2

1 |f |. (36)

(b) If the following condition holds,

min{Nλ−1/4
1 , |f |1/2λ−3/8

1 } < ν − λ−1
1 Lg, (37)

then the stationary solution of (34) is unique.

Proof. Existence The estimate (36) can be obtained taking into account that in
particular any stationary solution u∗, if it exists, should verify

ν〈Au∗, u∗〉 = (f, u∗) + (g(u∗), u∗),

and therefore

ν ‖u∗‖2 ≤ |f ||u∗|+ Lg|u∗|2 ≤ λ−1/2
1 |f |‖u∗‖+ Lgλ

−1
1 ‖u∗‖2.

For the existence, let us consider {vj} ⊂ V, the orthonormal basis of H of all
the eigenfunctions of the Stokes operator. For each integer m ≥ 1, let us denote
Vm =span[v1, . . . , vm], with the inner product ((·, ·)) and norm ‖·‖. Define the
operators Rm : Vm → Vm, m ≥ 1, by

((Rmu, v)) = ν〈Au, v〉+ 〈BN (u, u), v〉 − (f, v)− (g(u), v), ∀u, v ∈ Vm. (38)

Since the right hand side is a continuous linear map from Vm to R, by the Riesz
theorem, each Rmu ∈ Vm is well defined. We check now that Rm is continuous.
Indeed, taking into account the assumptions for g, Lemma 1 and the properties of
b, we have

((Rmu−Rmũ, v))
= ν〈Au−Aũ, v〉+ 〈BN (u, u)−BN (ũ, ũ), v〉 − (g(u)− g(ũ), v)
≤ ν ‖u− ũ‖ ‖v‖+ FN (‖u‖)b(u− ũ, u, v) + (FN (‖u‖)− FN (‖ũ‖))b(ũ, u, v)

+FN (‖ũ‖)b(ũ, u− ũ, v) + Lgλ
−1
1 ‖u− ũ‖ ‖v‖

≤ (ν + 3NC1 + Lgλ
−1
1 ) ‖u− ũ‖ ‖v‖ , (39)

for all u, u′, v ∈ Vm. So,

‖Rmu−Rmũ‖ ≤
(
ν + 3NC1 + Lgλ

−1
1

)
‖u− ũ‖ ,

for all u, u′.
On the other hand, for all u ∈ Vm,

((Rmu, u)) = ν〈Au, u〉 − (f, u)− (g(u), u)

≥ ν ‖u‖2 − λ−1/2
1 |f |‖u‖ − λ−1

1 Lg ‖u‖2 .
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Thus, if we take

β =
λ
−1/2
1 |f |

ν − Lgλ−1
1

,

we obtain ((Rmu, u)) ≥ 0 ∀u ∈ Vm such that ‖u‖ = β.
Consequently by a corollary of the Brouwer’s fixed point theorem (see [17, p.53]),

for each m ≥ 1 there exist um ∈ Vm such that Rm(um) = 0, with ‖um‖ ≤ β.
Observe moreover that Aum ∈ Vm, and therefore

ν|Aum|2 = −〈BN (um, um), Aum〉+ (f,Aum) + (g(um), Aum) (40)

≤ ν

2
|Aum|2 − 〈BN (um, um), Aum〉+

|f |2

ν
+
L2
gβ

2

νλ1
.

Moreover, by (6) and Young’s inequality,

|〈BN (um, um), Aum〉| ≤
ν

4
|Aum|2 + CN‖um‖2 (41)

≤ ν

4
|Aum|2 + CNβ

2,

with CN =
27(NC2)4

4ν3
.

From (40) and (41), we deduce that the sequence {um} is bounded in D(A), and
consequently, by the compact injection of D(A) in V , we can extract a subsequence
{um′} ⊂ {um}, that converges weakly in D(A) and strongly in V to an element
u∗ ∈ D(A). It is now standard to take limits in (38) and to obtain that u∗ is an
stationary solution.

In order to prove the final regularity remark, it is enough to take into account
that every stationary solution u∗ to (34) is also a solution to (2), but with initial
data φ(t) = u∗ for t ∈ (−∞, 0], and forcing term f + g(u∗). Thus, we can apply
Theorem 2.

Uniqueness Let us suppose that u∗ and ũ∗ are two stationary solutions of (34).
Then,

ν〈Au∗ −Aũ∗, v〉+ 〈BN (u∗, u∗)−BN (ũ∗, ũ∗), v〉
= (g(u∗)− g(ũ∗), v), ∀v ∈ V. (42)

Taking v = u∗ − ũ∗ and proceeding as in (39) we obtain from (42)

ν ‖u∗ − ũ∗‖2 ≤ |FN (‖u∗‖)b(u∗ − ũ∗, u∗, u∗ − ũ∗)|
+|(FN (‖u∗‖)− FN (‖ũ∗‖))b(ũ∗, u∗, u∗ − ũ∗)|
+λ−1

1 Lg ‖u∗ − ũ∗‖2 . (43)

From this inequality, taking into account (4), that b(ũ∗, u∗, u∗ − ũ∗) = 0, and
the fact that FN (‖u∗‖) ≤ 1, we obtain

ν ‖u∗ − ũ∗‖2 ≤ λ
−1/4
1 ‖u∗‖ ‖u∗ − ũ∗‖2 + λ−1

1 Lg ‖u∗ − ũ∗‖2 ,

and therefore, by the estimate (36),

ν ‖u∗ − ũ∗‖2 ≤

(
λ
−1/4
1

λ
−1/2
1 |f |

ν − λ−1
1 Lg

+ λ−1
1 Lg

)
‖u∗ − ũ∗‖2 . (44)
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On the other hand, if in (43) we use (4), and Lemma 1, i.e. ‖u∗‖FN (‖u∗‖) ≤ N
and ‖ũ∗‖FN (‖ũ∗‖) ≤ N , we obtain

ν ‖u∗ − ũ∗‖2 ≤ Nλ−1/4
1 ‖u∗ − ũ∗‖2 + λ−1

1 Lg ‖u∗ − ũ∗‖2 . (45)

From (44) and (45) we deduce that if (37) holds, then u∗ = ũ∗.

Theorem 4. Assume that the assumptions in Theorem 2 with f and g independent
of time and (37) hold. Then there exists a value 0 < λ < 2γ such that for the
solution u(·, 0, φ) of (2) with τ = 0, T∗ = +∞ and φ ∈ Cγ(H), the following
estimates hold for all t ≥ 0:

|u(t, 0, φ)− u∗|2 ≤ e−λt
(
|φ(0)− u∗|2 +

Lg
2γ − λ

‖φ− u∗‖2γ
)
, (46)

‖ut(·, 0, φ)− u∗‖2γ

≤ max
{
e−2γt‖φ− u∗‖2γ , e−λt

(
|φ(0)− u∗|2 +

Lg
2γ − λ

‖φ− u∗‖2γ
)}

, (47)

where u∗ is the unique stationary solution of (34) given by Theorem 3.

Proof. For short denote u(t) = u(·, 0, φ). Let us also denote w(t) = u(t) − u∗.
Considering equations (34) for u(t) and (35) for u∗, one has

d

dt
(w(t), v) + ν((w(t), v)) + bN (u(t), u(t), v)− bN (u∗, u∗, v) = (g(ut)− g(u∗), v),

for t > 0, for any v ∈ V.
From energy equality and the Lipschitz condition on g, and introducing an ex-

ponential term eλt with a positive value λ to be fixed later on, we obtain

d

dt
(eλt|w(t)|2) ≤ eλt

(
λ|w(t)|2 − 2ν‖w(t)‖2

+2|bN (u(t), u(t), w(t))−bN (u∗, u∗, w(t))|+ 2Lg‖wt‖γ |w(t)|) ,

for t > 0.
Reasoning as for (44) and (45), we have

|bN (u(t), u(t), w)− bN (u∗, u∗, w)| ≤ µ‖u(t)− u∗‖2,

where

µ := min

{
Nλ
−1/4
1 ,

λ
−3/4
1 |f |

ν − λ−1
1 Lg

}
.

Hence, using a Young inequality with δ > 0 to be fixed later on, we conclude
that

d

dt
(eλt|w(t)|2) ≤ eλt(−2ν + λλ−1

1 + 2µ+ δλ−1
1 Lg)‖w(t)‖2 +

Lg
δ
eλt‖wt‖2γ .

Therefore, integrating from 0 to t, we have

eλt|w(t)|2 ≤ |w(0)|2 +
Lg
δ

∫ t

0

eλs‖ws‖2γds

+(−2ν + λλ−1
1 + 2µ+ δλ−1

1 Lg)
∫ t

0

eλs‖w(s)‖2ds. (48)
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In order to control the term
∫ t

0
eλs‖ws‖2γds, we proceed as follows.∫ t

0

eλs sup
θ≤0

e2γθ|w(s+ θ)|2ds

=
∫ t

0

eλs max{ sup
θ≤−s

e2γθ|w(s+ θ)|2, sup
θ∈[−s,0]

e2γθ|w(s+ θ)|2}ds

=
∫ t

0

max{e−(2γ−λ)s‖φ− u∗‖2γ , sup
θ∈[−s,0]

e(2γ−λ)θeλ(s+θ)|w(s+ θ)|2}ds.

So, if λ ≤ 2γ, using the above equality in (48), we obtain

eλt|w(t)|2 ≤ |w(0)|2 +
Lg
δ
‖φ− u∗‖2γ

∫ t

0

e(λ−2γ)sds

+
(
−2ν+λλ−1

1 +2µ+δλ−1
1 Lg+Lg(λ1δ)−1

)∫ t

0

max
r∈[0,s]

eλr‖w(r)‖2ds.

Observe that the (optimal) choice of δ = 1 makes that δλ−1
1 Lg + Lg(λ1δ)−1 is

minimal and the coefficient of the last integral is negative with a suitable choice of
λ ∈ (0, 2γ) by (37). So, we can omit this term and deduce that

eλt|w(t)|2 ≤ |w(0)|2 +
Lg

2γ − λ
(1− e(λ−2γ)t)‖φ− u∗‖2γ ,

whence (46) follows.
Finally, (47) can be deduced in the following way:

‖wt‖2γ = sup
θ≤0

e2γθ|w(t+ θ)|2

= max{ sup
θ∈(−∞,−t]

e2γθ|φ(t+ θ)− u∗|2, max
θ∈[−t,0]

e2γθ|w(t+ θ)|2}

= max{e−2γt‖φ− u∗‖2γ , max
θ∈[−t,0]

e2γθ|w(t+ θ)|2},

and the second term can be estimated using (46) and that e(2γ−λ)θ ≤ 1.
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