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Abstract

Multivalued semiflows generated by evolution equations without uniqueness sometimes satisfy a

semigroup set inclusion rather than equality because, for example, the concatentation of solutions

satisfying an energy inequality almost everywhere may not satisfy the energy inequality at the joining

time. Such multivalued semiflows are said to be non-strict and their attractors need only be negatively

semi-invariant. In this paper the problem of enveloping a non-strict multivalued dynamical system in a

strict one is analyzed and their attactors are compared. Two constructions are proposed. In the first,

the attainability set mapping is extending successively to be strict at the dyadic numbers, which

essentially means (in the case of the Navier-Stokes system) that the energy inequality is satisfied

piecewise on successively finer dyadic subintervals. The other deals directly with trajectories and

their concatenations, which are then used to define a strict multivalued dynamical system. The

first is shown to be applicable to the three-dimensional Navier-Stokes equations and the second to a

reaction-diffusion problem without unique solutions.
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1 Introduction

Differential equations without uniqueness and differential inclusions generate multivalued semigroups
under appropriate conditions ensuring the forwards existence of solutions, see, e.g., the classical references,
Roxin [17] and Szegö and Treccani [19]. The situation in some particular partial differential models in
applied sciences, such as the three-dimensional Navier-Stokes equations, is more complicated, since there
are different kinds of solutions that one can consider. With the Navier-Stokes equations one usually
restricts to weak solutions satisfying an energy inequality (it is, in fact, not known if there are weak
solutions that do not satisfy such an inequality), but such inequalities are usually satisfied only “almost
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surely”, so the concatenation of two weak solutions need not satisfy the energy inequality since it may not
be valid at the instant where they are to be joined. This leads to a semigroup property with an inclusion
Φ(t + s, x) ⊂ Φ(t,Φ(s, x)) rather than with a strict equality Φ(t + s, x) = Φ(t,Φ(s, x)) and a resulting
attractor A is only negatively semi-invariant, i.e., with A ⊂ Φ(t,A), rather than strictly invariant, i.e.,
A = Φ(t,A), so the property of being positively semi-invariant fails. A similar situation appears for
reaction-diffusion equations when we consider solutions which are regular in every interval of time of
the type [ε, T ] with ε > 0. The theory of such non-strict multivalued semiflows and their attractors is
developed in the paper Melnik and Valero [14], see also the monographs Kapustyan et al [9], Zgurovsky
et al [22] and [10, 12, 15].

The aim of this paper is to construct an “envelope” of a given non-strict multivalued semiflow, that is,
a strict multivalued semiflow containing the original non-strict multivalued semiflow. We give two main
constructions to reach our goal.

In the first one we consider a general multivalued non-strict semiflow Φ. The envelope will be built up
successively concatenating the images of Φ in a piecewise manner with switches at dyadic time instants
D̂n := {j2−n : j = 0, 1, 2, 3, · · · } for n = 1,2, · · · . We then interpret the classical attractor of this
envelope system as an enveloping attractor of the original system under all possible switching. There
are, however, technical difficulties that prevent us from realising our ultimate aim and we are forced to
make a number of modifications and compromises. The reasons for this are, nevertheless, interesting and
our results provide useful insights into the dynamics of non-strict multivalued semiflows. In particular,
we obtain first an envelope semiflow Φ(∞) which is strict at the dyadic points. However, this map has
not closed values in general, and then a global attractor cannot be obtained (the property of negatively
semi-invariance fails now). Taking a kind of closure of this map Φ(∞) we define a new non-strict semiflow
Φ

(∞)
. But, since it is close to a strict one, we can prove that its global attractor is weakly positively

invariant in the sense that for any initial data in the attractor there exists a Φ
(∞)

-trajectory lying in the
attractor for all positive times.

These results are suitable for the application to the 3D Navier-Stokes system. Roughly speaking, in
this application the envelope semiflow is constructed by concatenating weak solutions that satisfy the
energy inequality almost surely.

In the second construction we consider a semiflow generated by some set of functions satisfying the
translation property. By using a special type of concatenations for such functions we define a new set
of functions which satisfy not only the translation property, but the concatenation one as well. Hence,
this new set of functions generates a strict multivalued semiflow. Moreover, using an extra assumption
on this set we can prove that the semiflow possesses an invariant global attractor.

We apply this abstract theory to a multivalued semiflow generated by the regular solutions of a
reaction-diffusion equation. Unfortunately, we could not apply it to the Navier-Stokes system.

The paper is structured as follows. In Section 2 we recall some basic properties of multivalued
autonomous dynamical systems generated by multivalued semiflows (often called m-semiflows for short)
and attractors, emphasizing the different invariance properties of the attractor depending on whether the
m-semiflow is strict or not.

In Section 3 we introduce the idea of an envelope system coming from an abstract m-semiflow. This
construction is done step by step in several subsections, where we analyze the different properties of
the constructed objects that lead, in the end, to the envelope system and the corresponding envelope
attractor. The main result of this section shows the weak positive semi-invariance of the attractor.

In Section 4 the second approach is carried out. In this way, it is possible to obtain a strict envelope
with an invariant attractor.
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Finally, Section 5 is devoted to illustrate the applicability of our results in the two examples commented
above, the three-dimensional Navier-Stokes equations and a reaction-diffusion problem, which generate
non-strict semiflows. For the Navier-Stokes system we apply the first type of results, those given in
Section 3, obtaining a weakly positively semi-invariant attractor. The reaction-diffusion problem can be
handled within the framework developed in Section 4, leading to a strict invariant attractor.

2 Multivalued dynamical systems

Let X be a complete metric space with metric ρ and T be a nontrivial subgroup of the additive group
of the real numbers R, T+ := T ∩ R+ Denote by P (X) the set of all nonempty subsets of X and by
C (X) the set of all nonempty closed subsets. We say that a multi-valued map Φ : T+ ×X → P(X) is a
multivalued semi-flow if the following conditions are satisfied:

1. Φ (0, x) = {x} for all x ∈ X,

2. Φ (t1 + t2, x) ⊂ Φ (t1,Φ (t2, x)) for all t1, t2 ∈ T+ and x ∈ X,

where Φ (t, B) = ∪x∈BΦ (t, x) for B ⊂ X. The multivalued semiflow is called strict if Φ (t1 + t2, x) =
Φ (t1,Φ (t2, x)) for all t1, t2 ∈ T+ and x ∈ X.

We shall also say that the map Φ generates (or simply is) a multivalued dynamical system. Its
asymptotic behaviour is typically characterized by a global attractor.

Definition 1 A set A ⊂ X is called a global attractor for Φ if:

1. it is negatively semi-invariant, i.e., A ⊂ Φ (t,A) for all t ∈ T+;

2. it is attracting, i.e.,
distX (Φ (t, B) ,A)→ 0 as t→ +∞, (1)

for all bounded subsets B of X.

Here
distX (C,A) := sup

c∈C
distX (c, A) with distX (c, A) := inf

a∈A
‖c− a‖

is the Hausdorff semi-distance.
We note that, if the global attractor is bounded, then the global attractor A is minimal, i.e., for

any set Y satisfying (1) we have A ⊂ Y . In many applications the global attractor often has additional
properties such as compactness or strict invariance. In particular, we say that A is invariant if A =
Φ (t,A) for all t ≥ 0.

Definition 2 The multivalued map x→ Φ (t, x) is said to be upper semi-continuous if for any neighbor-
hood N of Φ (t, x) there exists δ > 0 such that Φ (t, y) ⊂ N when ρ (y, x) < δ.

If Φ is upper semi-continuous, then for any ε > 0 there exists δ > 0 such that

distX (Φ (t, x) ,Φ (t, y)) < ε if ρ (x, y) < δ.

The converse is true if Φ has compact values.
The following result was proved in [14, Theorem 4 and Remark 8]:
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Theorem 3 Let Φ be a multivalued semiflow such that Φ(t, ·) : X → C(X) is upper semi-continuous for
each t ∈ T+. If there exists a compact subset K of X such that

distX(Φ(t, B),K)→ 0 as t→∞, (2)

for any bounded subset B ⊂ X, then Φ has the global compact attractor A, which is the minimal closed
set attracting each bounded set B ⊂ X. Moreover,

A = ω (K) =
⋂
t≥0

⋃
τ≥t

Φ (τ,K) ⊂ K

and, if Φ is strict, then A is invariant.

Remark 4 The statement remains valid if the map Φ(t, ·) is not upper semi-continuous, but has a closed
graph (see [15]).

The set ω (K) is called the omega-limit set of K in the literature.

It is clear that, if Φ has an absorbing bounded set and if the map Φ (t, ·) is compact for some t > 0,
then a compact set K satisfying (2) exists.

3 Definition of the envelope systems

We now consider the continuous time case T = R and restrict attention, without loss of generality, to the
unit interval [0, 1]. Denote the n-dyadic fractions

Dn :=
{
j2−n : j = 0, · · · , 2n

}
and note that Dn ⊂ Dn+1 for each n ∈ N.

Let Φ be a (not necessarily strict) m-semiflow. Define Φ(0)(t, x) ≡ Φ(t, x) for all x ∈ X and t ∈ [0, 1].
Then for n = 1, 2, · · · define Φ(n)(t, x) by

Φ(n)(t, x) = Φ
(
t− j2−n,Φ(n−1)

(
j2−n, x

))
(3)

for t ∈ [j2−n, (j + 1)2−n] with j = 0, · · · , 2n − 1 and each x ∈ X. Thus, Φ(n)(t, x) ⊂ Φ(n+1)(t, x) for all
t ∈ [0, 1].

It is clear by the construction that, for each each n = 1, 2, · · · ,

Φ(n)(t+ s, x) ⊂ Φ(n)(s,Φ(n)(t, x))

for all s, t ∈ [0, 1] with s+ t ∈ [0, 1], in general, while

Φ(n)(tj + sj , x) = Φ(n)(sj ,Φ(n)(tj , x))

for all sj , tj ∈ Dn with sj + tj ∈ Dn.

We make the additional assumptions:

Assumption A1: Φ(t, x) is compact for all t ≥ 0 and x ∈ X.
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Assumption A2: x 7→ Φ(t, x) is upper semi-continuous in x for each t in R+.

Note that if Assumption A1 holds, then Assumption A2 is equivalent to

distX (Φ(t, x),Φ(t, x∗))→ 0 as x→ x∗.

If K is compact in X, then Φ(t,K) is compact by Assumptions A1 and A2 due to a lemma of Roxin
[17]. Moreover, Φ(t,Kj) → Φ(t,K) in the upper semi-continuous sense for compact sets such that Kj

→ K in X, i.e.,
distX (Φ(t,Kj),Φ(t,K))→ 0 as distX (Kj ,K)→ 0 (4)

for t in R+.

3.1 Properties of Φ(n)(t, x)

We prove further that the maps Φ(n) (t, ·) are upper semi-continuous and have compact values.

Proposition 5 Suppose that Φ satisfies Assumptions A1–A2. Then Φ(n)(t, x) is compact for all t ≥ 0
and all x ∈ X.

Proof. Let n = 1 and t ∈ [0, 1]. If t ∈ [0, 2−1], then Φ(1)(t, x) = Φ(t, x) and the result follows by the
assumptions. On the other hand if t ∈ [2−1, 1], then Φ(1)(t, x) = Φ(t − 2−1,Φ(2−1, x)) = Φ(t − 2−1,K)
with K = Φ(2−1, x) compact. Then the result follows by the assumptions.

Now let n ≥ 2. If t ∈ [0, 2−n], then Φ(n)(t, x) = Φ(t, x) and the result follows by the assumptions. On
the other hand if t ∈ [j2−n, (j + 1)2−n], then

Φ(n)(t, x) = Φ(t− j2−n,Φ(n−1)(j2−n, x)) = Φ(t− j2−n,K(n)
j )

with K
(n)
j = Φ(n−1)(j2−n, x) = Φ(2−n,K(n)

j−1), writing K(n)
j−1 = Φ(n−2)((j − 1)2−n, x), and K

(n)
0 = {x}.

Inductively, by the assumptions of Φ, we obtain that the sets K(n)
j are compact, and then that Φ(n)(t, x)

is compact.

Proposition 6 Suppose that Φ satisfies Assumptions A1–A2. Then the multivalued mapping x →
Φ(n)(t, x) is upper semi-continuous in x for each t in R+ and each n ∈ N.

Proof. Let n≥ 1 be fixed and let xk→ x∗. DefineK(n)
0,k := {xk} andK(n)

0 := {x∗}. Then distX(K(n)
0,k ,K

(n)
0 )

→ 0 as k → ∞. If t ∈ [0, 2−n], then

Φ(n)(t, xk) = Φ(t, xk) = Φ(t,K(n)
0,k )→ Φ(t,K(n)

0 ) = Φ(t, x∗) = Φ(n)(t, x∗)

as k → ∞ in the upper semi-continuous sense (4). In particular, for t = 2−n and k →∞,

K
(n)
1,k := Φ(2−n,K(n)

0,k )→ Φ(2−n,K(n)
0 ) =: K(n)

1 .

The proof proceeds inductively. Define

K
(n)
j,k := Φ(2−n,K(n)

j−1,k), K
(n)
j := Φ(2−n,K(n)

j−1).

Then for t ∈ [j2−n, (j + 1)2−n] and k →∞,

Φ(n)(t, xk) = Φ(t− j2−n,Φ(n−1)(j2−n, xk))

= Φ(t− j2−n,K(n)
j,k )

→ Φ(t− j2−n,K(n)
j ) = Φ(n)(t, x∗)
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and, in particular,
K

(n)
j+1,k := Φ((2−n,K(n)

j,k )→ Φ(2−n,K(n)
j ) =: K(n)

j+1.

In summary, Φ(n) is a non-strict multivalued dynamical system satisfying Assumptions A1–A2, which
is strict at the n-dyadic points.

3.2 Extensions of the maps Φ(n) to the whole of R+

The mappings Φ(n) will be extended to the whole of R+ with the following construction. Let Φ(n)
T denote

the counterpart of Φ(n) defined on the interval [0, T ] with the dyadics {j2−nT , j = 0, 1,. . ., 2n} instead of
on the interval [0, 1]. In this section we will use intervals of the form [0, 2m]. For notational convenience
we write Φ(n)

m instead of Φ(n)
2m . Note that Φ(m+n)

m (t, x) = Φ(m+n−1)
m−1 (t, x) if 0 ≤ t ≤ 2m−1 for each m ∈ N.

For n = 0, 1 we define the multivalued mappings Φ
(0)

(t, x), Φ
(1)

(t, x) for all x ∈ X and t ∈ R+ by

Φ
(0)

(t, x) = Φ(m)
m (t, x) if 0 ≤ t ≤ 2m, m = 0, 1, 2 · · ·

Φ
(1)

(t, x) = Φ(1+m)
m (t, x) if 0 ≤ t ≤ 2m, m = 0, 1, 2 · · ·

Similarly, for n = 2 we define the multivalued mapping Φ
(2)

(t, x) for all x ∈ X and t ∈ R+ by

Φ
(2)

(t, x) = Φ(2+m)
m (t, x) if 0 ≤ t ≤ 2m, m = 0, 1, 2 · · · ,

and for a general n ≥ 2 we define the multivalued mapping Φ
(n)

(t, x) for all x ∈ X and t ∈ R+ by

Φ
(n)

(t, x) = Φ(n+m)
m (t, x) if 0 ≤ t ≤ 2m, m = 0, 1, 2 · · ·

Since the maps Φ(n)
m are strict semiflows at the dyadic points, it is clear that

Φ
(n)

(t+ s, x) = Φ
(n)
(
t,Φ

(n)
(s, x)

)
,

for all s, t ∈ D̂n := {j2−n : j = 0, 1, 2, ...}.

Finally, we define Φ(∞)(t, x) by

Φ(∞)(t, x) :=
⋃
n∈N

Φ
(n)

(t, x).

This multivalued semiflow Φ(∞) is strict at D̂n, i.e., all 2n-dyadics in R+. Indeed, if s, t ∈ D̂m ⊂
D̂m+k, k = 1,2, . . ., then

Φ(∞)(t+ s, x) =
⋃
n

Φ
(n)

(t+ s, x)

=
⋃
n≥m

Φ
(n)

(t+ s, x)

=
⋃
n≥m

Φ
(n)
(
t,Φ

(n)
(s, x)

)

=
⋃
n≥m

Φ
(n)

t, ⋃
k≥n

Φ
(k)

(s, x)

 = Φ(∞)
(
t,Φ(∞)(s, x)

)
.

Here we have used the fact that

Φ
(n)
(
t,Φ

(k)
(s, x)

)
⊂ Φ

(k)
(
t,Φ

(k)
(s, x)

)
if k ≥ n.
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3.3 Global attractor for Φ
(n)

Suppose now that Φ(t, x) has a bounded, positively semi-invariant absorbing set B, i.e., Φ(t, B) ⊂ B for
all t ≥ 0 and for each bounded subset D of X there exists TD ≥ 0 such that Φ(t,D) ⊂ B for all t ≥ TD,

and that Φ (t, ·) is a compact operator if t > 0 (rather than being asymptotically compact in the sense of
Theorem 3).

If Assumptions A1-A2 hold, then Φ has a global compact attractor A(0) by Theorem 3 and, moreover,
it follows from Φ(t, B) ⊂ B that A(0) :=

⋂
t≥0 Φ(t, B) ⊂ B.

Consider a fixed but arbitrary n ∈ N. Assume that the set B is also absorbing for Φ
(n)

. Then, by
its construction, Φ

(n)
(t, B) ⊂ B for all t ≥ 0, Φ

(n)
(t, ·) is compact if t > 0 and it satisfies Assumptions

A1-A2 (by Propositions 5, 6), so
A(n) :=

⋂
t≥0

Φ
(n)

(t, B)

is a global compact attractor of Φ
(n)

.
In general, A(n) ⊆ Φ

(n)
(t,A(n)) for t ∈ R+, but the inclusion is strict for the n-dyadics, i.e.,

A(n) = Φ
(n)

(tj ,A(n))

for the tj ∈ D̂n. Indeed, this follows from

Φ
(n)

(tj ,A(n)) ⊂ Φ
(n)

(tj ,Φ
(n)

(τk,A(n))) = Φ
(n)

(tj + τk,A(n))→ A(n) as τk →∞,

where τk ∈ D̂n.
In particular,

A(n) ⊆ A(n+1) ⊆ B

for n = 0, 1, 2, . . ., which follows from

A(n) =
⋂
t≥0

Φ
(n)

(t, B) ⊆
⋂
t≥0

Φ
(n+1)

(t, B) = A(n+1)

since Φ
(n)

(t, x) ⊆ Φ
(n+1)

(t, x) for all x ∈ X, t ≥ 0 and n = 0, 1, 2, . . .

The set defined by

A(∞) :=
∞⋃
n=1

A(n) ⊆ B,

corresponds to the set of all possible limit points of the maps Φ
(n)

as Φ undergoes a countable number
of “switchings” with a fixed dyadic time step.

Proposition 7 Let Assumptions A1-A2 hold. Assume that Φ (t, ·) is a compact operator if t > 0 and
that B is a bounded positively invariant absorbing set for all Φ

(n)
, n = 0, 1, · · · . Then A(∞) is strictly

invariant for Φ(∞) on the dyadics.

Proof. We want to prove that
A(∞) = Φ(∞)

(
t,A(∞)

)
(5)

for all t ∈ D̂ = ∪nD̂n.
From a general identity we have

Φ(∞)
(
t,A(∞)

)
:= Φ(∞)

(
t,∪nA(n)

)
≡
⋃
n

Φ(∞)
(
t,A(n)

)
.
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Since the Φ(n)(t, x) and A(n) are increasing in n we have

A(n) ⊂ Φ
(n)
(
t,A(n)

)
⊂
⋃
k≥n

Φ
(k)
(
t,A(k)

)
⊂
⋃
k≥n

Φ(∞)
(
t,A(k)

)
⊂ Φ(∞)

(
t,A(∞)

)
for all t ≥ 0,

from which it follows that
∞⋃
n=1

A(n) =: A(∞) ⊆ Φ(∞)
(
t,A(∞)

)
for all t ≥ 0.

Now let t ∈ D̂n for some n ∈ N and let x ∈ Φ(∞)
(
t,A(∞)

)
. Then there exists an n∗ ≥ n such that

x ∈ Φ(n∗)
(
t,A(n∗)

)
⊂ Φ(∞)

(
t,A(∞)

)
. Moreover, t ∈ D̂n ⊂ D̂n∗ . Hence there exists an x∗ ∈ A(n∗) such

that x ∈ Φ(n∗) (t, x∗) ⊂ Φ(n∗)
(
t,A(n∗)

)
. Since A(n∗) is Φ(n∗)-invariant for all t ∈ D̂n∗ , we have x ∈

Φ(n∗)
(
t,A(n∗)

)
= A(n∗). Hence x ∈ A(∞). But x ∈ Φ(∞)

(
t,A(∞)

)
was chosen arbitrarily, so we have

Φ(∞)
(
t,A(∞)

)
⊂ A(∞).

Remark 8 The assumption that B is a bounded positively semi-invariant absorbing set for all Φ
(n)

is
quite natural in applications. We consider the usual case where X is a Banach space with norm ‖·‖ and
Φ satisfies the estimate

‖y‖2 ≤ ‖x‖2 e−αt +R2
0(1− e−αt), for all y ∈ Φ (t, x) and t ≥ 0. (6)

Then the set B = {x ∈ X : ‖x‖2 ≤ R2
0 + 1} is a bounded positively semi-invariant absorbing set for Φ.

We shall prove that

‖y‖2 ≤ ‖x‖2 e−αt +R2
0(1− e−αt), for all y ∈ Φ

(n)
(t, x) and t ≥ 0.

We proceed inductively. Assume that (6) holds for Φ
(n−1)

. Since any z ∈ Φ
(n)

(t, x) with j2−n < t ≤
(j + 1) 2−n satisfies

z ∈ Φ
(
t− j2−n,Φ(n−1)

(
j2−n, x

))
,

we have

‖z‖2 ≤ sup
y∈Φ(n−1)(j2−n,x)

‖y‖2 e−α(t−j2−n) +R2
0(1− e−α(t−j2−n))

≤ (‖x‖2 e−α(j2−n) +R2
0(1− e−α(j2−n)))e−α(t−j2−n) +R2

0(1− e−α(t−j2−n))

≤ ‖x‖2 e−αt +R2
0

(
1− e−αt

)
.

Hence, B is a bounded, positively semi-invariant absorbing set for all Φ
(n)

.

3.4 Independence of discretization interval

The envelope attractor A(∞) of Φ is independent of the basic time interval used for the dyadic partition.
Suppose we use [0, T ] instead of [0, 1], where T > 1, and let Φ(n)

T be the counterpart of the mapping
Φ(n) constructed over [0, T ] instead of [0, 1].
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Since 2−1 < 2−1T we have Φ
(n)

T (t, x) = Φ
(n)

(t, x) = Φ(t, x) for 0 ≤ t ≤ 2−n and

Φ
(n)

T (t, x) = Φ(t, x) ⊂ Φ
(n)

(t, x) for 2−n ≤ t ≤ 2−nT,

from which it follows that Φ
(n)

T (t, x) ⊂ Φ
(n)

(t, x) for all t ≥ 0.
Now let k be the first integer such that 2−n−kT ≤ 2−n. Reversing the roles of T and 1 in the previous

argument, we obtain
Φ

(n)
(t, x) ⊂ Φ

(n+k)

T (t, x) ⊂ Φ
(n+k)

(t, x)

for all t ≥ 0. This gives

Φ
(n)

T (t, x) ⊂ Φ
(n)

(t, x) ⊂ Φ
(n+k)

T (t, x) ⊂ Φ
(n+k)

(t, x) for all t ≥ 0, x ∈ X.

If T < 1, then a similar argument gives

Φ
(n)

(t, x) ⊂ Φ
(n)

T (t, x) ⊂ Φ
(n+k)

(t, x) ⊂ Φ
(n+k)

T (t, x) for all t ≥ 0, x ∈ X.

Since the attractors satisfy a similar subset relationship to the multivalued mappings, we have

A(n)
T ⊂ A(n) ⊂ A(n+k)

T ⊂ A(n+k)

in the first case and
A(n) ⊂ A(n)

T ⊂ A(n+k) ⊂ A(n+k)
T

in the second case. These give

A(∞) =
∞⋃
n=1

A(n) =
∞⋃
n=1

A(n)
T = A(∞)

T .

3.5 An envelope system: a first attempt

The (on dyadics) invariant set A(∞) = ∪∞n=1A(n) may not be an attractor of the envelope mapping Φ(∞).
Hence consider X̂ :=

∏∞
i=0X (countable cartesian product of X) with the product topology defined

by the metric

ρX̂ (x, y) =
∞∑
i=0

2−i
ρ (xi, yi)

1 + ρ (xi, yi)
.

This means that xn →x if xni → xi in X for every i ∈ N.
Further, we define the multivalued map Φ̂(∞)(x̂) on X̂ component-wise as the cartesian product of

the time-one maps Φ(n)(1, x) by

Φ̂(∞)(x̂) :=
(

Φ
(0)

(1, x0),Φ
(1)

(1, x1), . . . ,Φ
(n)

(1, xn), . . .
)
,

where x̂ := (x0, x1, . . . , xn, . . .).
Clearly, Â := A(0) × A(1) × · · · × A(n) × · · · is a strictly invariant compact global attractor for the

time-one map Φ̂(∞).
The set Â thus serves as an attractor for the dynamics with a countable number of “switches” with

a fixed time step in any finite interval at the corresponding dyadics, but the construction is somewhat
artificial.
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3.6 An envelope system in X

We consider the multivalued semiflows Φ(∞), Φ
(∞)

: X → P (X) given by

Φ(∞) (t, x) =
⋃
n

Φ
(n)

(t, x)

and
Φ

(∞)
(t, x) =

{
y : ∃xn → x, tn → t, yn ∈ Φ∞ (tn, xn) such that yn → y

}
.

We know, moreover, that Φ(∞) is strict on D̂ := ∪nD̂n.

Lemma 9 The map (t, x) 7→ Φ
(∞)

(t, x) has a closed graph.

Proof. Let zn ∈ Φ
(∞)

(tn, xn) be such that zn → z, tn → t and xn → x. Then there exist τn, un and ξn
∈ Φ∞ (τn, un) such that

ρ (ξn, zn) <
1
n
, ρ (τn, tn) <

1
n
, ρ (un, xn) <

1
n
.

Hence, ξn → z, un → x and τn → t, from which it follows that z ∈ Φ
(∞)

(t, x), i.e., the graph is closed.

If we assume that Φ
(∞)

has a compact attracting set K, then by Lemma 9, Theorem 3 and Remark
4 it possesses the global compact attractor

Ã =
⋂
t≥0

⋃
τ≥t

Φ
(∞)

(τ,K).

Also, for Φ(∞) the omega-limit set of the attracting set

A =
⋂
t≥0

⋃
τ≥t

Φ(∞) (τ,K)

is another compact attracting set.
We will prove that A = Ã. Since A ⊂ Ã is obvious, we need to check that Ã ⊂ A. Let y ∈ Ã. Then

y = lim yn, where yn ∈ Φ
(∞)

(tn, xn) and tn → ∞. Hence, there exist zn ∈ Φ(∞) (tn, un) with ρ (yn, zn)
< 1

n and ρ (un, xn) < 1
n . Then, it is clear that

ρ (y, zn) ≤ ρ (y, yn) + ρ (yn, zn)→ 0,

so that y ∈ A.
We note that A ⊂ Φ

(∞)
(t,A), since the global attractor is, by definition, negatively semi-invariant

for Φ
(∞)

.

3.7 Weak positive semi-invariance of the attractor

Let R ⊂ C(R+;X) be some set of functions such that the following conditions hold:

(K1) For any x ∈ X there exists ϕ ∈ R such that ϕ (0) = x.

(K2) ϕτ (·) = ϕ (·+ τ) ∈ R for any τ ≥ 0, ϕ (·) ∈ R (translation property).

10



Assume that the multivalued semiflow Φ is generated by R, that is,

y ∈ Φ (t, x) if ∃ ϕ ∈ R such that y = ϕ (t) , ϕ (0) = x. (7)

Any map ϕ ∈ R is called a trajectory of the multivalued semiflow Φ. It is easy to see that any ϕ ∈ R
satisfies

ϕ (t+ s) ∈ Φ (t, ϕ (s)) , ∀t, s ∈ R+. (8)

Any map ϕ ∈ C(R+;X) such that (8) holds is called a Φ-trajectory. Obviously, every trajectory is
a Φ-trajectory, but the converse is not necessarily true in general, although this is the case under extra
assumptions (see [8]).

A map ψ : R+ →X is called a continuous pseudo-trajectory of the multivalued semiflow Φ if it is
a concatenation of a countable number of trajectories, that is, if there exist a sequence of trajectories
ϕm ∈ R and a sequence of points 0 = t0 < t1 < t2 < · · · < tm < · · · such that

ψ(t) = ϕm (t− tm−1) for tm−1 ≤ t ≤ tm, m ∈ N.

(This requires that ϕm+1(0) = ϕm(tm − tm−1) for m ∈ N). We note that when the concatenation of
trajectories is again a trajectory (see condition (K3) below), a continuous pseudo-trajectory is also a
trajectory.

We assume the following condition:
Assumption A3: If {ψn(·)} is a sequence of continuous pseudo-trajectories with ψn(0) = xn and xn →
x, then there exists a subsequence such that

ψn (tn)→ φ (t) if tn → t,

where φ : R+ → X is a continuous function such that φ(0) = x.
Note that, in general, φ here need not be a pseudo-trajectory.

Lemma 10 Let Assumption A3 and (7) hold. Then Φ
(∞)

(t,K) is compact for any compact set K.

Proof. Let yn ∈ Φ
(∞)

(t, xn) with xn ∈ K. Then there exist τn, un and ξn ∈ Φ(∞) (τn, un) such that

ρ (ξn, yn) <
1
n
, ρ (τn, t) <

1
n
, ρ (un, xn) <

1
n
.

Hence, ξn ∈ Φ
(kn)

(τn, un) for some kn ∈ N. In view of the definition of Φ
(kn)

and (7), we have

ξn = ψn (τn) ,

where ψn (·) is a continuous pseudo-trajectory such that ψn (0) = un. In view of Assumption A3 and
Lemma 9, we also have, up to a subsequence,

xn → x, ψn (τn)→ φ (t) ∈ Φ
(∞)

(t, x) .

Thus, up to a subsequence, yn → φ(t) ∈ Φ
(∞)

(t, x) ⊂ Φ
(∞)

(t,K).

Lemma 11 Assume that Φ satisfies Assumption A3 and that (7) holds. Then the map (t, x) 7→ Φ
(∞)

(t, x)
is upper semi-continuous.
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Proof. If we assume that this is not true, then there exist a neighbourhood O of Φ
(∞)

(t, x) and sequences
tn → t, xn → x and yn ∈ Φ

(∞)
(tn, xn) such that yn 6∈ O. Hence, there are τn, un and ξn ∈ Φ(kn) (τn, un),

where kn ∈ N, such that

ρ (ξn, yn) <
1
n
, ρ (τn, t) <

1
n
, ρ (un, xn) <

1
n
.

In view of (7), we have
ξn = ψn (τn) ,

where ψn (·) is a continuous pseudo-trajectory such that ψn (0) = un. Assumption A3 and Lemma 9
imply that for some subsequence,

xn → x, ψn (τn)→ φ (t) ∈ Φ
(∞)

(t, x) .

Thus, yn → φ (t) ∈ Φ
(∞)

(t, x), which is a contradiction.

Corollary 12 Assume that Φ satisfies Assumption A3 and that (7) holds. Then the map (t, x) 7→
Φ(∞)(t, x) is upper semi-continuous.

Proof. Take an arbitrary (t, x) and a neighborhood O of Φ(∞)(t, x), which is also a neighborhood of
Φ

(∞)
(t, x). Then, as (t, x) 7→ Φ

(∞)
(t, x) is upper semi-continuous, there exists a δ > 0 such that if ρ(y, x)

< δ and ρ(τ, t) < δ, then
Φ(∞)(τ, y) ⊂ Φ

(∞)
(t, x) ⊂ O.

We have seen in Section 3.6 that if Φ
(∞)

has a compact attracting set B, then Φ
(∞)

possesses a global
compact attractor A, which is equal to the omega-limit set of B for the map Φ(∞) :

A =
⋂
t≥0

⋃
τ≥t

Φ(∞) (τ,B).

We say that the attractor A is weakly positively semi-invariant if for any y ∈ A there exists a Φ
(∞)

-
trajectory φ starting at y such that φ (t) ∈ A for all t ≥ 0, i.e., for each point in A there is at least one
Φ

(∞)
-trajectory that stays in A.

We prove that the attractor A is weakly positively semi-invariant for Φ
(∞)

. See [13] for strict multi-
valued semiflows.

Theorem 13 Assume that Φ
(∞)

has a compact attracting set B. Let (7) and Assumption A3 hold. Then
the multivalued semiflow Φ

(∞)
has a global compact attractor A, which is weakly positively semi-invariant,

that is, for any y ∈ A there exists a continuous function φ such that φ(0) = y and φ(t) ∈ A for all t ≥
0 with

φ (t+ s) ∈ Φ
(∞)

(t, φ(s)) for all t, s ≥ 0.

Proof. Let y ∈ A be arbitrary. We prove the existence of a Φ
(∞)

-trajectory φ of the multivalued semiflow
Φ

(∞)
such that φ(t) ∈ A for all t ≥ 0 and φ(0) = y.

Since y ∈ A, there exists a sequence ξn ∈ Φ(∞) (tn, B), where tn → ∞, such that ξn → y. Thus
ξn ∈ Φ

(kn)
(tn, B) for some kn ∈ N. By the definition of Φ

(kn)
there exists a kn-dyadic point τn ∈ D̂kn

with tn − 2−kn ≤ τn < tn such that ξn ∈ Φ (tn − τn, zn), where zn ∈ Φ
(kn−1)

(τn, B). Then there exists
a trajectory ηn of Φ such that ηn(0) = zn and ηn(tn − τn) = ξn. We choose a dyadic point tn ∈ D̂ =
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∪mD̂m with τn < tn < tn such that yn = ηn
(
tn − τn

)
satisfies ρ (yn, ξn) < 1

n . Hence, yn → y and yn ∈
Φ

(kn) (
tn, B

)
with tn →∞ and tn ∈ D̂.

We will construct a continuous pseudo-trajectory starting at yn in the following way: we take trajec-
tories ϕnj of Φ such that

ϕn1 (0) = yn, ϕn2 (0) = ϕn1
(
2−kn

)
, · · · , ϕnj (0) = ϕnj−1

(
2−kn

)
, · · · ,

and define
ψn(t) = ϕnj

(
t− (j − 1) 2−kn

)
if (j − 1)2−kn ≤ t ≤ j2−kn , j ∈ N.

From the definition of Φ
(kn)

it is clear that ψn(t) ∈ Φ
(kn)

(t, yn) for all t ≥ 0. By our assumptions
there exists a continuous function φ with φ(0) = y and a subsequence of ψn such that ψn(t) → φ(t) for
all t ≥ 0. Since Φ

(∞)
(t, ·) has closed graph by Lemma 9, we have φ(t) ∈ Φ

(∞)
(t, y) for all t ≥ 0.

Moreover, since Φ(∞) is strictly invariant at the dyadic points, it is clear that

ψn(t) ∈ Φ
(kn)

(t,Φ
(kn) (

tn, B
)
) ⊂ Φ(∞)

(
t,Φ(∞)

(
tn, B

))
= Φ(∞)(t+ tn, B)

for any t ∈ D̂. It follows that φ(t) ∈ A for all dyadic t and hence, by the continuity of φ, for all t ≥ 0.
On the other hand, using the fact that the maps Φ(∞) are strictly invariant at any dyadic points, it

is easy to check that
ψn(t+ s) ∈ Φ(∞) (t, ψn(s)) for all t, s ∈ D̂.

Hence, since the graph of (t, x) 7→ Φ
(∞)

(t, x) is closed, we have

φ(t+ s) ∈ Φ
(∞)

(t, φ(s)) for all t, s ∈ D̂,

as well as φ(t+ s) ∈ Φ
(∞)

(t, φ(s)) for all t, s ≥ 0.

4 A strict envelope with an invariant attractor

Let G ⊂ C(R+;X) be some set of functions. We remember that the space C(R+;X) is metrizable and
we can use the metric

ρC (ψ,ϕ) =
∞∑
i=0

2−i
supt∈[0,Ti] ρ (ϕ (t) , ψ (t))

1 + supt∈[0,Ti] ρ (ϕ (t) , ψ (t))
,

for some arbitrary sequence 0 < T0 < T1 < ... < Tk < ..., Tk →∞.
It is useful to consider the following conditions:

(K1) For any x ∈ X there exists ϕ ∈ G such that ϕ (0) = x.

(K2) ϕτ (·) = ϕ (·+ τ) ∈ G for any τ ≥ 0, ϕ (·) ∈ G (translation property).

(K3) Let ϕ1, ϕ2 ∈ G be such that ϕ2(0) = ϕ1(s), where s > 0. Then the function ϕ (·) , defined by

ϕ(t) =

{
ϕ1 (t) if 0 ≤ t ≤ s,
ϕ2 (t− s) if s ≤ t,

belongs to G (concatenation property).
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We define the multivalued map

y ∈ Φ (t, x) if ∃ ϕ ∈ R such that y = ϕ (t) , ϕ (0) = x.

It is straightforward to check that if G satisfies (K1)− (K2), then Φ is a multivalued semiflow.
Any map ϕ ∈ G is called a trajectory of the multivalued semiflow Φ. It is easy to see that any ϕ ∈ G

satisfies
ϕ (t+ s) ∈ Φ (t, ϕ (s)) , ∀t, s ∈ R+.

Let R ⊂ C(R+;X) be some set of functions satisfying (K1)− (K2). Let us consider also another set
of functions K ⊂ C(R+;X) such that R ⊂ K and satisfying (K1)− (K3).

The map ψ : R+ → X is called a generalized trajectory of R if there exist a sequence of trajectories
ϕm ∈ R and a sequence of points 0 < t1 < t2 < ... < tm < ... such that

ψ (t) =



ϕ1 (t) if 0 ≤ t < t1,

ϕ2 (t− t1) if t1 ≤ t < t2,
...

ϕm (t− tm−1) if tm−1 ≤ t < tm,
...

We note that a generalized trajectory is piecewise continuous, but not continuous in general. Let us
denote the set of generalized trajectories by Rg.

We shall define now an intermediate set of functions R ⊂ S ⊂ K. Namely:

S = {ϕ ∈ K : ∃ψn ∈ Rg such that sup
t∈[0,T ]

ρ(ψn (t) , ϕ (t))→ 0 ∀T > 0)}.

We notice that, although the maps ψn can be discontinuous, the limit function ϕ is continuous and,
moreover, ψn (t) converges to ϕ (t) uniformly in every interval [0, T ].

Lemma 14 The set S satisfies properties (K1)− (K3). The map Φ : R+ ×X → P(X) defined by

y ∈ Φ (t, x) if ∃ ϕ ∈ S such that y = ϕ (t) , ϕ (0) = x,

is a strict multivalued semiflow.
Moreover, assume that the set S satisfies the following additional property:

(K4) For any sequence {ϕn} ⊂ S such that ϕn (0)→ ϕ0 in X, there exists a subsequence ϕnk and ϕ ∈ K
such that

ϕnk → ϕ in C(R+;X).

Then the map (t, x) 7→ Φ (t, x) has closed graph and is upper semicontinuous.

Proof. Properties (K1)− (K2) are rather obvious.
Let us prove (K3). Let ϕ1, ϕ2 ∈ S be such that ϕ2(0) = ϕ1(s), where s > 0. Then the function ϕ (·) ,

defined by

ϕ(t) =

{
ϕ1 (t) if 0 ≤ t ≤ s,
ϕ2 (t− s) if s ≤ t,

(9)

belongs to K. We take the sequences ψjn ∈ Rg, j = 1, 2, such that ψjn → ϕj uniformly in every interval
[0, T ] and define the new sequence of generalized trajectories

ψn (t) =

{
ψ1
n (t) if 0 ≤ t < s,

ψ2
n (t− s) if s ≤ t.

14



We need to prove that ψn converges to ϕ uniformly in every interval [0, T ]. If T < s, the result is obvious.
Let T ≥ s. We take an arbitrary sequence tn → t0 ≤ T . We will show that ψn (tn)→ ϕ (t0). If t0 6= s, this
is evident. Let tn → s. We split the sequence tn into two subsequences tnj , tnk such that ψ(tnj ) = ψ1

n

(
tnj
)

and ψ(tnk) = ψ2
n (tnk − s). Since ψ1

n

(
tnj
)
→ ϕ1 (s) = ϕ (s) and ψ2

n (tnk − s)→ ϕ2(0) = ϕ (s), the result
follows. As ϕ (t) is a continuous function, the uniform convergence is proved. Hence, ψn → ϕ uniformly
in every interval [0, T ] and ϕ ∈ S.

Property (K3) implies that Φ is a strict multivalued semiflow. Indeed, let y ∈ Φ
(
t2,Φ (t1, x)

)
. Then

y = ϕ2 (t2) and ϕ2 (t2) = ϕ1 (t1), where ϕ1, ϕ2 ∈ S and ϕ2 (0) = ϕ1 (t1), ϕ1 (0) = x. The concatenation
of ϕ1, ϕ2, defined by (9) with s = t1, belong to S, and then y = ϕ (t1 + t2) ∈ Φ (t1 + t2, x) .

Finally, we shall prove that the map (t, x) 7→ Φ (t, x) has closed graph and is upper semicontinuous.
Let tn → t, xn → x and yn → y, where yn ∈ Φ (tn, xn). Then yn = ϕn (tn), where ϕn ∈ S. By (K4), up
to a subsequence ϕn → ϕ ∈ K in C(R+;X) and ϕ (0) = x. Also, by the definition of the set S, we can
choose ψn ∈ Rg such that

ρC (ψn, ϕn) <
1
n
.

Here, we have used the metric of the space C(R+;X), no matter that ψn are just piecewise continuous.
Thus, for any ε > 0 there exists N (ε) such that

ρC (ψn, ϕ) ≤ ρC (ψn, ϕn) + ρC (ϕn, ϕ) ≤ 1
n

+
ε

2
≤ ε if n ≥ N.

It follows that ψn → ϕ uniformly in every interval [0, T ] and then ϕ ∈ S. Hence, y = ϕ (t) ∈ Φ (t, x) .
Therefore, (t, x) 7→ Φ (t, x) has closed graph.

Now, if we assume that the map is not upper semicontinuous, there would exist a neighborhood O of
Φ (t, x) and sequences tn → t, xn → x and yn ∈ Φ (tn, xn) such that yn 6∈ O. Arguing in the same way
as before we obtain that, up to a subsequence, yn → y ∈ Φ (t, x), which is a contradiction.

Lemma 14 and Theorem 3 imply the following result.

Theorem 15 Assume that Φ has a compact attracting set B. Let (K4) hold for the set S. Then the
strict multivalued semiflow Φ possesses a global compact attractor A, which is invariant.

5 Applications

This section is devoted to examples that illustrate the previous theoretical results. Namely, we deal
with two problems where uniqueness of solutions is unknown or false, specifically, the three-dimensional
Navier-Stokes equations and a reaction-diffusion problem. We observe that these equations generate
non-strict semiflows.

5.1 Application to the 3D Navier-Stokes equations

Let Ω be a bounded open subset of R3 with smooth enough boundary and, for a given ν > 0, consider
the three dimensional Navier-Stokes system

∂u

∂t
− ν∆u+ (u · ∇)u = −∇p+ f,

div u = 0, u|∂Ω = 0, u (0) = u0.

(10)

15



We define the usual function spaces

V = {u ∈ (C∞0 (Ω))3 : div u = 0}, H = V(L2(Ω))3

, V = V(H1
0 (Ω))3

,

where H and V are separable Hilbert spaces (here A
X

denotes closure of A in the space X). We denote
by (·, ·), ‖·‖ and ((·, ·)), ‖·‖V := ‖∇·‖ the inner product and norm in H and V , respectively. With an
abuse of notation, ‖·‖ also stand for the norm in

(
L2 (Ω)

)3. In addition, we identify H and its dual H∗

and denote by 〈·, ·〉 the pairing between V and V ∗. Finally, we write Hw for the space H endowed with
the weak topology.

Let A = −P∆ be the Stokes operator with Dirichlet boundary conditions, where P is the Helmholtz
projection. We also consider the fractional power spaces

V 2α = D(Aα) = {u ∈ H :
∞∑
i=1

λ2α
i |(u, ei)|

2
<∞}, α ≥ 0,

where 0 < λ1 ≤ λ2 ≤ · · · and {e1, e2, · · · } are the eigenvalues and the eigenfunctions of A, respectively.
Note that V 0 = H and V 1 = V . In addition, we denote by V −2α the dual space of V 2α and the norms in
V 2α and V −2α will be denoted by ‖·‖V 2α and ‖·‖V −2α , respectively, while 〈·, ·〉2α will denote the pairing
between V −2α and V 2α. It is well known that V α ⊂ V β for α > β with a dense and compact embedding,
while V 2α ⊂

(
H2α (Ω)

)3 with a continuous embedding.
For u, v, w ∈ V we write

b(u, v, w) :=
∫
Ω

3∑
i,j=1

ui
∂vj
∂xi

wj dx,

where b is a trilinear continuous form on V and b(u, v, v) = 0 if u ∈ V and v ∈
(
H1

0 (Ω)
)3. As usual, for

u, v ∈ V we denote by B (u, v) the element of V ∗ defined by 〈B (u, v) , w〉 = b(u, v, w) for all w ∈ V .
Finally, we assume that f ∈ H. Then it is well known [20] that for any u0 ∈ H there exists at least

one globally defined weak solution u (·) of (10) satisfying the energy inequality

V (u (t)) ≤ V (u (s)) for all t ≥ s for a.a. s > 0 and for s = 0, (11)

where

V (u (t)) :=
1
2
‖u (t)‖2 + ν

∫ t

0

‖u‖2V dτ −
∫ t

0

(f, u (τ)) dτ.

In fact, every globally defined weak solution satisfies u ∈ C[0, T ], Hw) for all T > 0.
For every weak solution satisfying (11) we have

‖u (t)‖2 ≤ e−νλ1(t−s)
(
‖u (s)‖2 − 1

ν2λ2
1

‖f‖2
)

+
1

ν2λ2
1

‖f‖2 , (12)

for all t ≥ s, a.a. s > 0 and s = 0. This is proved in [5, Proposition 7.3] (see also [9, Lemma 5.20]).
We observe that inequality (12) allows to obtain a bounded absorbing set for all the solutions satisfying

it. However, such a choice of solutions has a problem. If we define the translation uτ (t) = u (t+ τ),
then property (11) fails for u (·) at s = 0. Thus, property (K2) is not true. Also, for the associated
multivalued map G (t, ·) the key property G (t+ s, x) ⊂ G(t, G (s, x)) fails (see [4, Section 4.3.1] for more
details).

Due to this problem we consider all weak solutions satisfying the weaker energy inequality

V (u(t)) ≤ V (u(s)) for all t ≥ s a.a. s > 0. (13)
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Lemma 16 Every weak solution such that (13) holds satisfies

F (u(t)) ≤ F (u(s)) for all t ≥ s and a.a. s > 0, (14)

where
F (u(t)) =

(
‖u(t)‖2 −R2

0

)
eδt, δ = λ1ν,R

2
0 =

1
ν2λ2

1

‖f‖2 .

If (13) is satisfied also for s = 0, then (14) holds also at s = 0.

Proof. First, note that (14) is satisfied for the same s as (13). Choose an arbitrary s > 0 for which (13)
holds and define u(τ) := u(τ+·) for τ ≥ 0. Since u(·) is a weak solution satisfying (11), it follows from
(12) that

F (u(τ + s)) = F (u(τ)) ≤ F (u(0)) = F (u(s)) for all τ ≥ 0.

The second part is a direct consequence of (12).

Define BR = {u ∈ H : ‖u‖ ≤ R} and for any R ≥ R0 define the multivalued map ΦR : R+ × BR →
P (BR) by

ΦR(t, u0) :=

{
u(t) : u(·) is a globally defined weak solution with u(0) = u0

such that (13) holds and ‖u(r)‖ ≤ R for all r ≥ 0

}
. (15)

In view of (12) there exists at least one weak solution such that the estimate F (u(t)) ≤ F (u(s)) holds
for all t ≥ s for a.a. s ∈ (0, t) and for s = 0. Thus, for ‖u0‖ ≤ R we have

‖u(r)‖2 ≤ e−δr(‖u0‖2 −R2
0) +R2

0 ≤ R2 for all r ≥ 0,

which means that the map ΦR has non-empty values and is correctly defined.
We consider then the phase space XR = BR endowed with the induced weak topology of the space Hw.

This space is a compact metrizable space. Thus it is obvious that ΦR possesses a compact, positively
semi-invariant absorbing set. It is shown in [9, Theorem 5.32] (see also [12]) that the map ΦR is a
multivalued semiflow satisfying Assumptions A1-A2 and that it has a global compact attractor A(0)

R . It
is also proved there that A(0)

R = A(0)
R0

for all R ≥ R0.
We are, however, not able to prove the inclusion ΦR(t,ΦR(r, u0)) ⊂ ΦR(t+ r, u0). The reason is that

the concatenation of two solutions satisfying (13), i.e.,

θ(p) =

 u(p), p ∈ [0, r],

v(p), p ∈ [r, t+ r],

need not satisfy condition (13). Hence, we have, in general, a non-strict multivalued semiflow.
Let R be the set of all weak solutions as given in (15). Then conditions (K1)− (K2) hold for it and

R generates the multivalued semiflow ΦR, so that (7) holds.
We can then define the multivalued semiflows Φ

(n)

R : XR → P (XR) given in Section 3, which are
strict at the n-dyadics D̂n. It follows from the results in that section that Φ

(n)

R has the global compact
attractor A(n)

R (which are strictly invariant at the n-dyadics D̂n) and that

A(0)
R ⊂ A

(1)
R ⊂ · · · ⊂ A

(n)
R ⊂ · · ·

Also, A(∞)
R = ∪nA(n)

R is strictly invariant for the multivalued semiflow Φ(∞)
R = ∪nΦ

(n)

R at the dyadics D̂

= ∪nD̂n. However, A(∞)
R is not an attractor for Φ(∞)

R , but Â := A(0)
R ×A

(1)
R ×· · ·×A

(n)
R ×· · · is a strictly

invariant attractor for the time-one map Φ̂(∞)
R : X̂R → P

(
X̂R

)
,where X̂R :=

∏∞
i=0XR, given by

Φ̂(∞)(x̂) :=
(

Φ(0)(1, x0),Φ(1)(1, x1), . . . ,Φ(n)(1, xn), · · · ,
)
,
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where x̂ := (x0, x1, . . . , xn, · · · ).
In addition, we consider the multivalued semiflow Φ

(∞)

R : XR → P (XR) as defined in Section 3.6.

Theorem 17 For each R ≥ R0 the multivalued semiflow Φ
(∞)

R has a compact global attractor AR, which
is weakly positively semi-invariant.

Proof. Since Φ
(∞)

has a compact absorbing set and (7) holds, in order to apply Theorem 13 we need to
check only that condition Assumption A3 is satisfied.

Consider a sequence of pseudo-trajectories ψn(·) with ψ(0) = xn ∈ XR and xn → x in XR. Then

ψn (t) = unm
(
t− tnm−1

)
if tnm−1 ≤ t ≤ tnm, m ∈ N,

where the unj (·) are globally defined weak solutions of (10) satisfying the properties given in (15). For
any T > 0 this sequence is bounded in L∞ (0, T ;H), which is obvious as unj (t) ∈ XR for all t ≥ 0, so∥∥unj (t)

∥∥ ≤ R. Hence, for some subsequence,

ψn → ψ weakly star in L∞ (0, T ;H) .

We can derive a uniform estimate of
dψn
dt

in the space L∞(0, T ;V −3). First note that

‖Aunm (τ)‖V −2 = sup
‖w‖2≤1

|〈Aunm (τ) , w〉2| = sup
‖w‖2≤1

|(unm (τ) , Aw)| (16)

≤ ‖unm (τ)‖ ≤ R for all τ ∈ [0, tnm − tnm−1].

On the other hand, for u ∈ V we obtain

‖B (u, u)‖V −3 = sup
‖w‖3≤1

|b (u, u, w)| = sup
‖w‖3≤1

|b (u,w, u)|

≤ sup
‖w‖3≤1

∣∣∣∣∣∣
∫
Ω

3∑
i,j=1

ui
∂wj
∂xi

ujdx

∣∣∣∣∣∣ .
Since w ∈ V 3 ⊂ (H3 (Ω))3, we have

∂wj
∂xi

∈ H2 (Ω). Thus by the continuity of the embedding H2 (Ω) ⊂
L∞(Ω), we have ∫

Ω

∣∣∣∣ui ∂wj∂xi
uj

∣∣∣∣ dx ≤ ∥∥∥∥∂wj∂xi

∥∥∥∥
L∞
‖ui‖L2 ‖uj‖L2 ,

so there exists a constant K > 0 such that ‖B (u, u)‖V −3 ≤ K ‖u‖2. Hence, for a.a. τ ∈ (0, tnm − tnm−1),
we have

‖B (unm(τ), unm(τ))‖V −3 ≤ KR2. (17)

The equality
dunm
dt

= −νAunm −B (unm, u
u
m) + f

in V ∗, the inequalities (16), (17) and the continuous embeddings H ⊂ V −2 ⊂ V −3 imply that∥∥∥∥dunm (τ)
dt

∥∥∥∥
V −3

≤ νC1R+KR2 + C2 ‖f‖ for a.a. τ ∈ (0, tnm − tnm−1).

Since ψn are absolutely continuous on [0, T ] with values in V −3, it follows that
dψn
dt

is bounded in the

space L∞(0, T ;V −3) for any T > 0.
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Thus, the functions ψn with values in the space V −3 are equicontinuous. On the other hand, the
compact embedding H ⊂ V −3 implies that ψn(t) is relatively compact in V −3 for any t. Then the Ascoli-
Arzelà theorem implies that ψn(·) → ψ(·) in C

(
[0, T ], V −3

)
. Since ψn (tn) is bounded in H, a standard

contradiction argument implies that for any tn → t0 with tn, t0 ∈ [0, T ], we have

ψn (tn)→ ψ(t0) weakly in H. (18)

By a diagonal argument we obtain a subsequence such that these convergences are true for all T > 0.
Also, since ψ ∈ L∞ (0, T ;H) and ψ ∈ C

(
[0, T ], V −3

)
, Lemma 1.4 in [20, p.262] implies that ψ(·) ∈

C([0, T ], Hw), for any T > 0. Therefore, Assumption A3 holds.
Theorem 13 implies then that the multivalued semiflow Φ

(∞)

R has a compact global attractor AR,
which is weakly positively semi-invariant (as well as being negatively semi-invariant).

5.2 Application to a reaction-diffusion problem

In this section we consider a reaction-diffusion problem where uniqueness of solution is unknown, and
the results above can be applied.

More exactly, consider the following problem (see [8] for a more involved description of the problem).
Let be given a bounded domain Ω ⊂ R3 with smooth enough boundary ∂Ω, functions h ∈ L2(Ω),
f ∈ C(R), and positive constants C1, C2, α such that

|f(s)| ≤ C1(1 + |s|3) and f(s)s ≥ α|s|4 − C2, (19)

for all s ∈ R. The norm in L2 (Ω) wil be denoted by ‖·‖.
Now, we consider the problem{

ut −∆u+ f(u) = h, x ∈ Ω, t > 0,
u|∂Ω = 0.

(20)

Definition 18 A function u ∈ L2
loc(0,+∞;H1

0 (Ω)) ∩ L4
loc(0,+∞;L4(Ω)) is called a weak solution to

(20) on (0,+∞) if it satisfies the equation in D′(0,+∞;H−1(Ω)), i.e., for all T > 0, v ∈ H1
0 (Ω), and

η ∈ C∞0 (0, T ) it holds

−
∫ T

0

(u, v)ηtdt+
∫ T

0

[(u, v)H1
0 (Ω) + (f(u), v)− (h, v)]ηdt = 0,

where we are denoting by (·, ·) the scalar product in L2 or the duality action between Lp and its conjugate
Lq, and (·, ·)H1

0 (Ω) = (∇·,∇·).

It is well known (e.g. cf. [6, page 284] or [1, Theorem 2]) that a weak solution must also satisfy
u ∈ C([0,+∞);L2(Ω)), and that for any u0 ∈ L2(Ω) there exists at least one weak solution (possibly
non-unique) to (20) with u(0) = u0.

According to the previous theoretical results given in Section 4, we will denote

K = {u(·) : u(·) is a weak solution to (20)}.

It is not difficult to see that K satisfies (K1)–(K3) (see [22, Lemma 5.8]). Let us recall the following
results.
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Lemma 19 [9, Theorem 3.11, page 49] Let {un} be a sequence of weak solutions of (20), and un(0)→ u0

weakly in L2(Ω). Then there exists a subsequence (denoted again by un), and a weak solution of (20) u
satisfying u(0) = u0, such that un(tn) → u(t0) weakly in L2(Ω) for any sequence of times {tn} ⊂ [0, T ]
with tn → t0 ∈ [0, T ]. Also, if t0 ∈ (0, T ), then un(tn)→ u(t0) strongly in L2(Ω).
Moreover, if un(0)→ u0 strongly in L2(Ω), then un(tn)→ u0 strongly in L2(Ω) for tn ↘ 0.

Theorem 20 [11, Theorem 10] (see also [9] or [22]) The set K generates a strict multivalued semiflow
G : R+ × L2(Ω)→ P (L2(Ω)), which possesses a global compact invariant attractor AK.

However, following [8, Section 5], in which the behaviour of more regular solutions is described, we
may consider the following concept.

Definition 21 A function u ∈ L2
loc(0,+∞;H1

0 (Ω)) ∩ L4
loc(0,+∞;L4(Ω)) is called a regular solution to

(20) on (0,+∞) if it is a weak solution that additionally satisfies

u ∈ L∞(ε, T ;H1
0 (Ω)), ut ∈ L2(ε, T ;L2(Ω)) ∀ 0 < ε < T. (21)

Observe that if u is a regular solution to (20), then, from (19), f(u) ∈ L2((ε, T ) × Ω) and u ∈
L2(ε, T ;D(−∆)) for all 0 < ε < T, and so u ∈ C((0,+∞);H1

0 (Ω)).
Actually, the existence of regular solutions to (20), even with initial datum u0 ∈ L2(Ω), is guaranteed

by [8, Theorem 22].
Let us denote

R = {u(·) : u(·) is a regular solution to (20)}.

It is not difficult to see that R satisfies (K1)–(K2). However, due to (21), (K3) does not hold. It is
proved in [8] that R generates a multivalued semiflow Φ̃ having a global attractor AR, which is compact
in H1

0 (Ω) (but it is not proved to be invariant).
Following the notation introduced in Section 4, we consider the set of generalized trajectories Rg, and

S = {ψ ∈ K : ∃{ψn} ⊂ Rg such that sup
t∈[0,T ]

‖ψn (t)− ϕ (t)‖ → 0 ∀T > 0}.

Roughly speaking, S is the set of weak solutions that can be approximated by a generalized concatenation
of regular ones.

Theorem 22 Under the above conditions, S satisfies assumptions (K1)–(K4). In particular, the map
Φ̄ : [0,+∞)× L2(Ω)→ P(L2(Ω)), defined by

Φ̄(t, x) = {y = ϕ(t) : ϕ ∈ S, ϕ(0) = x},

is a strict multivalued semiflow.
Moreover, it possesses a global compact invariant attractor A. Moreover, AR ⊂ A ⊂ AK.

Proof. It follows immediately from Lemma 19 (note that the weak solutions u are continuous) that
(K4) holds. In fact, in this case the property is stronger than (K4), as the convergence is true for every
sequence in K, and not only in S.

The fact that Φ̄ is a strict semiflow is an immediate consequence of (K1)-(K3) and Lemma 14. Also,
by (K4) and Lemma 14 again we obtain that the map (t, x) 7→ Φ (t, x) has closed graph and is upper
semicontinuous.

On the other hand, in view of Theorem 20 and the obvious inclusion Φ̄(t, x) ⊂ G (t, x) we have

dist
(
Φ̄(t, B),AK

)
≤ dist (G(t, B),AK)→ 0, as t→ +∞,
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for every bounded set B. Hence, AK is a compact attracting set for Φ̄.
Therefore, the existence and properties of the global attractor follows from Theorem 3. The inclusion

AR ⊂ A ⊂ AK follows from Φ̃ ⊂ Φ̄ ⊂ Φ.
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[4] Balibrea, F., Caraballo, T., Kloeden, P.E., Valero, J.: Recent developments in dynamical systems:
three perspectives. Internat. J. Bifur. Chaos, 20, 2591-1636 (2010)

[5] Ball, J.M.: Continuity properties and global attractors of generalized semiflows and the Navier-
Stokes equations, in Mechanics: from Theory to Computation. Springer-Verlag, New York, 447–474
(2000)

[6] Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics. American Math-
ematical Society, Providence, RI (2002)

[7] Filippov, A.F.: Classical solutions of differential equations with multi-valued right-hand sides. SIAM
J. Control Optim. 5, 609–621 (1967)

[8] Kapustyan, O.V., Kasyanov, P.O., Valero, J.: Structure and regularity of the global attractor of a
reaction-diffusion equation with non-smooth nonlinear term. Preprint Arxiv-1209.2010v1 (2012)

[9] Kapustyan, A.V., Melnik, V.S., Valero, J., Yasinsky, V.V.: Global Attractors of Multi-valued Dy-
namical Systems and Evolution Equations without Uniqueness. Naukova Dumka, Kyiv (2008)

[10] Kapustyan, A.V., Valero, J.: Attractors of multivalued semiflows generated by differential inclusions
and their approximations. Abstr. Appl. Anal. 5, 33–46 (2000)

[11] Kapustyan, A.V., Valero, J.: On the connectedness and asymptotic behaviour of solutions of reaction-
diffusion systems. J. Math. Anal. Appl. 323, 614–633 (2006)

[12] Kapustyan, A.V., Valero, J.: Weak and strong attractors for the 3D Navier-Stokes system. J. Dif-
ferential Equations, 240, 249–278 (2007)

21
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