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Abstract

We consider the three-dimensional Navier–Stokes equations on a periodic do-
main. We give a simple proof of the local existence of solutions in Ḣ1/2, and
show that the existence of a regular solution on a bounded time interval [0, T ] is
stable with respect to perturbations of the initial data in Ḣ1/2 and perturbations
of the forcing function in L2(0, T ;H−1/2). This forms the key ingredient in a
proof that the assumption of regularity for all initial conditions in any given ball
in Ḣ1 can be verified computationally in a finite time, strengthening a previous
result of Robinson & Sadowski (Asymptotic Analysis 59 (2008) 39–50).
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1. Introduction

The existence and uniqueness of regular solutions for the three-dimensional
incompressible Navier–Stokes equations

ut −∆u+ (u · ∇)u+∇p = 0, ∇ · u = 0 (1)

is a long-standing and well known open problem.
Much research recently has focused on the question of existence of solutions

in critical spaces, i.e. those in which the norm is invariant under the rescaling

u(x, t) 7→ uλ(x, t) = λu(λx, λ2t),
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since for the equation on the whole of R3, uλ(x, t) still solves (1) whenever
u(x, t) does. The Lebesgue space L3(R3) is a critical space, as is Ḣ1/2(R3)
[the space whose norm is given by

∫
R3 |k||û(k)|2 dk]. Generally, one has global

existence for small data in such spaces (L3 in [18]; H1/2 in [5, 12]; BMO−1 in
[16]) and in some cases local existence for all data (L3 in [18]; H1/2 in [6, 12]);
the book by Lemarié-Rieusset [17] treats this subject in some detail. But there
are some negative results, showing that arbitrarily small initial data can produce
arbitrarily large solutions in an arbitrarily short time in the spaces Ḃ−1,∞∞ [3]
and in B−1∞,∞ ∩ Ḣα for any α < 1/2 [8].

In this paper we consider various problems connected with the local existence
of solutions for (possibly large) data in Ḣ1/2(Q), where Q = [0, 2π]3 is a periodic
domain in R3 and the dot denotes zero average over Q. To begin with we
present a simplified version of the local existence argument from [6], which
forms the basis of our subsequent analysis. We then show that the property of
a solution belonging to L∞(0, T ; Ḣ1/2) ∩ L2(0, T ; Ḣ3/2) is ‘stable’ with respect
to perturbations of the initial condition in Ḣ1/2, and of the forcing function in
L2(0, T ;H−1/2).

We then use this stability result as part of a proof that it is possible to ‘verify
numerically’ the statement that every initial condition in BḢ1(0, R) gives rise
to a strong solution that exists for all t ≥ 0: we give an explicit algorithm that
will verify this statement, if true, in a finite time. This generalises and clarifies
an earlier result of Robinson & Sadowski [20].

Throughout the paper by a ‘solution’ we mean a ‘Leray–Hopf solution’, i.e. a
weak solution that satisfies the energy inequality. By a result of Serrin [22] (see
also Galdi [14]), if u is a weak solution with u ∈ Lr(0, T ;Ls) with 3/s+ 2/r = 1
and 3 ≤ s ≤ ∞ then it is unique in the class of Leray–Hopf solutions. In
particular, if u ∈ L4(0, T ;L6) then u is unique; this will imply that the solutions
we obtain in Theorem 1 are unique.

2. Preliminaries

We study solutions of (1) using periodic boundary conditions on the cubic
domain Q = [0, 2π]3, and enforce zero total momentum, i.e.

∫
Q
u = 0.

We write Ż3 = Z3 \ {0, 0, 0}, let Ḣs be the subspace of the Sobolev space
Hs consisting of divergence-free, zero-average, periodic real functions,

Ḣs =

u =
∑
k∈Ż3

ûkeik·x : ûk = û−k,
∑
|k|2s|ûk|2 <∞, k · ûk = 0

 ,

and equip Ḣs with the norm

‖u‖2s =
∑
|k|2s|ûk|2.

We write L̇2 for Ḣ0, and ‖u‖ for ‖u‖0.
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Let Π be the orthogonal projection from L2 onto L̇2 (divergence-free L2),
and denote by A the Stokes operator on Q, that is

A = −Π∆.

In the periodic case Au = −∆Πu, so Au = −∆u for u ∈ Ḣs. We make
continual use of the equivalence of the norms ‖u‖s = ‖u‖Ḣs and ‖As/2u‖ for

u ∈ Ḣs = D(As/2), and denote by H−1/2 the dual space of Ḣ1/2. We denote
by {λj}∞j=1 the (positive) eigenvalues of A, arranged with λn+1 ≥ λn; these
correspond to orthonormal eigenfunctions {wj}∞j=1, and we denote by Pn the
orthogonal projection onto the span of the first n of these eigenfunctions,

Pnu :=

n∑
j=1

(u,wj)wj . (2)

We denote by B(u, u) the bilinear form defined by

B(u, u) = Π[(u · ∇)u].

The Navier–Stokes equations can then be written as

ut +Au+B(u, u) = 0.

For further details see [9], or Chapter 2 of [6].
From here on, c denotes an absolute constant which may change from line

to line.

3. Local existence for initial data in Ḣ1/2

In this section we follow the argument in [6], giving a simplified version of
their proof of the local existence of strong solutions for initial data in Ḣ1/2 (their
Theorem 3.4). While the result guaranteeing global existence for small data is
well known [5, 12], this proof of the local existence result based on relatively
simple energy estimates appears to be much less familiar. It is striking that the
local existence time depends only on properties of solutions of the heat equation
(see (4)); such results hold in more general critical spaces, see for example the
nice review article by Cannone [4]. (While the operator appearing in (3) is the
Stokes operator A, note that the initial condition u0 is assumed to be divergence
free; as remarked in the previous Section, Au = −∆u when u ∈ Ḣs, so (3) is
indeed the heat equation.)

Theorem 1. There exists an absolute constant ε > 0 such that if u0 ∈ Ḣ1/2

and v(t) is the solution of the heat equation

vt +Av = 0 v(0) = u0, (3)

whenever ∫ T∗

0

‖v(s)‖41 ds < ε (4)
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the equation
ut +Au+B(u, u) = 0 u(0) = u0

has a (unique) solution u ∈ L∞(0, T ∗; Ḣ1/2) ∩ L2(0, T ∗; Ḣ3/2).

Proof. Consider the Galerkin approximants of u, i.e. the solutions uN of

(uN )t +AuN + PNB(uN , uN ) = 0.

Standard arguments (see [9], [19]) guarantee that a subsequence of the uN con-
verges to a function u ∈ L∞(0, T ;L2) ∩ L2(0, T ; Ḣ1) that is a weak solution of
the Navier–Stokes equations. To show that when u0 ∈ Ḣ1/2 we in fact have
u ∈ L∞(0, T ∗; Ḣ1/2) ∩ L2(0, T ∗; Ḣ3/2) we make some further estimates on the
Galerkin approximants in order to show that uN (for N sufficiently large) is
uniformly bounded in the appropriate spaces for some T ∗ > 0.

Decompose uN as v + wN , where v and wN are the solutions of

vt +Av = 0, v(0) = u0,

and
(wN )t +AwN + PNB(uN , uN ) = 0, wN (0) = 0.

Then, taking the inner product of the v equation with A1/2v we obtain

1

2

d

dt
‖v‖21/2 + ‖v‖23/2 ≤ 0,

whence
1

2
‖v(t)‖21/2 +

∫ t

0

‖v(s)‖23/2 ds ≤ 1

2
‖u0‖21/2,

and so in particular ‖v(·)‖23/2 is integrable.

From the equation for wN , taking the inner product with A1/2wN and using
the inequality

|(B(u, v), A1/2w)| ≤ c‖u‖L6‖Dv‖L2‖A1/2w‖L3 ≤ c‖u‖1‖v‖1‖w‖3/2 (5)

yields

1

2

d

dt
‖wN‖21/2 + ‖wN‖23/2 ≤ c‖uN‖

2
1‖wN‖3/2

≤ c(‖v‖21 + ‖wN‖21)‖wN‖3/2.

Interpolate ‖wN‖21 ≤ ‖wN‖1/2‖wN‖3/2 and use Young’s inequality to obtain

d

dt
‖wN‖21/2 + ‖wN‖23/2 ≤ c‖wN‖1/2‖wN‖

2
3/2 + c‖v‖41.

Now integrate:

‖wN (t)‖21/2 +

∫ t

0

‖wN (s)‖23/2 ds

≤ c
{∫ t

0

‖wN (s)‖23/2 ds

}{
sup

0≤s≤t
‖wN (s)‖1/2

}
+ c

∫ t

0

‖v(s)‖41 ds.
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And so, after using Young’s inequality,

sup
0≤s≤t

‖wN (s)‖21/2 +

∫ t

0

‖wN (s)‖23/2 ds ≤ 1

2
sup

0≤s≤t
‖wN (s)‖21/2

+
k

2

(∫ t

0

‖wN (s)‖23/2 ds

)2

+ c

∫ t

0

‖v(s)‖41 ds,

whence

1

2
sup

0≤s≤t
‖wN (s)‖21/2 +

∫ t

0

‖wN (s)‖23/2 ds

≤ k

2

(∫ t

0

‖wN (s)‖23/2 ds

)2

+ c

∫ t

0

‖v(s)‖41 ds, (6)

so

sup
0≤s≤t

‖wN (s)‖21/2 + 2

∫ t

0

‖wN (s)‖23/2 ds

≤ k
(∫ t

0

‖wN (s)‖23/2 ds

)2

+ 2c

∫ t

0

‖v(s)‖41 ds. (7)

Now for each N sufficiently large let us set

TN = sup

{
T ≥ 0 :

∫ T

0

‖wN (s)‖23/2 ds ≤ 1

k

}
,

so that for all t ∈ [0, TN ]∫ t

0

‖wN (s)‖23/2 ds ≤ 2c

∫ t

0

‖v(s)‖41 ds.

Choose T ∗ sufficiently small that

2c

∫ T∗

0

‖v(s)‖41 ds ≤ 1

2k
, (8)

which is possible since v ∈ L2(0, T ; Ḣ3/2); it follows that TN ≥ T ∗ for all N .
We therefore obtain a uniform bound on wN , and hence on uN , in the space

L2(0, T ∗; Ḣ3/2). This in turn (via (7)) provides a uniform bound on uN in
L∞(0, T ∗; Ḣ1/2). These limits are preserved as we let N →∞, so that the limit
satisfies u ∈ L∞(0, T ∗; Ḣ1/2) ∩ L2(0, T ∗; Ḣ3/2).

To prove uniqueness of solutions, we use the interpolation

‖u‖41 ≤ ‖u‖21/2‖u‖
2
3/2, (9)

which implies that u ∈ L4(0, T ∗; Ḣ1). Since it follows that u ∈ L4(0, T ;L6) we
can use the uniqueness criterion of Serrin [22] to deduce that u is unique (in the
class of Leray–Hopf weak solutions).
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We now show that solutions are more regular if the initial condition and
forcing allow.

Theorem 2. Let u be the solution of the Navier–Stokes equations with an initial
condition u0 ∈ Ḣ1 and the external forcing f ∈ L2(0, T ;L2). If

u ∈ L∞(0, T ; Ḣ1/2) ∩ L2(0, T ; Ḣ3/2)

then u is the strong solution of the Navier–Stokes equations:

u ∈ L∞(0, T ; Ḣ1) ∩ L2(0, T ; Ḣ2).

Proof. Take the inner product of the Navier–Stokes equations with Au and
estimate

1

2

d

dt
‖u‖21 + ‖u‖22 = −(B(u, u), Au) + (f,Au)

≤ ‖u‖L6‖∇u‖L3‖Au‖L2 + ‖f‖‖Au‖

≤ c‖u‖1‖∇u‖1/2L2 ‖∇u‖1/2L6 ‖u‖2 + ‖f‖‖Au‖

≤ c‖u‖3/21 ‖u‖
3/2
2 + ‖f‖‖Au‖,

whence (using Young’s inequality)

d

dt
‖u‖21 + ‖u‖22 ≤ c‖u‖61 + ‖f‖2. (10)

Dropping the ‖u‖22 term and integrating yields

‖u(t)‖21 ≤
[
‖u0‖21 +

∫ t

0

‖f‖2
]

exp

(∫ t

0

c‖u(s)‖41 ds

)
,

From the fact that u ∈ L∞(0, T ; Ḣ1) ∩ L2(0, T ; Ḣ2) it follows by interpolation
(as in (9)) that u ∈ L4(0, T ; Ḣ1) and hence u ∈ L∞(0, T ; Ḣ1). The bound in
L2(0, T ; Ḣ2) follows by integrating (10) a second time, retaining the ‖u‖22.

4. Stability of local existence in Ḣ1/2

We now show that the property of local existence is stable under pertur-
bations to the initial data in Ḣ1/2 (cf. [13]). This is a simplified version of
Theorem 3.6 in [6] for a finite time interval, and in a form particularly suited
to the application in the following section. For more general stability results in
larger critical spaces see [15]. Note that the constant c in the theorem depends
only on the constant c in (5), which in turn depends only on the constants in
various Sobolev embedding results, and which can be determined explicitly.

Theorem 3. There exists a constant c > 0 such that the following holds. Sup-
pose that for a given u0 ∈ Ḣ1/2 and f ∈ L2(0, T ;H−1/2) there exists a solution
u ∈ L∞(0, T ; Ḣ1/2) ∩ L2(0, T ; Ḣ3/2) of

ut +Au+B(u, u) = f(t), u(0) = u0.
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Then for every v0 ∈ Ḣ1/2 and g ∈ L2(0, T ;H−1/2) with

‖u0 − v0‖1/2 +

∫ T

0

‖f(t)− g(t)‖2−1/2 dt < c exp

{
−c
∫ T

0

‖u(s)‖41 ds

}
, (11)

the solution v of

vt +Av +B(v, v) = g(t), v(0) = v0,

exists on [0, T ] with v ∈ L∞(0, T ; Ḣ1/2) ∩ L2(0, T ; Ḣ3/2) and satisfies

sup
0≤t≤T

‖u(t)− v(t)‖21/2 +

∫ T

0

‖u(s)− v(s)‖23/2 ≤ c. (12)

Proof. If w = u− v then

dw

dt
+Aw +B(u,w) +B(w, u)−B(w,w) = f − g.

Take the inner product with A1/2w:

1

2

d

dt
‖w‖21/2 + ‖w‖23/2 ≤ |(B(u,w), A1/2w)|+ |(B(w, u), A1/2w)|

+ |(B(w,w), A1/2w)|+ ‖f − g‖−1/2‖w‖3/2

and use (5) again to obtain

1

2

d

dt
‖w‖21/2 +‖w‖23/2 ≤ 2c‖u‖1‖w‖1‖w‖3/2 + c‖w‖21‖w‖3/2 +‖f −g‖−1/2‖w‖3/2.

Therefore

d

dt
‖w‖21/2 + ‖w‖23/2 ≤ ‖f − g‖

2
−1/2 + c‖u‖21‖w‖21 + c‖w‖41

≤ ‖f − g‖2−1/2 + c‖u‖21‖w‖1/2‖w‖3/2 + c‖w‖21/2‖w‖
2
3/2,

and so finally

d

dt
‖w‖21/2 +

1

2
‖w‖23/2 ≤ ‖f − g‖

2
−1/2 + c‖u‖41‖w‖21/2 + c‖w‖21/2‖w‖

2
3/2.

Set

E(t) = exp

{
−c
∫ t

0

‖u(s)‖41 ds

}
;

then

d

dt

{
E(t)‖w(t)‖21/2

}
+

1

2
‖w‖23/2E(t) ≤ ‖f − g‖2−1/2E(t) + c‖w‖21/2‖w‖

2
3/2E(t),

and so

d

dt

{
E(t)‖w(t)‖21/2

}
+ ‖w‖23/2E(t)

{
1

2
− c‖w(t)‖21/2

}
≤ ‖f − g‖2−1/2E(t).

7



Thus while E(t)‖w‖21/2 ≤ cE(t)/4 (i.e. while ‖w(t)‖21/2 ≤ c/4) we get

d

dt

{
E(t)‖w‖21/2

}
+

1

4
E(t)‖w(t)‖23/2 ≤ ‖f − g‖

2
−1/2E(t),

and so while ‖w‖21/2 ≤ c/4,

E(t)‖w(t)‖21/2 +
1

4

∫ t

0

‖w(s)‖23/2E(s) ds

≤ ‖w(0)‖21/2 +

∫ t

0

‖f − g‖2−1/2E(s) ds,

which yields

‖w(t)‖21/2 +
1

4

∫ t

0

‖w(s)‖23/2 ds ≤ 1

E(t)
‖w(0)‖21/2 +

1

E(t)

∫ t

0

‖f − g‖2−1/2 ds.

On the time interval [0, T ] where u ∈ L∞(0, T ; Ḣ1/2) ∩ L2(0, T ; Ḣ3/2),

1

E(t)
≤ 1

E(T )
<∞.

Now choose ‖w0‖1/2 and
∫ T
0
‖f − g‖2−1/2 ds sufficiently small to guarantee that

‖w(t)‖21/2 +
1

4

∫ t

0

‖w(s)‖23/2 ds ≤ c/4

for all t ∈ [0, T ], i.e.

‖w0‖21/2 +

∫ T

0

‖f(s)− g(s)‖2−1/2 ds <
c

4
E(T ) =

c

4
exp

{
−c
∫ T

0

‖u(s)‖41 ds

}
.

Then w remains bounded in L∞(0, T ; Ḣ1/2) ∩ L2(0, T ; Ḣ3/2), i.e. v is bounded
in the same space and the theorem follows.

5. Numerical verification of regularity

Our aim in this section is to show that one can ‘verify numerically’ the
existence of global regular solutions of the unforced Navier–Stokes equations

ut +Au+B(u, u) = 0 u(0) = u0 (13)

for every initial condition u0 ∈ B1(0, R). (We use the notation Bs(0, R) to
denote the open ball of radius R, centred at 0, in the space Ḣs; Bs(0, R) denotes
its closure.)

Definition 4. We will say that a property Q can be verified numerically if,
assuming that Q holds, there is an explicit numerical algorithm that will verify
the veracity of Q in a finite time.

Note that the definition is clearly one of theory rather than practice. Of
course, if one could ‘numerically verify’ both Q and ‘not Q’ then this would be
very powerful (even in theory).
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5.1. Numerical verification for a single initial condition

Given a single, fixed, initial condition u0 ∈ Ḣ1, one can ask if it is possible
to ‘verify numerically’ the fact that u0 gives rise to a strong solution on [0, T ].
To answer this question we will use an idea due to Chernyshenko (see [7], where
one can find a similar result in Ḣs for s ≥ 3; a result in Ḣ1 can be found in
[11]) and consider Galerkin approximations of the nth order:

dun
dt

+Aun + PnB(un, un) = 0 un(0) = Pnu0,

where Pn is the projection operator defined in (2). The above equation can also
be written in the form

dun
dt

+Aun +B(un, un) = QnB(un, un) un(0) = Pnu0,

where Qn = I−Pn. Hence un is an exact solution of the Navier–Stokes equations
with the force g = QnB(un, un). Therefore the following a posteriori test for
regularity is an easy consequence of the robustness result of Theorem 3 and
Theorem 2. It is important to notice that the absolute constant c in (5) depends
only on the domain of the flow and on the constants from the Sobolev embedding
theorem, and can be computed explicitly for any domain Q = [0, L]3.

Theorem 5. Let un be a Galerkin approximation of the solution u arising from
an initial condition u0 ∈ Ḣ1 and let c be a constant from Theorem 3. If

‖u0 − un(0)‖1/2+

∫ T

0

‖QnB(un, un)‖2−1/2 ds (14)

< %(v) := c exp

(
−c
∫ T

0

‖un(s)‖41 ds

)

then the solution of
ut +Au+B(u, u) = 0 (15)

exists on [0, T ] with u ∈ L∞(0, T ; Ḣ1) ∩ L2(0, T ; Ḣ2).

To make sure that the above condition can really be used to check regularity
of the solution u we need to check that both terms on the left-hand side converge
to zero as n tends to infinity and that the right-hand side is bounded below by
the same constant for all n.

The lower bound on the right-hand side is a consequence of the following the-
orem of Dashti & Robinson [11] (again after [7]) which ensures the convergence
of Galerkin approximations to strong solutions (i.e. if one assumes regularity
then these approximations converge).

Theorem 6. Suppose that u0 ∈ Ḣ1 gives rise to a strong solution u of (15),
i.e. u ∈ L∞(0, T ; Ḣ1) ∩ L2(0, T ; Ḣ2). Then the solutions un of the Galerkin
approximations converge strongly to u in both L∞(0, T ; Ḣ1) and in L2(0, T ; Ḣ2).
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We now consider the left-hand side. The convergence of ‖u0 − un(0)‖1/2
to zero is obvious, but the convergence of

∫ T
0
‖QnB(un, un)‖2−1/2 ds requires

more argumentation, and is a consequence of the following (somewhat stronger)
result.

Lemma 7. Under the assumptions of Theorem 6 we have

QnB(un, un)→ 0 in L2(0, T ;L2) (16)

and in consequence

QnB(un, un)→ 0 in L2(0, T ;H−1/2). (17)

Proof. First we show that B(un, un)→ B(u, u) in L2(0, T ;L2). Indeed, setting
bn = B(un, un) and b = B(u, u) we have∫ T

0

‖bn − b‖2 ≤
∫ T

0

∫
Q

|(u · ∇)u− (un · ∇)un|2

≤c
∫ T

0

∫
Q

|u− un|2|Du|2 + |un|2|Dun −Du|2

≤c
∫ T

0

‖u− un‖2L∞(Q)‖Dun‖
2 + c

∫ T

0

‖un‖2L∞(Q)‖Dun −Du‖
2

≤c
∫ T

0

‖Au−Aun‖2‖Dun‖2 + c

∫ T

0

‖Aun‖2‖Dun −Du‖2

≤c‖un‖2L∞(0,T ;Ḣ1)
‖u− un‖2L2(0,T ;Ḣ2)

+ c‖un − u‖2L∞(0,T ;Ḣ1)
‖un‖2L2(0,T ;Ḣ2)

.

From Theorem 6 follows that Bn → B in L2(0, T ;L2). Now observe that∫ T

0

‖Qnbn‖2 =

∫ T

0

‖Qn(bn− b) +Qnb‖2 ≤ 2

∫ T

0

‖Qn(b− bn)‖2 + 2

∫ T

0

‖Qnb‖2.

We have ∫ T

0

‖Qn(b− bn)‖2 ≤
∫ T

0

‖(b− bn)‖2 → 0.

Moreover, for all s ∈ [0, T ] we have ‖Qnb(s)‖2 ≤ ‖b(s)‖2 and since b(s) ∈ L2(Q)
for almost all s we have ‖Qnb(s)‖ → 0 for almost all s. From the Lebesgue

Dominated Convergence Theorem it follows that
∫ T
0
‖Qnb‖2 → 0 and hence∫ T

0
‖Qnbn‖2 → 0 as required.

It is now clear that we can numerically verify regularity of the solution arising
from a single initial condition in Ḣ1.
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5.2. Numerical verification for a set of initial conditions

To prove that the ‘numerical verification of regularity’ for all initial data in
a given ball in Ḣ1 is possible, it is enough to show that the following algorithm
stops in a final time.

STEP 1. Find a T > 0 such that all solutions arising

from initial conditions u0 in the ball B1(0, R) are

regular after time T . Then choose a small δ > 0.

?

STEP 2. For a given δ > 0 find N(δ) initial conditions

u01, u02, ..., u0N such that

B1(0, R) ⊂
⋃N
k=1B1/2(u0k, δ/2).

?

STEP 3. For each u0k compute a Galerkin solution

un(k) of sufficiently high order n(k) such that

‖Qn(k)B(un(k), un(k))‖2L2(0,T ;L2) <
1
2δ.

?

STEP 4. For each un(k) compute the number

%(un(k)) := c exp
(
−c
∫ T
0
‖un(k)(s)‖41 ds

)
Is %(un(k)) > δ for all k = 1, 2, ..., N?

?

6

NO

Set

δ := δ/2

�

YES

Every initial condition u0 in the ball B1(0, R)

gives rise to the strong solution

of the unforced Navier–Stokes equations.

Step 1 can be easily done as was shown in Section 4 in [20].
Step 2 is also easy as the following lemma shows (the proof of this result

follows exactly that of Lemma 5.5 in [20]).

Lemma 8. Given δ > 0 there exist Nδ and Mδ such that every u0 ∈ B1(0, R)
can be approximated to within δ in the Ḣ1/2-norm by elements of the set

U(δ) := {v0 =

Nδ∑
j=1

αjwj , with αj = aj2
−Mδ , aj ∈ Z; ‖v0‖1 ≤ R},

11



where the {wj} are the eigenfunctions of the Stokes operator, arranged in ‘in-
creasing order’ (Awj = λjwj, λj+1 ≥ λj).

The fact that Step 3 can be done follows from Lemma 7.
Finally we need to show that the loop in the algorithm is not infinite and

that - under the assumption that the hypothesis we verify is true - we must
end up with sufficiently small δ for which the answer to the question in Step 4
is ‘YES’. The arguments are quite delicate; the following result, after [10] and
Theorem 12.10 in [23] (cf. Proposition 5.3) is crucial (the result in this form,
along with a sketch of the proof, can be found in [20]).

Lemma 9. Suppose that for every u0 ∈ B1(0, R) there exists a strong solution
u ∈ L∞(0, T ;H1)∩L2(0, T ;H2) of the unforced Navier–Stokes equations. Then
there exists an M = M(R) such that for any such solution,

‖u‖L∞(0,T ;Ḣ1) + ‖u‖L2(0,T ;Ḣ2) ≤M. (18)

The following corollary is immediate, but the key deduction is the uniform
lower bound on %(u) in (20).

Corollary 10. Under the assumptions of Lemma 9 we also have

‖u‖L∞(0,T ;Ḣ1/2) ≤M, ‖u‖L2(0,T ;Ḣ3/2) ≤M, (19)

and hence
%(u) > ce−cTM

4

:= C1 (20)

Now we need to obtain a lower bound similar to (20) for all solutions v of the
Navier–Stokes equations with initial condition v0 ∈ B̄1(0, R) and an additional
non-zero force that is small in L2(0, T ;L2).

Lemma 11. Let C1 be the constant from (20) and assume that all initial con-
ditions in the ball B1(0, R) give rise to strong solutions of the unforced Navier–
Stokes equations. Then for any f ∈ L2(0, T ;L2) with∫ T

0

‖f(t)‖2 dt ≤ C1

and for any initial condition v0 ∈ B(0, R1) the Leray–Hopf solution of the
Navier–Stokes equations with initial condition v0 and the forcing f is strong:
v ∈ L∞(0, T ; Ḣ1)∩L2(0, T ; Ḣ2). Moreover, there exists a constant C2 > 0 such
that for all such solutions v we have

%(v) > C2. (21)

Proof. From Lemma 9 it follows that for any solution u of the unforced Navier–
Stokes equations arising from an initial condition u0 ∈ B1(0, R) we have

%(u) := c exp

(
−c
∫ T

0

‖u(s)‖41 ds

)
> C1.

12



Then if ‖f‖2L2(0,T ;L2) < C1 and u0 ∈ B1(0, R) we have

‖u0 − v0‖H1/2 +

∫ T

0

‖f − g‖2H−1/2 < C1 < %(u)

for v0 = u0 and the force g ≡ 0. Thus the condition (11) is satisfied and
so choosing u0 = v0 gives rise to a solution v of the Navier–Stokes equations
with the forcing f such that v ∈ L∞(0, T ; Ḣ1/2) ∩ L2(0, T ; Ḣ3/2). Since f ∈
L2(0, T ;L2) it follows from Theorem 2 that we also have v ∈ L∞(0, T ; Ḣ1) ∩
L2(0, T ; Ḣ2).

We will now prove the lower bound (21). From Corollary 10 it follows that
for any solution u of the unforced Navier–Stokes equations

ut +Au+B(u, u) = 0, u(0) = u0

where u0 ∈ B1(0, R) we have

‖u‖L∞(0,T ;Ḣ1/2) ≤M and ‖u‖L2(0,T ;Ḣ3/2) ≤M.

Let now v be the solution of

vt +Av +B(v, v) = f, v(0) = u0

From the estimate (12) of Theorem 3 it follows that

‖v − u‖L∞(0,T ;Ḣ1/2) + ‖v − u‖L2(0,T ;Ḣ3/2) ≤ c.

Hence there exists a constant C3 such that

‖v‖L∞(0,T ;Ḣ1/2) + ‖v‖L2(0,T ;Ḣ3/2) < C3.

for all such solutions v. The lower bound (21) follows easily from interpolation
of the norm in Ḣ1 between the norms Ḣ1/2 and Ḣ3/2.

We emphasise that although neither the constant C1 nor C2 can be computed
explicitly, we can still guarantee that our algorithm must terminate. Indeed, as
δ → 0 we must have at some point 2δ < min(C1, C2). Once this happens we
will obtain

%(un(k)) > C2 > δ, for all k = 1, 2, ..., N.

In consequence the answer to the question in Step 4 must be ‘YES’. Therefore
we proved the following theorem.

Theorem 12. For any fixed R > 0, the following statement can be verified
numerically: every initial condition u0 ∈ B1(0, R) gives rise to a unique solution
u of (13) that for any T > 0 satisfies u ∈ L∞(0, T ; Ḣ1) ∩ L2(0, T ; Ḣ2).

13



Conclusion

We have presented a simple proof of local existence of solutions for initial
data in Ḣ1/2, using the splitting of solutions into two parts, one satisfying the
linear heat equation, and simple energy estimates. Such a splitting technique
is standard, but is usually used in conjunction with the semigroup approach,
as in [12] or [17]; for a proof of local existence in L3 using splitting and energy
estimates see [21].

The robustness of regularity for such solution has enabled us to give an
explicit algorithm to verify the regularity of the equations for any ball of initial
data in Ḣ1. Numerical implementation of this scheme for the Navier–Stokes
system may well prove too expensive, but there are simpler systems which share
many of the mathematical difficulties of the Navier–Stokes equations for which
such methods may be more feasible: Blömker & Nolde are currently applying
these ideas to a scalar model of surface growth (see [1, 2] for analytical studies)
with encouraging preliminary results.
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