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Abstract

In this paper, we prove some regularity results for pullback attractors of a non-
autonomous reaction-diffusion model with dynamical boundary conditions considered in
[4]. Under certain assumptions of the nonlinear terms we show a regularity result for
the unique solution of the problem. We establish a general result about boundedness of
invariant sets for the associated evolution process in the norm of the domain of the spatial
linear operator appearing in the equation. As a consequence, we deduce that the pullback
attractors of the model are bounded in this domain norm. After that, under additional
assumptions, some exponential growth results for pullback attractors when time goes to
−∞ are proved.
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1 Introduction and setting of the problem

PDE problems with dynamic boundary conditions have the main characteristic of involving
the time derivative of the unknown on the boundary of the domain. Although not so often
considered in the literature as other boundary conditions (Dirichlet, Neumann, or Robin),
dynamic boundary conditions also appear in a wide variety of applied problems.

Its use dates back at least to 1901 in the context of heat transfer in a solid in contact with
a moving fluid (see the pioneering work by Peddie [36] in 1901, by March and Weaver [34] in
1928, by Peek [37] in 1929, by Langer [28] in 1932, and by Bauer [7] in 1953).

From the second half of the 20th century until today, they have been studied in many
disciplines. Continuing with the topic of heat transfer between a domain and its boundary, see
the more recent references [45, 33] and other variants, like heat transfer in two phase medium
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(e.g., cf. [39, 43, 11]; see [22] for a detailed study of a Cahn-Hilliard problem, a natural
higher order generalization of the reaction-diffusion equation); problems in fluid dynamics (cf.
[21] among others); diffusion phenomena (see [14]), in particular, diffusion in porous medium
(e.g., cf. [20], beside the already cited reference [37]); probability theory and mathematical
modeling in Biology (cf. [19]); thermoelasticity (cf. [26]); thermal energy storage devices (cf.
[1]); chemical engineering (cf. [29]); semiconductor devices (cf. [42]), etcetera (see [8] for
more problems and classical references). A detailed physical interpretation of this boundary
condition can be found in [25]. For a more abstract point of view the reader is referred to
[16, 5, 6] among others.

The study of evolution equations with dynamic boundary conditions from the mathematical
point of view dates back to 1961, when J. L. Lions [31] treated such equations and gave weak
solutions by means of the variational method. Since then, this issue has been investigated
to a large extent. In particular, the reaction-diffusion equation with dynamical boundary
conditions arises in hydrodynamics and the heat transfer theory (see the above references),
and this problem has strong background in mathematical physics. While some of the initial
studies were devoted to existence results (e.g., cf. [27, 16, 17, 5, 38]), after that, the borderline
(critical exponents) where blow-up phenomena appears or well-posedness holds was analyzed
(e.g., cf. [6]), and some others papers are focused directly on well-posedness and the long-
time behaviour under suitable dissipativity assumptions, including equilibria, description of
convergence, different type of attractors, attracting w.r.t. several metrics, etcetera (cf. [18, 46,
23, 11, 47, 48, 4]).

By last in this brief introduction, let us recall that regularity issues concerning problems
with dynamical boundary conditions have also been intensively analyzed. This is due to several
facts. For instance, regularity properties allow to manage in different ways proofs of existence
with different techniques, not only variational, but also by fixed points, using density argu-
ments combined with approximating problems. Regularity features are also useful to deal with
different flows in several phase-spaces, to improve attraction properties, and to implement more
sophisticated numeric schemes. For example, regularity properties of several problems with
dynamical boundary conditions, even of higher order, as wave equations and Cahn-Hilliard
equations, with dynamic boundary conditions, have been addressed in [40, 41, 30].

Let us introduce the model we will be involved with in this paper. Let Ω ⊂ RN be a
bounded domain with smooth enough boundary.

We consider the non-autonomous reaction-diffusion equation

∂u

∂t
−∆u+ κu+ f(u) = h(t) in Ω× (τ,∞), (1)

with the dynamical boundary condition

∂u

∂t
+
∂u

∂~n
+ g(u) = ρ(t) on ∂Ω× (τ,∞), (2)

where ~n is the outer normal to ∂Ω, and the initial conditions

u(x, τ) = uτ (x) for x ∈ Ω, (3)

u(x, τ) = ψτ (x) for x ∈ ∂Ω, (4)

where τ ∈ R is an initial time, and κ > 0, uτ ∈ L2(Ω), ψτ ∈ L2(∂Ω), h ∈ L2
loc(R;L2(Ω)), and

ρ ∈ L2
loc(R;L2(∂Ω)) are given.
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We also assume that the functions f and g ∈ C(R) are given, and satisfy that there exist
constants p ≥ 2, q ≥ 2, α1 > 0, α2 > 0, β > 0, and l > 0, such that

α1|s|p − β ≤ f(s)s ≤ α2|s|p + β ∀s ∈ R,

α1|s|q − β ≤ g(s)s ≤ α2|s|q + β ∀s ∈ R,

(f(s)− f(r))(s− r) ≥ −l(s− r)2 and (g(s)− g(r))(s− r) ≥ −l(s− r)2 ∀s, r ∈ R.

It is easy to deduce from above that there exists a constant C > 0 such that

|f(s)| ≤ C(1 + |s|p−1), |g(s)| ≤ C(1 + |s|q−1)

for all s ∈ R.
Let us denote

F(s) :=
∫ s

0

f(r)dr and G(s) :=
∫ s

0

g(r)dr.

Then, there exist positive constants α̃1, α̃2, and β̃ such that

α̃1|s|p − β̃ ≤ F(s) ≤ α̃2|s|p + β̃ ∀s ∈ R, (5)

and
α̃1|s|q − β̃ ≤ G(s) ≤ α̃2|s|q + β̃ ∀s ∈ R. (6)

As we mentioned before, this model arises in different areas, especially in population growth,
chemical reactions and heat conduction. For instance, in the case of a heat transfer in a
medium Ω, the equation (1) is a heat equation including an internal heat source. On the other
hand, the heat flow from inside Ω to the boundary is − ∂u∂~n . The accumulation rate of heat
on the boundary is ∂u

∂t so that, if we consider a source term on ∂Ω, we have the dynamical
boundary condition (2) (see the works by Constantin and Escher [13] and by Goldstein [25] for
more details). Since the source terms may represent engineering or physic devices during the
procedure (or noise perturbations, as in [12]), it is natural that they are time-depending, to
indicate the time where they are acting with different intensities. This makes sense to consider
some of the approaches of non-autonomous dynamical systems, as will be recalled below.

Before to continue with the setting of the problem, let us introduce some notation that will
be useful in the sequel.

Let us consider the Hilbert space

H := L2(Ω)× L2(∂Ω),

with the natural inner product ((v, φ), (w,ϕ))H = (v, w)Ω + (φ, ϕ)∂Ω, which in particular
induces the norm |(·, ·)|H given by

|(v, φ)|2H = |v|2Ω + |φ|2∂Ω, (v, φ) ∈ H,

where we denote by (·, ·)Ω (respectively, (·, ·)∂Ω) the inner product in L2(Ω) (respectively, in
L2(∂Ω)), and by | · |Ω (respectively, | · |∂Ω) the associated norm. We will also denote (·, ·)Ω

(respectively, (·, ·)∂Ω) the inner product in (L2(Ω))N , and the duality product between Lp
′
(Ω)

and Lp(Ω) (respectively, the duality product between Lq
′
(∂Ω) and Lq(∂Ω)). If r 6= 2, we

will denote | · |r,Ω (respectively, | · |r,∂Ω) the norm in Lr(Ω) (respectively in Lr(∂Ω)). By
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‖ · ‖Ω we denote the norm in H1(Ω), which is associated to the inner product ((·, ·))Ω :=
(∇·,∇·)Ω + (·, ·)Ω.

We use the notation γ0 for the trace operator u 7→ u|∂Ω. The trace operator belongs to
L(H1(Ω), H1/2(∂Ω)), and we will use ‖γ0‖ to denote the norm of γ0 in this space.

Finally, we will use ‖ · ‖∂Ω to denote the norm in H1/2(∂Ω), which is given by ‖φ‖∂Ω =
inf{‖v‖Ω : γ0(v) = φ}. We remember that with this norm, H1/2(∂Ω) is a Hilbert space.

A weak solution (u, ψ) = (u(·; τ, uτ , ψτ ), ψ(·; τ, uτ , ψτ )) to the problem (1)–(4) is a pair of
functions (u, ψ), satisfying u ∈ C([τ,∞);L2(Ω)), ψ ∈ C([τ,∞);L2(∂Ω)), u ∈ L2(τ, T ;H1(Ω))∩
Lp(τ, T ;Lp(Ω)) for all T > τ, ψ ∈ L2(τ, T ;H1/2(∂Ω)) ∩ Lq(τ, T ;Lq(∂Ω)) for all T > τ, and
γ0(u(t)) = ψ(t), a.e. t ∈ (τ,∞), such that

d

dt
(u(t), v)Ω +

d

dt
(ψ(t), γ0(v))∂Ω + (∇u(t),∇v)Ω + κ(u(t), v)Ω + (f(u(t)), v)Ω

+(g(γ0(u(t))), γ0(v))∂Ω = (h(t), v)Ω + (ρ(t), γ0(v))∂Ω in D′(τ,∞),

for all v ∈ H1(Ω)∩Lp(Ω) such that γ0(v) ∈ Lq(∂Ω), and fulfills the initial conditions u(τ) = uτ
and ψ(τ) = ψτ .

In Anguiano et al. [4] we discussed several issues concerning problem (1)-(4). We first
proved the existence and uniqueness of solution using the monotonicity method, in the same
way as in Chueshov and Schmalfuß [12].

A continuous dependence result with respect to initial data was addressed later. Therefore,
the bi-parametric family of maps U(t, τ) : H → H, with τ ≤ t, given by

U(t, τ)(uτ , ψτ ) = (u(t), ψ(t)),

where (u, ψ) = (u(·; τ, uτ , ψτ ), ψ(·; τ, uτ , ψτ )) is the unique weak solution to (1)–(4), defines a
process on H, which actually is continuous.

Then, we studied the asymptotic behaviour of this process in the framework of pullback
attractors (as the deterministic analogy to the random attractor considered in [12]). Recall
that a pullback attractor for the process U (e.g., cf. [9, 10, 15]) is a family A = {A(t) : t ∈
R} of compact subsets of H such that it satisfies the non-autonomous “invariance property”
U(t, τ)A(τ) = A(t) for all τ ≤ t; and it attracts in pullback sense elements from a certain given
universe, i.e.,

lim
τ→−∞

sup
(uτ ,ψτ )∈B(τ)

inf
(v,w)∈A(t)

|U(t, τ)(uτ , ψτ )− (v, w)|H = 0

for all t ∈ R, and for any element {B(τ)}τ∈R ⊂ P(H) of the universe.
Namely, in [4, Theorem 23] we established the existence of two pullback attractors ADHF

and ADHµ (respectively for the universes of fixed bounded sets, and for another, parameterized
in time, given by a tempered condition), assuming that h and ρ satisfy∫ 0

−∞
eµs(|h(s)|2Ω + |ρ(s)|2∂Ω)ds <∞, (7)

where µ ∈ (0, 2λ1), λ1 was given by (41) in [4], the first eigenvalue of a linear operator A1

(recalled below). Also, using [35] and under additional assumptions on h and ρ we proved
that ADHF (t) = ADHµ (t) for all t ∈ R. Moreover, these two pullback attractors satisfy the same
tempered growth in norm L2(Ω)× L2(∂Ω) of the second universe,

lim
τ→−∞

eµτ sup
(v,φ)∈A(τ)

(|v|2Ω + |φ|2∂Ω) = 0. (8)
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However, as far as we know, there are no results in the literature concerning regularity
and exponential growth of the pullback attractors as we will consider in this paper (for similar
results for the reaction-diffusion equations with zero Dirichlet boundary condition see [2, 3],
and for the Navier-Stokes equations see [24]). As commented before, the regularity results on
the solutions and the attractors (that we obtain here) might be useful in the future in order
to implement new methods to seek solutions of more general problems by different arguments,
to gain attraction in higher norms, or for numerical purposes.

The structure of the paper is as follows. In Section 2, under an additional assumption
relating the nonlinear terms f and g, we establish a regularity result for the unique solution
to problem (1)-(4). This relation among f and g (cf. Theorem 4) forces to take q = p, which
will be assumed here on. In Section 3 we prove some results which, in particular, imply that
under suitable assumptions, any pullback attractor A satisfies that any section A(t) or union of
sections for a finite time-interval are bounded subsets of (H1(Ω)×H1/2(∂Ω))∩(Lp(Ω)×Lp(∂Ω))
and also in the norm of the domain of A1, D(A1). This result implies the pullback asymptotic
smoothing effect of the model in the sense that the solutions eventually become more regular
than the initial data. Finally, in Section 4 we prove two exponential growth results for these
pullback attractors, firstly in the norm (H1(Ω) × H1/2(∂Ω)) ∩ (Lp(Ω) × Lp(∂Ω)), and later,
under appropriate additional assumptions, in the norm of D(A1).

2 A regularity result

In this section we prove a regularity result for the weak solution to (1)-(4), whose existence
and uniqueness is guaranteed in [4].

Let us consider the space

V1 := {(v, γ0(v)) : v ∈ H1(Ω)}.

We note that V1 is a closed vector subspace of H1(Ω) × H1/2(∂Ω), and therefore, with the
norm ‖(·, ·)‖V1 given by

‖(v, γ0(v))‖2V1
= ‖v‖2Ω + ‖γ0(v)‖2∂Ω, (v, γ0(v)) ∈ V1,

V1 is a Hilbert space. On the other hand, V1 is densely embedded in H.

Now, on V1 we define a continuous symmetric linear operator A1 : V1 → V ′1 , given by

〈A1((v, γ0(v))), (w, γ0(w))〉 = (∇v,∇w)Ω + κ(v, w)Ω, ∀v, w ∈ H1(Ω).

Remark 1 The domain of the operator A1 can be described as follows (which gives sense to
the natural definition D(A1) = {(u, γ0(u)) ∈ V1 : A1((u, γ0(u))) ∈ H}). Let (w,ψ) ∈ H.
Assume that (u, γ0(u)) ∈ V1 solves the equation

A1((u, γ0(u))) = (w,ψ).

Then (see [5]) (u, γ0(u)), where u ∈ H1(Ω), is a weak (variational) solution to the problem{ −∆u+ κu = w in Ω,
∂u

∂~n
= ψ on ∂Ω.
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Then, we may denote

D(A1) = {(v, γ0(v)) ∈ V1 : ∆ v ∈ L2(Ω),
∂v

∂~n
∈ L2(∂Ω)},

with the scalar product (v, w)D(A1) = (A1v,A1w)H for any v and w ∈ D(A1), which induces
the norm ‖(·, ·)‖D(A1) given by ‖(v, γ0(v))‖2D(A1) = |A1((v, γ0(v)))|2H .

Let us observe that the space H1(Ω)×H1/2(∂Ω) is compactly imbedded in H, and therefore,
for the symmetric and coercive linear continuous operator A1 : V1 → V ′1 , there exists a non-
decreasing sequence 0 < λ1 ≤ λ2 ≤ . . . of eigenvalues associated to the operator A1 with
limj→∞ λj = ∞, and there exists a Hilbert basis of H, {(wj , γ0(wj)) : j ≥ 1}⊂ D(A1), with
span{(wj , γ0(wj)) : j ≥ 1} densely embedded in V1, such that

A1((wj , γ0(wj))) = λj(wj , γ0(wj)) ∀j ≥ 1.

Remark 2 It can be proved that span{(wj , γ0(wj)) : j ≥ 1} is densely embedded in V1 ∩
(Lp(Ω)× Lp(∂Ω)).

Taking into account the above facts, we denote by

(um(t), γ0(um(t))) = (um(t; τ, uτ , ψτ ), γ0(um(t; τ, uτ , ψτ )))

the Galerkin approximation of the solution (u(t; τ, uτ , ψτ ), γ0(u(t; τ, uτ , ψτ ))) to (1)-(4) for each
integer m ≥ 1, which is given by

(um(t), γ0(um(t))) =
m∑
j=1

δmj(t)(wj , γ0(wj)), (9)

and is the solution of

d

dt
((um(t), γ0(um(t))), (wj , γ0(wj)))H + 〈A1((um(t), γ0(um(t)))), (wj , γ0(wj))〉

+(f(um(t)), wj)Ω + (g(γ0(um(t))), γ0(wj))∂Ω

= (h(t), wj)Ω + (ρ(t), γ0(wj))∂Ω, j = 1, . . . ,m, (10)

with initial data
(um(τ), γ0(um(τ))) = (uτm , γ0(uτm)), (11)

where
δmj(t) = (um(t), wj)Ω + (γ0(um(t)), γ0(wj))∂Ω

and (uτm , γ0(uτm)) ∈ span{(wj , γ0(wj)) : j = 1, . . . ,m} converge (when m → ∞) to (uτ , ψτ )
in a suitable sense which will be specified below.

Next result gives some preliminar (and standard) uniform estimates for the Galerkin ap-
proximations defined above when the initial data are suitably chosen. We include its proof for
clarity since it will be used in the sequel.

Lemma 3 Under the given assumptions on κ, f , g, h, and ρ, consider a sequence {(uτm , ψτm)}
bounded in H with each (uτm , ψτm) ∈span{(wj , γ0(wj)) : j = 1, . . . ,m}. Then, the sequence of
corresponding solutions to the Galerkin scheme (9)-(11) with these initial data is bounded in
L2(τ, T ;V1) ∩ Lp(τ, T ;Lp(Ω)× Lp(∂Ω)) for all T > τ .
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Proof. Multiplying by δmj in (10), and summing from j = 1 to m, we obtain

1
2
d

dr
|(um(r), γ0(um(r)))|2H + 〈A1((um(r), γ0(um(r)))), (um(r), γ0(um(r)))〉

+(f(um(r)), um(r))Ω + (g(γ0(um(r))), γ0(um(r)))∂Ω

= (h(r), um(r))Ω + (ρ(r), γ0(um(r)))∂Ω, a.e. r > τ.

Using the properties of f and g,

−(f(um(r)), um(r))Ω ≤
∫

Ω

(β − α1|um(r)|p)dx

= β|Ω| − α1|um(r)|pp,Ω ∀r ≥ τ,

and

−(g(γ0(um(r))), γ0(um(r)))∂Ω ≤
∫
∂Ω

(β − α1|γ0(um(r))|p)dσ(x)

= β|∂Ω| − α1|γ0(um(r))|pp,∂Ω ∀r ≥ τ.

On the other hand,

(h(r), um(r))Ω ≤
1
κ
|h(r)|2Ω +

κ

4
|um(r)|2Ω, a.e. r > τ,

and as |γ0(um(r))|∂Ω ≤ ‖γ0‖‖um(r)‖Ω, we have

(ρ(r), γ0(um(r)))∂Ω ≤ ‖γ0‖2

2 min{1, κ/2}
|ρ(r)|2∂Ω +

min{1, κ/2}
2‖γ0‖2

|γ0(um(r))|2∂Ω

≤ ‖γ0‖2

2 min{1, κ/2}
|ρ(r)|2∂Ω +

1
2

min{1, κ/2}‖um(r)‖2Ω, a.e. r > τ.

From above and the inequality (16) of [4], we deduce

d

dr
|(um(r), γ0(um(r)))|2H +

min{1, κ}
1 + ‖γ0‖2

‖(um(r), γ0(um(r)))‖2V1

+2α1|um(r)|pp,Ω + 2α1|γ0(um(r))|pp,∂Ω

≤ 2β(|Ω|+ |∂Ω|) +
2
κ
|h(r)|2Ω +

‖γ0‖2

min{1, κ/2}
|ρ(r)|2∂Ω, a.e. r > τ. (12)

Integrating between τ and T, the result follows.
Now we may establish a regularity result for the solution to the problem.

Theorem 4 Suppose that in addition to the assumptions on the data of the problem, we have
that p = q ≥ 2, that f , g ∈ C1(R) and that there exists a constant cfg > 0 such that

|f(s)− g(s)| ≤ cfg(1 + |s|) ∀s ∈ R, (13)

(which is only possible if p = q). Then, for any initial condition (uτ , ψτ ) ∈ V1 ∩ (Lp(Ω) ×
Lp(∂Ω)), the weak solution to (1)-(4), whose existence and uniqueness is guaranteed in [4],
satisfies in addition that (u, ψ) ∈ C([τ, T ];V1) ∩ L2(τ, T ;D(A1)) ∀T > τ.
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Proof. We first note that under the conditions imposed we have that

f ′(s) ≥ −l, g′(s) ≥ −l ∀s ∈ R. (14)

Let (uτ , ψτ ) ∈ V1∩(Lp(Ω)×Lp(∂Ω)). For all m ≥ 1, by Remark 2, there exists (uτm , γ0(uτm)) ∈
span{(wj , γ0(wj)) : 1 ≤ j ≤ m}, such that {(uτm , γ0(uτm))} converges to (uτ , ψτ ) in V1 and in
Lp(Ω)× Lp(∂Ω) (and therefore in L2(Ω)× L2(∂Ω)).

For each integer m ≥ 1, we consider the sequence {(um, γ0(um))} defined by (9)-(11) with
these initial data.

In order to prove the result, we will show firstly that the Galerkin approximations are
uniformly bounded in L∞(τ, T ;V1 ∩ Lp(Ω) × Lp(∂Ω)) with derivatives uniformly bounded in
L2(τ, T ;H) (and therefore the solution too) for all T > τ .

Secondly, we will check that this sequence (and again the solution) is also bounded in
L2(τ, T ;D(A1)) for all T > τ , whence the result follows.

Step 1. The sequence {(um, γ0(um))} is bounded in L∞(τ, T ;V1 ∩ Lp(Ω) × Lp(∂Ω)) and
their derivatives {(u′m, γ0(u′m))} are bounded in L2(τ, T ;H) for all T > τ .

Multiplying by the derivative δ′mj in (10), and summing from j = 1 to m, we obtain

|(u′m(r), γ0(u′m(r)))|2H +
1
2
d

dr
(〈A1((um(r), γ0(um(r)))), (um(r), γ0(um(r)))〉)

+(f(um(r)), u′m(r))Ω + (g(γ0(um(r))), γ0(u′m(r)))∂Ω

= (h(r), u′m(r))Ω + (ρ(r), γ0(u′m(r)))∂Ω, a.e. r > τ.

We observe that
(f(um(r)), u′m(r))Ω =

d

dr

∫
Ω

F(um(r))dx,

and
(g(γ0(um(r))), γ0(u′m(r)))∂Ω =

d

dr

∫
∂Ω

G(γ0(um(r)))dσ(x)

for all r ≥ τ. Then, we deduce

|(u′m(r), γ0(u′m(r)))|2H +
1
2
d

dr
(〈A1((um(r), γ0(um(r)))), (um(r), γ0(um(r)))〉)

≤ 1
2
|h(r)|2Ω +

1
2
|u′m(r)|2Ω +

1
2
|ρ(r)|2∂Ω +

1
2
|γ0(u′m(r))|2∂Ω

− d

dr

∫
Ω

F(um(r))dx− d

dr

∫
∂Ω

G(γ0(um(r)))dσ(x), a.e. r > τ. (15)

Integrating now between τ and t, and taking into account the definition of A1 (cf. inequality
(16) of [4]), (5) and (6), we obtain that∫ t

τ

|(u′m(θ), γ0(u′m(θ)))|2Hdθ +
min{1, κ}
1 + ‖γ0‖2

‖(um(t), γ0(um(t)))‖2V1

+2α̃1|um(t)|pp,Ω + 2α̃1|γ0(um(t))|pp,∂Ω

≤ max{1, κ}‖(um(τ), γ0(um(τ)))‖2V1
+
∫ t

τ

(|h(θ)|2Ω + |ρ(θ)|2∂Ω)dθ

+2α̃2|um(τ)|pp,Ω + 2α̃2|γ0(um(τ))|pp,∂Ω + 4β̃(|Ω|+ |∂Ω|)
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for all τ ≤ t.
As long as the sequence {(um(τ), γ0(um(τ)))} is bounded in V1 and in Lp(Ω) × Lp(∂Ω),

Step 1 is proved.
Moreover, taking into account the uniqueness of solution to (1)-(4) and using Ascoli-Arzelà

Theorem, it is not difficult to conclude that the sequence {(um, γ0(um))} converges weakly-star
in L∞(τ, T ;Lp(Ω)× Lp(∂Ω)) and in L∞(τ, T ;V1) to the solution (u, γ0(u)) to (1)-(4), and we
also obtain that (u′, γ0(u′)) ∈ L2(τ, T ;H).

Step 2. The sequence {(um, γ0(um))} is bounded in L2(τ, T ;D(A1)).
In this way, by the above arguments we will have that (u, γ0(u)) ∈ L2(τ, T ;D(A1)). Af-

ter that, as (u′, γ0(u′)) ∈ L2(τ, T ;H), by the energy equality (see [44]), we can deduce that
(u, γ0(u)) ∈ C([τ, T ];V1) and the theorem will be proved.

Multiplying in (10) by λjδmj , where λj is the eigenvalue associated to the eigenfunction
(wj , γ0(wj)), and summing once more from j = 1 to m, we obtain

(A1((um(r), γ0(um(r)))), (u′m(r), γ0(u′m(r))))H + |A1((um(r), γ0(um(r))))|2H

+(f(um(r)),
m∑
j=1

λjδmj(r)wj)Ω + (g(γ0(um(r))),
m∑
j=1

λjδmj(r)γ0(wj))∂Ω

= (h(r),
m∑
j=1

λjδmj(r)wj)Ω + (ρ(r),
m∑
j=1

λjδmj(r)γ0(wj))∂Ω, a.e. r > τ. (16)

It follows from the properties of f , (14), and integrating by parts, that

−(f(um(r)),
m∑
j=1

λjδmjwj)Ω

= −
∫

Ω

f(um(x, r))(−∆um(x, r) + κum(x, r))dx

=−
∫

Ω

f ′(um(x, r))|∇um(x, r)|2dx+
∫
∂Ω

f(γ0(um(x, r)))
∂um
∂~n

dσ(x)−κ
∫

Ω

f(um(x, r))um(x, r)dx

≤ l|∇um(r)|2Ω +
∫
∂Ω

f(γ0(um(x, r)))
∂um
∂~n

dσ(x)− κα1|um(r)|pp,Ω + κβ|Ω| ∀r ≥ τ.

On the other hand, we have

−(g(γ0(um(r))),
m∑
j=1

λjδmj(r)γ0(wj))∂Ω = −
∫
∂Ω

g(γ0(um(x, r)))
∂um
∂~n

dσ(x) ∀r ≥ τ,

whence, jointly with the last inequality,

−(f(um(r)),
m∑
j=1

λjδmj(r)wj)Ω − (g(γ0(um(r))),
m∑
j=1

λjδmj(r)γ0(wj))∂Ω

≤ l|∇um(r)|2Ω − κα1|um(r)|pp,Ω + κβ|Ω|+
∫
∂Ω

(f(γ0(um(x, r)))− g(γ0(um(x, r))))
∂um
∂~n

dσ(x)

for all r ≥ τ.
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Using (13) and Cauchy-Schwartz and Young inequalities, we obtain

−(f(um(r)),
m∑
j=1

λjδmj(r)wj)Ω − (g(γ0(um(r))),
m∑
j=1

λjδmj(r)γ0(wj))∂Ω

≤ l|∇um(r)|2Ω − κα1|um(r)|pp,Ω + κβ|Ω|+ 21/2cfg(|∂Ω|1/2 + |γ0(um(r))|∂Ω)
∣∣∣∣∂um∂~n

∣∣∣∣
∂Ω

≤ l|∇um(r)|2Ω − κα1|um(r)|pp,Ω + κβ|Ω|+ 4c2fg(|∂Ω|+ |γ0(um(r))|2∂Ω)

+
1
4
|A1((um(r), γ0(um(r))))|2H ∀r ≥ τ.

On the other hand, we have

(h(r),
m∑
j=1

λjδmj(r)wj)Ω ≤ 2|h(r)|2Ω +
1
8
|A1((um(r), γ0(um(r))))|2H , a.e. r > τ,

(ρ(r),
m∑
j=1

λjδmj(r)γ0(wj))∂Ω ≤ 2|ρ(r)|2∂Ω +
1
8
|A1((um(r), γ0(um(r))))|2H , a.e. r > τ.

Using the above inequalities in (16), in particular, we obtain

|A1((um(r), γ0(um(r))))|2H ≤ 4|(u′m(r), γ0(u′m(r)))|2H + 4l|∇um(r)|2Ω + 4κβ|Ω|
+16c2fg(|∂Ω|+ |γ0(um(r))|2∂Ω) + 8(|h(r)|2Ω + |ρ(r)|2∂Ω) (17)

a.e. r ≥ τ .
Finally, integrating the last inequality between τ and T , taking into account Lemma 3 and

that {(u′m, γ0(u′m))} is bounded in L2(τ, T ;H), we obtain that {(um, γ0(um))} is bounded in
L2(τ, T ;D(A1)). Step 2 and the proof of the theorem are concluded.

As a consequence of the last result and Theorem 5 in [4], we can now establish the following
result.

Theorem 5 Under the assumptions in Theorem 4, for any initial condition (uτ , ψτ ) ∈ H, the
weak solution to (1)-(4) satisfies

(u, ψ) ∈ C((τ, T ];V1) ∩ L2(τ + ε, T ;D(A1)) ∀T > τ + ε > τ,

(u′, ψ′) ∈ L2(τ + ε, T ;H) ∀T > τ + ε > τ.

3 D(A1)-boundedness of invariants sets

We start recalling a result (see [24, Lemma 2.1]) which is necessary below.

Lemma 6 Let X,Y be Banach spaces such that X is reflexive, and the inclusion X ⊂ Y is
continuous. Assume that {um} is a bounded sequence in L∞(t0, T ;X) such that um ⇀ u weakly
in Lq(t0, T ;X) for some q ∈ [1,∞) and u ∈ C([t0, T ];Y ).

Then, u(t) ∈ X for all t ∈ [t0, T ] and

‖u(t)‖X ≤ lim inf
m→∞

‖um‖L∞(t0,T ;X) ∀t ∈ [t0, T ].
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We first prove the following result.

Proposition 7 Under the assumptions in Theorem 4, for any bounded set B ⊂ H, τ ∈ R,
ε > 0 and t > τ + ε, the set {(um(r; τ, uτ , ψτ ), γ0(um(r; τ, uτ , ψτ ))) : r ∈ [τ + ε, t], (uτ , ψτ ) ∈
B, m ≥ 1} is a bounded subset of V1 ∩ (Lp(Ω)× Lp(∂Ω)).

Proof. Let us fix a bounded set B ⊂ H, τ ∈ R, ε > 0, t > τ + ε, and (uτ , ψτ ) ∈ B.
We will consider Pm((uτ , ψτ )) :=

∑m
i=1((uτ , ψτ ), (wi, γ0(wi)))H(wi, γ0(wi)) as initial data

(uτm , γ0(uτm)), which generates a sequence that converges to (uτ , ψτ ) in H. Now, for the
corresponding solutions to the Galerkin system, integrating (12) between τ and r, we have

|(um(r), γ0(um(r)))|2H +
min{1, κ}
1 + ‖γ0‖2

∫ r

τ

‖(um(s), γ0(um(s)))‖2V1
ds

+2α1

∫ r

τ

|um(s)|pp,Ωds+ 2α1

∫ r

τ

|γ0(um(s))|pp,∂Ωds (18)

≤ 2β(t− τ)(|Ω|+ |∂Ω|) +
2
κ

∫ t

τ

|h(s)|2Ωds+
‖γ0‖2

min{1, κ/2}

∫ t

τ

|ρ(s)|2∂Ωds+ |(uτ , ψτ )|2H

for all r ∈ [τ, t], for all m ≥ 1.
Integrating now (15) between s and r with τ ≤ s ≤ r ≤ t, we obtain∫ r

s

|(u′m(θ), γ0(u′m(θ)))|2Hdθ + 〈A1((um(r), γ0(um(r)))), (um(r), γ0(um(r)))〉

≤ 〈A1((um(s), γ0(um(s)))), (um(s), γ0(um(s)))〉+
∫ t

τ

(|h(θ)|2Ω + |ρ(θ)|2∂Ω)dθ

+2
∫

Ω

(F(um(x, s))−F(um(x, r)))dx+ 2
∫
∂Ω

(G(γ0(um(x, s)))− G(γ0(um(x, r))))dσ(x),

which, jointly with the inequality (16) of [4], (5) and (6), yields that∫ r

s

|(u′m(θ), γ0(u′m(θ)))|2Hdθ +
min{1, κ}
1 + ‖γ0‖2

‖(um(r), γ0(um(r)))‖2V1

+2α̃1|um(r)|pp,Ω + 2α̃1|γ0(um(r))|pp,∂Ω

≤ max{1, κ}‖(um(s), γ0(um(s)))‖2V1
+
∫ t

τ

(|h(θ)|2Ω + |ρ(θ)|2∂Ω)dθ

+2α̃2|um(s)|pp,Ω + 2α̃2|γ0(um(s))|pp,∂Ω + 4β̃(|Ω|+ |∂Ω|) (19)

for any s and r with τ ≤ s ≤ r ≤ t.
Integrating this last inequality with respect to s from τ to r, in particular, we obtain

(r − τ)
(

min{1, κ}
1 + ‖γ0‖2

‖(um(r), γ0(um(r)))‖2V1
+ 2α̃1(|um(r)|pp,Ω + |γ0(um(r))|pp,∂Ω)

)
≤ max{1, κ}

∫ r

τ

‖(um(s), γ0(um(s)))‖2V1
ds+ (t− τ)

∫ t

τ

(|h(s)|2Ω + |ρ(s)|2∂Ω)ds

+2α̃2

∫ r

τ

(|um(s)|pp,Ω + |γ0(um(s))|pp,∂Ω)ds+ (t− τ)4β̃(|Ω|+ |∂Ω|) (20)

for all r ∈ [τ, t], and for any m ≥ 1.
From this inequality and (18), the result follows.
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Corollary 8 Under the assumptions in Theorem 4, for any bounded set B ⊂ H, τ ∈ R, ε > 0,
and t > τ + ε, the set ∪r∈[τ+ε,t]U(r, τ)B is a bounded subset of V1 ∩ (Lp(Ω)× Lp(∂Ω)).

Proof. This is a straightforward consequence of Lemma 6, Proposition 7, the fact that
(u(·; τ, uτ , ψτ ), γ0(u(·; τ, uτ , ψτ ))) ∈ C([τ + ε, t];V1) and the fact that the Galerkin sequence
{(um(·; τ, uτ , ψτ ), γ0(um(·; τ, uτ , ψτ )))} converges weakly, thanks to monotonicity arguments
(cf. [32, Chapter 2] and [4, Theorem 5]), to (u(·; τ, uτ , ψτ ), γ0(u(·; τ, uτ , ψτ ))), the unique
solution to (1)-(4), in L2(τ, T ;V1) and Lp(τ, T ;Lp(Ω)× Lp(∂Ω)).

Proposition 9 Suppose that, in addition to the assumptions in Theorem 4, it holds that h ∈
W 1,2
loc (R;L2(Ω)) and ρ ∈W 1,2

loc (R;L2(∂Ω)).
Then, for any bounded set B ⊂ H, τ ∈ R, ε > 0, and t > τ + ε, the set

{(um(r; τ, uτ , ψτ ), γ0(um(r; τ, uτ , ψτ ))) : r ∈ [τ + ε, t], (uτ , ψτ ) ∈ B,m ≥ 1}

is a bounded subset of D(A1).

Proof. Let us fix a bounded set B ⊂ H, τ ∈ R, ε > 0, t > τ + ε, and (uτ , ψτ ) ∈ B. As
we are assuming that f , g ∈ C1(R), h ∈ W 1,2

loc (R;L2(Ω)) and ρ ∈ W 1,2
loc (R;L2(∂Ω)), we can

differentiate with respect to time in (10), and then, multiplying by δ′mj , and summing from
j = 1 to m, we obtain

1
2
d

dr
|(u′m(r), γ0(u′m(r)))|2H + 〈A1((u′m(r), γ0(u′m(r)))), (u′m(r), γ0(u′m(r)))〉

= −(f ′(um(r))u′m(r), u′m(r))Ω − (g′(γ0(um(r)))γ0(u′m(r)), γ0(u′m(r)))∂Ω

+(h′(r), u′m(r))Ω + (ρ′(r), γ0(u′m(r)))∂Ω, a.e. r > τ.

Then, using (14), we have

d

dr
|(u′m(r), γ0(u′m(r)))|2H

≤ 2l|u′m(r)|2Ω + 2l|γ0(u′m(r))|2∂Ω+|h′(r)|2Ω + |u′m(r)|2Ω+|ρ′(r)|2∂Ω+|γ0(u′m(r))|2∂Ω, a.e. r > τ.

In particular, integrating in the last inequality,

|(u′m(r), γ0(u′m(r)))|2H ≤ |(u′m(s), γ0(u′m(s)))|2H+(2l + 1)
∫ t

τ+ε/2

(|u′m(θ)|2Ω + |γ0(u′m(θ))|2∂Ω)dθ

+
∫ t

τ+ε/2

(|h′(θ)|2Ω + |ρ′(θ)|2∂Ω)dθ

for all τ + ε/2 ≤ s ≤ r ≤ t.
Now, integrating with respect to s between τ + ε/2 and r, we have

(r − τ − ε/2)|(u′m(r), γ0(u′m(r)))|2H

≤ [(2l + 1)(t− τ − ε/2) + 1]
∫ t

τ+ε/2

|(u′m(θ), γ0(u′m(θ)))|2Hdθ

+(r − τ − ε/2)
∫ t

τ+ε/2

(|h′(θ)|2Ω + |ρ′(θ)|2∂Ω)dθ

12



for all τ + ε/2 ≤ r ≤ t. In particular,

|(u′m(r), γ0(u′m(r)))|2H (21)

≤ 2ε−1((2l + 1)(t− τ − ε/2) + 1)
∫ t

τ+ε/2

|(u′m(θ), γ0(u′m(θ)))|2Hdθ +
∫ t

τ+ε/2

(|h′(θ)|2Ω + |ρ′(θ)|2∂Ω)dθ

for all r ∈ [τ + ε, t].
Finally, observe that by (19)∫ t

τ+ε/2

|(u′m(θ), γ0(u′m(θ)))|2Hdθ

≤ max{1, k}‖(um(τ + ε/2), γ0(um(τ + ε/2)))‖2V1
+
∫ t

τ

(|h(θ)|2Ω + |ρ(θ)|2∂Ω)dθ

+2α̃2|um(τ + ε/2)|pp,Ω + 2α̃2|γ0(um(τ + ε/2))|pp,∂Ω + 4β̃(|Ω|+ |∂Ω|). (22)

Taking into account that, in particular, h ∈ C([τ, t];L2(Ω)) and ρ ∈ C([τ, t];L2(∂Ω)), the
result is a direct consequence of Proposition 7 and estimates (17), (21) and (22).

Corollary 10 Under the assumptions of Proposition 9, for any bounded set B ⊂ H, τ ∈ R,
ε > 0, and t > τ + ε, the set ∪r∈[τ+ε,t]U(r, τ)B is a bounded subset of D(A1).

Proof. This result is a straightforward consequence of Lemma 6, Propositions 7 and 9, the
facts that, using uniqueness and monotonicity arguments (cf. [32, Chapter 2] and [4, Theorem
5]), {(um(·; τ, uτ , ψτ ), γ0(um(·; τ, uτ , ψτ )))} converges weakly to the unique solution to (1)-(4)
(u(·; τ, uτ , ψτ ), γ0(u(·; τ, uτ , ψτ ))) in L2(τ, T ;D(A1)) and that (u(·; τ, uτ , ψτ ), γ0(u(·; τ, uτ , ψτ )))
∈ C([τ + ε, t];V1).

As a direct consequence of the above results, we can now establish our main result.

Proposition 11 Under the assumptions in Proposition 9, if A = {A(t) : t ∈ R} is a family
of bounded subsets of H, such that U(t, τ)A(τ) = A(t) for any τ ≤ t, then for any T1 < T2,
the set ∪t∈[T1,T2]A(t) is a bounded subset of D(A1) ∩ V1 ∩ (Lp(Ω)× Lp(∂Ω)).

In particular, we have the following result for pullback attractors.

Corollary 12 Under the assumptions in Proposition 9, if A = {A(t) : t ∈ R} is a pullback
attractor for the process U , then for any T1 < T2, the set ∪t∈[T1,T2]A(t) is a bounded subset of
D(A1) ∩ V1 ∩ (Lp(Ω)× Lp(∂Ω)).

4 An exponential growth condition for pullback attrac-
tors

The aim of this section is to continue with the analysis of the model in the sense of proving that
the family ADHµ , for short denoted simply A (whose existence was guaranteed in [4, Theorem
23]), satisfies also an exponential growth condition on the space V1 ∩ (Lp(Ω) × Lp(∂Ω)), and
finally in D(A1), provided some additional assumptions are fulfilled.
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Theorem 13 Under the assumptions in Theorem 4, if, moreover, condition (7) holds, then A
satisfies

lim
τ→−∞

eµτ

(
sup

(v,φ)∈A(τ)

‖(v, φ)‖2V1
+ sup

(v,φ)∈A(τ)

(|v|pp,Ω + |φ|pp,∂Ω)

)
= 0. (23)

Proof. From the inequality (18), for any t ≥ τ , we have

|(um(r), γ0(um(r)))|2H +
∫ r

τ

(‖(um(s), γ0(um(s)))‖2V1
+ |um(s)|pp,Ω + |γ0(um(s))|pp,∂Ω)ds

≤ C1

(∫ t

τ

(|h(s)|2Ω + |ρ(s)|2∂Ω)ds+ t− τ + |(uτ , ψτ )|2H
)

(24)

for all r ∈ [τ, t], and for all m ≥ 1, where

C1 =
max{2β(|Ω|+ |∂Ω|), 2κ−1, ‖γ0‖2/min{1, κ/2}, 1}

min{1,min{1, κ}/(1 + ‖γ0‖2), 2α1}
.

On other hand, from (20) we have

(r − τ)(‖(um(r), γ0(um(r)))‖2V1
+ |um(r)|pp,Ω + |γ0(um(r))|pp,∂Ω)

≤ C2

∫ r

τ

(‖(um(s), γ0(um(s)))‖2V1
+ |um(s)|pp,Ω + |γ0(um(s))|pp,∂Ω)ds

+C2(t− τ)
∫ t

τ

(|h(s)|2Ω + |ρ(s)|2∂Ω)ds+ C2(t− τ)

for any t ≥ τ , all r ∈ [τ, t], and all m ≥ 1, where

C2 =
max{1, κ, 2α̃2, 4β̃(|Ω|+ |∂Ω|)}

min{min{1, κ}/(1 + ‖γ0‖2), 2α̃1}
.

From (24) and the above inequality we obtain that

(r − τ)(‖(um(r), γ0(um(r)))‖2V1
+ |um(r)|pp,Ω + |γ0(um(r))|pp,∂Ω)

≤ C2(C1 + t− τ)
∫ t

τ

(|h(s)|2Ω + |ρ(s)|2∂Ω)ds+ C2(t− τ)(1 + C1) + C2C1|(uτ , ψτ )|2H

for any t ≥ τ , all r ∈ [τ, t], and all m ≥ 1.
In particular from above we deduce

‖(um(r), γ0(um(r)))‖2V1
+ |um(r)|pp,Ω + |γ0(um(r))|pp,∂Ω

≤ C3

(
|(uτ , ψτ )|2H +

∫ τ+3

τ

(|h(s)|2Ω + |ρ(s)|2∂Ω)ds+ 1
)

(25)

for all r ∈ [τ + 1, τ + 3], and any m ≥ 1, where C3 = 3C2(C1 + 1).
As (u(·; τ, uτ , ψτ ), γ0(u(·; τ, uτ , ψτ ))) ∈ C([τ+1, t];V1) for all t > τ+1 and since it holds that

{(um(·; τ, uτ , ψτ ), γ0(um(·; τ, uτ , ψτ )))} converges weakly to (u(·; τ, uτ , ψτ ), γ0(u(·; τ, uτ , ψτ )))
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in L2(τ, t;V1) and in Lp(τ, t;Lp(Ω) × Lp(∂Ω)) for all t > τ using Lemma 3, from (25) and
Lemma 6, in particular, we obtain

‖(u(τ + 1), γ0(u(τ + 1)))‖2V1
+ |u(τ + 1)|pp,Ω + |γ0(u(τ + 1))|pp,∂Ω

≤ C3

(
|(uτ , ψτ )|2H +

∫ τ+3

τ

(|h(s)|2Ω + |ρ(s)|2∂Ω)ds+ 1
)
.

Then, multiplying this inequality by eµ(τ+1) we have

eµ(τ+1)(‖(u(τ + 1), γ0(u(τ + 1)))‖2V1
+ |u(τ + 1)|pp,Ω + |γ0(u(τ + 1))|pp,∂Ω)

≤ C3e
µ

(
eµτ |(uτ , ψτ )|2H +

∫ τ+3

τ

eµs(|h(s)|2Ωds+ |ρ(s)|2∂Ω)ds+ eµτ
)

for all τ ∈ R, and all (uτ , ψτ ) ∈ H.
As A(τ + 1) = U(τ + 1, τ)A(τ), it follows from above that

eµ(τ+1)(‖(v, φ)‖2V1
+ |v|pp,Ω + |φ|pp,∂Ω)

≤ C3e
µ

(
eµτ sup

(w,ψ)∈A(τ)

|(w,ψ)|2H +
∫ τ+3

τ

eµs(|h(s)|2Ω + |ρ(s)|2∂Ω)ds+ eµτ

)
for all (v, φ) ∈ A(τ + 1), and any τ ∈ R.

Taking into account (7) and (8), from above we obtain (23).

Theorem 14 Under the assumptions in Proposition 9, if, moreover, condition (7) holds, and
h and ρ satisfy

lim
τ→−∞

eµτ
∫ τ+1

τ

(|h′(s)|2Ω + |ρ′(s)|2∂Ω)ds = 0, (26)

and
lim

τ→−∞
eµτ (|h(τ)|2Ω + |ρ(τ)|2∂Ω)ds = 0, (27)

then, A satisfies that
lim

τ→−∞
eµτ sup

(v,w)∈A(τ)

‖(v, w)‖2D(A1) = 0. (28)

Proof. From inequality (21), taking t = τ + 3 and ε = 2, we have

|(u′m(r), γ0(u′m(r)))|2H

≤ (4l + 3)
∫ τ+3

τ+1

|(u′m(θ), γ0(u′m(θ)))|2Hdθ +
∫ τ+3

τ+1

(|h′(θ)|2Ω + |ρ′(θ)|2∂Ω)dθ

for all r ∈ [τ + 2, τ + 3], and any m ≥ 1.

Analogously, if we take s = τ + 1 and r = t = τ + 3 in inequality (19), we have∫ τ+3

τ+1

|(u′m(θ), γ0(u′m(θ)))|2Hdθ +
min{1, κ}
1 + ‖γ0‖2

‖(um(τ + 3), γ0(um(τ + 3)))‖2V1

+2α̃1|um(τ + 3)|pp,Ω + 2α̃1|γ0(um(τ + 3))|pp,∂Ω

≤ max{1, κ}‖(um(τ + 1), γ0(um(τ + 1)))‖2V1
+
∫ τ+3

τ

(|h(θ)|2Ω + |ρ(θ)|2∂Ω)dθ

+2α̃2|um(τ + 1)|pp,Ω + 2α̃2|γ0(um(τ + 1))|pp,∂Ω + 4β̃(|Ω|+ |∂Ω|)
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for all m ≥ 1.
From these two inequalities, we obtain

|(u′m(r), γ0(u′m(r)))|2H ≤ (4l + 3) max{1, κ}‖(um(τ + 1), γ0(um(τ + 1)))‖2V1

+(4l + 3)
(∫ τ+3

τ

(|h(θ)|2Ω + |ρ(θ)|2∂Ω)dθ + 4β̃(|Ω|+ |∂Ω|)
)

+2α̃2(4l + 3)(|um(τ + 1)|pp,Ω + |γ0(um(τ + 1))|pp,∂Ω)

+
∫ τ+3

τ+1

(|h′(θ)|2Ω + |ρ′(θ)|2∂Ω)dθ

for all r ∈ [τ + 2, τ + 3], and any m ≥ 1.
Using this inequality and (25), it yields

|(u′m(r), γ0(u′m(r)))|2H

≤ C4

(
|(uτ , ψτ )|2H +

∫ τ+3

τ

(|h(θ)|2Ω + |h′(θ)|2Ω + |ρ(θ)|2∂Ω + |ρ′(θ)|2∂Ω)dθ + 1
)

(29)

for all r ∈ [τ + 2, τ + 3], and any m ≥ 1, where

C4 = (4l + 3)(C3 max{1, κ, 2α̃2}+ max{1, 4β̃(|Ω|+ |∂Ω|)}).

From inequality (17), we obtain

|A1((um(r), γ0(um(r))))|2H ≤ 4|(u′m(r), γ0(u′m(r)))|2H + 4 max{l, 4c2fgc2∂Ω}‖um(r), γ0(um(r))‖2V1

+4κβ|Ω|+ 16c2fg|∂Ω|+ 8(|h(r)|2Ω + |ρ(r)|2∂Ω),

where we have denoted c∂Ω the injection constant of H1/2(∂Ω) in L2(∂Ω).
Using this inequality, and thanks to (25) and (29), we obtain

|A1((um(r), γ0(um(r))))|2H

≤ 4C4

(
|(uτ , ψτ )|2H +

∫ τ+3

τ

(|h(θ)|2Ω + |h′(θ)|2Ω + |ρ(θ)|2∂Ω + |ρ′(θ)|2∂Ω)dθ + 1
)

+4 max{l, 4c2fgc2∂Ω}C3

(
|(uτ , ψτ )|2H +

∫ τ+3

τ

(|h(θ)|2Ω + |ρ(θ)|2∂Ω)dθ + 1
)

+4κβ|Ω|+ 16c2fg|∂Ω|+ 8(|h(r)|2Ω + |ρ(r)|2∂Ω)

for all r ∈ [τ + 2, τ + 3], and any m ≥ 1.
On the other hand, by Theorem 5 we have that (u(·; τ, uτ , ψτ ), γ0(u(·; τ, uτ , ψτ ))) ∈ C([τ +

2, τ + 3];V1). Since we know that {(um(·; τ, uτ , ψτ ), γ0(um(·; τ, uτ , ψτ )))} converges weakly to
(u(·; τ, uτ , ψτ ), γ0(u(·; τ, uτ , ψτ ))) in L2(τ + 2, τ + 3;D(A1)), then, using Lemma 6, and the
above inequality, we have that

|A1((u(r), γ0(u(r))))|2H ≤ C5

(
|(uτ , ψτ )|2H+

∫ τ+3

τ

(|h(θ)|2Ω + |h′(θ)|2Ω + |ρ(θ)|2∂Ω + |ρ′(θ)|2∂Ω)dθ

+ sup
r∈[τ+2,τ+3]

(|h(r)|2Ω + |ρ(r)|2∂Ω) + 1
)

(30)
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for all r ∈ [τ + 2, τ + 3], any τ ∈ R, and (uτ , ψτ ) ∈ H, where

C5 = 4 max{2, C4 + C3 max{l, 4c2fgc2∂Ω}+ κβ|Ω|+ 4c2fg|∂Ω|}.

Now, observe that by the Cauchy-Schwartz inequality,

|h(r)|Ω ≤ |h(τ + 2)|Ω +
(∫ τ+3

τ+2

|h′(θ)|2Ωdθ
)1/2

and

|ρ(r)|∂Ω ≤ |ρ(τ + 2)|∂Ω +
(∫ τ+3

τ+2

|ρ′(θ)|2∂Ωdθ

)1/2

for all r ∈ [τ + 2, τ + 3].
Thus, from (30) and the above inequalities, we deduce that

‖U(τ + 2, τ)(uτ , ψτ )‖2D(A1) ≤ 3C5

(
|(uτ , ψτ )|2H + |h(τ + 2)|2Ω + |ρ(τ + 2)|2∂Ω

+
∫ τ+3

τ

(|h(θ)|2Ω + |h′(θ)|2Ω + |ρ(θ)|2∂Ω + |ρ′(θ)|2∂Ω)dθ + 1
)

for all τ ∈ R, and (uτ , ψτ ) ∈ H.
From this inequality and the fact that A(τ) = U(τ, τ − 2)A(τ − 2), we obtain

‖(v, w)‖2D(A1) ≤ 3C5

(
sup

(ϕ,ψ)∈A(τ−2)

|(ϕ,ψ)|2H + |h(τ)|2Ω + |ρ(τ)|2∂Ω

+
∫ τ+1

τ−2

(|h(θ)|2Ω + |h′(θ)|2Ω + |ρ(θ)|2∂Ω + |ρ′(θ)|2∂Ω)dθ + 1
)

for all (v, w) ∈ A(τ), and any τ ∈ R.
Now, from this last inequality, and thanks to (7), (8), (26) and (27), we obtain (28).

Remark 15 Theorems 13 and 14 apply to the tempered pullback attractor ADHµ and therefore
also (trivially) to ADHF since ADHF (t) ⊂ ADHµ (t) for all t ∈ R.
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Verlag, Berlin, 1961.
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