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Abstract
Existence, uniqueness, and continuity properties of solution for a globally modified ver-

sion of Navier-Stokes equations with finite delay terms within a locally Lipschitz operator
are established. Moreover, we also analyze the stationary problem, and, under suitable
assumptions, we prove that there exists a unique stationary solution, which is globally
asymptotically exponentially stable.
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1 Introduction

In this paper we consider the following system of globally modified Navier-Stokes equations
(GMNSE) with delays on a bounded domain Ω ⊂ R3 with smooth boundary, and with homo-
geneous Dirichlet boundary condition.

∂u

∂t
− ν∆u+ FN (‖u‖) [(u · ∇)u] +∇p = g(t, ut) in (0,∞)× Ω,

∇ · u = 0 in (0,∞)× Ω,

u = 0 on (0,∞)× ∂Ω,

u(s, x) = φ(s, x), s ∈ [−h, 0], x ∈ Ω,

(1)
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where N ∈ (0,∞) is fixed, FN : [0,∞)→ (0, 1] is defined by

FN (r) := min
{

1,
N

r

}
, r ∈ [0,∞),

ν > 0 is the kinematic viscosity, u is the velocity field of the fluid, p is the pressure, φ is a
given function (recent history of the velocity field) defined in interval [−h, 0]×Ω with h > 0 a
fixed value (memory effect), and g is an external force depending on t and ut, where for each
t ≥ 0, we denote by ut the function defined on [−h, 0] by the relation ut(s) = u(t+s), s ∈ [−h, 0].

The GMNSE (1), with or without delays, are indeed global modifications of the Navier-
Stokes equations – the modifying factor FN (‖u‖) depends on the norm ‖u‖ = ‖∇u‖(L2(Ω))3×3 ,
which in turn depends on ∇u over the whole domain Ω and not just at or near the point x ∈
Ω under consideration. Essentially, it prevents large gradients dominating the dynamics and
leading to explosions. It violates the basic laws of mechanics, but mathematically the GMNSE
(1) are a well defined system of equations, just like the modified versions of the NSE of Leray
and others with other mollifications of the nonlinear term, see the review paper [5]. It is worth
mentioning that a global cut off function involving the D(A1/4) norm for the two dimensional
stochastic Navier-Stokes equations was used in [6], and a cut-off function similar to the one we
use here was considered in [23].

The globally modified Navier-Stokes equations, in the case without delays, were introduced
and studied in [1] (see also [2, 3, 4, 11, 12, 13] and the review paper [10]). Contrary to the origi-
nal Navier-Stokes model, this modified model of the three-dimensional Navier-Stokes equations
has some good properties as global existence, uniqueness, and regularity. These results are in-
teresting in their own right, but also GMNSE are useful in obtaining new results about the
three-dimensional Navier-Stokes equations, e.g., they were used in [1] to establish the existence
of bounded entire weak solutions for them. Also, in [13], GMNSE were used to show that the
attainability set of the weak solutions of the three-dimensional Navier-Stokes equations satis-
fying an energy inequality are weakly compact and weakly connected. For convergence results
of solutions of GMNSE to solutions of the three-dimensional Navier-Stokes equations see [1, 16].

However, there are situations in which the model is better described if some terms contain-
ing delays appear in the equations (e.g. cf. [20] for a case concerning just the Navier-Stokes
equations). These delays may appear, for instance, when one wants to control the system by
applying a force which takes into account not only the present state but some history of the
solutions.

In this paper we are interested in the case of a GMNSE model in which terms containing
finite delays appear (see [17] for the case with infinite delays).

A particular case of problem (1) was studied in [4]. Our goal in this paper is to obtain
existence and uniqueness of solution, and convergence to stationary solutions in a much more
general situation, as is noticed in Remark 2 below. In particular, we only require on the delay
term to be sublinear and locally Lipschitz.

The structure of the paper is as follows. Next section is devoted to some preliminaries
and to establish the abstract framework for our problem. In Section 3 we prove existence and
uniqueness of solution to (1), and a continuous dependence result. Finally, in Section 4, under
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suitable additional assumptions, we analyze the stationary problem and the convergence of
solutions of the evolution problem toward the unique solution of the stationary one, which is
proved to hold with an exponential decay.

2 Preliminaries

To set our problem in the abstract framework, we consider the following usual function spaces
(see [14] and [18, 21, 22]).
H the closure of V =

{
u ∈ (C∞0 (Ω))3 : div u = 0

}
in (L2(Ω))3 with inner product (·, ·) and

associate norm |·| , where for u, v ∈ (L2(Ω))3,

(u, v) =
3∑
j=1

∫
Ω

uj(x)vj(x)dx,

V the closure of V in (H1
0 (Ω))3 with scalar product ((·, ·)) and associate norm ‖·‖ , where for

u, v ∈ (H1
0 (Ω))3,

((u, v)) =
3∑

i,j=1

∫
Ω

∂uj
∂xi

∂vj
∂xi

dx.

We will use ‖·‖∗ for the norm in V ′ and 〈·, ·〉 for the duality pairing between V ′ and V. Finally,
we will identify every u ∈ H with the element fu ∈ V ′ given by

〈fu, v〉 = (u, v) ∀ v ∈ V.

Then, it follows that V ⊂ H ⊂ V ′, where the injections are dense and compact.
We consider the linear continuous operator A : V → V ′ defined by

〈Au, v〉 = ((u, v)) ∀u, v ∈ V. (2)

Denoting D(A) = {u ∈ V : Au ∈ H}, with inner product (u, v)D(A) = (Au,Av), then, by
the regularity of ∂Ω, D(A) = (H2(Ω))3 ∩ V, and Au = −P∆u for all u ∈ D(A), is the Stokes
operator (P is the ortho-projector from (L2(Ω))3 onto H).

Let us denote

λ1 = inf
v∈V \{0}

‖v‖2

|v|2
> 0,

the first eigenvalue of the Stokes operator.
Now we define the trilinear form b on V × V × V by

b(u, v, w) =
3∑

i,j=1

∫
Ω

ui
∂vj
∂xi

wjdx ∀u, v, w ∈ V,

and we denote

bN (u, v, w) = FN (‖v‖)b(u, v, w) ∀u, v, w ∈ V.

3



The form bN is linear in u and w, but it is nonlinear in v. Evidently we have bN (u, v, v) = 0
for all u, v ∈ V. We will also make use of the following inequality (see [21] and [8]).

|b(u, v, w)| ≤ 2−1|u|1/4‖u‖3/4‖v‖|w|1/4‖w‖3/4 ∀u, v, w ∈ V. (3)

In particular, this implies that there exists a constant C1 > 0 only dependent on Ω (namely,
C1 = (2λ1/4

1 )−1) such that

|b(u, v, w)| ≤ C1 ‖u‖‖v‖‖w‖ ∀u, v, w ∈ V.

Thus by the definition of FN , if we denote

〈BN (u, v), w〉 = bN (u, v, w) ∀u, v, w ∈ V,

we have
‖BN (u, v)‖∗ ≤ NC1 ‖u‖ ∀u, v ∈ V. (4)

We recall (see [21]) that there exists a constant C2 > 0 depending only on Ω such that

|b(u, v, w)| ≤ C2‖u‖1/2|Au|1/2‖v‖|w| ∀u ∈ D(A), v ∈ V,w ∈ H, (5)
|b(u, v, w)| ≤ C2‖u‖‖v‖|w|1/2‖w‖1/2 ∀u, v, w ∈ V. (6)

(See [19] for the proof of (6)).
We will also use the the following result.

Lemma 1 ([19]) For any u, v ∈ V, and each N > 0,

1. 0 ≤ ‖u‖FN (‖u‖) ≤ N,

2. |FN (‖u‖)− FN (‖v‖)| ≤ 1
N FN (‖u‖)FN (‖v‖)‖u− v‖.

We denote CH = C([−h, 0];H), with norm |φ|CH = sups∈[−h,0] |φ(s)|, and R+ = (0,∞).

For the term g, we assume that g : R+ × CH → (L2(Ω))3 satisfies

g1) For any ξ ∈ CH the mapping R+ 3 t 7→ g(t, ξ) ∈ (L2(Ω))3 is measurable,

g2) there exists a nondecreasing function Lg : R+ → R+, such that for all R ≥ 0, if
|ξ|CH , |η|CH ≤ R, then

|g(t, ξ)− g(t, η)| ≤ Lg(R) |ξ − η|CH ∀ t ∈ R+,

g3) there exists a constant Cg > 0 and a nonnegative function f ∈ L1(0, T ) for all T > 0,
such that for any ξ ∈ CH ,

|g(t, ξ)|2 ≤ Cg |ξ|2CH + f(t) ∀ t ∈ R+.

Finally, we suppose that φ ∈ CH .

4



Remark 2 (cf. [7]) Consider a globally Lipschitz function G : H → (L2(Ω))3, with Lipschitz
constant LG > 0, and a measurable function ρ : R→ [0, h].

Then, it is not difficult to check that the operator g : R× CH → (L2(Ω))3, defined by

R× CH 3 (t, ξ) 7→ g(t, ξ) := G(ξ(−ρ(t)))

satisfies the assumptions g1)–g3) given above.
Observe that the only assumption on ρ is that it is measurable, in contrast with the condition

ρ ∈ C1, with derivative ρ′(t) ≤ ρ∗ < 1 appearing in [4].
The above example can be generalized in several senses. The most immediate generaliza-

tion is to take into account more than one delay term in the problem, and to take G de-
pending on time. Namely, consider m measurable functions ρi : R → [0, h] for i = 1 to m,
a measurable mapping G : R+ × Hm → (L2(Ω))3 such that G(t, ·) is locally Lipschitz (in
the sense given above) and sublinear in Hm uniformly with respect to time. Then, consider
g : R×CH → (L2(Ω))3 given by g(t, ξ) := G(t, ξ(−ρ1(t)), . . . , ξ(−ρm(t))). This operator g also
satisfies conditions g1)–g3).

3 Existence of solutions

In this section we establish existence of weak solution to (1).

Definition 3 A weak solution to (1) is a function u ∈ C([−h, T ];H) ∩ L2(0, T ;V ) for all
T > 0, with u(t) = φ(t) for all t ∈ [−h, 0] and such that for all v ∈ V,

d

dt
(u(t), v) + ν((u(t), v)) + bN (u(t), u(t), v) = (g(t, ut), v), in D′(0,∞).

Remark 4 If u is a weak solution to (1), then u satisfies the energy equality

|u(t)|2 + 2ν
∫ t

s

‖u(r)‖2dr = |u(s)|2 + 2
∫ t

s

(g(r, ur), u(r))dr ∀ 0 ≤ s ≤ t <∞.

Theorem 5 Suppose that g : R+ × CH → (L2(Ω))3 satisfying the assumptions g1)–g3), and
φ ∈ CH are given. Then, there exists a unique weak solution u = u(·;φ) to (1), which in fact
is a strong solution in the sense that

u ∈ C((0, T ];V ) ∩ L2(ε, T ;D(A)) ∀ 0 < ε < T.

Moreover, if φ(0) ∈ V, then u satisfies

u ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)) ∀T > 0.

Proof. The proof of uniqueness is similar to that in [15, Theorem 1], and we omit it.
We split the proof of existence in three steps.

Step 1: A Galerkin scheme. First a priori estimates. Let us consider {vj} ⊂ V
the orthonormal basis of H of all the eigenfunctions of the Stokes operator. Denote Vm =
span[v1, . . . , vm] and consider the projector Pmu =

∑m
j=1(u, vj)vj .
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Define also

um(t) =
m∑
j=1

αm,j(t)vj

where the upper script m will be used instead of (m) for short since no confusion is possible
with powers of u, and where the coefficients αm,j are required to satisfy the following system
in the sense of D′(0,∞).

d

dt
(um(t), vj) + ν((um(t), vj)) + bN (um(t), um(t), vj) = (g(t, umt ), vj), 1 ≤ j ≤ m, (7)

and the initial condition um(s) = Pmφ(s) for s ∈ [−h, 0].
In principle, the above system of ordinary functional differential equations has a unique

local solution defined in [0, tm), with 0 < tm ≤ ∞ (see [9]).
We will obtain a priori estimates that guarantee that the solutions do exist for any time

t ∈ [0,∞).

Let us fix 0 < T < tm. Multiplying (7) by um, we obtain

d

dt
|um(t)|2 + 2ν‖um(t)‖2 = 2(g(t, umt ), um(t))

≤ 2|g(t, umt )||um(t)|, a.e. t ∈ (0, T ), (8)

and therefore, using Young inequality, and taking into account g3), we can deduce that

d

dt
|um(t)|2 ≤ (2νλ1)−1(Cg|umt |2CH + f(t)), a.e. t ∈ (0, T ). (9)

Hence, integrating between 0 and t, we deduce

|um(t)|2 ≤ |φ(0)|2 + (2νλ1)−1

∫ t

0

(
Cg|ums |2CH + f(s)

)
ds ∀ t ∈ [0, T ].

From this,

|umt |2CH ≤ |φ|
2
CH + (2νλ1)−1

∫ t

0

(
Cg|ums |2CH + f(s)

)
ds ∀ t ∈ [0, T ],

and therefore, by Gronwall lemma we have

|umt |2CH ≤ e
Cg(2νλ1)−1t

(
|φ|2CH + (2νλ1)−1

∫ t

0

f(s)ds
)
∀ t ∈ [0, T ]. (10)

Thus, we obtain that for any T ∈ (0, tm) there exists a constant C = C(T, |φ|CH ), depending
on some constants of the problem (namely λ1, ν, Cg and f), and on T and |φ|CH , such that

|umt |2CH ≤ C(T, |φ|CH ) ∀ t ∈ [0, T ], m ≥ 1. (11)

In particular, this implies that tm = ∞ for all m, and taking also into account that um(s) =
Pmφ(s) for s ∈ [−h, 0],

{um} is bounded in L∞(−h, T ;H) ∀T > 0. (12)
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Moreover, it also follows from (8), g3) and (11) that

{um} is bounded in L2(0, T ;V ) ∀T > 0. (13)

Now, observe that (7) is equivalent to

dum

dt
= −νAum − P̃mBN (um, um) + P̃mg(t, umt ), (14)

where P̃m : V ′ → V ′ is given by 〈P̃mk,w〉 = 〈k, Pmw〉 for any k ∈ V ′ and w ∈ V.
From (4), g3), and (12)–(14), by the choice of the basis one also deduces that

{(um)′} is bounded in L2(0, T ;V ′) ∀T > 0. (15)

So, this implies the existence of a function u ∈ L∞(−h, T ;H) ∩ L2(0, T ;V ), with u′ ∈
L2(0, T ;V ′), for all T > 0, and a subsequence of {um} which converges weak-star to u
in L∞(−h, T ;H) and weakly to u in L2(0, T ;V ), with {(um)′} converging weakly to u′ in
L2(0, T ;V ′) for all T > 0. Observe that in particular u ∈ C([0,∞);H).

By the Aubin-Lions compactness result (cf. [14, Chapter 1, Theorem 5.1]), one can then
deduce that a subsequence in fact converges strongly to u in L2(0, T ;H) and a.e. in (0, T )
with values in H and a.e. in (0, T )× Ω for all T > 0.

Step 2: Some more a priori estimates. We need to find a stronger estimate to ensure
that ‖um(t)‖ → ‖u(t)‖ or at least FN (‖um(t)‖)→ FN (‖u(t)‖) for a.e. t > 0, which is needed
to pass to the limit in the nonlinear term BN (um, um).

Taking the inner product of the Galerkin functional differential system (7) with Aum, we
obtain

d

dt
‖um(t)‖2 + 2ν|Aum(t)|2 + 2bN (um(t), um(t), Aum(t)) = 2(g(t, umt ), Aum(t)) (16)

a.e. t > 0.
By (5), Lemma 1 and Young inequality, it follows

|bN (um(t), um(t), Aum(t))| ≤ N

‖um(t)‖
C2‖um(t)‖3/2|Aum(t)|3/2

≤ ν

4
|Aum(t)|2 + CN‖um(t)‖2, a.e. t > 0,

with CN =
27(NC2)4

4ν3
, and we also have that

|(g(t, umt ), Aum(t))| ≤ ν

4
|Aum(t)|2 +

1
ν
|g(t, umt )|2, a.e. t > 0.

So, (16) simplifies to

d

dt
‖um(t)‖2 + ν|Aum(t)|2 ≤ 2

ν
|g(t, umt )|2 + 2CN‖um(t)‖2, a.e. t > 0.
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Integrating between s and t with 0 ≤ s ≤ t ≤ T we obtain that

‖um(t)‖2 + ν

∫ t

s

|Aum(r)|2dr (17)

≤ ‖um(s)‖2 +
2
ν

∫ T

0

|g(r, umr )|2dr + 2CN
∫ T

0

‖um(r)‖2dr ∀ 0 ≤ s ≤ t ≤ T.

Now, integrating with respect to s between 0 and t, in particular we obtain

t‖um(t)‖2 ≤
∫ T

0

‖um(s)‖2ds+
2T
ν

∫ T

0

|g(r, umr )|2dr + 2CNT
∫ T

0

‖um(r)‖2dr ∀ 0 ≤ t ≤ T.

The above two inequalities, (11), (13) and g3) imply that

{um} is bounded in L∞(ε, T ;V ) ∩ L2(ε, T ;D(A)) ∀T > ε > 0. (18)

Moreover, observe that if φ(0) ∈ V, then, since ‖um(0)‖ = ‖Pmφ(0)‖ ≤ ‖φ(0)‖, from (17),
(11), (13) and g3) one deduces directly that

{um} is bounded in L∞(0, T ;V ) ∩ L2(0, T ;D(A)) ∀T > 0. (19)

Assuming again only that φ(0) ∈ H, as D(A) ⊂ V ⊂ H with compact injection, by [14,
Chapter 1, Theorem 5.1], from Step 1 and (18), using a sequence of positive values εn ↓ 0 and
a diagonal argument, we deduce that

u ∈ L∞(−h, T ;H) ∩ L2(0, T ;V ) ∩ L∞(ε, T ;V ) ∩ L2(ε, T ;D(A))

for any T > ε > 0, and for a subsequence of {um}, that we relabel the same, we have

um ⇀ u weak in L2(0, T ;V ),

um
∗
⇀ u weak-star in L∞(0, T ;H),

um → u a.e. in (0, T )× Ω,

um → u strong in L2(ε, T ;V ),

um ⇀ u weak in L2(ε, T ;D(A)),

um
∗
⇀ u weak-star in L∞(ε, T ;V ),

(20)

for any T > ε > 0.
As long as um converges to u in L2(ε, T ;V ) for all T > ε > 0, we may assume, eventually

extracting a subsequence, that ‖um(t)‖ → ‖u(t)‖ a.e. in (0,∞), and therefore

FN (‖um(t)‖)→ F (‖u(t)‖), a.e. in (0,∞). (21)

Step 3: Convergence in CH and existence of solution.
We will prove that for a subsequence (relabelled the same) it holds that umt → ut in CH ,

for all t ∈ [0,∞). To see this, it is enough to prove:

Pmφ→ φ in CH , (22)
um → u in C([0, T ];H) ∀T > 0. (23)
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Indeed, for the delay initial datum φ ∈ CH , if (22) is not true, there would exist ε > 0 and
a subsequence, that we relabel the same, such that

|Pmφ(θm)− φ(θm)| > ε ∀m ≥ 1. (24)

Then, there exists θ ∈ [−h, 0] such that a subsequence {θm} (relabelled the same) satisfies
θm → θ. Now, observe that we have by the triangular inequality

|Pmφ(θm)− φ(θ)| ≤ |Pmφ(θm)− Pmφ(θ)|+ |Pmφ(θ)− φ(θ)|.

Clearly, since φ(θ) is fixed, the second addend in the right-hand side goes to zero as m→∞.
Moreover, since Pm is a projection from H onto Vm, it is non-expansive. Therefore, the first
addend in the right-hand side satisfies |Pmφ(θm) − Pmφ(θ)| ≤ |φ(θm) − φ(θ)|, which also
converges to zero as m→∞ by the continuity of φ.

So we conclude that Pmφ(θm) → φ(θ) in H as m → ∞. But this is a contradiction with
(24). So, (22) holds.

Now, in order to check (23), we will use an energy method based upon the estimates
obtained in Step 1. This method essentially relies on the convergence in almost every time of
an interval of a sequence of continuous and non-increasing functions toward another continuous
and non-increasing function. This implies the convergence in the whole time interval, which
will lead to an absurd in a contradiction argument analogous to the above.

Consider a fixed (but arbitrary) value T > 0.
Due to the strong convergence of {um} to u in L2(0, T ;H), we deduce that a subsequence (still
denoted the same) um(t)→ u(t) in H a.e. t ∈ (0, T ).

Since we have the equality in V ′

um(t)− um(s) =
∫ t

s

(um)′(r)dr ∀ 0 ≤ s ≤ t ≤ T,

from (15) we deduce that {um} is equi-continuous on [0, T ] with values in V ′. Therefore, by
the Ascoli-Arzelà theorem we have that a subsequence (relabelled the same) satisfies

um → u in C([0, T ];V ′). (25)

Again from (12) we obtain that for any sequence {tm} ⊂ [0, T ] with tm → t, one has

um(tm) ⇀ u(t) weakly in H, (26)

where we have used (25) in order to identify the weak limit.
Now, we will prove (23) by a contradiction argument. If it would not be so, then, taking

into account that u ∈ C([0, T ];H), there would exist ε > 0, a value t0 ∈ [0, T ] and subsequences
(still denoted the same) {um} and {tm} ⊂ [0, T ] with lim

m→∞
tm = t0 such that

|um(tm)− u(t0)| ≥ ε ∀m. (27)

In order to prove that this is absurd, we will use an energy method.
By (9) and (11), we have that

|um(t)|2 ≤ |um(s)|2 + (2νλ1)−1CgC(T, |φ|CH )(t− s)

+(2νλ1)−1

∫ t

s

f(r)dr ∀ 0 ≤ s ≤ t ≤ T. (28)
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On the other hand, from (11) and g3) we deduce the existence of ξg ∈ L2(0, T ; (L2(Ω))3),
such that (a subsequence of) {g(·, um· )} converges weakly to ξg in L2(0, T ; (L2(Ω))3).

Then, from (20) and (21), reasoning as in [1] for the case without delays, we can pass to
the limit in equation (14) and deduce that u is solution of

d

dt
(u(t), v) + ν((u(t), v)) + 〈BN (u, u), v〉 = (ξg(t), v) ∀ v ∈ V (29)

in the sense of D′(0,∞).
Therefore, by the energy equality and Young inequality,

|u(t)|2 ≤ |u(s)|2 + (2νλ1)−1

∫ t

s

|ξg(r)|2dr ∀ 0 ≤ s ≤ t ≤ T.

Now, observe that for the weak limit ξg we have the estimate∫ t

s

|ξg(r)|2dr ≤ lim inf
m→∞

∫ t

s

|g(r, umr )|2dr

≤ CgC(T, |φ|CH )(t− s) +
∫ t

s

f(r)dr ∀ 0 ≤ s ≤ t ≤ T.

So, u also satisfies the inequality (28).
Now, consider the continuous functions Jm, J : [0, T ]→ R defined by

Jm(t) = |um(t)|2 − 1
2νλ1

∫ t

0

f(r)dr − CgC(T, |φ|CH )
2νλ1

t,

J(t) = |u(t)|2 − 1
2νλ1

∫ t

0

f(r)dr − CgC(T, |φ|CH )
2νλ1

t.

From (28) for {um} and u, it is clear that Jm and J are non-increasing functions. Moreover,
by the convergence of um to u a.e. in time with values in H, it holds that

Jm(t)→ J(t), a.e. t ∈ [0, T ]. (30)

Now we will prove that
um(tm)→ u(t0) in H, (31)

which contradicts (27).
Firstly, recall that from (26) we have that

|u(t0)| ≤ lim inf
m→∞

|um(tm)|.

Therefore, if we show that
lim sup
m→∞

|um(tm)| ≤ |u(t0)|, (32)

we conclude the convergence of the norms, which jointly with (26) implies (31).
Now, observe that the case t0 = 0 follows directly from (28) with s = 0 and the definition

of um(0) = Pmφ(0). So, we may assume that t0 > 0. This is important, since we will approach
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this value t0 from the left by a sequence {t̃k}, i.e. limk→∞ t̃k ↗ t0, being {t̃k} values where
(30) holds. Since u(·) is continuous at t0, for an arbitrary value ε > 0 there is kε such that

|J(t̃k)− J(t0)| < ε/2 ∀ k ≥ kε.

On other hand, taking m ≥ m(kε) such that tm > t̃kε , as Jm is non-increasing and for all t̃k
the convergence (30) holds, one has that

Jm(tm)− J(t0) ≤ |Jm(t̃kε)− J(t̃kε)|+ |J(t̃kε)− J(t0)|,

and obviously, taking m ≥ m′(kε), it is possible to obtain |Jm(t̃kε) − J(t̃kε)| < ε/2. We also
have that ∫ tm

0

f(r)dr →
∫ t0

0

f(r)dr as m→∞.

So, since ε > 0 was arbitrary, we conclude that (32) holds. Thus, (31) and finally (23) are also
true, as we wanted to check.

Now, we are ready to pass to the limit in the equations satisfied by the {um} and to
complete the information obtained in (29).

Assume initially that φ(0) ∈ H. The first clear consequence from the convergence proved
above, since g satisfies g2), is that

g(·, um· )→ g(·, u·) in L2(0, T ; (L2(Ω))3) ∀T > 0.

Thus, we can identify ξg(t) = g(t, ut) in (29). Therefore u is a solution to (1).

Finally, if φ(0) ∈ V, from (19) and analogous arguments to those given above we conclude
that u ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)) for all T > 0.

Proposition 6 Under the assumptions of Theorem 5, the solution to (1) is continuous with
respect to the initial condition φ. More exactly, there exists a constant C3 > 0, only dependent
on ν and the constant C2 appearing in (6), such that ui, for i = 1, 2, the corresponding solutions
to initial data φi ∈ CH , i = 1, 2, satisfy

|u1
t − u2

t |2CH ≤ |φ
1 − φ2|2CHe

(2C3N
4+2Lg(RT,φ1,φ2 ))t, (33)

for all t ∈ [0, T ], where RT,φ1,φ2 ≥ 0 is given by

R2
T,φ1,φ2

=

(
max(|φ1|2CH , |φ

2|2CH ) + (2νλ1)−1

∫ T

0

f(s)ds

)
eCg(2νλ1)−1T .

Proof. For short in what follows, let us introduce the operator NL : V × V → V ′ given by

〈NL(u, v), w〉 := FN (‖u‖)b(u, u, w)− FN (‖v‖)b(v, v, w) ∀u, v, w ∈ V.

If we denote w = u1 − u2, from the energy equality we obtain

1
2
d

dt
|w(t)|2 + ν‖w(t)‖2 +

〈
NL(u1(t), u2(t)), w(t)

〉
= (g(t, u1

t )− g(t, u2
t ), w(t)) (34)
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a.e. t ∈ (0, T ).
From the properties of the trilinear form b, it easily follows that〈
NL(u1(t), u2(t)), w(t)

〉
= FN (‖u1(t)‖)b(w(t), u1(t), w(t))

+(FN (‖u1(t)‖)− FN (‖u2(t)‖))b(u2(t), u1(t), w(t)).

Then, using Lemma 1, formula (6) and Young inequality (see [19] for the details), we deduce
that there exists a constant C3 > 0, which depends on C2 and ν, such that,〈

NL(u1(t), u2(t)), w(t)
〉
≤ ν‖w(t)‖2 + C3N

4|w(t)|2. (35)

On the other hand, reasoning as for the obtention of (10), we deduce that

|uit|2CH ≤

(
|φi|2CH + (2νλ1)−1

∫ T

0

f(s)ds

)
eCg(2νλ1)−1T

for all t ∈ [0, T ].
From this inequality we obtain, by g2), a particular (local) Lipschitz constant for g, which

can be used, jointly with (35), in (34), whence

d

dt
|w(t)|2 ≤ 2C3N

4|w(t)|2 + 2Lg(RT,φ1,φ2)|wt|CH |w(t)|

≤ (2C3N
4 + 2Lg(RT,φ1,φ2))|wt|2CH

for all t ∈ [0, T ].
Thus,

|wt|2CH ≤ |φ
1 − φ2|2CH + (2C3N

4 + 2Lg(RT,φ1,φ2))
∫ t

0

|ws|2CHds

for all t ∈ [0, T ], and therefore, by Gronwall lemma, we conclude (33).

4 Stationary solutions and their stability

In this section we will prove that under additional assumptions, the problem (1) admits a
unique stationary solution that is globally asymptotically exponentially stable.

From now on we assume that g : R+ × CH → L2(Ω)3 satisfies g1)–g3) with f(t) = |f | ≥ 0
for all t ≥ 0, a constant function. We also suppose that g is autonomous, in the sense that
there exists a function g0 : H → H such that

g4) g(t, w) = g0(w) for all (t, w) ∈ [0,∞)×H,
where, with a slight abuse of notation, we identify every element w ∈ H with the constant
function in CH that is equals to w for any time t ∈ [−h, 0].

We consider the equation

du

dt
+ νAu+BN (u, u) = g(t, ut) t > 0, (36)

where A is the operator given by (2). A stationary solution to (36) will be an element u∗ ∈ V
such that

ν((u∗, v)) + bN (u∗, u∗, v) = (g0(u∗), v) ∀ v ∈ V. (37)

The proof of the following result is analogous to [15, Theorem 3], and we omit it.

12



Theorem 7 Under the above assumptions and notation, if λ1ν > C
1/2
g , then:

(a) The problem (36) admits at least one stationary solution u∗, which indeed belongs to
D(A). Moreover, any such stationary solution satisfies the estimate

(νλ1 − C1/2
g )‖u∗‖ ≤ λ1/2

1 |f |1/2. (38)

(b) If the following condition holds,

min

{
Nλ
−1/4
1 ,

λ
1/4
1 |f |1/2

νλ1 − C1/2
g

}
< ν − λ−1

1 Lg(Rg), (39)

where

Rg =
|f |1/2

νλ1 − C1/2
g

, (40)

then, the stationary solution of (36) is unique.

Theorem 8 Assume that g1)–g4) hold with f a positive constant, νλ1 > C
1/2
g , and that (39)

is satisfied. Let u∗ be the unique stationary solution of (36). Then,

a) If Lg(R) = Lg is independent of R, there exist two constants λ > 0 and Cλ > 0 such that
for any φ ∈ CH ,

|u(t;φ)− u∗|2 ≤ Cλ|φ− u∗|2CHe
−λt ∀ t ≥ 2h. (41)

b) If Lg(R) is a continuous function of R, there exists a µ ∈ (0, 2νλ1) such that µ(2νλ1 −
µ)e−µh > Cg, and

min

{
Nλ
−1/4
1 ,

λ
1/4
1 |f |1/2

νλ1 − C1/2
g

}
< ν − λ−1

1 Lg(R̃g), (42)

where R̃g is the positive number given by

R̃2
g = max{eµh(2νλ1 − µ)−1(µ− (2νλ1 − µ)−1eµhCg)−1|f |, R2

g},

with Rg defined by (40), then there exists a constant λ > 0 such that for each φ ∈ CH
there exist Tφ ≥ 2h and Cλ,φ > 0 such that

|u(t;φ)− u∗|2 ≤ Cλ,φ|φ− u∗|2CHe
−λt ∀ t ≥ Tφ. (43)

Proof. For short denote u(t) = u(t;φ). Let us also denote w(t) = u(t) − u∗. Considering
equations (36) for u(t) and (37) for u∗, one has

d

dt
(w(t), v) + ν((w(t), v)) + bN (u(t), u(t), v)− bN (u∗, u∗, v) = (g(t, ut)− g(t, u∗), v)

in D′(0,∞) for any v ∈ V.
From the energy equality, we obtain for any λ > 0,

d

dt
(eλt|w(t)|2) ≤ eλt

(
λ|w(t)|2 − 2ν‖w(t)‖2 + 2|bN (u(t), u(t), w(t))− bN (u∗, u∗, w(t))|

+2|g(t, ut)− g(t, u∗)| · |w(t)|) , a.e. t > 0. (44)
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Now observe that

|bN (u(t), u(t), w(t))− bN (u∗, u∗, w(t))|
≤ |bN (u(t), u(t), w(t))− bN (u(t), u∗, w(t))|+ |bN (w(t), u∗, w(t))|
= |FN (‖u(t)‖)b(u(t), u(t), w(t))− FN (‖u∗‖)b(u(t), u∗, w(t))|

+|FN (‖u∗‖)b(w(t), u∗, w(t))|,

and therefore, taking into account that

b(u(t), u(t), w(t)) = b(u(t), u∗, w(t)) = −b(u(t), w(t), u∗),

from Lemma 1 and inequality (3), we obtain

|bN (u(t), u(t), w(t))− bN (u∗, u∗, w(t))|
≤ N−1FN (‖u(t)‖)FN (‖u∗‖)‖w(t)‖2−1λ

−1/4
1 ‖u(t)‖‖w(t)‖‖u∗‖

+FN (‖u∗‖)2−1λ
−1/4
1 ‖w(t)‖‖u∗‖‖w(t)‖.

Thus, observing that FN (‖u(t)‖)‖u(t)‖ ≤ N, we see that

|bN (u(t), u(t), w(t))− bN (u∗, u∗, w(t))| ≤ λ−1/4
1 FN (‖u∗‖)‖u∗‖‖w(t)‖2,

and therefore, as FN (‖u∗‖)‖u∗‖ ≤ N, and also, FN (‖u∗‖) ≤ 1 and ‖u∗‖ satisfies (38), we
deduce that

|bN (u(t), u(t), w(t))− bN (u∗, u∗, w(t))| ≤ σ‖u(t)− u∗‖2, t > 0, (45)

where

σ = min

{
Nλ
−1/4
1 ,

λ
1/4
1 |f |1/2

νλ1 − C1/2
g

}
.

Case a) Assume that g is globally Lipschitz, i.e., Lg(R) = Lg is independent of R.
In this case, from (44), (45) and Young inequality, we conclude that

d

dt
(eλt|w(t)|2) ≤ eλt(−2ν + λλ−1

1 + 2σ + λ−1
1 Lg)‖w(t)‖2 + Lge

λt|wt|2CH ,

a.e. t > 0, for any λ > 0.
Therefore, integrating from 2h to t, and observing that

sup
r∈[s−h,s]

|w(r)|2 ≤ λ−1
1 sup

r∈[s−h,s]
‖w(r)‖2 ∀ s ≥ 2h,

we have

eλt|w(t)|2 ≤ e2λh|w(2h)|2

+
(
−2ν+λλ−1

1 +2σ+2λ−1
1 Lg

)∫ t

2h

eλs sup
r∈[s−h,s]

‖w(r)‖2ds
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for all t ≥ 2h and any λ > 0.
Thus, if we assume (39), and we take λ = 2(ν − σ)λ1 − 2Lg > 0, we obtain

eλt|w(t)|2 ≤ e2λh|w(2h)|2 for all t ≥ 2h.

Hence, by Proposition 6, we deduce (41) with Cλ = e2(λ+2Lg+2C3N
4)h.

Case b) In this case, we claim that for any µ ∈ (0, 2νλ1) we have that

|ut|2CH ≤ eµh
{
|φ|2CHe

((2νλ1−µ)−1eµhCg−µ)t

+(2νλ1 − µ)−1(µ− (2νλ1 − µ)−1eµhCg)−1|f |
}

(46)

for all t ≥ 0.
Indeed, from the energy equality and Young inequality, for any µ ∈ (0, 2νλ1) it holds

d

dt
(eµt|u(t)|2) ≤ eµt(µ− 2νλ1)|u(t)|2 + 2eµt|g(t, ut)||u(t)|

≤ eµt (2νλ1 − µ)−1 |g(t, ut)|2

a.e. t > 0, and therefore, by g3),

d

dt
(eµt|u(t)|2) ≤ (2νλ1 − µ)−1

eµt
(
Cg|ut|2CH + |f |

)
, a.e. t > 0.

Therefore, it is easy to deduce that

eµt|ut|2CH ≤ eµh|φ|2CH + (2νλ1 − µ)−1
eµh

∫ t

0

eµs
(
|f |+ Cg|us|2CH

)
ds

for all t ≥ 0, and therefore, by Gronwall lemma, we deduce (46).
By (42) and the continuity of Lg, there exists an ε > 0 such that

σ = min

{
Nλ
−1/4
1 ,

λ
1/4
1 |f |1/2

νλ1 − C1/2
g

}
< ν − λ−1

1 Lg(R̃g + ε),

and a Tφ ≥ 2h such that
|ut|CH ≤ R̃g + ε ∀ t ≥ Tφ.

Now, reasoning as in the case a), we can prove that if we take

λ = 2(ν − σ)λ1 − 2Lg(R̃g + ε) > 0,

we obtain
eλt|w(t)|2 ≤ eλTφ |w(Tφ)|2 ∀ t ≥ Tφ.

Thus, reasoning as in the proof of Proposition 6, we deduce (43) with

Cλ,φ = exp{(λ+ 2Lg(R̃g + ε) + 2C3N
4)Tφ}.
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Remark 9 The case f = 0 can also be treated in the above result. Namely, statement a)
follows without changes; however, for statement b), we must perform slight changes. Indeed,
observe that if f = 0, then R̃g = 0 and Lg(0) does not have sense since Lg is defined in (0,∞).
We may circumvent this in two ways, either with Lg extended to [0,∞) and continuous, either
with the more general requirement (at light of the above proof) that Lg(R̃g) in (42) is replaced
by limt→R̃+

g
Lg(t), which must also be asked to exists.
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Dunod, Paris, 1969.
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