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Abstract. This paper treats the existence of pullback attractors for the non-
autonomous 2D Navier–Stokes equations in two different spaces, namely L2

and H1. The non-autonomous forcing term is taken in L2
loc(R; H−1) and

L2
loc(R; L2) respectively for these two results: even in the autonomous case

it is not straightforward to show the required asymptotic compactness of the
flow with this regularity of the forcing term. Here we prove the asymptotic

compactness of the corresponding processes by verifying the flattening property

– also known as “condition (C)”. We also show, using the semigroup method,
that a little additional regularity – f ∈ Lp

loc(R; H−1) or f ∈ Lp
loc(R; L2) for

some p > 2 – is enough to ensure the existence of a compact pullback absorbing

family (not only asymptotic compactness). Even in the autonomous case the
existence of a compact absorbing set for this model is new when f has such

limited regularity.

1. Introduction. In this paper we consider the existence of attractors in H (essen-
tially L2) and in V (essentially H1) for the incompressible two-dimensional Navier–
Stokes equations

ut − ν∆u + (u · ∇)u +∇p = f(t) ∇ · u = 0

when the forcing term has the minimal regularity required to obtain solutions that
evolve continuously in these phase spaces. Similar problems have previously been
considered by Rosa [24] in the autonomous case (in the phase space H with f ∈
V ′), and by Garćıa-Luengo et al. [13] in the non-autonomous case (in the phase
space V with f satisfying the same conditions as in this paper). In all these cases,
the existence of attractors has been shown by proving some sort of asymptotic
compactness of the corresponding flow (or process in the non-autonomous case).

To verify asymptotic compactness one can either proceed directly, or make use
of a splitting of the solutions into high and low components. Such a splitting is a
very common technique in the study of the qualitative behaviour of solutions for
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PDE problems, in particular when considering the long-time behaviour of dynamics,
as in the construction of invariant manifolds [6, 15] and inertial manifolds [10, 7],
the squeezing property [9, 26], the notion of ‘determining modes’ [8, 16], and the
theory of attractors [20]. In the context of proofs of the existence of attractors it
was formalised by Ma, Wang, and Zhong [20] as their celebrated ‘condition (C)’.
A more descriptive terminology, ‘the flattening property’, was coined by Kloeden
and Langa [17], and we adopt this terminology here. However, it is worth making
the observation that this is not so much a ‘property’ as a (powerful) technique
for obtaining the asymptotic compactness of a flow, be it autonomous or non-
autonomous. We return to this point of view later in the paper.

Here we consider attractors in both H and V . We show that when f ∈ L2
loc(R;V ′)

– which is the minimum regularity of f consistent with weak solutions that have u ∈
L2

loc(R;V ) and ut ∈ L2
loc(R;V ′) – the process is pullback asymptotically compact.

We do this using the method developed in [13], and also show as a consequence
that the process satisfies ‘Condition (C)’. With only a little more regularity of f ,
namely f ∈ Lp

loc(R;V ′) for some p > 2, we are able to show, using the semigroup
approach of Fujita and Kato [11] and ideas from the ε-regularity theory developed
by Arrieta and Carvalho [1], that in fact there is a compact pullback absorbing
family in H. In particular, in the autonomous case it follows that for f ∈ V ′ there
is a compact absorbing set. All the proofs depend in a crucial way on Lemma 4.5,
which (essentially) guarantees the asymptotic compactness in H.

To treat attractors in V when f ∈ L2
loc(R;H) is significantly more straightfor-

ward. One can seek to prove asymptotic compactness directly, as in [13], but this
is little easier than the analysis we present here for the phase space H. In fact in
this case use of the Fourier splitting technique (‘the flattening property’) makes the
analysis significantly simpler, and the argument is much shorter than that in [13].
With a little extra regularity (again, f ∈ Lp

loc(R;H) for some p > 2) the semigroup
approach yields - in this case very quickly - the existence of a compact pullback
absorbing family in V.

Our goal in this paper is to obtain the flattening property for a non-autonomous
2D Navier–Stokes model in different norms, namely in L2 and H1, when the forcing
has the minimal regularity for generating weak and strong solutions, respectively.

While in the case of L2 a direct proof of asymptotic compactness is no harder
than a proof of the flattening property (indeed, we will obtain both from Lemma
4.5, the asymptotic compactness following almost immediately), in H1 a proof of
asymptotic compactness via the flattening property is significantly shorter than
proofs in previous papers, see [9] and [22, 13], which were based on more involved
inequalities and on the energy method used by Rosa [24], respectively. This is due
to the fact that there are stronger estimates available for the nonlinear term in H1

than in L2:

|b(u, u, q)| ≤ c|u|‖u‖‖q‖, |b(u, u, Aq)| ≤ c‖u‖|u|1/2‖∇u‖1/2‖∇q‖,

where ‖ · ‖ denotes the norm in H1, see properties (4) and (5), below.
The structure of the paper is as follows. Section 2 contains some preliminaries,

including the functional setting of the problem. Section 3 is devoted to recalling
standard results from the theory of pullback attractors (within the framework of
time-dependent universes of sets), such as existence and comparison, and the flat-
tening property in a Banach space.
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The analysis in the space L2 for uτ ∈ L2 and f ∈ L2
loc(R;V ′) is carried out in

Section 4, where we conclude the existence of minimal pullback attractors for a
universe not only of fixed bounded sets but also for a set of tempered universes,
that depends on integrability conditions of the force in the problem under a suitable
weight, namely ∫ 0

−∞
eµt‖f(t)‖2∗ dt < ∞ (1)

for some 0 < µ < 2νλ1, where λ1 is the first eigenvalue of the Stokes operator. As
announced before, we obtain the existence of a compact pullback absorbing family
in H if we strengthen the regularity of f to f ∈ Lp

loc(R;V ′) for some p > 2.
We then establish additional regularity results in Section 5, under the assump-

tion that f ∈ L2
loc(R;H) and an integrability condition similar to (1); we obtain

the flattening property in the H1 norm, which implies the asymptotic compactness
of the corresponding process in this norm, to finish with the existence of minimal
pullback attractors and comparison among them under suitable additional assump-
tions. Again, we are able to show the existence of a compact pullback absorbing
family in V if we strengthen the regularity of f to f ∈ Lp

loc(R;H) for some p > 2.

2. Statement of the problem. Let Ω ⊂ R2 be an open bounded set with smooth
enough boundary ∂Ω, and consider an arbitrary initial time τ ∈ R, and the following
Navier-Stokes problem:

∂u

∂t
− ν∆u + (u · ∇)u +∇p = f(t) in Ω× (τ,∞),

div u = 0 in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),

u(x, τ) = uτ (x), x ∈ Ω,

(2)

where we assume that ν > 0 is the kinematic viscosity, u = (u1, u2) is the velocity
field of the fluid, p is the pressure, uτ is the initial velocity field, and f is an external
force term depending on time.

To start, we consider the usual spaces in the variational theory of Navier-Stokes
equations:

V =
{
u ∈ (C∞0 (Ω))2 : div u = 0

}
,

H = the closure of V in (L2(Ω))2 with the norm | · |, and inner product (·, ·), where
for u, v ∈ (L2(Ω))2,

(u, v) =
2∑

j=1

∫
Ω

uj(x)vj(x) dx,

V = the closure of V in (H1
0 (Ω))2 with the norm ‖·‖ associated to the inner product

((·, ·)), where for u, v ∈ (H1
0 (Ω))2,

((u, v)) =
2∑

i,j=1

∫
Ω

∂uj

∂xi

∂vj

∂xi
dx.

We will use ‖ · ‖∗ for the norm in V ′ and 〈·, ·〉 for the duality product between
V ′ and V . We consider every element h ∈ H as an element of V ′, given by the
equality 〈h, v〉 = (h, v) for all v ∈ V . Then, it follows that V ⊂ H ⊂ V ′, where the
injections are dense and compact.
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Define the operator A : V → V ′ as 〈Au, v〉 = ((u, v)) for all u, v ∈ V . Let
us denote by D(A) = {u ∈ V : Au ∈ H}. By the regularity of ∂Ω, one has
D(A) = (H2(Ω))2 ∩ V , and Au = −P∆u for all u ∈ D(A) is the Stokes operator
(P is the ortho-projector from (L2(Ω))2 onto H). On D(A) we consider the norm
| · |D(A) defined by |u|D(A) = |Au|. Observe that on D(A) the norms ‖·‖(H2(Ω))2 and
| · |D(A) are equivalent (see [5] or [25]), and D(A) is compactly and densely injected
in V .

Let us define

b(u, v, w) =
2∑

i,j=1

∫
Ω

ui
∂vj

∂xi
wj dx,

for all functions u, v, w : Ω → R2 for which the right-hand side is well defined.
In particular, b has sense for all u, v, w ∈ V , and is a continuous trilinear form

on V × V × V .
Some useful properties concerning b that we will use throughout the paper are

the following (see [26] or [23]):

b(u, v, w) = −b(u, w, v) ∀u, v, w ∈ V, (3)

|b(u, v, w)| ≤ 2−1/2|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2 ∀u, v, w ∈ V, (4)

and there exists a constant C1 > 0, depending only on Ω, such that

|b(u, v, w)| ≤ C1|u|1/2|Au|1/2‖v‖|w| ∀u ∈ D(A), v ∈ V, w ∈ H. (5)

For any u, v ∈ V, we will also denote by B(u, v) the operator of V ′ given by

〈B(u, v), w〉 = b(u, v, w) ∀w ∈ V

and B(u) = B(u, u).
Assume that uτ ∈ H and f ∈ L2

loc(R;V ′).

Definition 2.1. A weak solution to (2) is a function u that belongs to L2(τ, T ;V )
∩ L∞(τ, T ;H) for all T > τ , with u(τ) = uτ , and such that for all v ∈ V ,

d

dt
(u(t), v) + ν〈Au(t), v〉+ b(u(t), u(t), v) = 〈f(t), v〉, (6)

where the equation must be understood in the sense of D′(τ,∞).

Note that for the right-hand side to be defined we certainly require f(t) ∈ V ′ for
almost every t > τ ; we choose f ∈ L2

loc(R;V ′) so that we can interpret the initial
condition and obtain an energy equality for solutions. Indeed, if u is a weak solution
to (2) and f ∈ L2

loc(R;V ′) then from (6) we deduce that for any T > τ , one has
u′ ∈ L2(τ, T ;V ′), and so u ∈ C([τ,∞);H), whence the initial datum has full sense.
Moreover, in this case the following energy equality holds:

|u(t)|2 + 2ν

∫ t

s

‖u(r)‖2 dr = |u(s)|2 + 2
∫ t

s

〈f(r), u(r)〉 dr ∀ τ ≤ s ≤ t.

In Section 4 we will prove the existence of pullback attractors in H with this (min-
imal) regularity requirement on f , coupled with the boundedness condition∫ 0

−∞
eµs‖f(s)‖2∗ ds < ∞ (7)

for some µ ∈ (0, 2νλ1).
A notion of more regular solution is also suitable for problem (2).
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Definition 2.2. A strong solution to problem (2) is a weak solution u to (2) such
that u belongs to L2(τ, T ;D(A)) ∩ L∞(τ, T ;V ) for all T > τ .

If f ∈ L2
loc(R;H) and u is a strong solution to (2), then u′ ∈ L2(τ, T ;H) for all

T > τ , and so u ∈ C([τ,∞);V ). In this case the following energy equality holds:

‖u(t)‖2 + 2ν

∫ t

s

|Au(r)|2 dr + 2
∫ t

s

b(u(r), u(r), Au(r)) dr

= ‖u(s)‖2 + 2
∫ t

s

(f(r), Au(r)) dr ∀ τ ≤ s ≤ t. (8)

We study pullback attractors in the space V in Section 5, again taking the min-
imal regularity requirement on f for the existence of such solutions, along with a
condition parallel to (7), namely∫ 0

−∞
eµs|f(s)|2 ds < ∞

for some µ ∈ (0, 2νλ1).

3. Abstract results on minimal pullback attractors. Pullback D̂0-flattening
property. In this section we recall some results from [13] about the existence of
minimal pullback attractors (see also [2, 3, 21]).

Let (X, dX) be a metric space, and define R2
d = {(t, τ) ∈ R2 : τ ≤ t}.

A process U on X is a mapping R2
d × X 3 (t, τ, x) 7→ U(t, τ)x ∈ X such that

U(τ, τ)x = x for any (τ, x) ∈ R × X, and U(t, r)(U(r, τ)x) = U(t, τ)x for any
τ ≤ r ≤ t and all x ∈ X.

Definition 3.1. Let U be a process on X.
(a) U is said to be continuous if for any pair τ ≤ t, the mapping U(t, τ) : X → X

is continuous.
(b) U is said to be closed if for any τ ≤ t, and any sequence {xn} ⊂ X, if

xn → x ∈ X and U(t, τ)xn → y ∈ X, then U(t, τ)x = y.

It is clear that every continuous process is closed.
Let us denote by P(X) the family of all nonempty subsets of X, and consider a

family of nonempty sets D̂0 = {D0(t) : t ∈ R} ⊂ P(X).

Definition 3.2. We say that a process U on X is pullback D̂0-asymptotically
compact if for any t ∈ R and any sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying
τn → −∞ and xn ∈ D0(τn) for all n, the sequence {U(t, τn)xn} is relatively compact
in X.

Define

Λ(D̂0, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)D0(τ)
X

∀ t ∈ R,

where {· · · }
X

is the closure in X.
Given two subsets of X, O1 and O2, we denote by distX(O1,O2) the Hausdorff

semi-distance in X between them, defined as

distX(O1,O2) = sup
x∈O1

inf
y∈O2

dX(x, y).

Let D be a nonempty class of families parameterized in time D̂ = {D(t) : t ∈
R} ⊂ P(X). The class D will be called a universe in P(X).
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Definition 3.3. A process U on X is said to be pullback D-asymptotically compact
if it is pullback D̂-asymptotically compact for any D̂ ∈ D.

We say that D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback D-absorbing for the
process U on X if for any t ∈ R and any D̂ ∈ D, there exists a τ0(D̂, t) ≤ t such
that

U(t, τ)D(τ) ⊂ D0(t) ∀ τ ≤ τ0(D̂, t).

We have the following result (see [13, Theorem 3.11]).

Theorem 3.4. Consider a closed process U : R2
d×X → X, a universe D in P(X),

and a family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) that is pullback D-absorbing for U , and
assume also that U is pullback D̂0-asymptotically compact.

Then, the family AD = {AD(t) : t ∈ R} defined by AD(t) =
⋃

bD∈D Λ(D̂, t)
X

, has
the following properties:
(a) for any t ∈ R, the set AD(t) is a nonempty compact subset of X, and AD(t) ⊂

Λ(D̂0, t),
(b) AD is pullback D-attracting, i.e. limτ→−∞ distX(U(t, τ)D(τ),AD(t)) = 0 for

all D̂ ∈ D, and any t ∈ R,
(c) AD is invariant, i.e. U(t, τ)AD(τ) = AD(t) for all (t, τ) ∈ R2

d,

(d) if D̂0 ∈ D, then AD(t) = Λ(D̂0, t) ⊂ D0(t)
X

for all t ∈ R.

The family AD is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is a fam-
ily of closed sets such that for any D̂ = {D(t) : t ∈ R} ∈ D, lim

τ→−∞
distX(U(t, τ)D(τ),

C(t)) = 0, then AD(t) ⊂ C(t).

A family AD that satisfies properties (a)–(c) in Theorem 3.4 is called a minimal
pullback D-attractor for the process U . If AD ∈ D then it is the unique family of
closed subsets in D that satisfies (b) and (c).

Sufficient conditions that AD ∈ D are

(i) D̂0 ∈ D,
(ii) the set D0(t) is closed for all t ∈ R, and
(iii) the universe D is inclusion-closed, i.e. if D̂ ∈ D, and D̂′ = {D′(t) : t ∈ R} ⊂

P(X) with D′(t) ⊂ D(t) for all t, then D̂′ ∈ D.
We will denote by DX

F the universe of fixed nonempty bounded subsets of X,
i.e., the class of all families D̂ of the form D̂ = {D(t) = D : t ∈ R} with D a fixed
nonempty bounded subset of X.

Now, it is easy to conclude the following result [21].

Corollary 1. Under the assumptions of Theorem 3.4, if the universe D contains
the universe DX

F , then both attractors, ADX
F

and AD, exist, and ADX
F

(t) ⊂ AD(t)
for all t ∈ R.

Moreover, if for some T ∈ R, the set ∪t≤T D0(t) is a bounded subset of X, then
ADX

F
(t) = AD(t) for all t ≤ T .

Now, we introduce a notion which is a slight modification of Ma, Wang, and
Zhong’s “Condition (C)” [20] (re-christened the “flattening property” by Kloeden
and Langa [17]), after Definition XXX in the book by Carvalho, Langa, and Robin-
son [4], where Pε need not be a projection operator.
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Definition 3.5. Assume that X is a Banach space with norm ‖ · ‖X , and D̂0 =
{D0(t) : t ∈ R} ⊂ P(X) is a given family. We will say that the process U on X

satisfies the pullback D̂0-flattening property if for any t ∈ R, and ε > 0, there exist
τε < t, a finite dimensional subspace Xε of X, and a mapping Pε : X → Xε, all
depending on D̂0, t and ε, such that

{PεU(t, τ)uτ : τ ≤ τε, uτ ∈ D0(τ)} is bounded in X

and

‖(I − Pε)U(t, τ)uτ‖X < ε for any τ ≤ τε, uτ ∈ D0(τ).

Similarly to the results in [20] and [17] (see also [4]) we will see that to show
that a process U is pullback D̂0-asymptotically compact, it is enough to verify the
pullback D̂0-flattening property given in the definition above.

Proposition 1. Assume that X is a Banach space and D̂0 = {D0(t) : t ∈ R} ⊂
P(X) is a given family such that the process U on X satisfies the pullback D̂0-
flattening property. Then the process U is pullback D̂0-asymptotically compact.

Proof. Let t ∈ R, a sequence {τn} ⊂ (−∞, t] such that τn → −∞, and a sequence
{xn} ⊂ X such that xn ∈ D0(τn) for all n, be fixed.

For a fixed integer k ≥ 1, by the pullback D̂0-flattening property, there exist
Nk ≥ 1, a finite dimensional subspace Xk of X, and a mapping Pk : X → Xk, such
that {PkU(t, τn)xn : n ≥ Nk} is a bounded subset of Xk, and therefore a relatively
compact subset of X, and ‖(I − Pk)U(t, τn)xn‖X ≤ 1/(2k) for all n ≥ Nk. Thus,
{U(t, τn)xn : n ≥ 1} can be covered by a finite number of balls in X of radius 1/k.
As k is arbitrary, it is not difficult to check that {U(t, τn)xn : n ≥ 1} possesses a
Cauchy subsequence in X. Since X is complete, this subsequence is convergent,
whence {U(t, τn)xn : n ≥ 1} is relatively compact in X.

Remark 1. It can be proved (see [4]) that, reciprocally, when X is a uniformly
convex Banach space, if the process U is pullback D̂0-asymptotically compact, then
it satisfies the pullback D̂0-flattening property.

Finally, we recall an abstract result that allows us to compare two attractors for
a process under appropriate assumptions (cf. [13, Theorem 3.15]).

Theorem 3.6. Let {(Xi, dXi
)}i=1,2 be two metric spaces such that X1 ⊂ X2 with

continuous injection, and for i = 1, 2, let Di be a universe in P(Xi), with D1 ⊂ D2.
Assume that we have a map U that acts as a process in both cases, i.e., U : R2

d×Xi →
Xi for i = 1, 2 is a process.

For each t ∈ R, let us denote

Ai(t) =
⋃

bDi∈Di

Λi(D̂i, t)
Xi

i = 1, 2,

where the subscript i in the symbol of the omega-limit set Λi is used to denote the
dependence of the respective topology.

Then, A1(t) ⊂ A2(t) for all t ∈ R.
If in addition

(i) A1(t) is a compact subset of X1 for all t ∈ R, and
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(ii) for any D̂2 ∈ D2 and any t ∈ R, there exist a family D̂1 ∈ D1 and a
t∗
bD1
≤ t (both possibly depending on t and D̂2), such that U is pullback D̂1-

asymptotically compact, and for any s ≤ t∗
bD1

there exists a τs ≤ s such that
U(s, τ)D2(τ) ⊂ D1(s) for all τ ≤ τs,

then A1(t) = A2(t) for all t ∈ R.

4. Existence of minimal pullback attractors in H norm. Now, we define a
suitable process U on H associated to problem (2), and, by the previous results, we
are able to obtain the existence of minimal pullback attractors by using the pullback
flattening property. As pointed out in the Introduction, the proofs of the flatten-
ing property and the asymptotic compactness of this process are in fact very similar.

Results concerning existence and uniqueness of weak solutions for problem (2),
and continuity with respect to the initial condition, summarized in the following
theorem and proposition, are well known (see [19, 23, 26], for example).

Theorem 4.1. Let f ∈ L2
loc(R;V ′) be given. Then, for each τ ∈ R and uτ ∈ H,

there exists a unique weak solution u(·) = u(·; τ, uτ ) of (2).
Moreover, if f ∈ L2

loc(R;H), then
(a) u ∈ C([τ + ε, T ];V ) ∩ L2(τ + ε, T ;D(A)) for all T > τ + ε > τ .
(b) If uτ ∈ V , in fact u is a strong solution of (2).

Therefore, when f ∈ L2
loc(R;V ′), we can define a process U : R2

d ×H → H as

U(t, τ)uτ = u(t; τ, uτ ) ∀ (t, τ) ∈ R2
d, uτ ∈ H, (9)

and if f ∈ L2
loc(R;H), the restriction of this process to R2

d × V is a process on V .

Proposition 2. If f ∈ L2
loc(R;V ′), for any pair (t, τ) ∈ R2

d, the map U(t, τ)
is continuous from H into H. Moreover, if f ∈ L2

loc(R;H), then U(t, τ) is also
continuous from V into V .

The following result guarantees the existence of a pullback absorbing family for
the process U on H.

Lemma 4.2. Let f ∈ L2
loc(R;V ′) be given and consider any fixed µ ∈ (0, 2νλ1).

Then, for any τ ∈ R, and uτ ∈ H, the solution u(·) = u(·; τ, uτ ) to (2) satisfies

|u(t)|2 ≤ e−µ(t−τ)|uτ |2 +
e−µt

2ν − µλ−1
1

∫ t

τ

eµθ‖f(θ)‖2∗ dθ ∀ t ≥ τ. (10)

Proof. By the energy equality we have

d

dθ
|u(θ)|2 + 2ν‖u(θ)‖2 = 2〈f(θ), u(θ)〉, a.e. θ > τ,

and therefore,

d

dθ
(eµθ|u(θ)|2) + 2νeµθ‖u(θ)‖2 = µeµθ|u(θ)|2 + 2eµθ〈f(θ), u(θ)〉, a.e. θ > τ.

Observing that by Young’s inequality,

2|〈f(θ), u(θ)〉| ≤ 1
2ν − µλ−1

1

‖f(θ)‖2∗ + (2ν − µλ−1
1 )‖u(θ)‖2,
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from above we deduce

d

dθ
(eµθ|u(θ)|2) ≤ eµθ

2ν − µλ−1
1

‖f(θ)‖2∗, a.e. θ > τ,

and thus, integrating in time,

eµt|u(t)|2 ≤ eµτ |uτ |2 +
1

2ν − µλ−1
1

∫ t

τ

eµθ‖f(θ)‖2∗ dθ ∀ t ≥ τ.

So, from this last inequality we obtain (10).

Once the above estimate has been established, we introduce the following universe
in P(H).

Definition 4.3. For any µ > 0, we will denote by DH
µ the class of all families of

nonempty subsets D̂ = {D(t) : t ∈ R} ⊂ P(H) such that

lim
τ→−∞

(
eµτ sup

v∈D(τ)

|v|2
)

= 0.

Accordingly to the notation introduced in the previous section, DH
F will denote

the class of families D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty bounded
subset of H.

Observe that for any µ > 0, DH
F ⊂ DH

µ and that the universe DH
µ is inclusion-

closed.

Corollary 2. Suppose that f ∈ L2
loc(R;V ′) satisfies∫ 0

−∞
eµs‖f(s)‖2∗ ds < ∞ for some µ ∈ (0, 2νλ1). (11)

Then, the family D̂0 = {D0(t) : t ∈ R} defined by D0(t) = BH(0, RH(t)), the closed
ball in H of center zero and radius RH(t), where

R2
H(t) = 1 +

e−µt

2ν − µλ−1
1

∫ t

−∞
eµs‖f(s)‖2∗ ds,

is pullback DH
µ -absorbing for the process U on H given by (9) (and thus pullback

DH
F -absorbing too), and D̂0 ∈ DH

µ .

Now, we establish several estimates for the process U in finite intervals of time
when the initial time is sufficiently shifted in a pullback sense.

Lemma 4.4. Assume that f ∈ L2
loc(R;V ′) satisfies (11). Then, for any t ∈ R

and D̂ ∈ DH
µ , there exists τ1(D̂, t) < t− 2, such that for any τ ≤ τ1(D̂, t) and any

uτ ∈ D(τ),

|u(r; τ, uτ )|2 ≤ ρ2
1(t) ∀ r ∈ [t− 2, t], (12)

ν

∫ r

r−1

‖u(θ; τ, uτ )‖2 dθ ≤ ρ2
2(t) ∀ r ∈ [t− 1, t], (13)

∫ r

r−1

‖u′(θ; τ, uτ )‖2∗ dθ ≤ ρ2
3(t) ∀ r ∈ [t− 1, t], (14)
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where

ρ2
1(t) = 1 + e−µ(t−2)(2ν − µλ−1

1 )−1

∫ t

−∞
eµθ‖f(θ)‖2∗ dθ,

ρ2
2(t) = ρ2

1(t) + ν−1

∫ t

t−2

‖f(θ)‖2∗ dθ,

ρ2
3(t) = 3νρ2

2(t) +
3
2
ρ2
1(t)

ρ2
2(t)
ν

+ 3
∫ t

t−2

‖f(θ)‖2∗ dθ.

Proof. Let τ1(D̂, t) < t− 2 be such that

e−µ(t−2)eµτ |uτ |2 ≤ 1 ∀ τ ≤ τ1(D̂, t), uτ ∈ D(τ).

Consider fixed τ ≤ τ1(D̂, t) and uτ ∈ D(τ).
The estimate (12) follows directly from (10), using the increasing character of

the exponential.
Now, observing that

d

dθ
|u(θ)|2 + 2ν‖u(θ)‖2 ≤ ν−1‖f(θ)‖2∗ + ν‖u(θ)‖2, a.e. θ > τ, (15)

and using (12), we obtain (13).
Finally, from (3), (4), (6), and the fact that A is an isometric isomorphism, we

have
‖u′(θ)‖∗ ≤ ν‖u(θ)‖+ 2−1/2|u(θ)|‖u(θ)‖+ ‖f(θ)‖∗, a.e. θ > τ,

and therefore,

‖u′(θ)‖2∗ ≤ 3ν2‖u(θ)‖2 +
3
2
|u(θ)|2‖u(θ)‖2 + 3‖f(θ)‖2∗, a.e. θ > τ,

whence, using (12) and (13), the estimate (14) follows.

In order to prove the pullback D̂0-flattening property for the process U on H,
we need the following auxiliary result.

Lemma 4.5. Under the assumptions of Lemma 4.4, for any t ∈ R, D̂ ∈ DH
µ , and

sequences {τn} ⊂ (−∞, t− 1] and {uτn
} ⊂ H such that τn → −∞ and uτn

∈ D(τn)
for all n, the sequence {u(·; τn, uτn

)} is relatively compact in C([t− 1, t];H).

Proof. Consider fixed t ∈ R, a family D̂ ∈ DH
µ , and sequences {τn} ⊂ (−∞, t − 1]

with τn → −∞, and {uτn
} with uτn

∈ D(τn) for all n. For simplicity of notation
we write un(·) = u(·; τn, uτn

).
From Lemma 4.4 and compactness arguments, there exist a value τ1(D̂, t) < t−2

and a function u ∈ C([t − 2, t];H) ∩ L2(t − 2, t;V ) with u′ ∈ L2(t − 2, t;V ′), such
that for a subsequence of {un : τn ≤ τ1(D̂, t)} ⊂ {un}, which we relabel the same, it
holds that un ∗

⇀ u weakly-star in L∞(t− 2, t;H), un ⇀ u weakly in L2(t− 2, t;V ),
and (un)′ ⇀ u′ weakly in L2(t − 2, t;V ′). Therefore, again up to a subsequence
(relabelled the same), un → u strongly in L2(t−2, t;H), and un(s) → u(s) strongly
in H a.e. s ∈ (t− 2, t).

From these convergences, the function u satisfies (6) in the interval (t− 2, t).
By the Ascoli-Arzelà Theorem, we deduce that un → u in C([t − 2, t];V ′), and

so, for any sequence {sn} ⊂ [t− 2, t] with sn → s∗, we have

un(sn) ⇀ u(s∗) weakly in H. (16)
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We claim that
un → u in C([t− 1, t];H), (17)

which in particular will imply the relative compactness. If this were not true, there
would exist a subsequence {un} (relabelled the same), ε > 0, and {tn} ⊂ [t − 1, t]
with tn → t∗ such that

|un(tn)− u(t∗)| ≥ ε ∀n ≥ 1. (18)

Recall that by (16) we already have

|u(t∗)| ≤ lim inf
n→∞

|un(tn)|. (19)

On the other hand, applying the energy equality to z = un and z = u, and reasoning
as in (15), we obtain in particular that

|z(s2)|2 ≤ |z(s1)|2 + ν−1

∫ s2

s1

‖f(θ)‖2∗ dθ ∀ t− 2 ≤ s1 ≤ s2 ≤ t.

We may now define the functions

Jn(s) = |un(s)|2 − ν−1

∫ s

t−2

‖f(θ)‖2∗ dθ,

J(s) = |u(s)|2 − ν−1

∫ s

t−2

‖f(θ)‖2∗ dθ.

Observe that J and all Jn are continuous functions on [t−2, t], non-increasing, and
Jn(s) → J(s) a.e. s ∈ (t− 2, t).

Take now {t̃k} ⊂ (t − 2, t∗) such that t̃k ↑ t∗ and limn→∞ Jn(t̃k) = J(t̃k) for all
k ≥ 1.

Fix an arbitrary value η > 0. There exists kη such that |J(t̃k)− J(t∗)| < η/2 for
all k ≥ kη. Now consider n(kη) such that for any n ≥ n(kη) it holds that

tn ≥ t̃kη
and |Jn(t̃kη

)− J(t̃kη
)| < η/2.

Then, since all Jn are non-increasing, we deduce that for all n ≥ n(kη),

Jn(tn)− J(t∗) ≤ Jn(t̃kη )− J(t∗)

≤ |Jn(t̃kη
)− J(t∗)|

≤ |Jn(t̃kη
)− J(t̃kη

)|+ |J(t̃kη
)− J(t∗)| < η.

Thus, we conclude that lim supn→∞ |un(tn)| ≤ |u(t∗)|, with joined to (16) and (19),
proves that (18) is absurd, and so claim (17) is true. This finishes the proof.

Note that the asymptotic compactness of U is an immediate corollary of this
result.

Corollary 3. Under the assumptions of Lemma 4.4, the process U on H defined
by (9) is pullback DH

µ -asymptotically compact.

However, in order to prove the pullback flattening property directly (it is known
that it is equivalent to asymptotic compactness in any uniformly convex Banach
space, see [4]) we need to do a little more, beginning with the next corollary of
Lemma 4.5.
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Corollary 4. Under the assumptions of Lemma 4.4, for any ε > 0, t ∈ R, and
D̂ ∈ DH

µ , there exists δ = δ(ε, t, D̂) ∈ (0, 1), such that

ν−1
∣∣|u(t; τ, uτ )|2 − |u(t− s; τ, uτ )|2

∣∣ < ε/2 ∀ s ∈ [0, δ], τ ≤ τ1(D̂, t), uτ ∈ D(τ),
(20)

where τ1(D̂, t) is given in Lemma 4.4.
In particular,∫ t

t−δ

‖u(θ; τ, uτ )‖2 dθ < ε ∀ τ ≤ τ1(D̂, t), uτ ∈ D(τ). (21)

Proof. First at all, observe that if we consider t ∈ R and D̂ ∈ DH
µ , for any δ ∈ (0, 1)

and τ ≤ t− 1, an integration in (15) with any uτ ∈ D(τ) yields

ν

∫ t

t−δ

‖u(θ; τ, uτ )‖2 dθ ≤ |u(t− δ; τ, uτ )|2 − |u(t; τ, uτ )|2 + ν−1

∫ t

t−δ

‖f(θ)‖2∗ dθ.

Therefore, since f ∈ L2
loc(R;V ′), (21) is a consequence of (20).

We prove now (20) by a contradiction argument. If (20) were not true, there
would exist ε > 0, t ∈ R, a family D̂ ∈ DH

µ , and sequences {τn} ⊂ (−∞, t− 1] with
τn → −∞, {sn} with 0 ≤ sn ≤ 1/n, and {uτn

} with uτn
∈ D(τn) for all n, such

that
ν−1

∣∣|u(t; τn, uτn)|2 − |u(t− sn; τn, uτn)|2
∣∣ ≥ ε/2 ∀n ≥ 1,

which is absurd, since from (17) we know that for a subsequence (which we relabel
the same) it holds that u(t; τn, uτn

) and u(t− sn; τn, uτn
) converge to u(t).

We will also use the following result, whose proof is analogous to that of [18,
Lemma 12].

Lemma 4.6. If f ∈ L2
loc(R;V ′) satisfies the condition (11), then, for any t ∈ R,

lim
ρ→∞

e−ρt

∫ t

−∞
eρs‖f(s)‖2∗ ds = 0.

Now, we are able to prove the pullback D̂0-flattening property for the process
U on H defined by (9). Actually, we will prove that U satisfies the pullback D̂-
flattening property for any D̂ ∈ DH

µ .

Proposition 3. Under the assumptions of Lemma 4.4, for any ε > 0, t ∈ R, and
D̂ ∈ DH

µ , there exists m = m(ε, t, D̂) ∈ N, such that the projection Pm : H →
Hm :=span[w1, . . . , wm] (where {wj}j≥1 is the Hilbert basis of H formed by all the
ortho-normalized eigenfunctions of the Stokes operator A) satisfies the following
properties:

{PmU(t, τ)D(τ) : τ ≤ τ1(D̂, t)} is bounded in H, (22)

|(I − Pm)U(t, τ)uτ | < ε for any τ ≤ τ1(D̂, t), uτ ∈ D(τ), (23)

where τ1(D̂, t) is given in Lemma 4.4.
In particular, the process U on H satisfies the pullback D̂-flattening property for

any D̂ ∈ DH
µ .

Proof. Let ε > 0, t ∈ R, and D̂ ∈ DH
µ be fixed.

Since Pm is non-expansive and taking into account (12), property (22) is auto-
matically satisfied for any m ∈ N. Therefore, we concentrate on proving (23).
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Consider fixed τ ≤ τ1(D̂, t), uτ ∈ D(τ), and let us define u(r) = U(r, τ)uτ and
qm(r) = u(r)− Pmu(r).

Then, using the energy equality, for each m ≥ 1 we have
1
2

d

dr
|qm(r)|2 + ν‖qm(r)‖2 + b(u(r), u(r), qm(r)) = 〈f(r), qm(r)〉, a.e. r > τ.

Observing that by (3), (4), and Young’s inequality,

|b(u(r), u(r), qm(r))| ≤ 2−1/2|u(r)|‖u(r)‖‖qm(r)‖

≤ ν

4
‖qm(r)‖2 +

1
2ν
|u(r)|2‖u(r)‖2,

we obtain
d

dr
|qm(r)|2 + ν‖qm(r)‖2 ≤ ν−1|u(r)|2‖u(r)‖2 + 2ν−1‖f(r)‖2∗, a.e. r > τ.

Consequently, as ‖qm(r)‖2 ≥ λm+1|qm(r)|2, where λm+1 is the eigenvalue associated
to the eigenfunction wm+1, we deduce that

d

dr
|qm(r)|2 + νλm+1|qm(r)|2 ≤ ν−1|u(r)|2‖u(r)‖2 + 2ν−1‖f(r)‖2∗, a.e. r > τ.

Thus, multiplying this last inequality by eνλm+1r, integrating in [t− 1, t], and again
taking into account (12), we obtain

eνλm+1t|qm(t)|2 ≤ eνλm+1(t−1)|qm(t− 1)|2 + ν−1ρ2
1(t)

∫ t

t−1

eνλm+1r‖u(r)‖2 dr

+2ν−1

∫ t

t−1

eνλm+1r‖f(r)‖2∗ dr.

Therefore, from Lemma 4.6, and since |qm(t−1)|2 ≤ |u(t−1)|2 ≤ ρ2
1(t) and λm →∞

as m → ∞, in order to have (23), it suffices to check that for the previously fixed
ε > 0, t ∈ R, and D̂ ∈ DH

µ , there exists m = m(ε, t, D̂) ∈ N, such that for any
τ ≤ τ1(D̂, t) and uτ ∈ D(τ),

e−νλm+1t

∫ t

t−1

eνλm+1r‖u(r; τ, uτ )‖2 dr <
εν

3ρ2
1(t)

. (24)

Take δ = δ
(

εν
6ρ2

1(t)
, t, D̂

)
∈ (0, 1) as in Corollary 4. Then, using (13), for each m ≥ 1

we have

e−νλm+1t

∫ t

t−1

eνλm+1r‖u(r)‖2 dr

= e−νλm+1t

∫ t−δ

t−1

eνλm+1r‖u(r)‖2 dr + e−νλm+1t

∫ t

t−δ

eνλm+1r‖u(r)‖2 dr

≤ e−νλm+1δ

∫ t−δ

t−1

‖u(r)‖2 dr +
∫ t

t−δ

‖u(r)‖2 dr

≤ e−νλm+1δν−1ρ2
2(t) +

∫ t

t−δ

‖u(r)‖2 dr.

By taking now m = m(ε, t, D̂) such that e−νλm+1δν−1ρ2
2(t) < εν

6ρ2
1(t)

, jointly with
(21) in Corollary 4, we conclude (24).

Combining all the above statements, we obtain the existence of minimal pullback
attractors for the process U : R2

d ×H → H.
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Theorem 4.7. Suppose that f ∈ L2
loc(R;V ′) satisfies the condition (11). Then,

there exist the minimal pullback DH
F -attractor ADH

F
and the minimal pullback DH

µ -
attractor ADH

µ
for the process U on H given by (9). The family ADH

µ
belongs to

DH
µ , and it holds that

ADH
F

(t) ⊂ ADH
µ

(t) ⊂ BH(0, RH(t)) ∀ t ∈ R. (25)

Proof. The existence ofADH
µ

andADH
F

is a direct consequence of the abstract results
given in Theorem 3.4 and Corollary 1 respectively, since all the assumptions, closed
process (continuous in fact, by Proposition 2), pullback absorbing family (Corollary
2) and pullback asymptotic compactness (Corollary 3), are satisfied.

Then, the claim that ADH
µ

belongs to DH
µ follows from Theorem 3.4 and the

remarks following Theorem 3.4, since the universe DH
µ is inclusion-closed, the family

D̂0 belongs to DH
µ , and the set D0(t) is closed in H for all t ∈ R.

Finally, the first inclusion in (25) is a consequence of Corollary 1, since DH
F ⊂ DH

µ .
The last inclusion in (25) follows again from Theorem 3.4.

4.1. A compact pullback absorbing family using semigroup theory. With
only a slightly more stringent requirement on the forcing function f , namely that

f ∈ Lp
loc(R;V ′) for some p > 2

we can in fact use the semigroup approach of Fujita and Kato [11] (see also [15]) to
show, using Corollary 4 again (and hence Lemma 4.5 once more) that in fact there
is a compact pullback absorbing family in H. Our analysis is inspired by the paper
by Arrieta and Carvalho [1] on the ε-regularity method for proving existence and
uniqueness of semilinear problems.

In order to state the result precisely we need to define the fractional power spaces
D(Aα) as the domains of the operators Aα, where

Aαu :=
∞∑

j=1

λα
j (u, wj)wj ,

where λj and wj are the eigenvalues and eigenfunctions of the Stokes operator as
defined in Section 2. We recall the key estimate

|Aγe−Atx| ≤ cγt−γ |x| (26)

for any 0 ≤ γ < 1 (e.g., see Henry [15]). In the proof we write

‖u‖s = |Asu|,
and in particular we have ‖ · ‖0 = | · |, ‖ · ‖1/2 = ‖ · ‖, and ‖ · ‖−1/2 = ‖ · ‖∗.

Theorem 4.8. Suppose that f ∈ Lp
loc(R;V ′) for some p > 2 and that∫ 0

−∞
eµs‖f(s)‖2∗ ds < ∞ for some µ ∈ (0, 2νλ1).

Choose ε < 1
2 −

1
p . Then there exists a function ρε : R → R such that for any t ∈ R

and D̂ ∈ DH
µ ,

|Aεu(t; τ, uτ )| ≤ ρε(t) for all uτ ∈ D(τ), τ ≤ τ1(D̂, t),

where τ1(D̂, t) is the same as in Lemma 4.4; hence there is a compact pullback
absorbing family in H. In particular if f ∈ L∞loc(R;V ′) then we obtain a bounded
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absorbing family in D(Aε) for any ε < 1/2; this holds therefore in the autonomous
case when f ∈ V ′.

Proof. Given the improved regularity assumption on f , any weak solution u to (2)
satisfies the variation of constants formula

u(t) = e−A(t−s)u(s) +
∫ t

s

e−A(t−r)[B(u(r)) + f(r)] dr

for all τ ≤ s ≤ t (see [15]). We use this formulation to find estimates on u in D(Aε).
The key observation (after [1]) is that B : D(Aε) → D(A−(1−2ε)), which can be seen
by taking w ∈ D(A1−2ε) and using Hölder’s inequality to obtain

|〈B(u), w〉| = |〈B(u, w), u〉|
≤ ‖u‖2L2/(1−2ε)‖∇w‖L1/(2ε)

≤ c̃ε‖u‖2ε‖w‖1−2ε,

from which it follows that

‖B(u)‖−(1−2ε) ≤ c̃ε‖u‖2ε . (27)

Lemma 4.4 guarantees that for any D̂ ∈ DH
µ and any t ∈ R there exists a

τ1(D̂, t) < t− 2 such that for any r ∈ [t− 2, t],

|u(r; τ, uτ )| ≤ ρ1(t) ∀uτ ∈ D(τ), τ ≤ τ1(D̂, t). (28)

Fix t ∈ R, D̂ ∈ DH
µ , τ ≤ τ1(D̂, t), and uτ ∈ D(τ) and write

uσ(s) = u(σ + s; τ, uτ ) and fσ(s) = f(σ + s).

We can now rewrite the variation of constants formula in the notationally convenient
form (for σ ≥ τ)

uσ(s) = e−Asuσ(0) +
∫ s

0

e−A(s−r)[B(uσ(r)) + fσ(r)] dr ∀ s ∈ [0, t− σ], (29)

noting from (28) that

|uσ(s)| ≤ ρ1(t) ∀σ ∈ [t− 1, t], s ∈ [0, t− σ]. (30)

Pick σ ∈ [t−1, t], let s ≤ t−σ, then take the norm of (29) in D(Aε) and multiply
by sε to obtain

sε‖uσ(s)‖ε ≤ sε‖e−Asuσ(0)‖ε + sε

∫ s

0

∥∥∥e−A(s−r)[B(uσ(r)) + fσ(r)]
∥∥∥

ε
dr

≤ cε|uσ(0)|+ c1−εs
ε

∫ s

0

(s− r)−(1−ε)‖B(uσ(r))‖−(1−2ε) dr

+ c1/2+εs
ε

∫ s

0

(s− r)−1/2−ε‖fσ(r)‖∗ dr

≤ cερ1(t) + c̃εc1−εs
ε

∫ s

0

(s− r)−(1−ε)‖uσ(r)‖2ε dr

+ c1/2+εs
ε

∫ s

0

(s− r)−1/2−ε‖fσ(r)‖∗ dr,



16 J. GARCÍA-LUENGO, P. MARÍN-RUBIO, J. REAL AND J.C. ROBINSON

using (26), (27), and (30). The second term on the right-hand side can be bounded
by

c̃εc1−εs
ε

∫ s

0

(s− r)−(1−ε)‖uσ(r)‖3/2
ε |uσ(r)|1/2−ε‖uσ(r)‖ε dr

≤ R(s)sε

(∫ s

0

(s− r)−(1−ε)/(1−ε/2)‖uσ(r)‖3/(2−ε)
ε dr

)1−ε/2

,

where

R(s) = c̃εc1−ε

(
sup

0≤r≤s
|uσ(r)|

)1/2−ε(∫ s

0

‖uσ(r)‖2 dr

)ε/2

≤ c̃εc1−ερ1(t)1/2−ε

(∫ t

σ

‖u(r)‖2 dr

)ε/2

=: P (σ, t).

Setting X(s) = sε‖uσ(s)‖ε we obtain an integral inequality for X(s):

X(s) ≤ δ(s) + P (σ, t)sε

(∫ s

0

(s− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε)X(r)3/(2−ε) dr

)1−ε/2

,

(31)
where1

δ(s) = cερ1(t) + c1/2+εs
ε

∫ s

0

(s− r)−1/2−ε‖fσ(r)‖∗ dr

≤ cερ1(t) + c1/2+εs
ε

(∫ s

0

(s− r)−p(1/2+ε)/(p−1) dr

)1−(1/p)(∫ s

0

‖fσ(r)‖p
∗ dr

)1/p

≤ cερ1(t) + Cε,p

(∫ t

t−1

‖f(r)‖p
∗ dr

)1/p

=: Φ(t),

using Hölder’s inequality and the choice of ε which ensures that p(1/2+ε)/(p−1) <
1.

In order to find an upper bound on X(s) it suffices to find a continuous function
Y (t) with X(0) < Y (0) that is a supersolution of (31), i.e. that satisfies

Y (s) ≥ Φ(t) + P (σ, t)sε

(∫ s

0

(s− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε)Y (r)3/(2−ε) dr

)1−ε/2

(32)
for all s ∈ [0, t − σ], to conclude that X(s) ≤ Y (s) for all s ∈ [0, t − σ]. Indeed, if
it were not true, there would exists ŝ ∈ (0, t− σ] with Y (ŝ) < X(ŝ) and so we may
define 0 < s̃ = sup{s ∈ [0, t − σ] : X(r) − Y (r) < 0 ∀r ∈ [0, s)}. Then, we would

1Note that in fact δ(s) is simply a bound on sεU(s+σ, σ) in D(Aε), where U(s, σ) is a solution
of the linear equation ut + Au = f(t) with initial data u(σ) = uσ(0); this where we require the

additional regularity for f , so it has nothing to do with the nature of the nonlinear term. We
return briefly to this issue in the Conclusion.
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have X(s) < Y (s) for all s ∈ [0, s̃) and X(s̃) = Y (s̃) (by continuity), but therefore

Y (s̃) ≥ Φ(t) + P (σ, t)s̃ε

(∫ s̃

0

(s̃− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε)Y (r)3/(2−ε) dr

)1−ε/2

> Φ(t) + P (σ, t)s̃ε

(∫ s̃

0

(s̃− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε)X(r)3/(2−ε) dr

)1−ε/2

≥ X(s̃),

i.e. Y (s̃) > X(s̃), a contradiction.
Now, we will prove that Y (s) = 2Φ(t) satisfies (32) for s ∈ [0, t−σ], i.e. we need

to ensure that

2Φ(t) ≥ Φ(t) + 2
√

2P (σ, t)Φ3/2(t)sε

(∫ s

0

(s− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε) dr

)1−ε/2

for all s ∈ [0, t− σ]. This holds if

2
√

2P (σ, t)Φ1/2(t)sε

(∫ s

0

(s− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε) dr

)1−ε/2

≤ 1∀ s ∈ [0, t−σ].

By substituting r = sθ one can see that

sε

(∫ s

0

(s− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε) dr

)1−ε/2

= sε

(∫ 1

0

s−(1−ε)/(1−ε/2)(1− θ)−(1−ε)/(1−ε/2)s−3ε/(2−ε)θ−3ε/(2−ε)s dθ

)1−ε/2

=
(∫ 1

0

(1− θ)−(1−ε)/(1−ε/2)θ−3ε/(2−ε) dθ

)1−ε/2

=: Cε.

So in order to guarantee that X(s) ≤ 2Φ(t) for s ∈ [0, t− σ] it suffices to ensure
that

2
√

2P (σ, t)Φ1/2(t) ≤ C−1
ε . (33)

Now, recall that

P (σ, t) = c̃εc1−ερ1(t)1/2−ε

(∫ t

σ

‖u(r)‖2 dr

)ε/2

,

and that it follows from Corollary 4 that for any ε > 0, t ∈ R, and D̂ ∈ DH
µ , there

exists a σ = σ(ε, t, D̂) ∈ (t− 1, t), such that∫ t

σ

‖u(θ; τ, uτ )‖2 dθ < ε ∀ τ ≤ τ1(D̂, t), uτ ∈ D(τ)

(this was (21)). We can therefore satisfy the condition (33), and deduce that

|Aεu(t; τ, uτ )| = (t−σ)−εX(t−σ) ≤ 2(t−σ)−εΦ(t) =: ρε(t) ∀uτ ∈ D(τ), τ ≤ τ1(D̂, t).

Since D(Aε) is compactly embedded in H, the existence of a compact pullback
absorbing family in H follows immediately.



18 J. GARCÍA-LUENGO, P. MARÍN-RUBIO, J. REAL AND J.C. ROBINSON

5. Regularity of pullback attractors and attraction in V norm. The goal of
this section is to prove analogous results to those given above, but considering the
map U defined as a process on V . Actually, our aim is to show a sharper conclusion
than above. Firstly, we will prove the flattening property for the process U defined
on V . Then, as a consequence of the pullback flattening property, we will recover
some results concerning the existence of pullback attractors in V , which were al-
ready proved (by using an energy method) in [13], but here with a shorter proof.

From now on we assume that f ∈ L2
loc(R;H), and satisfies∫ 0

−∞
eµs|f(s)|2 ds < ∞ for some µ ∈ (0, 2νλ1). (34)

We have the following result, which is similar to [13, Lemma 4.10] and [14, Lemma
5.2] (see also [12] for close results).

Lemma 5.1. Suppose that f ∈ L2
loc(R;H) satisfies (34). Then, for any t ∈ R and

D̂ ∈ DH
µ , there exists τ1(D̂, t) < t− 2 (the one given in Lemma 4.4), such that for

any τ ≤ τ1(D̂, t) and any uτ ∈ D(τ),

|u(r; τ, uτ )|2 ≤ R2
1(t) ∀ r ∈ [t− 2, t], (35)

‖u(r; τ, uτ )‖2 ≤ R2
2(t) ∀ r ∈ [t− 1, t], (36)

ν

∫ t

t−1

|Au(θ; τ, uτ )|2 dθ ≤ R2
3(t), (37)

where

R2
1(t) = 1 + e−µ(t−2)(2νλ1 − µ)−1

∫ t

−∞
eµθ|f(θ)|2 dθ,

R2
2(t) = ν−1

(
R2

1(t) + (ν−1λ−1
1 + 2)

∫ t

t−2

|f(θ)|2 dθ

)
× exp

[
2ν−1C(ν)R2

1(t)
(

R2
1(t) + ν−1λ−1

1

∫ t

t−2

|f(θ)|2 dθ

)]
,

R2
3(t) = R2

2(t) + 2ν−1

∫ t

t−1

|f(θ)|2 dθ + 2C(ν)R2
1(t)R

4
2(t),

with C(ν) = 27C4
1 (4ν3)−1.

Proof. The first estimate (35) follows immediately from (12).
Now, consider fixed τ ≤ τ1(D̂, t) and uτ ∈ D(τ). Let us denote, for short,

u(r) = u(r; τ, uτ ).
In order to obtain (36), we first observe that by the energy equality and Young’s

inequality,

d

dθ
|u(θ)|2 + 2ν‖u(θ)‖2 ≤ (νλ1)−1|f(θ)|2 + νλ1|u(θ)|2, a.e. θ > τ,

and therefore,

d

dθ
|u(θ)|2 + ν‖u(θ)‖2 ≤ (νλ1)−1|f(θ)|2, a.e. θ > τ.
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Thus, in particular,

ν

∫ r

r−1

‖u(θ)‖2 dθ ≤ |u(r − 1)|2 + (νλ1)−1

∫ r

r−1

|f(θ)|2 dθ ∀ τ ≤ r − 1. (38)

On the other hand, by (8) and the regularity result (a) in Theorem 4.1, we have

1
2

d

dθ
‖u(θ)‖2 + ν|Au(θ)|2 + b(u(θ), u(θ), Au(θ)) = (f(θ), Au(θ)), a.e. θ > τ.

Therefore, observing that

|(f(θ), Au(θ))| ≤ 1
ν
|f(θ)|2 +

ν

4
|Au(θ)|2,

and by (5) and Young’s inequality,

|b(u(θ), u(θ), Au(θ))| ≤ C1|u(θ)|1/2‖u(θ)‖|Au(θ)|3/2

≤ ν

4
|Au(θ)|2 + C(ν)|u(θ)|2‖u(θ)‖4,

from above we deduce that
d

dθ
‖u(θ)‖2 + ν|Au(θ)|2 ≤ 2ν−1|f(θ)|2 + 2C(ν)|u(θ)|2‖u(θ)‖4, a.e. θ > τ. (39)

From (39), in particular we obtain

‖u(r)‖2 ≤ ‖u(s)‖2 + 2ν−1

∫ r

r−1

|f(θ)|2 dθ + 2C(ν)

∫ r

s

|u(θ)|2‖u(θ)‖4 dθ

for all τ < r − 1 ≤ s ≤ r, and therefore, by Gronwall’s lemma,

‖u(r)‖2 ≤
(
‖u(s)‖2 + 2ν−1

∫ r

r−1

|f(θ)|2 dθ

)
exp

(
2C(ν)

∫ r

r−1

|u(θ)|2‖u(θ)‖2 dθ

)
for all τ < r − 1 ≤ s ≤ r.

Integrating this last inequality for s between r − 1 and r, we obtain

‖u(r)‖2 ≤
(∫ r

r−1

‖u(s)‖2 ds + 2ν−1

∫ r

r−1

|f(θ)|2 dθ

)
exp

(
2C(ν)

∫ r

r−1

|u(θ)|2‖u(θ)‖2 dθ

)
for all τ < r − 1.

Thus, from this inequality and (38), using estimate (35), we deduce (36).
Finally, we observe that by (39),

ν

∫ t

t−1

|Au(θ)|2 dθ ≤ ‖u(t−1)‖2+2ν−1

∫ t

t−1

|f(θ)|2 dθ+2C(ν)

∫ t

t−1

|u(θ)|2‖u(θ)‖4 dθ,

and therefore, taking into account estimates (35) and (36), we conclude (37).

Remark 2. It is clear that under the assumptions of Lemma 5.1, lim
t→−∞

eµtR2
1(t) =

0.

Now, we introduce the following universe in P(V ).

Definition 5.2. For any µ > 0, we will denote by DH,V
µ the class of all families

D̂V of elements of P(V ) of the form D̂V = {D(t) ∩ V : t ∈ R}, where D̂ = {D(t) :
t ∈ R} ∈ DH

µ .

Again, accordingly to the notation in the previous section, we denote by DV
F the

universe of families (parameterized in time but constant for all t ∈ R) of nonempty
fixed bounded subsets of V .
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Remark 3. For any µ > 0, DV
F ⊂ DH,V

µ ⊂ DH
µ . It must also be pointed out that

the universe DH,V
µ is inclusion-closed.

The following result is immediate.

Corollary 5. Under the assumptions of Lemma 5.1, the family

D̂0,V = {BH(0, R1(t)) ∩ V : t ∈ R}

belongs to DH,V
µ and satisfies that for any t ∈ R and any D̂ ∈ DH

µ , there exists
τ(D̂, t) < t such that

U(t, τ)D(τ) ⊂ D0,V (t) ∀ τ ≤ τ(D̂, t).

In particular, the family D̂0,V is pullback DH,V
µ -absorbing for the process U : R2

d ×
V → V .

Now, we will prove that the process U : R2
d×V → V satisfies the pullback D̂0,V -

flattening property. In fact, we will prove that U satisfies the pullback D̂-flattening
property for any D̂ ∈ DH

µ .

Analogously to Lemma 4.6, we have the following result.

Lemma 5.3. If f ∈ L2
loc(R;H) satisfies (34), then, for any t ∈ R,

lim
ρ→∞

e−ρt

∫ t

−∞
eρs|f(s)|2 ds = 0.

Proposition 4. Under the assumptions of Lemma 5.1, for any ε > 0 and t ∈ R,
there exists m = m(ε, t) ∈ N such that for any D̂ ∈ DH

µ , the projection Pm : V →
Vm := span[w1, . . . , wm] satisfies the following properties:

{PmU(t, τ)D(τ) : τ ≤ τ1(D̂, t)} is bounded in V,

and
‖(I − Pm)U(t, τ)uτ‖ < ε for any τ ≤ τ1(D̂, t), uτ ∈ D(τ),

where τ1(D̂, t) is given in Lemma 4.4.
In particular, the process U on V satisfies the pullback D̂-flattening property for

any D̂ ∈ DH
µ .

Proof. Let ε > 0, t ∈ R, and D̂ ∈ DH
µ be fixed.

Since {wj}j≥1 is a special basis, Pm is non-expansive in V . From this and (36),
we deduce the boundedness in V of the set {PmU(t, τ)D(τ) : τ ≤ τ1(D̂, t)}, for all
m ≥ 1.

On the other hand, let us fix τ ≤ τ1(D̂, t), uτ ∈ D(τ), and let us define again
u(r) = U(r, τ)uτ and qm(r) = u(r)− Pmu(r).

Then, by (5) and Lemma 5.1, for each m ≥ 1 one has
1
2

d

dr
‖qm(r)‖2 + ν|Aqm(r)|2 = −b(u(r), u(r), Aqm(r)) + (f(r), Aqm(r))

≤ ν

2
|Aqm(r)|2 +

1
ν
|f(r)|2 +

C2
1

ν
R1(t)R2

2(t)|Au(r)|

a.e. t− 1 < r < t.
Consequently, as |Aqm(r)|2 ≥ λm+1‖qm(r)‖2, from above we deduce that

d

dr
‖qm(r)‖2 + νλm+1‖qm(r)‖2 ≤ 2ν−1|f(r)|2 + 2C2

1ν−1R1(t)R2
2(t)|Au(r)|
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a.e. t− 1 < r < t.
Thus, multiplying this last inequality by eνλm+1r, integrating from t−1 to t, and

taking into account Lemma 5.1, we obtain

eνλm+1t‖qm(t)‖2 ≤ eνλm+1(t−1)‖qm(t− 1)‖2 + 2ν−1

∫ t

t−1

eνλm+1r|f(r)|2 dr

+2C2
1ν−1R1(t)R2

2(t)
∫ t

t−1

eνλm+1r|Au(r)| dr

≤ eνλm+1(t−1)‖u(t− 1)‖2 + 2ν−1

∫ t

t−1

eνλm+1r|f(r)|2 dr

+2C2
1ν−1R1(t)R2

2(t)
(∫ t

t−1

e2νλm+1r dr

)1/2(∫ t

t−1

|Au(r)|2 dr

)1/2

≤ eνλm+1(t−1)R2
2(t) + 2ν−1

∫ t

t−1

eνλm+1r|f(r)|2 dr

+2C2
1ν−3/2R1(t)R2

2(t)R3(t)(2νλm+1)−1/2eνλm+1t.

Therefore, from Lemma 5.3 and since λm →∞ as m →∞, we conclude that there
exists m = m(ε, t) ∈ N such that ‖(I − Pm)U(t, τ)uτ‖ < ε for all τ ≤ τ1(D̂, t),
uτ ∈ D(τ).

As a consequence of the above result and Proposition 1, we obtain the asymptotic
compactness in the V norm. It is worth to point out that in this way the proof is
much shorter than [13, Lemma 4.13].

Lemma 5.4. Under the assumptions of Lemma 5.1, the process U on V is pullback
DH,V

µ -asymptotically compact.

From the previous results, we obtain the existence of minimal pullback attractors
for the process U on V (see [13, Theorem 4.14]).

Theorem 5.5. Suppose that f ∈ L2
loc(R;H) satisfies the condition (34). Then,

there exist the minimal pullback DV
F -attractor ADV

F
and the minimal pullback DH,V

µ -
attractor ADH,V

µ
for the process U on V defined by (9), and the following relation

holds:
ADV

F
(t) ⊂ ADH

F
(t) ⊂ ADH

µ
(t) = ADH,V

µ
(t) ∀ t ∈ R.

In particular, for any family D̂ ∈ DH
µ , the following pullback attraction result in V

holds:
lim

τ→−∞
distV (U(t, τ)D(τ),ADH

µ
(t)) = 0 ∀ t ∈ R.

Finally, if moreover f satisfies

sup
s≤0

(
e−µs

∫ s

−∞
eµθ|f(θ)|2 dθ

)
< ∞, (40)

then
ADV

F
(t) = ADH

F
(t) = ADH

µ
(t) = ADH,V

µ
(t) ∀ t ∈ R, (41)

and for any bounded subset B of H,

lim
τ→−∞

distV (U(t, τ)B,ADH
F

(t)) = 0 ∀ t ∈ R.
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Observe that if f ∈ L2
loc(R;H) satisfies the condition (34), then it also satisfies∫ 0

−∞
eσs|f(s)|2 ds < ∞ ∀σ ∈ (µ, 2νλ1).

Thus, for any σ ∈ (µ, 2νλ1) there exists the corresponding minimal pullback DH
σ -

attractor ADH
σ

.
By Theorem 3.6, since DH

µ ⊂ DH
σ , it is evident that, for any t ∈ R,

ADH
µ

(t) ⊂ ADH
σ

(t) ∀σ ∈ (µ, 2νλ1).

Moreover, if f satisfies (40), then, by (41),

ADH
F

(t) = ADH
µ

(t) = ADH
σ

(t) ∀ t ∈ R, σ ∈ (µ, 2νλ1).

In light of the fact that our analysis in H required a similar amount of work to
obtain asymptotic compactness or the flattening property, one might ask if one could
‘simplify’ the direct proof of asymptotic compactness in V from [13] by using some
ideas from the above ‘flattening’ analysis. It then becomes apparent that the idea
of ‘direct’ proof in this case simply means trying to prove asymptotic compactness
with resorting to a splitting of the solution into high and low modes; this serves
to emphasise that the ‘flattening property’ can more rightly be thought of as a
technique (splitting) that is always available should we require it.

5.1. Compactness of the process in V via semigroups. Finally we show that
in V , too, a little more regularity of f yields the existence of a compact pullback
absorbing family. To this end we assume that

f ∈ Lp
loc(R;H) for some p > 2.

With this assumption we show that there is a bounded absorbing family in D(A1/2+δ)
for an appropriately chosen δ > 0.

Theorem 5.6. Suppose that f ∈ Lp
loc(R;H) for some p > 2 and that∫ 0

−∞
eµs|f(s)|2 ds < ∞ for some µ ∈ (0, 2νλ1).

Fix δ < 1
2 −

1
p . Then, for any t ∈ R and D̂ ∈ DH

µ , there exists τ1(D̂, t) (the one

given in Lemma 4.4), such that for any τ ≤ τ1(D̂, t) and any uτ ∈ D(τ),

|A1/2+δu(t; τ, uτ )| ≤ Rδ(t).

Proof. The analysis in V is significantly simpler than in H. Indeed, for any ε > 0
the nonlinear term maps V into D(A−ε): taking the inner product of B(u) with
w ∈ D(Aε) we obtain

|〈B(u), w〉| ≤ ‖u‖L1/ε‖∇u‖L2‖w‖L2/(1−2ε)

≤ c̃ε‖u‖2‖w‖L2/(1−2ε)

≤ c̃ε‖u‖2‖w‖ε,

since D(As) ⊂ L2/(1−2s). Thus

‖B(u)‖−ε ≤ c̃ε‖u‖2.
Given a solution u(t) = u(t; τ, uτ ) we write

u(t) = e−Au(t− 1) +
∫ t

t−1

e−A(t−s)(B(u(s)) + f(s)) ds.
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Take the norm in D(A1/2+δ), using (26) and choosing ε so that δ + ε < 1/2, we
obtain

|A1/2+δu(t)| ≤ cδ‖u(t− 1)‖+ c̃εc1/2+δ+ε

∫ t

t−1

(t− s)−(1/2+δ+ε)‖u(s)‖2 ds

+ c1/2+δ

∫ t

t−1

(t− s)−(1/2+δ)|f(s)| ds

≤ cδR2(t) +
c̃εc1/2+δ+ε

1/2− δ − ε
R2

2(t) + Cp,δ

(∫ t

t−1

|f(s)|p ds

)1/p

=: Rδ(t);

the first term is bounded using Lemma 5.1; the second since (t − s)−(1/2+δ+ε) is
integrable and ‖u(s)‖2 ≤ R2

2(t) uniformly for s ∈ [t − 1, t] (Lemma 5.1 again);
and for the third term we can argue as in the proof of Theorem 4.8 using Hölder’s
inequality since δ < 1

2 −
1
p .

We note in particular that in the autonomous case this gives a very quick method
of proving the existence of a compact absorbing set in V when we assume only
f ∈ H. As in the more complicated case in H, the higher regularity of f is the same
as would be required to obtain a similar result for the linear problem ut+Au = f(t).

Conclusion. We have shown the existence of pullback attractors in H and V under
minimal regularity assumptions on the forcing f , proving asymptotic compactness
of the dynamical process via the Fourier splitting method, i.e. a proof of ‘Condition
(C)’/‘the flattening property’. With a little additional regularity we have been
able to use the semigroup approach to prove the existence of a compact pullback
absorbing family in both cases.

It is interesting that in order to obtain the compact pullback absorbing family
we require the same regularity of f as we would in the purely linear problem. One
can see that this is to be expected if we consider solutions given by the variation of
constants formula

u(t) = e−A(t−s)u(s) +
∫ t

s

e−A(t−r)[B(u(r)) + f(r)] dr,

noting that the expression

U(t, s) := e−A(t−s)u(s) +
∫ t

s

e−A(t−r)f(r) dr

is simply the solution of the linear equation

vt + Av = f(t), v(s) = u(s)

at time t. So we could write the following variation on the variation-of-constants
formula,

u(t) = U(t, s) +
∫ t

s

e−A(t−r)B(u(r)) dr.

For the analysis in H, the key step was the estimate (31), which we can write as

X(s) ≤ sε|AεU(s + σ, σ)|

+P (σ, t)sε

(∫ s

0

(s− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε)X(r)3/(2−ε) dr

)1−ε/2

.

Conclusion of the argument requires a bound on |AεU(s + σ, σ)| uniform for σ ∈
[t− 1, t], s ∈ [0, t− σ], i.e. relies on solutions of the linear equation.
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Similarly, if we estimate u in D(A1/2+δ) as in Section 5.1 then we obtain

|A1/2+δu(t)| ≤ |A1/2+δU(t, t− 1)|+ c̃εc1/2+δ+ε

∫ t

t−1

(t− s)−(1/2+δ+ε)‖u(s)‖2 ds

≤ |A1/2+δv(t)|+
c̃εc1/2+δ+ε

1/2− δ − ε
R2

2(t),

and the key point is again an estimate on U , i.e. smoothness for the linear equation.
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