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Abstract

A probabilistic representation of the solution (in the viscosity sense)
of a quasi-linear parabolic PDE system with non-lipschitz terms and
a Neumann boundary condition is given via a fully coupled forward-
backward stochastic differential equation with a reflecting term in the
forward equation. The extension of previous results consists on the
relaxation on the Lipschitz assumption on the drift coefficient of the
forward equation, using a previous result of the authors.
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Introduction

Deeper relations between stochastic differential equations and systems of PDE
have been established since [4] developed the theory of backward stochastic
differential equations. Roughly speaking, combining a forward stochastic
differential equation with a BSDE, the Feyman-Kac formula can be extended to
nonlinear PDE, and not only in a classical sense, but also via viscosity solutions.
Usually, the deterministic problems treated in this way are posed in the
whole domain R¢, or in a bounded domain of R? with Dirichlet boundary
condition. With a Neumann boundary condition, the problem was studied by
Y. Hu using local time around the boundary of the domain. This technique is
closely related to a stochastic version of the Skorokhod problem (see e.g. [6],
for a direct application in this sense). We extend these studies and relations
to the case of fully coupled systems of FBSDER in which the open set is not
necessarily convex but still smooth (this restriction is for commodity and may
be removed), and the drift coefficient of the forward equation is monotone in z,
instead of Lipschitz. In this way, we generalize some results from [5] and [1].
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In this paper we give a probabilistic representation of the solution of a quasi-
linear PDE system extending some results of those given in [5] and [1] on a
system of a fully coupled forward-backward stochastic differential equations
with a reflecting term in the forward equation (FBSDER) and its relation with
a system of quasi-linear partial differential equations, in short PDE. Preceding
works on this line were due to Y. Hu and to E. Pardoux and S. Zhang (cf. [6]).
In our case, the drift satisfies the monotonicity condition introduced before,
and the domain O is not necessarily convex. Existence of solution under such
conditions was proved in a precedent paper by the authors (cf. [3]).

In Section 1 we start giving the suitable framework for the reflected problem
and recall a previous result which will be used later on. In Section 2, we state
the general framework for the study of a fully coupled FBSDER, and provide a
probabilistic interpretation for a system of quasi-linear PDE with homogeneous
Neumann boundary condition.

1 Statement of the “reflected” problem

Let (2, F, P) be a complete probability space, {F;}+>0 an increasing and right
continuous family of sub-o-algebras of F such that Fy contains all the P-null
sets of F, and {W4; t > 0} an m-dimensional standard {F;}-Wiener process.

Let O be an open connected bounded subset of R? given by O = {¢ > 0},
with ¢ € C?(R?), and such that 00 = {¢ = 0}, with |[V¢(x)| = 1 for all = € 90.
Observe that in particular ¢, V¢ and D?¢ are bounded in O. Then there exists
a constant Cy > 0 such that

2(z’ — x,Vo(x)) + Cola’ — x> >0, Vo ecdo, Va' € O. (1)
We are also given a final time 7" > 0, and two random functions:
b:Ox[0,T]x0O =R ¢:Qx[0,T] x O — R>™

such that

(i) b and o are uniformly bounded;

(ii) for all # € O the processes b(-, -, z) and o (-, -, z) are {F; }-progressively
measurable;

(iii) for all ¢ € [0,7] and a.s. w, the function b(w,t,) is continuous on O;

(iv) there exist two constants Ly, € R and L,, > 0 such that for all
t€[0,T] and all 2,2’ € O,

(x — a2, b(w, t,z) — b(w, t,2") < Ly, |z — 2'|*, a.s.,

lo(w, t,z) —o(w, t,2")|| < Ly, |z —2'|, a.s.,

where | - | and || - || denote the usual Euclidean and trace norm for vectors and
matrices respectively.
From now on, we will omit the explicit dependence of the processes on w.
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Consider the following problem:
t t
X :xo—i—/ b(s,XS) d8+/ O'(S,Xs)dWS — ky, (2)
0 0
t t
b= / V(X Ik, |kl = / Lix.coop ik, t€[0,T), (3)
0 0

where x € O is given, and |k|; stands for the total variation of k on [0, ].

Definition 1 A strong solution to the above problem is a pair of {F}-adapted
and continuous processes (X, k) defined on Q x [0,T], the first one with values
in O, the second one with values in R and paths of bounded variation in [0,T),
satisfying the equations (2)-(3) a.s. for all t € [0, T].

Main result stated in [3], which generalizes a result by Lions and Sznitman when
b is Lipschitz, is the following:

Theorem 1 Under the assumptions (i)-(iv), for each xo € O given there
exists a unique pair (X, k), strong solution of (2)-(3).

2 Forward-Backward Stochastic Differential Equations with Reflec-
tion and representation of a PDE system

We continue considering the complete probability space (€2, F, P), and the m-
dimensional standard {F;}-Wiener process {W;; ¢t > 0} given in Section 1,
but now we suppose that, for each ¢ > 0, F; coincides with the o-algebra
o(Ws; 0 < s <t) augmented with all the P-null sets of F.

Let T > 0 be fixed, and consider the open set O introduced in Section 1.

For each integer [ > 1, we shall denote by M% (0, T;R') the Hilbert subspace
of L2(Q x (0,T);R!) formed by those elements that are {F;}-progressively
measurable, and we will write L% (Q2; C([0,T];R")) to denote the space of the
elements of L?(Q;C([0,T];R")) that are {F;}-progressively measurable. Thus,
L% (9;C([0,T);RY)) is a Banach subspace of L*(Q; C([0,T];R!)).

Similarly, we denote by M ]2_-t(0, T;O) the complete metric subspace of the
space M% (0,T;R?) constituted by the elements X € M% (0,T;R?) such that
a.e. t € (0,7), X; € O as.; we shall also use L% (; C([0,7]; O0)) to denote the
complete metric subspace of L%, (€; C([0,T];R")) formed by those elements X
in the last space such that a.s. X; € O for all ¢ € [0, T]. Finally, we shall denote
by L?(Q, Fr; O) the complete metric subspace of L%(Q, Fr;R?) formed by the
Fr-measurable random variables ¢ € L?(€;R?) such that a.s. £ € O.

We are given four random functions:

b:Qx[0,T]x O xR* x R™™ =R f:Qx[0,T] x O x R* x R™™ — R,

c:Qx[0,T] x O xR" x R™*™ - R>*™ 1.0 x O — R,
such that
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(’) b and o are uniformly bounded;

(ii”) for all (z,y, z) € O x R™ x R"*™ the processes b(-, z,y, 2), f(-,z,y, 2)
and o(-,x,y,2) are {F;}-progressively measurable, and the random variable
h(-,x) is Fr-measurable;

(iii’) for all (t,z,y,2) € [0,T] x O x R™ x R" ™ the functions b(t, -, y, 2)
and f(t,,-, z) are a.s. continuous on O and R™ respectively;

(iv") there exist real constants Ly, and Ly, , and nonnegative constants
Ly,, Ly, Ly,, Ly., Lo,, Lo, ng, Ly, and Iy such that for all ¢ € [0,7], all
z, 2’ € O,all y,y € R", all 2,2’ € R"™™ and a.s.,

(J) - xlvb(tamayvz) - b(t,l‘/,y, Z)) < Lbr|x - Z‘/|2,

/ !/ / /
|b(t7x7yvz) - b(t,x,y )y % )| < Lby|y_y | +Lbz||2 -z ||7
lo(t,z,y,2) — oty )P < LZ, Jo — 2’ P + L7 ly —y/|* + L7 ||z — 2|,

=y, ft,z,y,2) = f(t, 2,9, 2)) < Ly, ly — ' %,
|f(tw,y,2) = f(t, 2"y, 2")| < Ly, o —a'| + Ly, |2 = 2],
|f(t, 2y, 2)| < [f(t2,0,2)+ lo(1+[yl]),
|h(z) — h(z")] < Lp|z —2';

T
) E/ 1£(£,0,0,0)[2dt + E|h(0)[2 < oo,

0
We want to study the following problem:
t t
X, = 20 +/ b(s, Xo, Y, Z2) ds +/ o(5, X0 Yo, ) AW, — ks (4)
0
T
Y, = h(Xp) + stS,Y;,Z)ds—/ Zs dWs, (5)
t

t
/ws ) dlkl.. |k|t=/1{xseamd|k|s, te(0,T], (6)
0

where z¢ € O is given.

Definition 2 A solution to the problem (4)-(6) is a set (X,Y,Z k) of four
{F:}-progressively measurable processes defined on Q x [0,T], such that X is
continuous with values in O, k is continuous with values in R and paths of
bounded variation in [0,T], (Y,Z) € Mz, (0,T;R™) x MZ (0,T;R"*™), and the
equations (4)-(6) are satisfied a.s. for all t € [0,T).

For the resolution of the above fully coupled FBSDER, we will use the following
result, that is a direct consequence of Theorem 1:

Corollary 2 Under the assumptions (')-(iv’), if (Y,Z) € Mz (0,T;R™) x
M3 (0, T;R™*™) is fized, there exists a unique pair (X, k) of {.7-}} progresswely
measurable processes defined on Qx [0,T], such that X is continuous with values
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in O, k is continuous with values in R? and paths of bounded variation in [0,T),
and they satisfy a.s. for all t € [0,T] that

t
Xt—mo—|—/ bsXs,Ys,Z)ds—F/U(S,XS,YS,ZS)dWS—kt, (7)
0

t
/ Vo(Xo)dkle, k] = / Lix.co0y dlkls. (8)
0

We will also need the following well-known result (see for instance Pardoux’s
notes at Geilo, 1996) for the backward equation:

Theorem 3 Under the assumptions (i)-(v"), let be given X € Mz (0,T;0)
and§ € L*(Q, Fr; O). Then, there exists a unique pair (Y, Z) € M% (0 T; ]R")
M3 (0, T;R™*™) such that

T T
Y, = h(¢) + f(s,Xs,Ys,Zs)ds—/ Z,dw., (9)
t t

a.s. for all t € [0, T]. Moreover, we have that Y € L%, (Q; C([0, T|;R™)).

Using the two results above, it is not difficult to prove existence and uniqueness
of solution of problem (4)-(6) if T" is small enough. More exactly, we have the
following result, whose proof we will omit for the sake of brevity:

Theorem 4 Suppose the assumptions (°)-(v’), and that moreover o does not
depend on z. Then, there exists a Ty > 0 such that if T < T, the application
D defined from

L%, (Q;C([0,T);0)) x L%, (2 C([0,T];R™)) x Mz, (0, T; R"*™)

on itself by ®(X,Y, Z) = (X,Y,Z), with (X,Y,Z) the unique solution of
t

t
Xt—xo+/ b(s, Ko Ve, Zo)ds + | (s, Ko, Ya) dW, — i,
0

t
/ V(R dF. 1= [ 1x.co0p diF
— — T —
Yt—hXT / f(s Z)ds—/ Zs dWs,
t
a.s. for allt € [0,T], is a contraction. So, if T < T, the problem (4)-(6) has a

unique solution.

For the resolution of the above fully coupled FBSDER, for any 7" > 0, we
follow [5] and [1].
We shall denote by I'; the mapping

Ty M7 (0,T;R™) x Mz (0, T;R™™) — M3 (0,T;R"™) x M7, (0, T;R™*™),
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defined by T'1(Y, Z) = (Y, Z), with (X,Y, Z, k) the unique solution of
t
Xt_x0+/ b(s, X, Y, 2, ds+/ (5, Xo, Yo, Zo) AW, — K,
¢

/’v¢ dmu,|mt=(3uxﬁmnaéu

T
Y, = h(X /f )ds—/ Z, dW,,
t

a.s. for all t € [0,T].
We will denote by I's the mapping

Ty : M7,(0,T;0) x L*(Q, Fr; 0) — M%,(0,T;0) x L*(Q, Fr; 0),

defined by I'>(X,¢) = (X, Xr), with X such that (X,Y,Z,k) is the unique
solution of

T T
E=M®+/1@J;K29%—/‘Zﬂn
t t
Xt:a:0+/ b(s, X,V Z)ds+/ (s, Ko, Vo, Z2) AW, — o,
0 0

t t
m:—Avw&mwm|m=41@@mﬂm,

a.s. for all ¢ € [0, 7.

By Corollary 2 and Theorem 3, under the conditions (i’)-(v’) the maps
I'y and T'y are well defined. Also, it is clear that to solve the problem (4)-
(6) is equivalent to finding a fixed point for I’y or I's. Thus, in order to
prove existence and uniqueness of solution to problem (4)-(6), it is enough
to find a Hilbert norm in M% (0,T;R") x Mz (0,T;R™*™), such that I' is a
contraction for this norm. Analogously, it is enough to find a complete metric
in M3 (0,T;0) x L*(, Fr; O), for which the map I'; is a contraction.

From now on, for [ > 1 integer, and A € R, we will denote by || - ||» the norm
on M ]2_-t (0,T;RY), equivalent to the usual one, given by

T
|MK=EA e |¢Pds.

For the sake of brevity on these notes we omit here the estimates on
the difference of two solutions (X, k) and (X', k") associated respectively to
processes (Y, Z) and (Y’,Z’), or the inverse. If we combine these estimates
in the two possible orders, to obtain estimations for I'y and I's, we have two
possibilities.

On the one hand, one can search for a A € R such that, with the norm on
M%t (0, T;R™) x M%t (0, T;R™ ™) defined by

1Y, 215 = IYIIX + 12113,
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the mapping I'; is a contraction.

On the other hand, one can search for a A such that, with the metric
on M%(0,T;0) x L2(, Fr; O) induced by the norm on M% (0,T;R%) x
L?(Q, Fr;R?) defined by

I(X, &) = exp(=AT) B[ + A ]| X 13,

the mapping I'; is a contraction.

Then, one obtains existence and uniqueness for (4)-(6) that generalize to b
monotone and O not necessarily convex some of the results in [5] and [1].

For example, existence and uniqueness of solution for (4)-(6) hold when its
coupling is weak, that is, when dependence of b and o respect to their variables y
and z is small, or, analogously for the backward equation, when the dependence
of f and h with respect to z is small. More exactly, we have:

Theorem 5 Let conditions (’)-(v’) hold. Then there exists an 9 > 0
depending on Lo, Ly,, Ly, Ly,, Ly, Ly and T such that if Ly, Ly., Lo,
L,, € [0,¢0), then there exists A such that I'y is a contraction, and thus there
exists a unique solution to (4)-(6). On the other hand, the same thesis holds
for I'a, changing roles of Ly, Ly,, Ly,, and Ly, with L, and Ly, .

Also, using Tz, and reasoning as in [1] or [2], one can prove

Theorem 6 Let conditions (i’)-(v’) hold, and suppose one of the following

two conditions:

a) If h is independent of x, there exists o € (0,1) such that (o, T)Ly, C3 < Ay.

b) If h does depend on x, there exists o € (ki L2_Lj 1) such that u(c, T)Lj < 1.
Then, there exists a unique solution for (4)-(6).

Remark 1 Reasoning as in [2], one can make some (technical) improvements.
Namely, it is possible to consider that o can depend on z, but introducing
compatibility conditions. On other hand, if Ly, is negative enough, then (4)-(6)
has a unique solution for all final time T > 0.

Finally, as in [5], and in [1], with the previous results on the problem (4)-
(6), one can prove existence of viscosity solution to a homogeneous Neumann
problem for an associated system of quasi-linear parabolic PDE. We briefly
recall here how this can be done.

For each (t,x) € [0,T] x O, consider the problem

X0 =t [0 X0 2 [l X Y 2 W, —
t t
T T
Vet = b+ [ X i - [z aw,

S

kb :_/t Vo(XET)dkD |, k57 :/t Lixtecgoy dE]r, s €[t,T).
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It is immediate to extend to this family of problems the previous theorems on
existence and uniqueness of solution for problem (4)-(6).

To establish the relation with PDE, we assume now that b, o, f and h are
deterministic, moreover, we suppose that ¢ does not depend on z. Also, for
simplicity, we consider n = 1. For short, we introduce the following notation:

d
. 0%
2 (00,2 9) g (s2) + (05,9, 2), V(s )

i,j=1

(Le)(s,2,y,2) =

DN | =

and consider the homogeneous Neumann problem

%(t, ) + (Lu)(t, 2, u(t, 2), (Vu(t,2)) otz u(t, 2))

(s ult 2), (Yl 2) ot 2, u(t 2)) = 0, (L2) € (0,T) x O,
%(t,x) —0, (L)€ (0,T) x 9O,

W(T,2) = h(z), @ €O. (10)

Then, we have, for example, the following result, that can be proved as Theorem
3.8 in [1], and actually can also be adapted to deal with a system.

Theorem 7 Under the assumptions of Theorem 6, suppose, moreover, n = 1.

Suppose also that b, o, f and h are deterministic, continuous in all its variables,
and o does not depend on z. Then, the function u defined by u(t,z) = Yf’t,
(t,x) € [0,T) x O, is a viscosity solution of (10).
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