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PROBABILISTIC REPRESENTATION OF SOLUTIONS FORQUASI-LINEAR PARABOLIC PDE VIA FBSDE WITHREFLECTING BOUNDARY CONDITIONSPEDRO MARÍN-RUBIO AND JOSÉ REALDpto. E
ua
iones Diferen
iales y Análisis Numéri
o,Universidad de SevillaApdo. de Correos 1160, 41080 Sevilla (SPAIN)pmr�us.es jreal�us.esAbstra
tA probabilisti
 representation of the solution (in the vis
osity sense)of a quasi-linear paraboli
 PDE system with non-lips
hitz terms anda Neumann boundary 
ondition is given via a fully 
oupled forward-ba
kward sto
hasti
 di�erential equation with a re�e
ting term in theforward equation. The extension of previous results 
onsists on therelaxation on the Lips
hitz assumption on the drift 
oe�
ient of theforward equation, using a previous result of the authors.Key words: Probabilisti
 formulae for PDE, Forward ba
kward sto
hasti
di�erential equations, Skorokhod problem, Re�e
ted Sto
hasti
 Di�erential Equations.AMS subje
t 
lassi�
ations: 60H10, 35K55, 60J60, 60K25.Introdu
tionDeeper relations between sto
hasti
 di�erential equations and systems of PDEhave been established sin
e [4℄ developed the theory of ba
kward sto
hasti
di�erential equations. Roughly speaking, 
ombining a forward sto
hasti
di�erential equation with a BSDE, the Feyman-Ka
 formula 
an be extended tononlinear PDE, and not only in a 
lassi
al sense, but also via vis
osity solutions.Usually, the deterministi
 problems treated in this way are posed in thewhole domain R

d, or in a bounded domain of R
d with Diri
hlet boundary
ondition. With a Neumann boundary 
ondition, the problem was studied byY. Hu using lo
al time around the boundary of the domain. This te
hnique is
losely related to a sto
hasti
 version of the Skorokhod problem (see e.g. [6℄,for a dire
t appli
ation in this sense). We extend these studies and relationsto the 
ase of fully 
oupled systems of FBSDER in whi
h the open set is notne
essarily 
onvex but still smooth (this restri
tion is for 
ommodity and maybe removed), and the drift 
oe�
ient of the forward equation is monotone in x,instead of Lips
hitz. In this way, we generalize some results from [5℄ and [1℄.109



110 P. Marín-Rubio, J. RealIn this paper we give a probabilisti
 representation of the solution of a quasi-linear PDE system extending some results of those given in [5℄ and [1℄ on asystem of a fully 
oupled forward-ba
kward sto
hasti
 di�erential equationswith a re�e
ting term in the forward equation (FBSDER) and its relation witha system of quasi-linear partial di�erential equations, in short PDE. Pre
edingworks on this line were due to Y. Hu and to E. Pardoux and S. Zhang (
f. [6℄).In our 
ase, the drift satis�es the monotoni
ity 
ondition introdu
ed before,and the domain O is not ne
essarily 
onvex. Existen
e of solution under su
h
onditions was proved in a pre
edent paper by the authors (
f. [3℄).In Se
tion 1 we start giving the suitable framework for the re�e
ted problemand re
all a previous result whi
h will be used later on. In Se
tion 2, we statethe general framework for the study of a fully 
oupled FBSDER, and provide aprobabilisti
 interpretation for a system of quasi-linear PDE with homogeneousNeumann boundary 
ondition.1 Statement of the �re�e
ted� problemLet (Ω,F , P ) be a 
omplete probability spa
e, {Ft}t≥0 an in
reasing and right
ontinuous family of sub-σ-algebras of F su
h that F0 
ontains all the P -nullsets of F , and {Wt; t ≥ 0} an m-dimensional standard {Ft}-Wiener pro
ess.Let O be an open 
onne
ted bounded subset of R
d given by O = {φ > 0},with φ ∈ C2(Rd), and su
h that ∂O = {φ = 0}, with |∇φ(x)| = 1 for all x ∈ ∂O.Observe that in parti
ular φ, ∇φ and D2φ are bounded in Ō. Then there existsa 
onstant C0 > 0 su
h that

2(x′ − x,∇φ(x)) + C0|x′ − x|2 ≥ 0, ∀x ∈ ∂O, ∀x′ ∈ Ō. (1)We are also given a �nal time T > 0, and two random fun
tions:
b : Ω × [0, T ]× Ō → R

d, σ : Ω × [0, T ]× Ō → R
d×m,su
h that(i) b and σ are uniformly bounded;(ii) for all x ∈ Ō the pro
esses b(·, ·, x) and σ(·, ·, x) are {Ft}-progressivelymeasurable;(iii) for all t ∈ [0, T ] and a.s. ω, the fun
tion b(ω, t, ·) is 
ontinuous on Ō;(iv) there exist two 
onstants Lbx

∈ R and Lσx
≥ 0 su
h that for all

t ∈ [0, T ] and all x, x′ ∈ Ō,
(x− x′, b(ω, t, x) − b(ω, t, x′)) ≤ Lbx

|x− x′|2, a.s.,

‖σ(ω, t, x) − σ(ω, t, x′)‖ ≤ Lσx
|x− x′|, a.s.,where | · | and ‖ · ‖ denote the usual Eu
lidean and tra
e norm for ve
tors andmatri
es respe
tively.From now on, we will omit the expli
it dependen
e of the pro
esses on ω.



Probabilisti
 representation of PDE via FBSDER 111Consider the following problem:
Xt = x0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs − kt, (2)
kt = −

∫ t

0

∇φ(Xs) d|k|s, |k|t =

∫ t

0

1{Xs∈∂O} d|k|s, t ∈ [0, T ], (3)where x0 ∈ Ō is given, and |k|t stands for the total variation of k on [0, t].De�nition 1 A strong solution to the above problem is a pair of {Ft}-adaptedand 
ontinuous pro
esses (X, k) de�ned on Ω × [0, T ], the �rst one with valuesin Ō, the se
ond one with values in R
d and paths of bounded variation in [0, T ],satisfying the equations (2)-(3) a.s. for all t ∈ [0, T ].Main result stated in [3℄, whi
h generalizes a result by Lions and Sznitman when

b is Lips
hitz, is the following:Theorem 1 Under the assumptions (i)-(iv), for ea
h x0 ∈ Ō given thereexists a unique pair (X, k), strong solution of (2)-(3).2 Forward-Ba
kward Sto
hasti
 Di�erential Equations with Re�e
-tion and representation of a PDE systemWe 
ontinue 
onsidering the 
omplete probability spa
e (Ω,F , P ), and the m-dimensional standard {Ft}-Wiener pro
ess {Wt; t ≥ 0} given in Se
tion 1,but now we suppose that, for ea
h t ≥ 0, Ft 
oin
ides with the σ-algebra
σ(Ws; 0 ≤ s ≤ t) augmented with all the P -null sets of F .Let T > 0 be �xed, and 
onsider the open set O introdu
ed in Se
tion 1.For ea
h integer l ≥ 1, we shall denote byM2

Ft
(0, T ; Rl) the Hilbert subspa
eof L2(Ω × (0, T ); Rl) formed by those elements that are {Ft}-progressivelymeasurable, and we will write L2

Ft
(Ω;C([0, T ]; Rl)) to denote the spa
e of theelements of L2(Ω;C([0, T ]; Rl)) that are {Ft}-progressively measurable. Thus,

L2
Ft

(Ω;C([0, T ]; Rl)) is a Bana
h subspa
e of L2(Ω;C([0, T ]; Rl)).Similarly, we denote by M2
Ft

(0, T ; Ō) the 
omplete metri
 subspa
e of thespa
e M2
Ft

(0, T ; Rd) 
onstituted by the elements X ∈ M2
Ft

(0, T ; Rd) su
h thata.e. t ∈ (0, T ), Xt ∈ Ō a.s.; we shall also use L2
Ft

(Ω;C([0, T ]; Ō)) to denote the
omplete metri
 subspa
e of L2
Ft

(Ω;C([0, T ]; Rl)) formed by those elements Xin the last spa
e su
h that a.s. Xt ∈ Ō for all t ∈ [0, T ]. Finally, we shall denoteby L2(Ω,FT ; Ō) the 
omplete metri
 subspa
e of L2(Ω,FT ; Rd) formed by the
FT -measurable random variables ξ ∈ L2(Ω; Rd) su
h that a.s. ξ ∈ Ō.We are given four random fun
tions:
b : Ω × [0, T ]× Ō × R

n × R
n×m → R

d, f : Ω × [0, T ]× Ō × R
n × R

n×m → R
n,

σ : Ω × [0, T ]× Ō × R
n × R

n×m → R
d×m, h : Ω × Ō → R

n,su
h that



112 P. Marín-Rubio, J. Real(i') b and σ are uniformly bounded;(ii') for all (x, y, z) ∈ Ō×R
n ×R

n×m the pro
esses b(·, x, y, z), f(·, x, y, z)and σ(·, x, y, z) are {Ft}-progressively measurable, and the random variable
h(·, x) is FT -measurable;(iii') for all (t, x, y, z) ∈ [0, T ] × Ō × R

n × R
n×m the fun
tions b(t, ·, y, z)and f(t, x, ·, z) are a.s. 
ontinuous on Ō and R

n respe
tively;(iv') there exist real 
onstants Lbx
and Lfy

, and nonnegative 
onstants
Lby

, Lbz
, Lfx

, Lfz
, Lσx

, Lσy
, Lσz

, Lh and l0 su
h that for all t ∈ [0, T ], all
x, x′ ∈ Ō, all y, y′ ∈ R

n, all z, z′ ∈ R
n×m, and a.s.,

(x− x′, b(t, x, y, z) − b(t, x′, y, z)) ≤ Lbx
|x− x′|2,

|b(t, x, y, z) − b(t, x, y′, z′)| ≤ Lby
|y − y′| + Lbz

‖z − z′‖,

‖σ(t, x, y, z) − σ(t, x′, y′, z′)‖2 ≤ L2
σx
|x− x′|2 + L2

σy
|y − y′|2 + L2

σz
‖z − z′‖2,

(y − y′, f(t, x, y, z) − f(t, x, y′, z)) ≤ Lfy
|y − y′|2,

|f(t, x, y, z) − f(t, x′, y, z′)| ≤ Lfx
|x− x′| + Lfz

‖z − z′‖,
|f(t, x, y, z)| ≤ |f(t, x, 0, z)|+ l0(1 + |y|),

|h(x) − h(x′)| ≤ Lh|x− x′|;(v') E

∫ T

0

|f(t, 0, 0, 0)|2 dt+ E|h(0)|2 <∞.We want to study the following problem:
Xt = x0 +

∫ t

0

b(s,Xs, Ys, Zs) ds+

∫ t

0

σ(s,Xs, Ys, Zs) dWs − kt, (4)
Yt = h(XT ) +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

Zs dWs, (5)
kt = −

∫ t

0

∇φ(Xs) d|k|s, |k|t =

∫ t

0

1{Xs∈∂O} d|k|s, t ∈ [0, T ], (6)where x0 ∈ Ō is given.De�nition 2 A solution to the problem (4)-(6) is a set (X,Y, Z, k) of four
{Ft}-progressively measurable pro
esses de�ned on Ω × [0, T ], su
h that X is
ontinuous with values in Ō, k is 
ontinuous with values in R

d and paths ofbounded variation in [0, T ], (Y, Z) ∈M2
Ft

(0, T ; Rn)×M2
Ft

(0, T ; Rn×m), and theequations (4)-(6) are satis�ed a.s. for all t ∈ [0, T ].For the resolution of the above fully 
oupled FBSDER, we will use the followingresult, that is a dire
t 
onsequen
e of Theorem 1:Corollary 2 Under the assumptions (i')-(iv'), if (Y, Z) ∈ M2
Ft

(0, T ; Rn) ×
M2

Ft
(0, T ; Rn×m) is �xed, there exists a unique pair (X, k) of {Ft}-progressivelymeasurable pro
esses de�ned on Ω×[0, T ], su
h that X is 
ontinuous with values



Probabilisti
 representation of PDE via FBSDER 113in Ō, k is 
ontinuous with values in R
d and paths of bounded variation in [0, T ],and they satisfy a.s. for all t ∈ [0, T ] that

Xt = x0 +

∫ t

0

b(s,Xs, Ys, Zs) ds+

∫ t

0

σ(s,Xs, Ys, Zs) dWs − kt, (7)
kt = −

∫ t

0

∇φ(Xs) d|k|s, |k|t =

∫ t

0

1{Xs∈∂O} d|k|s. (8)We will also need the following well-known result (see for instan
e Pardoux'snotes at Geilo, 1996) for the ba
kward equation:Theorem 3 Under the assumptions (ii')-(v'), let be given X ∈ M2
Ft

(0, T ; Ō)and ξ ∈ L2(Ω,FT ; Ō). Then, there exists a unique pair (Y, Z) ∈M2
Ft

(0, T ; Rn)×
M2

Ft
(0, T ; Rn×m) su
h that

Yt = h(ξ) +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

Zs dWs, (9)a.s. for all t ∈ [0, T ]. Moreover, we have that Y ∈ L2
Ft

(Ω;C([0, T ]; Rn)).Using the two results above, it is not di�
ult to prove existen
e and uniquenessof solution of problem (4)-(6) if T is small enough. More exa
tly, we have thefollowing result, whose proof we will omit for the sake of brevity:Theorem 4 Suppose the assumptions (i')-(v'), and that moreover σ does notdepend on z. Then, there exists a T∗ > 0 su
h that if T ≤ T∗, the appli
ation
Φ de�ned from

L2
Ft

(Ω;C([0, T ]; Ō)) × L2
Ft

(Ω;C([0, T ]; Rn)) ×M2
Ft

(0, T ; Rn×m)on itself by Φ(X,Y, Z) = (X̄, Ȳ , Z̄), with (X̄, Ȳ , Z̄) the unique solution of
X̄t = x0 +

∫ t

0

b(s, X̄s, Ys, Zs) ds+

∫ t

0

σ(s, X̄s, Ys) dWs − k̄t,

k̄t = −
∫ t

0

∇φ(X̄s) d|k̄|s, |k̄|t =

∫ t

0

1{X̄s∈∂O} d|k̄|s,

Ȳt = h(X̄T ) +

∫ T

t

f(s, X̄s, Ȳs, Z̄s) ds−
∫ T

t

Z̄s dWs,a.s. for all t ∈ [0, T ], is a 
ontra
tion. So, if T ≤ T∗, the problem (4)-(6) has aunique solution.For the resolution of the above fully 
oupled FBSDER for any T > 0, wefollow [5℄ and [1℄.We shall denote by Γ1 the mapping
Γ1 : M2

Ft
(0, T ; Rn) ×M2

Ft
(0, T ; Rn×m) →M2

Ft
(0, T ; Rn) ×M2

Ft
(0, T ; Rn×m),



114 P. Marín-Rubio, J. Realde�ned by Γ1(Y, Z) = (Ȳ , Z̄), with (X̄, Ȳ , Z̄, k̄) the unique solution of
X̄t = x0 +

∫ t

0

b(s, X̄s, Ys, Zs) ds+

∫ t

0

σ(s, X̄s, Ys, Zs) dWs − k̄t,

k̄t = −
∫ t

0

∇φ(X̄s) d|k̄|s, |k̄|t =

∫ t

0

1{X̄s∈∂O} d|k̄|s,

Ȳt = h(X̄T ) +

∫ T

t

f(s, X̄s, Ȳs, Z̄s) ds−
∫ T

t

Z̄s dWs,a.s. for all t ∈ [0, T ].We will denote by Γ2 the mapping
Γ2 : M2

Ft
(0, T ; Ō) × L2(Ω,FT ; Ō) →M2

Ft
(0, T ; Ō) × L2(Ω,FT ; Ō),de�ned by Γ2(X, ξ) = (X̄, X̄T ), with X̄ su
h that (X̄, Ȳ , Z̄, k̄) is the uniquesolution of̄

Yt = h(ξ) +

∫ T

t

f(s,Xs, Ȳs, Z̄s) ds−
∫ T

t

Z̄s dWs,

X̄t = x0 +

∫ t

0

b(s, X̄s, Ȳs, Z̄s) ds+

∫ t

0

σ(s, X̄s, Ȳs, Z̄s) dWs − k̄t,

k̄t = −
∫ t

0

∇φ(X̄s) d|k̄|s, |k̄|t =

∫ t

0

1{X̄s∈∂O} d|k̄|s,a.s. for all t ∈ [0, T ].By Corollary 2 and Theorem 3, under the 
onditions (i')-(v') the maps
Γ1 and Γ2 are well de�ned. Also, it is 
lear that to solve the problem (4)-(6) is equivalent to �nding a �xed point for Γ1 or Γ2. Thus, in order toprove existen
e and uniqueness of solution to problem (4)-(6), it is enoughto �nd a Hilbert norm in M2

Ft
(0, T ; Rn) ×M2

Ft
(0, T ; Rn×m), su
h that Γ1 is a
ontra
tion for this norm. Analogously, it is enough to �nd a 
omplete metri
in M2

Ft
(0, T ; Ō) × L2(Ω,FT ; Ō), for whi
h the map Γ2 is a 
ontra
tion.From now on, for l ≥ 1 integer, and λ ∈ R, we will denote by ‖ · ‖λ the normon M2

Ft
(0, T ; Rl), equivalent to the usual one, given by

‖ζ‖2
λ = E

∫ T

0

e−λs|ζ|2ds.For the sake of brevity on these notes we omit here the estimates onthe di�eren
e of two solutions (X, k) and (X ′, k′) asso
iated respe
tively topro
esses (Y, Z) and (Y ′, Z ′), or the inverse. If we 
ombine these estimatesin the two possible orders, to obtain estimations for Γ1 and Γ2, we have twopossibilities.On the one hand, one 
an sear
h for a λ ∈ R su
h that, with the norm on
M2

Ft
(0, T ; Rn) ×M2

Ft
(0, T ; Rn×m) de�ned by

‖(Y, Z)‖2
λ = ‖Y ‖2

λ + ‖Z‖2
λ,



Probabilisti
 representation of PDE via FBSDER 115the mapping Γ1 is a 
ontra
tion.On the other hand, one 
an sear
h for a λ su
h that, with the metri
on M2
Ft

(0, T ; Ō) × L2(Ω,FT ; Ō) indu
ed by the norm on M2
Ft

(0, T ; Rd) ×
L2(Ω,FT ; Rd) de�ned by

‖(X, ξ)‖2
λ = exp(−λT )E|ξ|2 + λ1‖X‖2

λ,the mapping Γ2 is a 
ontra
tion.Then, one obtains existen
e and uniqueness for (4)-(6) that generalize to bmonotone and O not ne
essarily 
onvex some of the results in [5℄ and [1℄.For example, existen
e and uniqueness of solution for (4)-(6) hold when its
oupling is weak, that is, when dependen
e of b and σ respe
t to their variables yand z is small, or, analogously for the ba
kward equation, when the dependen
eof f and h with respe
t to x is small. More exa
tly, we have:Theorem 5 Let 
onditions (i')-(v') hold. Then there exists an ε0 > 0depending on Lσx
, Lbx

, Lfx
, Lfy

, Lfz
, Lh and T su
h that if Lby

, Lbz
, Lσy

,
Lσz

∈ [0, ε0), then there exists λ su
h that Γ1 is a 
ontra
tion, and thus thereexists a unique solution to (4)-(6). On the other hand, the same thesis holdsfor Γ2, 
hanging roles of Lby
, Lbz

, Lσy
, and Lσz

, with Lh and Lfx
.Also, using Γ2, and reasoning as in [1℄ or [2℄, one 
an proveTheorem 6 Let 
onditions (i')-(v') hold, and suppose one of the followingtwo 
onditions:a) If h is independent of x, there exists α ∈ (0, 1) su
h that µ(α, T )Lfx

C3 < λ1.b) If h does depend on x, there exists α ∈ (k1L
2
σz
L2

h, 1) su
h that µ(α, T )L2
h < 1.Then, there exists a unique solution for (4)-(6).Remark 1 Reasoning as in [2℄, one 
an make some (te
hni
al) improvements.Namely, it is possible to 
onsider that σ 
an depend on z, but introdu
ing
ompatibility 
onditions. On other hand, if Lfy

is negative enough, then (4)-(6)has a unique solution for all �nal time T > 0.Finally, as in [5℄, and in [1℄, with the previous results on the problem (4)-(6), one 
an prove existen
e of vis
osity solution to a homogeneous Neumannproblem for an asso
iated system of quasi-linear paraboli
 PDE. We brie�yre
all here how this 
an be done.For ea
h (t, x) ∈ [0, T ]× Ō, 
onsider the problem
Xt,x

s = x+

∫ s

t

b(r,Xt,x
r , Y t,x

r , Zt,x
r )dr +

∫ s

t

σ(r,Xt,x
r , Y t,x

r , Zt,x
r )dWr − kt,x

s ,

Y t,x
s = h(Xt,x

T ) +

∫ T

s

f(r,Xt,x
r , Y t,x

r , Zt,x
r )dr −

∫ T

s

Zt,x
r dWr,

kt,x
s =−

∫ s

t

∇φ(Xt,x
r ) d|kt,x|r, |kt,x|s =

∫ s

t

1{Xt,x
r ∈∂O} d|kt,x|r, s ∈ [t, T ].



116 P. Marín-Rubio, J. RealIt is immediate to extend to this family of problems the previous theorems onexisten
e and uniqueness of solution for problem (4)-(6).To establish the relation with PDE, we assume now that b, σ, f and h aredeterministi
, moreover, we suppose that σ does not depend on z. Also, forsimpli
ity, we 
onsider n = 1. For short, we introdu
e the following notation:
(Lϕ)(s, x, y, z) =

1

2

d∑

i,j=1

(σσ∗)ij(s, x, y)
∂2ϕ

∂xi∂xj
(s, x) + (b(s, x, y, z),∇ϕ(s, x)),and 
onsider the homogeneous Neumann problem

∂u

∂t
(t, x) + (Lu)(t, x, u(t, x), (∇u(t, x))∗σ(t, x, u(t, x)))

+f(t, x, u(t, x), (∇u(t, x))∗σ(t, x, u(t, x))) = 0, (t, x) ∈ (0, T )×O,
∂u

∂n
(t, x) = 0, (t, x) ∈ (0, T )× ∂O,

u(T, x) = h(x), x ∈ O. (10)Then, we have, for example, the following result, that 
an be proved as Theorem3.8 in [1℄, and a
tually 
an also be adapted to deal with a system.Theorem 7 Under the assumptions of Theorem 6, suppose, moreover, n = 1.Suppose also that b, σ, f and h are deterministi
, 
ontinuous in all its variables,and σ does not depend on z. Then, the fun
tion u de�ned by u(t, x) = Y x,t
t ,

(t, x) ∈ [0, T ]× Ō, is a vis
osity solution of (10).Referen
es[1℄ J. Ma and J. Cvitani¢, Re�e
ted forward-ba
kward SDEs and obsta
leproblems with boundary 
onditions, J. Appl. Math. Sto
hasti
 Anal. 14(2)(2001), 113�138.[2℄ J. Ma and J. Yong, Forward-Ba
kward Sto
hasti
 Di�erential Equationsand Their Appli
ations, Vol. 1702 of Le
ture Notes in Mathemati
s,Springer-Verlag, Berlin, 1999.[3℄ P. Marín-Rubio and J. Real, Some results on sto
hasti
 di�erentialequations with re�e
ting boundary 
onditions, J. Theoret. Prob. 17(3)(2004), 705�716.[4℄ E. Pardoux and S. G. Peng, Adapted solution of a ba
kward sto
hasti
di�erential equation, Systems Control Lett. 14(1) (1990), 55�61.[5℄ E. Pardoux and S. Tang, Forward-ba
kward sto
hasti
 di�erentialequations and quasilinear paraboli
 PDEs, Probab. Theory Related Fields114(2) (1999), 123�150.[6℄ E. Pardoux and S. Zhang, Generalized BSDEs and nonlinear Neumannboundary value problems, Probab. Theory Related Fields 110(4) (1998),535�558.


