H^{2}-boundedness of the pullback attractors for non-autonomous 2D-Navier-Stokes equations in bounded domains

Julia García-Luengo, Pedro Marín-Rubio, José Real
Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080 Sevilla, Spain

Abstract

We prove some regularity results for the pullback attractors of a non-autonomous 2D-Navier-Stokes model in a bounded domain Ω of \mathbb{R}^{2}. We establish a general result about $\left(H^{2}(\Omega)\right)^{2} \cap V$-boundedness of invariant sets for the associate evolution process. Then, as a consequence, we deduce that, under adequate assumptions, the pullback attractors of the non-autonomous 2D-Navier-Stokes equations are bounded not only in V but also in $\left(H^{2}(\Omega)\right)^{2}$.

Key words: 2D-Navier-Stokes equations, pullback attractors, invariant sets, H^{2}-regularity.
Mathematics Subject Classifications (2010): 35B41, 35B65, 35Q30

[^0]
1 Introduction and setting of the problem

Let us consider the following problem for a non-autonomous 2D-Navier-Stokes system:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\nu \Delta u+(u \cdot \nabla) u+\nabla p=f(t) \text { in } \Omega \times(\tau,+\infty) \tag{1}\\
\nabla \cdot u=0 \text { in } \Omega \times(\tau,+\infty) \\
u=0 \text { on } \partial \Omega \times(\tau,+\infty) \\
u(x, \tau)=u_{\tau}(x), \quad x \in \Omega
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{2}$ is a bounded open set, with regular boundary $\partial \Omega$, the number $\nu>0$ is the kinematic viscosity, u is the velocity field of the fluid, p the pressure, $\tau \in \mathbb{R}$ is a given initial time, u_{τ} is the initial velocity field, and $f(t)$ a given external force field.

To set our problem in the abstract framework, we consider the following usual abstract spaces (see [1] and [2-4]):

$$
\mathcal{V}=\left\{u \in\left(C_{0}^{\infty}(\Omega)\right)^{2}: \operatorname{div} u=0\right\}
$$

$H=$ the closure of \mathcal{V} in $\left(L^{2}(\Omega)\right)^{2}$ with inner product (\cdot, \cdot) and associate norm $|\cdot|$, where for $u, v \in\left(L^{2}(\Omega)\right)^{2}$,

$$
(u, v)=\sum_{j=1}^{2} \int_{\Omega} u_{j}(x) v_{j}(x) \mathrm{d} x
$$

$V=$ the closure of \mathcal{V} in $\left(H_{0}^{1}(\Omega)\right)^{2}$ with scalar product $((\cdot, \cdot))$ and associate norm $\|\cdot\|$, where for $u, v \in\left(H_{0}^{1}(\Omega)\right)^{2}$,

$$
((u, v))=\sum_{i, j=1}^{2} \int_{\Omega} \frac{\partial u_{j}}{\partial x_{i}} \frac{\partial v_{j}}{\partial x_{i}} \mathrm{~d} x
$$

We also consider the operator $A: V \rightarrow V^{\prime}$ defined by $\langle A u, v\rangle=((u, v))$. Denoting $D(A)=\left(H^{2}(\Omega)\right)^{2} \cap V$, then $A u=-P \Delta u, \forall u \in D(A)$, is the Stokes operator (P is the ortho-projector from $\left(L^{2}(\Omega)\right)^{2}$ onto H).

Now we define the continuous trilinear form b on $V \times V \times V$ by

$$
b(u, v, w)=\sum_{i, j=1}^{2} \int_{\Omega} u_{i} \frac{\partial v_{j}}{\partial x_{i}} w_{j} \mathrm{~d} x, \quad \forall u, v, w \in V
$$

It is well known that

$$
\begin{equation*}
b(u, v, v)=0 \quad \text { for all } u, v \in V \tag{2}
\end{equation*}
$$

We remember (see [2] or [3]) that there exists a constant $C_{1}>0$ only dependent on Ω such that

$$
\begin{gather*}
|b(u, v, w)| \leq\left. C_{1}|u|^{1 / 2}\|u\|^{1 / 2}\|v\|| | w\right|^{1 / 2}\|w\|^{1 / 2}, \quad \forall u, v, w \in V, \tag{3}\\
|b(u, v, w)| \leq C_{1}|A u|\|v\||w|, \quad \forall u \in D(A), v \in V, w \in H \tag{4}
\end{gather*}
$$

and

$$
\begin{equation*}
|b(u, v, w)| \leq C_{1}|u|^{1 / 2}|A u|^{1 / 2}\|v\||w|, \quad \forall u \in D(A), v \in V, w \in H \tag{5}
\end{equation*}
$$

Assume that $u_{\tau} \in H$ and $f \in L_{\text {loc }}^{2}(\mathbb{R} ; H)$.
Definition 1.1 A solution of (1) is a function $u \in C([\tau, T] ; H) \cap L^{2}(\tau, T ; V)$ for all $T>\tau$, with $u(\tau)=u_{\tau}$, such that for all $v \in V$,

$$
\frac{d}{d t}(u(t), v)+\nu((u(t), v))+b(u(t), u(t), v)=(f(t), v)
$$

where the equation must be understood in the sense of $\mathcal{D}^{\prime}(\tau,+\infty)$.
Under the conditions above (e.g. cf. [2] or [3]), there exists a unique solution $u(\cdot)=u\left(\cdot ; \tau, u_{\tau}\right)$ of (1). Moreover, this solution u satisfies that $u \in C([\tau+$ $\varepsilon, T] ; V) \cap L^{2}\left(\tau+\varepsilon, T ;\left(H^{2}(\Omega)\right)^{2}\right)$ for every $\varepsilon>0$ and $T>\tau+\varepsilon$. In fact, if $u_{\tau} \in V$, then $u \in C([\tau, T] ; V) \cap L^{2}\left(\tau, T ;\left(H^{2}(\Omega)\right)^{2}\right)$ for every $T>\tau$.

Therefore, we can define a process $U=\{U(t, \tau), \tau \leq t\}$ in H as

$$
\begin{equation*}
U(t, \tau) u_{\tau}=u\left(t ; \tau, u_{\tau}\right) \quad \forall u_{\tau} \in H, \quad \forall \tau \leq t \tag{6}
\end{equation*}
$$

and the restriction of this process to V is a process in V.
A pullback attractor for the process U defined by (6) (cf. [5-7]) is a family $\hat{\mathcal{A}}=\{\mathcal{A}(t): t \in \mathbb{R}\}$ of compact subsets of H such that
a) (invariance) $U(t, \tau) \mathcal{A}(\tau)=\mathcal{A}(t)$ for all $\tau \leq t$,
b) (pullback attraction) $\lim _{\tau \rightarrow-\infty} \sup _{u_{\tau} \in B} \inf _{v \in \mathcal{A}(t)}\left|U(t, \tau) u_{\tau}-v\right|=0$, for all $t \in \mathbb{R}$, for any bounded subset $B \subset H$.

It can be proved (see [9]) that, under the above conditions, if in addition f satisfies

$$
\int_{-\infty}^{0} e^{\mu r}|f(r)|^{2} d r<+\infty
$$

for some $0<\mu<2 \nu \lambda_{1}$, where λ_{1} denotes the first eigenvalue of the Stokes operator A, then there exists a pullback attractor for the process U defined by (6).

Several studies on this model have already been published (cf. [5], [8,9]). However, as far as we know, no one refers to the H^{2}-regularity we will consider in this paper.

In the next section we prove some results which, in particular, imply that, under suitable assumptions, any pullback attractor $\hat{\mathcal{A}}$ for U satisfies that $\mathcal{A}(t)$ is a bounded subset of $\left(H^{2}(\Omega)\right)^{2} \cap V$, for every $t \in \mathbb{R}$ (for similar results for reaction-diffusion equations see [10], and for related results for Navier-Stokes equations see [11]).

$2 \quad H^{2}$-boundedness of invariant sets

In this section we prove that, under suitable assumptions, any family of bounded subsets of H which is invariant for the process U, is in fact bounded in $\left(H^{2}(\Omega)\right)^{2} \cap V$.

First, we recall a result (cf. [2]) which will be used below.
Lemma 2.1 Let X, Y be Banach spaces such that X is reflexive, and the inclusion $X \subset Y$ is continuous. Assume that $\left\{u_{n}\right\}$ is a bounded sequence in $L^{\infty}\left(t_{0}, T ; X\right)$ such that $u_{n} \rightharpoonup u$ weakly in $L^{q}\left(t_{0}, T ; X\right)$ for some $q \in[1,+\infty)$ and $u \in C^{0}\left(\left[t_{0}, T\right] ; Y\right)$.

Then, $u(t) \in X$ and $\|u(t)\|_{X} \leq \liminf _{n \geq 1}\left\|u_{n}\right\|_{L^{\infty}\left(t_{0}, T ; X\right)}$, for all $t \in\left[t_{0}, T\right]$.
For each integer $n \geq 1$, we denote by $u_{n}(t)=u_{n}\left(t ; \tau, u_{\tau}\right)$ the Galerkin approximation of the solution $u\left(t ; \tau, u_{\tau}\right)$ of (1), which is given by

$$
u_{n}(t)=\sum_{j=1}^{n} \gamma_{n j}(t) w_{j},
$$

and is the solution of

$$
\left\{\begin{array}{l}
\frac{d}{d t}\left(u_{n}(t), w_{j}\right)+\nu\left(\left(u_{n}(t), w_{j}\right)\right)+b\left(u_{n}(t), u_{n}(t), w_{j}\right)=\left(f(t), w_{j}\right), \tag{7}\\
\left(u_{n}(\tau), w_{j}\right)=\left(u_{\tau}, w_{j}\right) \quad j=1, \ldots, n,
\end{array}\right.
$$

where $\left\{w_{j}: j \geq 1\right\} \subset V$ is the Hilbert basis of H formed by the eigenvectors of the Stokes operator A. Observe that by the regularity of Ω, all the w_{j} belong to $\left(H^{2}(\Omega)\right)^{2}$.

We first prove the following result.
Proposition 2.2 Assume that $f \in L_{\text {loc }}^{2}(\mathbb{R} ; H)$. Then, for any bounded set $B \subset H$, any $\tau \in \mathbb{R}$, any $\varepsilon>0$ and any $t>\tau+\varepsilon$, the following three properties are satisfied:
i) The set $\left\{u_{n}\left(r ; \tau, u_{\tau}\right): r \in[\tau+\varepsilon, t], u_{\tau} \in B, n \geq 1\right\}$, is a bounded subset of V.
ii) The set of functions $\left\{u_{n}\left(\cdot ; \tau, u_{\tau}\right): u_{\tau} \in B, n \geq 1\right\}$, is a bounded subset of $L^{2}(\tau+\varepsilon, t ; D(A))$.
iii) The set of time derivatives functions $\left\{u_{n}^{\prime}\left(\cdot ; \tau, u_{\tau}\right): u_{\tau} \in B, n \geq 1\right\}$, is a bounded subset of $L^{2}(\tau+\varepsilon, t ; H)$.

Proof.

Let us fix a bounded set $B \subset H, \tau \in \mathbb{R}, \varepsilon>0, t>\tau+\varepsilon$, and $u_{\tau} \in B$.
Multiplying by $\gamma_{n j}(t)$ in (7), summing from $j=1$ to n, and using (2), we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d \theta}\left|u_{n}(\theta)\right|^{2}+\nu\left\|u_{n}(\theta)\right\|^{2}=\left(f(\theta), u_{n}(\theta)\right), \quad \text { a.e. } \theta>\tau . \tag{8}
\end{equation*}
$$

Observing that

$$
\begin{aligned}
\left|\left(f(\theta), u_{n}(\theta)\right)\right| & \leq \frac{1}{2 \nu \lambda_{1}}|f(\theta)|^{2}+\frac{\nu \lambda_{1}}{2}\left|u_{n}(\theta)\right|^{2} \\
& \leq \frac{1}{2 \nu \lambda_{1}}|f(\theta)|^{2}+\frac{\nu}{2}\left\|u_{n}(\theta)\right\|^{2}
\end{aligned}
$$

from (8) we deduce

$$
\frac{d}{d \theta}\left|u_{n}(\theta)\right|^{2}+\nu\left\|u_{n}(\theta)\right\|^{2} \leq \frac{1}{\nu \lambda_{1}}|f(\theta)|^{2},
$$

and integrating between τ and r,

$$
\begin{align*}
\left|u_{n}(r)\right|^{2} & +\nu \int_{\tau}^{r}\left\|u_{n}(\theta)\right\|^{2} d \theta \tag{9}\\
& \leq\left|u_{\tau}\right|^{2}+\frac{1}{\nu \lambda_{1}} \int_{\tau}^{t}|f(\theta)|^{2} d \theta, \quad \forall r \in[\tau, t], \quad \forall n \geq 1 .
\end{align*}
$$

Now, multiplying in (7) by $\lambda_{j} \gamma_{n j}(t)$, where λ_{j} is the eigenvalue associated to the eigenvector w_{j}, and summing from $j=1$ to n, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d \theta}\left\|u_{n}(\theta)\right\|^{2}+\nu\left|A u_{n}(\theta)\right|^{2}+b\left(u_{n}(\theta), u_{n}(\theta), A u_{n}(\theta)\right)=\left(f(\theta), A u_{n}(\theta)\right), \tag{10}
\end{equation*}
$$

a.e. $\theta>\tau$. Observe that

$$
\left|\left(f(\theta), A u_{n}(\theta)\right)\right| \leq \frac{1}{\nu}|f(\theta)|^{2}+\frac{\nu}{4}\left|A u_{n}(\theta)\right|^{2},
$$

and by (5) and Young's inequality,

$$
\begin{align*}
\left|b\left(u_{n}(\theta), u_{n}(\theta), A u_{n}(\theta)\right)\right| & \leq C_{1}\left|u_{n}(\theta)\right|^{1 / 2}\left\|u_{n}(\theta)\right\|\left|A u_{n}(\theta)\right|^{3 / 2} \tag{11}\\
& \leq \frac{\nu}{4}\left|A u_{n}(\theta)\right|^{2}+C^{(\nu)}\left|u_{n}(\theta)\right|^{2}\left\|u_{n}(\theta)\right\|^{4},
\end{align*}
$$

where $C^{(\nu)}=27 C_{1}^{4}\left(4 \nu^{3}\right)^{-1}$.
Thus, from (10) we deduce

$$
\begin{equation*}
\frac{d}{d \theta}\left\|u_{n}(\theta)\right\|^{2}+\nu\left|A u_{n}(\theta)\right|^{2} \leq \frac{2}{\nu}|f(\theta)|^{2}+2 C^{(\nu)}\left|u_{n}(\theta)\right|^{2}\left\|u_{n}(\theta)\right\|^{4} \tag{12}
\end{equation*}
$$

a.e. $\theta>\tau$.

From this inequality, in particular we deduce

$$
\begin{aligned}
\left\|u_{n}(r)\right\|^{2} & \leq\left\|u_{n}(s)\right\|^{2}+\frac{2}{\nu} \int_{\tau}^{t}|f(\theta)|^{2} d \theta \\
& +2 C^{(\nu)} \int_{s}^{r}\left|u_{n}(\theta)\right|^{2}\left\|u_{n}(\theta)\right\|^{4} d \theta
\end{aligned}
$$

for all $\tau \leq s \leq r \leq t$, and therefore, by Gronwall's lemma,

$$
\left\|u_{n}(r)\right\|^{2} \leq\left(\left\|u_{n}(s)\right\|^{2}+\frac{2}{\nu} \int_{\tau}^{t}|f(\theta)|^{2} d \theta\right) \exp \left(2 C^{(\nu)} \int_{\tau}^{t}\left|u_{n}(\theta)\right|^{2}\left\|u_{n}(\theta)\right\|^{2} d \theta\right)
$$

for all $\tau \leq s \leq r \leq t$.
Integrating this last inequality for s between $\tau+\varepsilon / 2$ and r, we obtain

$$
\begin{aligned}
\left(r-\tau-\frac{\varepsilon}{2}\right)\left\|u_{n}(r)\right\|^{2} \leq & \left(\int_{\tau}^{t}\left\|u_{n}(s)\right\|^{2} d s+\frac{2(t-\tau)}{\nu} \int_{\tau}^{t}|f(\theta)|^{2} d \theta\right) \\
& \times \exp \left(2 C^{(\nu)} \int_{\tau}^{t}\left|u_{n}(\theta)\right|^{2}\left\|u_{n}(\theta)\right\|^{2} d \theta\right)
\end{aligned}
$$

for all $\tau+\varepsilon / 2 \leq r \leq t$, and in particular,

$$
\begin{align*}
\left\|u_{n}(r)\right\|^{2} \leq & \frac{2}{\varepsilon}\left(\int_{\tau}^{t}\left\|u_{n}(s)\right\|^{2} d s+\frac{2(t-\tau)}{\nu} \int_{\tau}^{t}|f(\theta)|^{2} d \theta\right) \tag{13}\\
& \times \exp \left(2 C^{(\nu)} \int_{\tau}^{t}\left|u_{n}(\theta)\right|^{2}\left\|u_{n}(\theta)\right\|^{2} d \theta\right)
\end{align*}
$$

for all $\tau+\varepsilon \leq r \leq t$, for any $n \geq 1$.
From (9) and (13), the assertion in i) holds. Moreover, by (12),

$$
\begin{aligned}
\nu \int_{\tau+\varepsilon}^{t}\left|A u_{n}(\theta)\right|^{2} d \theta \leq & \left\|u_{n}(\tau+\varepsilon)\right\|^{2}+\frac{2}{\nu} \int_{\tau}^{t}|f(\theta)|^{2} d \theta \\
& +2 C^{(\nu)} \int_{\tau+\varepsilon}^{t}\left|u_{n}(\theta)\right|^{2}\left\|u_{n}(\theta)\right\|^{4} d \theta
\end{aligned}
$$

and therefore, by i), the assertion in ii) holds.
On the other hand, multiplying by the derivative $\gamma_{n j}^{\prime}(t)$ in (7), and summing from $j=1$ till n, we obtain

$$
\begin{equation*}
\left|u_{n}^{\prime}(\theta)\right|^{2}+\frac{\nu}{2} \frac{d}{d \theta}\left\|u_{n}(\theta)\right\|^{2}+b\left(u_{n}(\theta), u_{n}(\theta), u_{n}^{\prime}(\theta)\right)=\left(f(\theta), u_{n}^{\prime}(\theta)\right) \tag{14}
\end{equation*}
$$

a.e. $\theta>\tau$.

Observing that

$$
\left|\left(f(\theta), u_{n}^{\prime}(\theta)\right)\right| \leq \frac{1}{4}\left|u_{n}^{\prime}(\theta)\right|^{2}+|f(\theta)|^{2}
$$

and by (4)

$$
\begin{aligned}
\left|b\left(u_{n}(\theta), u_{n}(\theta), u_{n}^{\prime}(\theta)\right)\right| & \leq C_{1}\left|A u_{n}(\theta)\right|\left\|u_{n}(\theta)\right\|\left|u_{n}^{\prime}(\theta)\right| \\
& \leq \frac{1}{4}\left|u_{n}^{\prime}(\theta)\right|^{2}+C_{1}^{2}\left|A u_{n}(\theta)\right|^{2}\left\|u_{n}(\theta)\right\|^{2},
\end{aligned}
$$

we obtain from (14)

$$
\left|u_{n}^{\prime}(\theta)\right|^{2}+\nu \frac{d}{d \theta}\left\|u_{n}(\theta)\right\|^{2} \leq 2|f(\theta)|^{2}+2 C_{1}^{2}\left|A u_{n}(\theta)\right|^{2}\left\|u_{n}(\theta)\right\|^{2} .
$$

Integrating this last inequality, we deduce that

$$
\begin{aligned}
\int_{\tau+\varepsilon}^{t}\left|u_{n}^{\prime}(\theta)\right|^{2} d \theta \leq & \nu\left\|u_{n}(\tau+\varepsilon)\right\|^{2}+2 \int_{\tau}^{t}|f(\theta)|^{2} d \theta \\
& +2 C_{1}^{2} \sup _{\theta \in[\tau+\varepsilon, t]}\left\|u_{n}(\theta)\right\|^{2} \int_{\tau+\varepsilon}^{t}\left|A u_{n}(\theta)\right|^{2} d \theta
\end{aligned}
$$

and therefore iii) follows from i) and ii).

Corollary 2.3 Assume that $f \in L_{\text {loc }}^{2}(\mathbb{R} ; H)$. Then, for any bounded set $B \subset$ H, any $\tau \in \mathbb{R}$, any $\varepsilon>0$, and any $t>\tau+\varepsilon$, the set $\bigcup_{r \in[\tau+\varepsilon, t]} U(r, \tau) B$ is a bounded subset of V.

Proof. This is a straightforward consequence of Lemma 2.1, assertion i) in Proposition 2.2, and the well known fact (e.g. cf. [1-4]) that for all $u_{\tau} \in$ B the Galerkin approximations $u_{n}\left(\cdot ; \tau, u_{\tau}\right)$ converge weakly to $u\left(\cdot ; \tau, u_{\tau}\right)$ in $L^{2}(\tau, t ; V)$, and $u\left(\cdot ; \tau, u_{\tau}\right) \in C([\tau, t] ; H)$.

Assuming additional regularity for the time derivative of f, we can improve the above results.

Proposition 2.4 Assume that $f \in W_{l o c}^{1,2}(\mathbb{R} ; H)$. Then, for any bounded set $B \subset H$, any $\tau \in \mathbb{R}$, any $\varepsilon>0$, and any $t>\tau+\varepsilon$, the following two properties are satisfied:
iv) The set of time derivatives $\left\{u_{n}^{\prime}\left(r ; \tau, u_{\tau}\right): r \in[\tau+\varepsilon, t], u_{\tau} \in B, n \geq 1\right\}$, is a bounded subset of H.
v) The set $\left\{u_{n}\left(r ; \tau, u_{\tau}\right): r \in[\tau+\varepsilon, t], u_{\tau} \in B, n \geq 1\right\}$ is a bounded subset of $D(A)$.

Proof. Let us fix a bounded set $B \subset H, \tau \in \mathbb{R}, \varepsilon>0, t>\tau+\varepsilon$, and $u_{\tau} \in B$.
As we are assuming that $f \in W_{l o c}^{1,2}(\mathbb{R} ; H)$, we can differentiate with respect to time in (7), and then, multiplying by $\gamma_{n j}^{\prime}(t)$, and summing from $j=1$ to n, we obtain

$$
\frac{1}{2} \frac{d}{d \theta}\left|u_{n}^{\prime}(\theta)\right|^{2}+\nu\left\|u_{n}^{\prime}(\theta)\right\|^{2}+b\left(u_{n}^{\prime}(\theta), u_{n}(\theta), u_{n}^{\prime}(\theta)\right)=\left(f^{\prime}(\theta), u_{n}^{\prime}(\theta)\right)
$$

a.e. $\theta>\tau$.

From this inequality, taking into account that

$$
\left|\left(f^{\prime}(\theta), u_{n}^{\prime}(\theta)\right)\right| \leq \frac{\nu}{2}\left\|u_{n}^{\prime}(\theta)\right\|^{2}+\frac{1}{2 \nu \lambda_{1}}\left|f^{\prime}(\theta)\right|^{2}
$$

and by (3)

$$
\begin{aligned}
\left|b\left(u_{n}^{\prime}(\theta), u_{n}(\theta), u_{n}^{\prime}(\theta)\right)\right| & \leq C_{1}\left|u_{n}^{\prime}(\theta)\right|\left\|u_{n}^{\prime}(\theta)\right\|\left\|u_{n}(\theta)\right\| \\
& \leq \frac{\nu}{2}\left\|u_{n}^{\prime}(\theta)\right\|^{2}+\frac{C_{1}^{2}}{2 \nu}\left|u_{n}^{\prime}(\theta)\right|^{2}\left\|u_{n}(\theta)\right\|^{2},
\end{aligned}
$$

we deduce

$$
\frac{d}{d \theta}\left|u_{n}^{\prime}(\theta)\right|^{2} \leq \frac{1}{\nu \lambda_{1}}\left|f^{\prime}(\theta)\right|^{2}+\frac{C_{1}^{2}}{\nu}\left|u_{n}^{\prime}(\theta)\right|^{2}\left\|u_{n}(\theta)\right\|^{2}
$$

Integrating in the last inequality,

$$
\left|u_{n}^{\prime}(r)\right|^{2} \leq\left|u_{n}^{\prime}(s)\right|^{2}+\frac{1}{\nu \lambda_{1}} \int_{\tau}^{t}\left|f^{\prime}(\theta)\right|^{2} d \theta+\frac{C_{1}^{2}}{\nu} \int_{s}^{r}\left|u_{n}^{\prime}(\theta)\right|^{2}\left\|u_{n}(\theta)\right\|^{2} d \theta
$$

for all $\tau \leq s \leq r \leq t$.
Thus, by Gronwall's inequality,

$$
\left|u_{n}^{\prime}(r)\right|^{2} \leq\left(\left|u_{n}^{\prime}(s)\right|^{2}+\frac{1}{\nu \lambda_{1}} \int_{\tau}^{t}\left|f^{\prime}(\theta)\right|^{2} d \theta\right) \exp \left(\frac{C_{1}^{2}}{\nu} \int_{\tau+\varepsilon / 2}^{t}\left\|u_{n}(\theta)\right\|^{2} d \theta\right)
$$

for all $\tau+\varepsilon / 2 \leq s \leq r \leq t$.
Now, integrating this inequality with respect to s between $\tau+\varepsilon / 2$ and r, we obtain

$$
\begin{aligned}
(r-\tau-\varepsilon / 2)\left|u_{n}^{\prime}(r)\right|^{2} \leq & \left(\int_{\tau+\varepsilon / 2}^{t}\left|u_{n}^{\prime}(s)\right|^{2} d s+\frac{t-\tau}{\nu \lambda_{1}} \int_{\tau}^{t}\left|f^{\prime}(\theta)\right|^{2} d \theta\right) \\
& \times \exp \left(\frac{C_{1}^{2}}{\nu} \int_{\tau+\varepsilon / 2}^{t}\left\|u_{n}(\theta)\right\|^{2} d \theta\right),
\end{aligned}
$$

for all $\tau+\varepsilon / 2 \leq r \leq t$, and any $n \geq 1$. In particular, thus,

$$
\begin{aligned}
\left|u_{n}^{\prime}(r)\right|^{2} \leq & \frac{2}{\varepsilon}\left(\int_{\tau+\varepsilon / 2}^{t}\left|u_{n}^{\prime}(s)\right|^{2} d s+\frac{t-\tau}{\nu \lambda_{1}} \int_{\tau}^{t}\left|f^{\prime}(\theta)\right|^{2} d \theta\right) \\
& \times \exp \left(\frac{C_{1}^{2}}{\nu} \int_{\tau+\varepsilon / 2}^{t}\left\|u_{n}(\theta)\right\|^{2} d \theta\right)
\end{aligned}
$$

for all $\tau+\varepsilon \leq r \leq t$, and any $n \geq 1$.
From this inequality and properties i) and iii) in Proposition 2.2, we obtain iv).

On the other hand, multiplying again in (7) by $\lambda_{j} \gamma_{n j}(t)$, and summing once more from $j=1$ to n, we obtain

$$
\begin{equation*}
\left(u_{n}^{\prime}(r), A u_{n}(r)\right)+\nu\left|A u_{n}(r)\right|^{2}+b\left(u_{n}(r), u_{n}(r), A u_{n}(r)\right)=\left(f(r), A u_{n}(r)\right), \tag{15}
\end{equation*}
$$

for all $r \geq \tau$. But

$$
\left|\left(u_{n}^{\prime}(r), A u_{n}(r)\right)\right| \leq \frac{2}{\nu}\left|u_{n}^{\prime}(r)\right|^{2}+\frac{\nu}{8}\left|A u_{n}(r)\right|^{2}
$$

and

$$
\left|\left(f(r), A u_{n}(r)\right)\right| \leq \frac{2}{\nu}|f(r)|^{2}+\frac{\nu}{8}\left|A u_{n}(r)\right|^{2}
$$

Therefore, taking into account (11), we deduce from (15) that

$$
\begin{equation*}
\frac{\nu}{2}\left|A u_{n}(r)\right|^{2} \leq \frac{2}{\nu}\left(\left|u_{n}^{\prime}(r)\right|^{2}+|f(r)|^{2}\right)+C^{(\nu)}\left|u_{n}(r)\right|^{2}\left\|u_{n}(r)\right\|^{4} \tag{16}
\end{equation*}
$$

for all $r \geq \tau$.
Thus, since in particular $f \in C(\mathbb{R} ; H)$, from i) in Proposition 2.2, iv) and inequality (16), we deduce v).

As a direct consequence of the above, we can now establish our main results.
Theorem 2.5 Assume that $f \in W_{\text {loc }}^{1,2}(\mathbb{R} ; H)$. Then, for any bounded set $B \subset$ H, any $\tau \in \mathbb{R}$, any $\varepsilon>0$, and any $t>\tau+\varepsilon$, the set $\bigcup_{r \in[\tau+\varepsilon, t]} U(r, \tau) B$ is a bounded subset of $D(A)=\left(H^{2}(\Omega)\right)^{2} \cap V$.

Proof. This follows from Lemma 2.1, Proposition 2.4, and the well known facts that $u_{n}\left(\cdot ; \tau, u_{\tau}\right)$ converges weakly to $u\left(\cdot ; \tau, u_{\tau}\right)$ in $L^{2}(\tau, t ; V)$, and $u\left(\cdot ; \tau, u_{\tau}\right)$ belongs to $C([\tau+\varepsilon, t] ; V)$.

Theorem 2.6 Assume that $f \in L_{\text {loc }}^{2}(\mathbb{R} ; H)$, and $\hat{\mathcal{A}}=\{\mathcal{A}(t): t \in \mathbb{R}\}$ is a family of bounded subsets of H, such that $U(t, \tau) \mathcal{A}(\tau)=\mathcal{A}(t)$ for any $\tau \leq t$. Then:
i) For any $T_{1}<T_{2}$, the set $\bigcup_{t \in\left[T_{1}, T_{2}\right]} \mathcal{A}(t)$ is a bounded subset of V.
ii) If moreover $f^{\prime} \in L_{\text {loc }}^{2}(\mathbb{R} ; H)$, then for any $T_{1}<T_{2}$, the set $\bigcup_{t \in\left[T_{1}, T_{2}\right]} \mathcal{A}(t)$ is a bounded subset of $\left(H^{2}(\Omega)\right)^{2} \cap V$.

Proof. It is enough to observe that if $\tau<T_{1}-1$ is fixed, then

$$
\bigcup_{t \in\left[T_{1}, T_{2}\right]} \mathcal{A}(t) \subset \bigcup_{t \in\left[\tau+1, T_{2}\right]} U(t, \tau) \mathcal{A}(\tau) .
$$

Now, apply Corollary 2.3 and Theorem 2.5.

Acknowledgments

The authors would like to thank the referees for their careful reading on a previous version of the paper.

References

[1] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969.
[2] J. C. Robinson, Infinite-dimensional dynamical systems, Cambridge University Press, 2001.
[3] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, Second Edition, 1997.
[4] R. Temam, Navier-Stokes equations, Theory and Numerical Analysis, 2nd. ed., North Holland, Amsterdam, 1979.
[5] T. Caraballo, G. Łukaszewicz, and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal. 64 (2006), 484498.
[6] T. Caraballo, G. Lukaszewicz, and J. Real, Pullback attractors for nonautonomous 2D Navier-Stokes equations in unbounded domains, C. R. Math. Acad. Sci. Paris, 342 (2006), 263-268.
[7] P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn. 3 (2003), 101-112.
[8] P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal. 71 (2009), 3956-3963.
[9] J. García-Luengo, P. Marín-Rubio, and J. Real, Pullback attractors in V for non-autonomous $2 D$-Navier-Stokes equations and their tempered behaviour, submitted.
[10] M. Anguiano, T. Caraballo, and J. Real, H^{2}-boundedness of the pullback attractor for a non-autonomous reaction-diffusion equation, Nonlinear Anal. 72 (2010), 876-880.
[11] C. Guillopé, Comportement à l'infini des solutions des équations de NavierStokes et propriété des ensembles fonctionnels invariants (ou attracteurs), Ann. Inst. Fourier (Grenoble), 32 (1982), 1-37.

[^0]: ^ Corresponding author: José Real
 This work has been partially supported by Ministerio de Ciencia e Innovación (Spain) under project MTM2008-00088, and Junta de Andalucía grant P07-FQM02468. J.G.-L. is a fellow of Programa de FPU del Ministerio de Educación.

 Email addresses: luengo@us.es (Julia García-Luengo), pmr@us.es
 (Pedro Marín-Rubio), jreal@us.es (José Real).

