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Abstract

We prove some regularity results for the pullback attractors of a non-autonomous
2D-Navier-Stokes model in a bounded domain Ω of R2. We establish a general
result about (H2(Ω))2 ∩V -boundedness of invariant sets for the associate evolution
process. Then, as a consequence, we deduce that, under adequate assumptions, the
pullback attractors of the non-autonomous 2D-Navier-Stokes equations are bounded
not only in V but also in (H2 (Ω))2.
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02468. J.G.-L. is a fellow of Programa de FPU del Ministerio de Educación.

Email addresses: luengo@us.es (Julia Garćıa-Luengo), pmr@us.es
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1 Introduction and setting of the problem

Let us consider the following problem for a non-autonomous 2D-Navier-Stokes
system: 

∂u

∂t
− ν 4 u+ (u · ∇)u+∇p = f(t) in Ω× (τ,+∞) ,

∇ · u = 0 in Ω× (τ,+∞) ,

u = 0 on ∂Ω× (τ,+∞) ,

u(x, τ) = uτ (x), x ∈ Ω,

(1)

where Ω ⊂ R2 is a bounded open set, with regular boundary ∂Ω, the number
ν > 0 is the kinematic viscosity, u is the velocity field of the fluid, p the pres-
sure, τ ∈ R is a given initial time, uτ is the initial velocity field, and f(t) a
given external force field.

To set our problem in the abstract framework, we consider the following usual
abstract spaces (see [1] and [2–4]):

V =
{
u ∈ (C∞0 (Ω))2 : div u = 0

}
,

H = the closure of V in (L2(Ω))2 with inner product (·, ·) and associate norm
|·| , where for u, v ∈ (L2(Ω))2,

(u, v) =
2∑
j=1

∫
Ω
uj(x)vj(x)dx,

V = the closure of V in (H1
0 (Ω))2 with scalar product ((·, ·)) and associate

norm ‖·‖ , where for u, v ∈ (H1
0 (Ω))2,

((u, v)) =
2∑

i,j=1

∫
Ω

∂uj
∂xi

∂vj
∂xi

dx.

We also consider the operator A : V → V ′ defined by 〈Au, v〉 = ((u, v)).
Denoting D(A) = (H2(Ω))2 ∩ V, then Au = −P∆u,∀u ∈ D(A), is the Stokes
operator (P is the ortho-projector from (L2(Ω))2 onto H).

Now we define the continuous trilinear form b on V × V × V by

b(u, v, w) =
2∑

i,j=1

∫
Ω
ui
∂vj
∂xi

wj dx, ∀u, v, w ∈ V.
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It is well known that

b(u, v, v) = 0 for all u, v ∈ V. (2)

We remember (see [2] or [3]) that there exists a constant C1 > 0 only dependent
on Ω such that

|b(u, v, w)| ≤ C1|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2, ∀u, v, w ∈ V, (3)

|b(u, v, w)| ≤ C1|Au|‖v‖|w|, ∀u ∈ D(A), v ∈ V, w ∈ H, (4)

and

|b(u, v, w)| ≤ C1|u|1/2|Au|1/2‖v‖|w|, ∀u ∈ D(A), v ∈ V, w ∈ H. (5)

Assume that uτ ∈ H and f ∈ L2
loc(R;H).

Definition 1.1 A solution of (1) is a function u ∈ C([τ, T ];H) ∩ L2(τ, T ;V )
for all T > τ, with u(τ) = uτ , such that for all v ∈ V,

d

dt
(u(t), v) + ν((u(t), v)) + b(u(t), u(t), v) = (f(t), v),

where the equation must be understood in the sense of D′(τ,+∞).

Under the conditions above (e.g. cf. [2] or [3]), there exists a unique solution
u(·) = u(·; τ, uτ ) of (1). Moreover, this solution u satisfies that u ∈ C([τ +
ε, T ];V ) ∩ L2(τ + ε, T ; (H2 (Ω))2) for every ε > 0 and T > τ + ε. In fact, if
uτ ∈ V , then u ∈ C([τ, T ];V ) ∩ L2(τ, T ; (H2 (Ω))2) for every T > τ.

Therefore, we can define a process U = {U(t, τ), τ ≤ t} in H as

U(t, τ)uτ = u(t; τ, uτ ) ∀uτ ∈ H, ∀τ ≤ t, (6)

and the restriction of this process to V is a process in V .

A pullback attractor for the process U defined by (6) (cf. [5–7]) is a family
Â = {A(t) : t ∈ R} of compact subsets of H such that

a) (invariance) U(t, τ)A(τ) = A(t) for all τ ≤ t,
b) (pullback attraction) lim

τ→−∞
sup
uτ∈B

inf
v∈A(t)

|U(t, τ)uτ − v| = 0, for all t ∈ R, for

any bounded subset B ⊂ H.
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It can be proved (see [9]) that, under the above conditions, if in addition f
satisfies ∫ 0

−∞
eµr |f(r)|2 dr < +∞,

for some 0 < µ < 2νλ1, where λ1 denotes the first eigenvalue of the Stokes
operator A, then there exists a pullback attractor for the process U defined
by (6).

Several studies on this model have already been published (cf. [5], [8,9]). How-
ever, as far as we know, no one refers to the H2-regularity we will consider in
this paper.

In the next section we prove some results which, in particular, imply that,
under suitable assumptions, any pullback attractor Â for U satisfies that A(t)
is a bounded subset of (H2(Ω))2 ∩ V , for every t ∈ R (for similar results for
reaction-diffusion equations see [10], and for related results for Navier-Stokes
equations see [11]).

2 H2-boundedness of invariant sets

In this section we prove that, under suitable assumptions, any family of
bounded subsets of H which is invariant for the process U , is in fact bounded
in (H2 (Ω))2 ∩ V .

First, we recall a result (cf. [2]) which will be used below.

Lemma 2.1 Let X, Y be Banach spaces such that X is reflexive, and the
inclusion X ⊂ Y is continuous. Assume that {un} is a bounded sequence in
L∞(t0, T ;X) such that un ⇀ u weakly in Lq(t0, T ;X) for some q ∈ [1,+∞)
and u ∈ C0([t0, T ];Y ).

Then, u(t) ∈ X and ‖u(t)‖X ≤ lim inf
n≥1

‖un‖L∞(t0,T ;X) , for all t ∈ [t0, T ].

For each integer n ≥ 1, we denote by un(t) = un(t; τ, uτ ) the Galerkin approx-
imation of the solution u(t; τ, uτ ) of (1), which is given by

un(t) =
n∑
j=1

γnj(t)wj,

and is the solution of
d

dt
(un(t), wj) + ν((un(t), wj)) + b(un(t), un(t), wj) = (f(t), wj) ,

(un(τ), wj) = (uτ , wj) j = 1, ..., n,
(7)

4



where {wj : j ≥ 1} ⊂ V is the Hilbert basis of H formed by the eigenvectors
of the Stokes operator A. Observe that by the regularity of Ω, all the wj belong
to (H2(Ω))2.

We first prove the following result.

Proposition 2.2 Assume that f ∈ L2
loc(R;H). Then, for any bounded set

B ⊂ H, any τ ∈ R, any ε > 0 and any t > τ+ε, the following three properties
are satisfied:

i) The set {un(r; τ, uτ ) : r ∈ [τ + ε, t], uτ ∈ B, n ≥ 1}, is a bounded subset
of V.

ii) The set of functions {un(·; τ, uτ ) : uτ ∈ B, n ≥ 1}, is a bounded subset
of L2(τ + ε, t;D(A)).

iii) The set of time derivatives functions {u′n(·; τ, uτ ) : uτ ∈ B, n ≥ 1}, is a
bounded subset of L2(τ + ε, t;H).

Proof.

Let us fix a bounded set B ⊂ H, τ ∈ R, ε > 0, t > τ + ε, and uτ ∈ B.

Multiplying by γnj(t) in (7), summing from j = 1 to n, and using (2), we
obtain

1

2

d

dθ
|un(θ)|2 + ν ‖un(θ)‖2 = (f(θ), un(θ)) , a.e. θ > τ. (8)

Observing that

|(f(θ), un(θ))| ≤ 1

2νλ1

|f(θ)|2 +
νλ1

2
|un(θ)|2

≤ 1

2νλ1

|f(θ)|2 +
ν

2
‖un(θ)‖2 ,

from (8) we deduce

d

dθ
|un(θ)|2 + ν ‖un(θ)‖2 ≤ 1

νλ1

|f(θ)|2 ,

and integrating between τ and r,

|un(r)|2 + ν
∫ r

τ
‖un(θ)‖2 dθ (9)

≤ |uτ |2 +
1

νλ1

∫ t

τ
|f(θ)|2 dθ, ∀r ∈ [τ, t], ∀n ≥ 1.

Now, multiplying in (7) by λjγnj(t), where λj is the eigenvalue associated to
the eigenvector wj, and summing from j = 1 to n, we obtain
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1

2

d

dθ
‖un(θ)‖2 + ν |Aun(θ)|2 + b(un(θ), un(θ), Aun(θ)) = (f(θ), Aun(θ)) , (10)

a.e. θ > τ. Observe that

| (f(θ), Aun(θ)) | ≤ 1

ν
|f(θ)|2 +

ν

4
|Aun(θ)|2 ,

and by (5) and Young’s inequality,

|b(un(θ), un(θ), Aun(θ))| ≤ C1|un(θ)|1/2‖un(θ)‖|Aun(θ)|3/2 (11)

≤ ν

4
|Aun(θ)|2 + C(ν)|un(θ)|2‖un(θ)‖4,

where C(ν) = 27C4
1(4ν3)−1.

Thus, from (10) we deduce

d

dθ
‖un(θ)‖2 + ν |Aun(θ)|2 ≤ 2

ν
|f(θ)|2 + 2C(ν)|un(θ)|2‖un(θ)‖4, (12)

a.e. θ > τ.

From this inequality, in particular we deduce

‖un(r)‖2 ≤ ‖un(s)‖2 +
2

ν

∫ t

τ
|f(θ)|2 dθ

+ 2C(ν)
∫ r

s
|un(θ)|2‖un(θ)‖4 dθ

for all τ ≤ s ≤ r ≤ t, and therefore, by Gronwall’s lemma,

‖un(r)‖2 ≤
(
‖un(s)‖2 +

2

ν

∫ t

τ
|f(θ)|2 dθ

)
exp

(
2C(ν)

∫ t

τ
|un(θ)|2‖un(θ)‖2 dθ

)
for all τ ≤ s ≤ r ≤ t.

Integrating this last inequality for s between τ + ε/2 and r, we obtain

(r − τ − ε

2
) ‖un(r)‖2≤

(∫ t

τ
‖un(s)‖2 ds+

2(t− τ)

ν

∫ t

τ
|f(θ)|2 dθ

)

× exp
(

2C(ν)
∫ t

τ
|un(θ)|2‖un(θ)‖2 dθ

)
for all τ + ε/2 ≤ r ≤ t, and in particular,
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‖un(r)‖2≤ 2

ε

(∫ t

τ
‖un(s)‖2 ds+

2(t− τ)

ν

∫ t

τ
|f(θ)|2 dθ

)
(13)

× exp
(

2C(ν)
∫ t

τ
|un(θ)|2‖un(θ)‖2 dθ

)
for all τ + ε ≤ r ≤ t, for any n ≥ 1.

From (9) and (13), the assertion in i) holds. Moreover, by (12),

ν
∫ t

τ+ε
|Aun(θ)|2 dθ≤‖un(τ + ε)‖2 +

2

ν

∫ t

τ
|f(θ)|2 dθ

+2C(ν)
∫ t

τ+ε
|un(θ)|2‖un(θ)‖4 dθ,

and therefore, by i), the assertion in ii) holds.

On the other hand, multiplying by the derivative γ′nj(t) in (7), and summing
from j = 1 till n, we obtain

|u′n(θ)|2 +
ν

2

d

dθ
‖un(θ)‖2 + b(un(θ), un(θ), u′n(θ)) = (f(θ), u′n(θ)) , (14)

a.e. θ > τ.

Observing that

| (f(θ), u′n(θ)) | ≤ 1

4
|u′n(θ)|2 + |f(θ)|2,

and by (4)

|b(un(θ), un(θ), u′n(θ))| ≤ C1|Aun(θ)|‖un(θ)‖|u′n(θ)|

≤ 1

4
|u′n(θ)|2 + C2

1 |Aun(θ)|2‖un(θ)‖2,

we obtain from (14)

|u′n(θ)|2 + ν
d

dθ
‖un(θ)‖2 ≤ 2|f(θ)|2 + 2C2

1 |Aun(θ)|2‖un(θ)‖2.

Integrating this last inequality, we deduce that

∫ t

τ+ε
|u′n(θ)|2 dθ≤ ν‖un(τ + ε)‖2 + 2

∫ t

τ
|f(θ)|2 dθ

+2C2
1 sup
θ∈[τ+ε,t]

‖un(θ)‖2
∫ t

τ+ε
|Aun(θ)|2 dθ,

and therefore iii) follows from i) and ii).
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Corollary 2.3 Assume that f ∈ L2
loc(R;H). Then, for any bounded set B ⊂

H, any τ ∈ R, any ε > 0, and any t > τ + ε, the set
⋃

r∈[τ+ε,t]

U(r, τ)B is a

bounded subset of V.

Proof. This is a straightforward consequence of Lemma 2.1, assertion i) in
Proposition 2.2, and the well known fact (e.g. cf. [1–4]) that for all uτ ∈
B the Galerkin approximations un(·; τ, uτ ) converge weakly to u(·; τ, uτ ) in
L2(τ, t;V ), and u(·; τ, uτ ) ∈ C([τ, t];H).

Assuming additional regularity for the time derivative of f , we can improve
the above results.

Proposition 2.4 Assume that f ∈ W 1,2
loc (R;H) . Then, for any bounded set

B ⊂ H, any τ ∈ R, any ε > 0, and any t > τ + ε, the following two properties
are satisfied:

iv) The set of time derivatives {u′n(r; τ, uτ ) : r ∈ [τ + ε, t], uτ ∈ B, n ≥ 1},
is a bounded subset of H.

v) The set {un(r; τ, uτ ) : r ∈ [τ + ε, t], uτ ∈ B, n ≥ 1} is a bounded subset
of D(A).

Proof. Let us fix a bounded set B ⊂ H, τ ∈ R, ε > 0, t > τ + ε, and uτ ∈ B.

As we are assuming that f ∈ W 1,2
loc (R;H), we can differentiate with respect to

time in (7), and then, multiplying by γ′nj(t), and summing from j = 1 to n,
we obtain

1

2

d

dθ
|u′n(θ)|2 + ν ‖u′n(θ)‖2

+ b(u′n(θ), un(θ), u′n(θ)) = (f ′(θ), u′n(θ))

a.e. θ > τ.

From this inequality, taking into account that

| (f ′(θ), u′n(θ)) | ≤ ν

2
‖u′n(θ)‖2

+
1

2νλ1

|f ′(θ)|2,

and by (3)

|b(u′n(θ), un(θ), u′n(θ))| ≤ C1|u′n(θ)|‖u′n(θ)‖‖un(θ)‖

≤ ν

2
‖u′n(θ)‖2

+
C2

1

2ν
|u′n(θ)|2‖un(θ)‖2,

we deduce

d

dθ
|u′n(θ)|2 ≤ 1

νλ1

|f ′(θ)|2 +
C2

1

ν
|u′n(θ)|2‖un(θ)‖2.
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Integrating in the last inequality,

|u′n(r)|2 ≤ |u′n(s)|2 +
1

νλ1

∫ t

τ
|f ′(θ)|2 dθ +

C2
1

ν

∫ r

s
|u′n(θ)|2‖un(θ)‖2 dθ,

for all τ ≤ s ≤ r ≤ t.

Thus, by Gronwall’s inequality,

|u′n(r)|2 ≤
(
|u′n(s)|2 +

1

νλ1

∫ t

τ
|f ′(θ)|2 dθ

)
exp

(
C2

1

ν

∫ t

τ+ε/2
‖un(θ)‖2 dθ

)
,

for all τ + ε/2 ≤ s ≤ r ≤ t.

Now, integrating this inequality with respect to s between τ + ε/2 and r, we
obtain

(r − τ − ε/2) |u′n(r)|2≤
(∫ t

τ+ε/2
|u′n(s)|2 ds+

t− τ
νλ1

∫ t

τ
|f ′(θ)|2 dθ

)

× exp

(
C2

1

ν

∫ t

τ+ε/2
‖un(θ)‖2 dθ

)
,

for all τ + ε/2 ≤ r ≤ t, and any n ≥ 1. In particular, thus,

|u′n(r)|2≤ 2

ε

(∫ t

τ+ε/2
|u′n(s)|2 ds+

t− τ
νλ1

∫ t

τ
|f ′(θ)|2 dθ

)

× exp

(
C2

1

ν

∫ t

τ+ε/2
‖un(θ)‖2 dθ

)
,

for all τ + ε ≤ r ≤ t, and any n ≥ 1.

From this inequality and properties i) and iii) in Proposition 2.2, we obtain
iv).

On the other hand, multiplying again in (7) by λjγnj(t), and summing once
more from j = 1 to n, we obtain

(u′n(r), Aun(r))+ν |Aun(r)|2+b(un(r), un(r), Aun(r)) = (f(r), Aun(r)) , (15)

for all r ≥ τ. But

| (u′n(r), Aun(r)) | ≤ 2

ν
|u′n(r)|2 +

ν

8
|Aun(r)|2 ,
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and

| (f(r), Aun(r)) | ≤ 2

ν
|f(r)|2 +

ν

8
|Aun(r)|2 .

Therefore, taking into account (11), we deduce from (15) that

ν

2
|Aun(r)|2 ≤ 2

ν
(|u′n(r)|2 + |f(r)|2) + C(ν)|un(r)|2‖un(r)‖4 (16)

for all r ≥ τ.

Thus, since in particular f ∈ C(R;H), from i) in Proposition 2.2, iv) and
inequality (16), we deduce v).

As a direct consequence of the above, we can now establish our main results.

Theorem 2.5 Assume that f ∈ W 1,2
loc (R;H) . Then, for any bounded set B ⊂

H, any τ ∈ R, any ε > 0, and any t > τ + ε, the set
⋃

r∈[τ+ε,t]

U(r, τ)B is a

bounded subset of D(A) = (H2(Ω))2 ∩ V.

Proof. This follows from Lemma 2.1, Proposition 2.4, and the well known facts
that un(·; τ, uτ ) converges weakly to u(·; τ, uτ ) in L2(τ, t;V ), and u(·; τ, uτ )
belongs to C([τ + ε, t];V ).

Theorem 2.6 Assume that f ∈ L2
loc (R;H) , and Â = {A(t) : t ∈ R} is a

family of bounded subsets of H, such that U(t, τ)A(τ) = A(t) for any τ ≤ t.
Then:

i) For any T1 < T2, the set
⋃

t∈[T1,T2]

A(t) is a bounded subset of V.

ii) If moreover f ′ ∈ L2
loc (R;H) , then for any T1 < T2, the set

⋃
t∈[T1,T2]

A(t) is

a bounded subset of (H2(Ω))2 ∩ V.

Proof. It is enough to observe that if τ < T1 − 1 is fixed, then

⋃
t∈[T1,T2]

A(t) ⊂
⋃

t∈[τ+1,T2]

U(t, τ)A(τ).

Now, apply Corollary 2.3 and Theorem 2.5.
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[9] J. Garćıa-Luengo, P. Maŕın-Rubio, and J. Real, Pullback attractors in V for
non-autonomous 2D-Navier-Stokes equations and their tempered behaviour,
submitted.

[10] M. Anguiano, T. Caraballo, and J. Real, H2-boundedness of the pullback
attractor for a non-autonomous reaction-diffusion equation, Nonlinear Anal.
72 (2010), 876–880.
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