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Abstract

We prove some regularity results for the pullback attractors of a non-autonomous
2D-Navier-Stokes model in a bounded domain € of R2. We establish a general
result about (H2(€2))2 N V-boundedness of invariant sets for the associate evolution
process. Then, as a consequence, we deduce that, under adequate assumptions, the
pullback attractors of the non-autonomous 2D-Navier-Stokes equations are bounded
not only in V but also in (H? (2))2.
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1 Introduction and setting of the problem

Let us consider the following problem for a non-autonomous 2D-Navier-Stokes
system:

ou )
E—y&u—i—(u-V)u—i—Vp:f(t) in Qx(1,400),
V-u=0 in Qx(1,+00),

u=0 on 0N x (1,4+00),

u(x,7) =u(z), e,

where 0 C R? is a bounded open set, with regular boundary 0, the number
v > 0 is the kinematic viscosity, u is the velocity field of the fluid, p the pres-
sure, 7 € R is a given initial time, w, is the initial velocity field, and f(¢) a
given external force field.

To set our problem in the abstract framework, we consider the following usual
abstract spaces (see [1] and [2-4]):

V= {u € (C(Q))? : divu :O},

H = the closure of V in (L*(Q2))? with inner product (-,-) and associate norm
|-|, where for u,v € (L*(2))?,

(u,v) = il/guj(x)vj(x)dx,

V' = the closure of V in (H{(2))? with scalar product ((-,-)) and associate
norm ||-||, where for u,v € (H(Q2))?,

2 8Uj 8“]'
((u,v)) = 521/9 ox; 3$¢dx'

We also consider the operator A : V' — V' defined by (Au,v) = ((u,v)).
Denoting D(A) = (H*(Q))? NV, then Au = —PAu,Vu € D(A), is the Stokes
operator (P is the ortho-projector from (L*(£2))? onto H).

Now we define the continuous trilinear form b on V' x V x V' by

2 .
b(u,v,w) = > /Quig?wj dr, Vu,v,weV.

ij=1



It is well known that
b(u,v,v) =0 for all u,v € V. (2)

We remember (see [2] or [3]) that there exists a constant C'; > 0 only dependent
on {2 such that

[b(u, v, w)] < Colu V2 ul o[l Pllwl 2, Vu,v,we Vv, (3)

|b(u, v, w)| < C1|Aul||v|||w], Vu € D(A), veV, we H, (4)

and

b(u, v, w)| < Cylul*?|Aul?|jv|||w], VYue D(A), veV, weH. (5)

Assume that u, € H and f € L7 (R; H).

loc

Definition 1.1 A solution of (1) is a function v € C([7,T]; H) N L*(7,T; V)
for all T > 7, with u(7) = u,, such that for allv € V,

d

2 (w(®),v) +v((u(t), v) + bu(t), ult), v) = (), v),

where the equation must be understood in the sense of D'(T,+00).

Under the conditions above (e.g. cf. [2] or [3]), there exists a unique solution
u(-) = u(+;7,u,;) of (1). Moreover, this solution u satisfies that u € C([r +
e, T; V)N LAt +¢,T; (H?*(Q))?) for every ¢ > 0 and T > 7 + €. In fact, if
u, € V, then u € C([r,T];V) N L*(7,T; (H* (Q2))?) for every T > 7.

Therefore, we can define a process U = {U(t,7), 7 <t} in H as
Ult,T)u, = u(t;m,u,) Yu, € H, V71 <t, (6)
and the restriction of this process to V' is a process in V.

A pullback attractor for the process U defined by (6) (cf. [5-7]) is a family
A={A(t): t € R} of compact subsets of H such that

a) (invariance) U(t,7)A(T) = A(t) for all 7 <,

b) (pullback attraction) lim sup inf |U(t,7)u, —v| =0, for all ¢t € R, for
T 0y, eBveA(Y)

any bounded subset B C H.



It can be proved (see [9]) that, under the above conditions, if in addition f
satisfies

0 2
/ et |f(r)|" dr < +o0,

for some 0 < p < 2v\;, where \; denotes the first eigenvalue of the Stokes
operator A, then there exists a pullback attractor for the process U defined

by (6).

Several studies on this model have already been published (cf. [5], [8,9]). How-
ever, as far as we know, no one refers to the H2-regularity we will consider in
this paper.

In the next section we prove some results which, in particular, imply that,
under suitable assumptions, any pullback attractor A for U satisfies that A(t)
is a bounded subset of (H?*(2))> NV, for every t € R (for similar results for
reaction-diffusion equations see [10], and for related results for Navier-Stokes
equations see [11]).

2 H?-boundedness of invariant sets

In this section we prove that, under suitable assumptions, any family of
bounded subsets of H which is invariant for the process U, is in fact bounded
in (H2(Q))2NV.

First, we recall a result (cf. [2]) which will be used below.

Lemma 2.1 Let X,Y be Banach spaces such that X s reflexive, and the
inclusion X C 'Y is continuous. Assume that {u,} is a bounded sequence in
L>(ty, T; X) such that u,, — u weakly in L (to, T;X) for some q € [1,+00)
and u € C%([ty, T];Y).

Then, u(t) € X and |Ju(t)]y < lim>i1nf [wnll pooty 7:x) » Jor all t € [to, T).

For each integer n > 1, we denote by u,(t) = u,(t; 7, u,) the Galerkin approx-
imation of the solution w(t; 7, u,) of (1), which is given by

un(t) = f:lmzf)wj,

and is the solution of

d
7 (Un(t),w5) + v ((Un(t), wy)) + bun(t), un(t), w;) = (f(t),w;), ™)
(un (1), wj) = (ur,w;) ji=1,..,n,



where {w; : j > 1} C V is the Hilbert basis of H formed by the eigenvectors
of the Stokes operator A. Observe that by the regularity of 2, all the w; belong

to (H?(Q))%
We first prove the following result.

Proposition 2.2 Assume that f € L% (R;H). Then, for any bounded set

BCH,anyt € R, anye > 0 and anyt > 7+¢, the following three properties
are satisfied:

i) The set {u,(r;T,u.): 7 € [T+¢e,t], ur € B, n> 1}, is a bounded subset
of V.
it) The set of functions {u,(-;T,u;) : ur € B, n > 1}, is a bounded subset
of IX(7 +,t; D(A)).
iii) The set of time derivatives functions {ul (-;7,u,) : ur € B, n > 1}, is a
bounded subset of L*(T +¢,t; H).

Proof.
Let us fix a bounded set BC H, 7€ R,e>0,t>7+¢, and u, € B.

Multiplying by v,;(¢) in (7), summing from j = 1 to n, and using (2), we
obtain

1d ) )
575 (O + v [wn (O = (£8), wa(9)), ae. 6> 7. (8)

Observing that

(O unlO)] < 5 1FOF + 75 [wn(O)F
< 5o FOF + 5 [ O],

from (8) we deduce

d 2 2 1 2
- <
GO 47 [0 < = |FO)P.

and integrating between 7 and r,

)P+ v [ lan O] a8 )

]_ t
< \u7\2+ml/7 1F(0) do, Vr € [r,4], Yn> 1.

Now, multiplying in (7) by A;y,;(t), where \; is the eigenvalue associated to
the eigenvector w;, and summing from j = 1 to n, we obtain



1d

525 11O + v [Aun (@) + b(un (0), un(9), Aun(6)) = (f(6), Aun(6)), (10)

a.e. 8 > 7. Observe that

| (f(0), Aun(0)) | < ilf( W+ |Aun( ),
and by (5) and Young’s inequality,

[b(un (0), un(0), Aun(0))] < Cl|un(9)|1/2“un(9)”|Aun(0)|3/2 (11)
< 21w O + Clun (O)Pllun O)],

where CW) = 270 (4v3)7!

Thus, from (10) we deduce

d 2 2 2 v 2 4
) + v A, OF < O + 20 @ [ @)',  (12)

a.e. 0 > 1.

From this inequality, in particular we deduce

2 rt
(DI < llan ()P 4 [ |FOF do
+200 [ fun (6) e (6)]* 6

for all 7 < s <r <t, and therefore, by Gronwall’s lemma,

t
a1 < (a4 [ SO d6) exp (2090 [ fun ) (0)]? 0
forall m <s<r <t.

Integrating this last inequality for s between 7 + /2 and r, we obtain

(== < ([ hunoPas + 227 [ a9)
xexp (2000 [ |un<e>|2||un<0>||2d9)

for all 7+ ¢/2 < r <, and in particular,



9 2 t 2 Q(t T) ¢ 2
ot <2 ( [t as + 27 [ 1o an) (13
X exp (20@ /Tt 1 (0) 2] (O) 1 d&)

forall 7 +e <r <t for any n > 1.

From (9) and (13), the assertion in i) holds. Moreover, by (12),

t
< 2
v [ 14w () d8 < un(r +2)|* + /|f )2 do
1209 [ Jun(6) P un(6)]* 6,
T+e

and therefore, by i), the assertion in ii) holds.

On the other hand, multiplying by the derivative v,;(t) in (7), and summing
from j =1 till n, we obtain

o (O)F + 5 T O)IF + Dot (6), ua (6),14,(6) = (F(0), i 6)),  (14)
a.e. 0> .

Observing that

[ (£(0), u, (0)) | < IUL(9)|2+ F(O),
and by (4)

un(8), n (6), 1, O)] < s Aug (6) ()], 6)
< I (O) + 31 A () Pl (6)]

we obtain from (14)
d
[un @) + vz [ O < 217 (O) + 2C] Aun (0)lun (O)]*.

Integrating this last inequality, we deduce that

t t
[ 1O a0 <vllun(r + )P +2 [ ()2 do
T+e T

t
1202 sup Hun(9)||2/T+€|Aun(0)|2d9,

0€[T+e,t]
and therefore iii) follows from i) and ii).



Corollary 2.3 Assume that f € L3, .(R; H). Then, for any bounded set B C
H, anyT € R, anye > 0, and any t > 7 + ¢, the set U U(r,7)B is a
re[r+e,t]

bounded subset of V.

Proof. This is a straightforward consequence of Lemma 2.1, assertion i) in
Proposition 2.2, and the well known fact (e.g. cf. [1-4]) that for all u, €
B the Galerkin approximations u,(-; 7, u,) converge weakly to u(:;7,u,) in

L3(7,t; V), and u(-;7,u,) € C([r,t]; H). =

Assuming additional regularity for the time derivative of f, we can improve
the above results.

Proposition 2.4 Assume that f € VVll’2 (R; H). Then, for any bounded set

oc

BCH,anym €R, anye >0, and any t > 7+ ¢, the following two properties
are satisfied:

iv) The set of time derivatives {u, (r;T,u,): r € [T +¢&,t], ur € B, n > 1},
1s a bounded subset of H.
v) The set {u,(r;7,u.): v € [T +¢e,t], ur € B, n> 1} is a bounded subset
of D(A).
Proof. Let us fix a bounded set BC H, 7€ R, e >0,t>7+¢, and u, € B.
As we are assuming that f € W.? (R; H), we can differentiate with respect to
time in (7), and then, multiplying by +,,(¢), and summing from j = 1 to n,
we obtain

1d

570 u, (O) + v [|ur, (O)]° + bt (0), un (8), 101, (8)) = (f(8), ,,(6))

a.e. 0>

From this inequality, taking into account that
(PO, 0)] < 2, O + | O
T -2 " 21/)\1 ’
and by (3)

[6(ur,(0), un(0), 1, ()] < Chlg, (0) |7, ()] n ()

n

4 / 2 012 ! 2 2
< Z 1
< 2, O + S 126, (0) Plun (O]
we deduce
d / 2 1 / 2 C:% / 2 2
— NHl- < —| (0 — 0 0)]“.
G OF < AP OF + =i @) . (6)]



Integrating in the last inequality,

O < e+ [ 17O a8+ [ @R 0)17
forall m < s <r <t.

Thus, by Gronwall’s inequality,

w0 < (W) + o [ 17 @) do) exp<c /.. ||un<9>||2d0),

forall 7 +¢/2<s<r<t.

Now, integrating this inequality with respect to s between 7+ £/2 and r, we
obtain

(r—7—=/2) [ (") < ( [ a2 [iror de)

C’ t
X exp (yl /TW2 Hun(e)H?de) ,

for all 7 +¢/2 <r <t, and any n > 1. In particular, thus,

/ 2 _ 2 ! /
<z
i (r) _€</T+5/2|un< [rer d@)
ct 2
X €xXp (1/ /T+a/2 [[un(6)]] d9> 5

forall 7+e <r <t and any n > 1.

From this inequality and properties i) and iii) in Proposition 2.2, we obtain
iv).

On the other hand, multiplying again in (7) by A;v,;(t), and summing once
more from j = 1 to n, we obtain

(1), At (1)) 0 [ At (1) 40w (1), 1 (1), Au (1)) = (F(r), Aun () . (15)

for all » > 7. But

), Auin(r) ] < 2 () 2 A ()



and

(£ Aun() | < 2 AP + [ Aun ()

Therefore, taking into account (11), we deduce from (15) that

A ()P < 2 (i (P + LFOP) + O ()Pl (16)

for all » > 7.

Thus, since in particular f € C(R; H), from i) in Proposition 2.2, iv) and
inequality (16), we deduce v). m

As a direct consequence of the above, we can now establish our main results.

Theorem 2.5 Assume that f € Wo? (R; H). Then, for any bounded set B C
H,anyt € R, anye > 0, and any t > 7 +¢, the set ) U(r,7)B is a
re[r+e,t]

bounded subset of D(A) = (H*(Q))?NV.

Proof. This follows from Lemma 2.1, Proposition 2.4, and the well known facts
that w,(;7,u,) converges weakly to u(-;7,u,) in L*(7,t;V), and u(-; 7, u,)
belongs to C([7 +¢,t);V). m

Theorem 2.6 Assume that f € L2, (R;H), and A = {A(t) : t € R} is a
family of bounded subsets of H, such that U(t,7)A(T) = A(t) for any 7 < t.
Then:

i) For any Ty < Ty, the set | ) \A(t) is a bounded subset of V.
tE[Tl,Tz]

i) If moreover f' € L}, (R; H), then for any T1 < Ty, the set | ) A(t) is
tG[Tl,TQ]

a bounded subset of (H*(2))*NV.

Proof. It is enough to observe that if 7 < T} — 1 is fixed, then

U A(t) C U U(t, 7)A(T).

tE[Tl ,TQ] tE[T—‘rLTQ}

Now, apply Corollary 2.3 and Theorem 2.5. m

10
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