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Abstract. Under appropriate regularity conditions it is shown that the con-

tinuous dependence of the global attractors Aτ of semi dynamical systems
S(τ)(t) in C([−τ, 0]; Z) with Z a Banach space and time delay τ ∈ [T∗, T ∗],
where T∗ > 0, is equivalent to the equi-attraction of the attractors. Examples

and counter examples posed in this right framework are provided.

1. Introduction. The upper semi continuous dependence of attractors on a pa-
rameter is a standard result in dynamical systems theory, see e.g. [5, 11, 13, 15, 16].
In general, lower semi continuous, and hence continuous, dependence does not hold
without additional assumptions, which usually are given in terms of the structure
of the attractor, such as its being Morse-Smale. In another approach, Li and Kloe-
den [14] showed recently that continuous dependence in a parameter is equivalent
to the equi-attraction of the parametrized attractors. These results also apply to
attractors of delay differential equations (DDE) with a fixed time delay.

On the other hand very little has appeared in the literature about the dependence
of attractors of DDE on the time delay itself, a difficulty being that the attractors
belong to different state spaces. An early paper on upper semi continuity for a
concrete retarded nonlinear PDE is [1] (see also [2, 4] for the same question about
inertial manifolds to deterministic and stochastic problems).

Kloeden [11] showed how the upper semi continuous dependence of attractors
in the time delay can be formulated by embedding the different semi dynamical
systems and their attractors in a common state space. See also [3, 9] for other
results.

Our aim in this paper is to find an analogue of the equivalence of continuous de-
pendence and equi-attraction in [14] (see also [12]) for the dependence of attractors
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of semi dynamical systems (SDS) generated DDE on the time delay. For this we
first summarize the main ingredients from [14].

Let λ be a parameter in a compact metric space (Λ, DΛ) and let {S(λ)
t , t ∈

R+}λ∈Λ be a family of SDS on a complete metric space (X, d). Define d(x,A) =
infy∈A d(x, y) for any x ∈ X and A ⊂ X, and let BX(a, r) denote the open ball of
X with center a and radius r; and P (X) and C(X) the classes of all nonempty and
nonempty and closed subsets of X, respectively. In addition, denote the Hausdorff
semidistance and Hausdorff distance on X, respectively, by

H∗
X(A,B) = sup

x∈A

d(x,B), HX(A,B) = max {H∗
X(A,B), H∗

X(B,A)}

for any closed nonempty subsets A and B of X.

Definition 1. A nonempty compact subset A of X is called a global attractor of
an SDS {St, t ∈ R+} on X (i.e. a semi-group of mappings with St : X → X
continuous for each fixed t ≥ 0) if it is invariant, i.e. St(A) = A for all t ∈ R+,
and attracts bounded subsets B of X, i.e.

H∗(St(B),A) → 0 as t→ +∞.

Definition 2. Let {S(λ)
t , λ ∈ Λ} be a family of SDS on X. It is said to be

(i) equi-dissipative on X if there exists a bounded subset U of X so that for
any bounded subset B ⊂ X, there exists a TB ∈ R+ independent of λ ∈ Λ such that

S
(λ)
t (B) ⊂ U , t ≥ TB ;

(ii) eventually equi-compact (or uniformly compact for large t in [14]) if for
any bounded subset B of X, there exists a TB ∈ R+ independent of λ ∈ Λ such that⋃

λ∈Λ S
(λ)
t (B) is relatively compact in X for any t ≥ TB.

Theorem 3. [14, Th.2.9] Suppose that a family of SDS {S(λ)
t , λ ∈ Λ} on X is

equi-dissipative and eventually equi-compact and that Aλ is the global attractor of

S
(λ)
t for λ ∈ Λ. In addition, suppose that

(A1) for any t ∈ R+ fixed, S
(λ)
t (x) is jointly continuous in (x, λ) on X × Λ.

(A2) S
(λ)
t (x) is equi-continuous in λ for (t, x) in any bounded subset of R+ ×X.

Then {Aλ} is equi-attracting if and only if Aλ is continuous in λ with respect to
the Hausdorff distance.

Remark 4. The above equivalence also holds if (A2) is replaced by:

(A2’) S
(λ)
t (x) is equi-continuous in λ for t in any bounded subset of R+ and x in

any bounded subset of
⋃

λ∈Λ Aλ.

Theorem 5. [14, Th.2.7] Suppose that {S(λ)
t , λ ∈ Λ} is equi-dissipative and even-

tually equi-compact and that the assumptions (A1) and

(A3) For any bounded subset B of X and T > 0, S
(λ)
t x is uniformly continuous

in x ∈ B uniformly w.r.t. λ ∈ Λ and t ≤ T, i.e.

∀ε > 0, ∃δ > 0 : x, y ∈ B, d(x, y) < δ ⇒ d
(
S

(λ)
t (x), S

(λ)
t (y)

)
< ε, ∀t ∈ [0, T ], λ ∈ Λ.

hold.
Then, if Aλ is continuous in λ, the family {Aλ} is uniformly Lyapunov stable,

i.e. for any ε > 0, there exists δ > 0 (independent of λ) such that for all λ ∈ Λ, if

d(x,Aλ) < δ, then d(S
(λ)
t x,Aλ) < ε for all t ∈ R+.
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In Section 2 we reinterpret the above “equi” concepts for SDS generated by DDE
with finite delay, where the finite delay is considered as the parameter and extend the
SDS and their attractors (which are assumed to exist, see [11] for existence results)
to a common state space. In Section 3 we interpret the above “equi” concepts for
the SDS in their original state spaces. Finally, in Section 4 an example is given of
a scalar DDE with attractors which are continuous and discontinuous in the time
delay at different time delays.

2. Extension to a common state space. A delay differential equation in a
Banach space (Z, | · |) with time delay τ > 0 generates an SDS in the function space
Cτ := C([−τ, 0];Z) of continuous functions φ : [−τ, 0] → Z, which is a Banach space
with the supremum norm ‖ · ‖τ . We denote this SDS in Cτ by S(τ) and consider
a family of such SDS for different, fixed values of the time delay τ ∈ [T∗, T

∗], with
0 < T∗ < T ∗ < ∞. In addition, we assume that each SDS S(τ) possesses a global
attractor Aτ in its state space Cτ . Theorem 3 cannot be applied directly to this
family, but can be after we represent then as SDS on the common state space CT∗ .

In order to translate the different SDS to the common space we project a solution

S
(τ)
t φ in function space C([−τ, 0];Z) onto the base space Z and then reconstitute

it as a time dependent function taking values in the function space C([−T ∗, 0];Z).

Let φ ∈ CT∗ and let φ|[−τ,0] be its truncation in Cτ . Hence S
(τ)
t φ|[−τ,0] is well

defined for all t ≥ 0. Define its projection x : [−T ∗,∞) × CT∗ → Z in Z by

x(t, φ) :=

{
φ(t) t ∈ [−T ∗, 0],

S
(τ)
t (φ|[−τ,0])(0) t > 0,

where S
(τ)
t φ|[−τ,0](0) is the value that takes the function S

(τ)
t (φ|[−τ,0]) in Z at time

0. Finally, define Ŝ
(τ)
t (φ) ∈ CT∗ for each t ≥ 0 by

Ŝ
(τ)
t (φ)(s) := x(t+ s, φ), s ∈ [−T ∗, 0].

Theorem 6. If S(τ) be an SDS on Cτ , then {Ŝ(τ)
t , t ∈ R+} defines an SDS on CT∗ .

Moreover, if S(τ) : R+ × Cτ → Cτ is jointly continuous in (t, φ) ∈ R+ × Cτ , then

Ŝ(τ) : R+ × CT∗ → CT∗ is jointly continuous in (t, φ) ∈ R+ × CT∗ .

Proof. The initial condition property of an SDS follows directly from the definition
for t = 0, specifically

Ŝ
(τ)
0 (φ)(s) = x(s, φ) = φ(s), s ∈ [−T ∗, 0],

so Ŝ
(τ)
0 (φ) = φ for all φ ∈ C([−T ∗, 0]; Rd).

To check the semi-group property, that is,

Ŝ
(τ)
t1+t2

(φ) = Ŝ
(τ)
t1
Ŝ

(τ)
t2

(φ), for all t1, t2 ≥ 0, and φ ∈ CT∗ ,

we consider two cases:
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Case 1: t1 + s > 0. We use the semi-group property of the SDS S(τ) several
times:

Ŝ
(τ)
t1+t2

(φ)(s) = x(t1 + t2 + s, φ)

= S
(τ)
t1+t2+s(φ|[−τ,0])(0)

= S
(τ)
t1+s(S

(τ)
t2

(φ|[−τ,0]))(0)

= x(t1 + s, Ŝ
(τ)
t2

(φ)) = Ŝ
(τ)
t1

(Ŝ
(τ)
t2

(φ))(s).

Case 2: t1 + s ≤ 0 (since s ∈ [−T ∗, 0], this case only holds if T ∗ > t1). By the
definitions we have

Ŝ
(τ)
t1+t2

(φ)(s) = x(t1 + t2 + s, φ), (1)

as well as

Ŝ
(τ)
t1

(Ŝ
(τ)
t2

(φ))(s) = x(t1 + s, Ŝ
(τ)
t2

(φ))

= Ŝ
(τ)
t2

(φ)(t1 + s) = x(t1 + t2 + s, φ). (2)

Comparing (2) with (1) we obtain the desired semi-group property.

The continuity of Ŝ
(τ)
t from CT∗ into CT∗ for each fixed t ∈ R+ and the second

assertion of the theorem can be proved similarly, so we prove just the latter.

Suppose that φ(n) → φ̄ in CT∗ and tn → t in R+. Then φ(n)|[−τ,0] → φ̄|[−τ,0] in

Cτ and hence S
(τ)
tn

(φ(n)|[−τ,0]) → S
(τ)
t (φ̄|[−τ,0]) in Cτ for each tn → t in R+, which

means that

x(tn + s, φ(n)) = S
(τ)
tn

(φ(n)|[−τ,0])(s)

→ S
(τ)
tn

(φ̄|[−τ,0])(s) = x(t+ s, φ̄)

for all s ∈ [−τ, 0] (not only punctually, but uniformly in [−τ, 0]). Concatenating as
many intervals as necessary, we obtain in a finite number of steps that

Ŝ
(τ)
tn

(φ(n))(s) = x(tn + s, φ(n)) → x(t+ s, φ̄) = Ŝ
(τ)
t (φ̄)(s)

for all s ∈ [−T ∗, 0], i.e.

Ŝ
(τ)
tn

(φ(n)) → Ŝ
(τ)
t (φ̄)

in CT∗ as tn → t in R+ and φ(n) → φ̄ in CT∗ . Hence the mapping (t, φ) 7→ Ŝ
(τ)
t (φ)

is continuous.

This completes the proof that Ŝ(τ) is an SDS on CT∗ .

The next step in our goal is to extend the attractors to the common state space
and to ensure that the extended objects are indeed attractors for the extended SDS.
Observe that it is not enough to have

H∗
Cτ

(
S

(τ)
t−jτ (Bτ ),Aτ

)
< ε for j = 0, . . . , n∗ − 1, (3)

where n∗ is the first integer with n∗τ ≥ T ∗. This does not ensure that there exists
a corresponding concatenated set in CT∗ satisfying the corresponding inequality
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there. To show this we use the compactness of the attractors and the continuity of
the SDS.

Theorem 7. Suppose that an SDS S(τ) : R+ ×Cτ → Cτ has a global attractor Aτ .

Then, the extended SDS Ŝ(τ) in CT∗ given in Theorem 6 possesses a global attractor

Âτ in CT∗ , which is characterized by

Âτ :=

{
ψ ∈ CT∗ : ∃ entire trajectory Φ̄

(τ)
t of S(τ) in Aτ (4)

with ψ(s) = φ̄(s) ∀s ∈ [−T ∗, 0]

}
,

where φ̄(t) is the projection in Z of the entire solution Φ̄
(τ)
t defined by φ̄(t) :=

Φ̄
(τ)
t (0) for all t ∈ R.

Proof. ¿From the strict invariance of Aτ it is known that for each φ ∈ Aτ there

exists at least one entire solution Φ̄
(τ)
t of the SDS S(τ) in Aτ with Φ̄

(τ)
0 = φ, so the

set Âτ is well defined. The invariance of Âτ under the extended SDS Ŝ(τ) follows
immediately from the definitions. The compactness of Aτ in CT∗ follows from the
definitions and the fact that the backward extension of an SDS in a compact invari-
ant set generates a multivalued semi-group with compact attainability sets [10].

It remains to prove that Âτ is the global attractor for the extended SDS Ŝτ .
Let ε > 0 be arbitrary and let n∗ be the first integer such that n∗τ ≥ T ∗. For

each χ ∈ Aτ , define δ(χ) := min{δ1(χ), . . . , δn∗(χ)}, where δj(χ) for j = 1, . . . , n∗

are such that the continuous maps S
(τ)
jτ satisfy H∗

Cτ
(S

(τ)
jτ (χ), S

(τ)
jτ (φ)) ≤ ε for all

φ ∈ BCτ
(χ, δj(χ)).

Since Aτ is compact it has finite cover of open balls

Aτ ⊂
k⋃

i=1

BCτ
(x(i), δ(x(i))).

There thus exists an ρ > 0 with

BCτ
(Aτ , ρ) ⊂

k⋃

i=1

BCτ
(x(i), δ(x(i))). (5)

Now consider a bounded set B in CT∗ . By the attraction of Aτ there exists T =
T (ρ,B|[−τ,0]) ≥ 0 such that

H∗
Cτ

(
S

(τ)
t (B|[−τ,0]),Aτ

)
≤ ρ ∀ t ≥ T = T (ρ,B|[−τ,0]).

Consider an arbitrary element ϕ ∈ B and a x(i0) ∈ Cτ such that, by (5),
∥∥∥S(τ)

jτ S
(τ)
T (ϕ) − S

(τ)
jτ (x(i0))

∥∥∥
τ
≤ ε for j = 1, . . . , n∗.

This implies that

H∗
CT∗

(
Ŝ

(τ)
n∗τ+T (B), Âτ

)
≤ ε.

Thus Âτ is the global attractor of Ŝ(τ) in CT∗ .
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Finally, following [11], we recall that the continuous convergence of the attractors
for different time delays is understood as

HCT∗

(
Âτ ′ , Âτ

)
→ 0 as τ ′ → τ.

3. The equi-properties for the original SDS. We will now translate the con-
cepts of equi-attraction, equi-dissipative and eventually equi-compact of the family

of extended SDS {Ŝ(τ)
t , τ ∈ [T∗, T

∗]} on the space CT∗ in terms of the original SDS

S
(τ)
t on their state spaces Cτ . This is important as the properties will be verified

here, especially when the SDS are generated by specific DDE.

3.1. Equi-dissipativity. The concept of equi-dissipativity in Definition 2, (i), in
terms of the extended SDS reads: there exists a bounded subset U of CT∗ and for
every bounded subset B of CT∗ there exists a TB ∈ R+, which is independent of τ ,
such that

Ŝ
(τ)
t (B) ⊂ U for all t ≥ TB and τ ∈ [T∗, T

∗]. (6)

In terms of the original SDS and state space this implies that

S
(τ)
t (B|[−τ,0]) ⊂ U|[−τ,0] for all t ≥ TB and τ ∈ [T∗, T

∗],

where the previous notation is used for the restricted sets, i.e.

B|[−τ,0] = {φ|[−τ,0] : φ ∈ B}, U|[−τ,0] = {ψ|[−τ,0] : ψ ∈ U}.

The definition of equi-dissipativity has an equivalent form in terms of the under-
lying base space Z, namely:

Lemma 8. A family of SDS {Ŝ(τ), τ ∈ [T∗, T
∗]} is equi-dissipative if and only if

there exists a bounded subset U of Z such that for every bounded subset B of Z
there exists a TB ∈ R+, which is independent of τ , such that

S
(τ)
t (B|[−τ,0])(0) ⊂ U for all t ≥ TB and τ ∈ [T∗, T

∗],

where

B := {φ ∈ CT∗ : φ(s) ∈ B ∀ s ∈ [−T ∗, 0]} . (7)

Proof. Starting with (6), we simply define

U = {φ(s) ∈ Z : φ ∈ U , s ∈ [−T ∗, 0]}

with TB := TB corresponding to the bounded subset B of CT∗ defined in (7).
In the other direction, following (7), we define

U := {φ ∈ CT∗ : φ(s) ∈ U, s ∈ [−T ∗, 0]} . (8)

Given a bounded subset B of CT∗ we define TB := TB + T ∗ corresponding to the
set

B = {φ(s) ∈ Z : φ ∈ B, s ∈ [−T ∗, 0]} .
(Note that the new set B defined by (7) in terms of this B will contain and in
general be larger than the original set B).
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3.2. Eventual equi-compactness. We first note that the property of eventual
equi-compactness in Definition 2, (ii), can be rewritten as: for any bounded subset
B of X, there exists a TB ∈ R+ independent of λ ∈ Λ and a family of compact
subsets {K(t), t ≥ TB} of X such that

S
(λ)
t (B) ⊂ K(t) for every t ≥ TB .

We simply take U(t) to be the closure of
⋃

λ∈Λ S
(λ)
t (B) in X. The compact sets

U(t) here need not be uniformly bounded in t – if they were then we would also
have equi-dissipativity.

In our situation this definition takes the form: for every bounded subset B of CT∗

there exists a TB ∈ R+, which is independent of τ , and a family of compact subsets
{U(t), t ≥ TB} of CT∗ such that

Ŝ
(τ)
t (B) ⊂ U(t) for all t ≥ TB and each τ ∈ [T∗, T

∗].

In terms of the original dynamical systems this translates to

S
(τ)
t (B|[−τ,0]) ⊂ U(t)|[−τ,0] for all t ≥ TB and each τ ∈ [T∗, T

∗].

Remark 9. For DDE with finite delay, when Z is finite dimensional, compactness
follows from the existence of a bounded absorbing family, thanks to Ascoli-Arzelà
Theorem, if the right hand side of the DDE is a bounded map (i.e. it maps bounded
sets onto bounded sets).

3.3. Joint and equi-continuity. Theorem 3 requires that the family of SDS sat-
isfies the continuity properties (A1) and (A2), i.e.

(A1) For any t ∈ R+ fixed, S
(λ)
t (x) is jointly continuous in (x, λ) on X × Λ.

(A2) S
(λ)
t (x) is equi-continuous in λ for (t, x) in any bounded subset of R+ ×X.

In our context the joint continuity property (A1) becomes: for any t ∈ R+ fixed,

Ŝ
(τ)
t (φ) is jointly continuous in (τ, φ) in [T∗, T

∗] × CT∗ .

Thus, if (τn, φ
(n)) → (τ, φ) in [T∗, T

∗] × CT∗ as n → ∞, then so too does

Ŝ
(τn)
t (φ(n)) → Ŝ

(τ)
t (φ) as n→ ∞.

Recalling the projection notation introduced before Theorem 6

x(τ)(t+ s, φ) := Ŝ
(τ)
t (φ)(s), s ∈ [−T ∗, 0],

joint continuity means that

x(τn)(t, φ(n)) → x(τ)(t, φ) as n→ ∞,

in the base space Z uniformly on the interval [t−T ∗, t] for each fixed t ≥ 0. Thus it
will also be uniform on all finite time intervals [−T ∗, T ] with T > 0. This uniform
joint convergence in Z implies the function space joint continuity of condition (A1)
above.

Similarly, the equi-continuity property (A2) becomes: Ŝ
(τ)
t (φ) is equi-continuous

in τ for (t, φ) in any bounded subset [T1, T2] × B of R+ × CT∗ , which is essentially
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uniform continuity in τ , i.e. for every ε > 0 and bounded subset [T1, T2] × B of
R+ × CT∗ there exists δ = δ(T1, T2,B, ε) > 0 such that

|τ ′ − τ | < δ =⇒
∥∥∥Ŝ(τ ′)

t (φ) − Ŝ
(τ)
t (φ)

∥∥∥
T∗

< ε ∀(t, φ) ∈ [T1, T2] × B.

In terms of the projections in the base space Z this reads as

|τ ′ − τ | < δ =⇒
∣∣∣x(τ ′)(t, φ) − x(τ)(t, φ)

∣∣∣ < ε ∀(t, φ) ∈ [T1 − T ∗, T2] × B,

which implies the function space equi-continuity condition (A2) above.

3.4. Equi-attraction. Suppose that each SDS S
(τ)
t on Cτ has global attractor Aτ

in Cτ for τ ∈ [T∗, T
∗]. Then, by Theorem 7, each extended SDS Ŝ

(τ)
t on CT∗ has

an attractor Âτ in CT∗ , where Âτ is defined in terms of Aτ through (4).
These extended attractors are equi-attracting if for every ε > 0 and bounded

subset B of CT∗ there exists Tε,B ∈ R+ independent of τ ∈ [T∗, T
∗] such that

H∗
CT∗

(
Ŝ

(τ)
t (φ), Âτ

)
< ε for all t ≥ Tε,B, φ ∈ B, τ ∈ [T∗, T

∗] (9)

which obviously implies that

H∗
Cτ

(
S

(τ)
t (φ|[−τ,0]),Aτ

)
< ε for all t ≥ Tε,B, φ ∈ B, τ ∈ [T∗, T

∗]. (10)

Of course, one would like that (9) and (10) to be equivalent (perhaps with a slightly
larger Tε,B). However, the value ρ appearing in the proof of Theorem 7 depends on
τ in a not necessarily uniform way. We will use property (A3) and borrow some
ideas from Theorem 5 to obtain an equivalence.

Remark 10. Condition (A3) in Theorem 5 for the extended SDS Ŝ(τ) is equivalent
to the following condition for the original semi dynamical systems S(τ) :

(A3’) For any bounded subset B of CT∗ and T > 0, S
(τ)
t (χ|[−τ,0]) is uniformly

continuous in χ|[−τ,0] ∈ B|[−τ,0] uniformly w.r.t. τ and t ≤ T, i.e.

∀ε > 0, ∃δ > 0 : χ, φ ∈ B, ‖χ|[−τ,0] − φ|[−τ,0]‖τ < δ

⇒ ‖S(τ)
t (χ|[−τ,0]) − S

(τ)
t (φ|[−τ,0])‖τ < ε, ∀t ∈ [0, T ], τ ∈ [T∗, T

∗]. (11)

Theorem 11. Let S(τ) : R+ × Cτ → Cτ for τ ∈ [T∗, T
∗] be a family of SDS with

attractors Aτ , which is equi-dissipative and equi-attracting in the sense of (10) and

also satisfies condition (A3’). Then the extended attractors Âτ are equi-attracting.

Proof. By the equi-dissipativeness there exists a bounded subset U of Z such that
Aτ ⊂ U|[−τ,0] for all τ, where the subset U of CT∗ is defined from U through (8).
Consider any ε > 0 and the bounded set

B = {φ ∈ CT∗ : φ(s) ∈ BZ(U, ε), s ∈ [−T ∗, 0]}.
It is enough to check (9) only with this bounded set. By the equi-attraction of
{Aτ}τ , there exists Tε,B independent of τ, such that (10) holds. In particular, this

implies that B|[−τ,0] is positively invariant for any S
(τ)
t with t ≥ Tε,B, i.e.

S
(τ)
t (B|[−τ,0]) ⊂ B|[−τ,0] ∀t ≥ Tε,B. (12)



EQUI-ATTRACTION AND CONTINUOUS DEPENDENCE FOR DDE 9

For the bounded set B, by (A3’), there exists δ > 0 depending on ε such that
(11) holds for T = n∗T∗, with n∗ the first integer such that n∗T∗ ≥ T ∗. We will use
(11) for t = jT∗ with j = 1, . . . , n∗ , which ensures that we can cover any interval
of length T ∗ by delays of length τ ∈ [T∗, T

∗].
Let ρ = min(δ, ε). By the equi-attraction again, analogously to (10), there exists

a time Tρ,B (which we can take w.l.o.g. larger than Tε,B) such that

H∗
Cτ

(S
(τ)
t (B|[−τ,0]),Aτ ) < ρ for all t ≥ Tρ,B, τ ∈ [T∗, T

∗]. (13)

To finish the proof, take ψ ∈ B. By (13), for any t ≥ Tρ,B, there exists ξ ∈ Aτ such

that ‖S(τ)
t (ψ|[−τ,0]) − ξ‖τ < ρ ≤ δ. Using (11) for T = n∗T∗ we have

‖S(τ)
jT∗

S
(τ)
t (ψ|[−τ,0]) − S

(τ)
jT∗

(ξ)‖τ < ε for j = 1, . . . , n∗.

This means that

H∗
CT∗

(
Ŝ

(τ)
n∗T∗+t(ψ), Âτ

)
< ε ∀t ≥ Tρ,B,

which is the equi-attraction property (9) with Tε,B replaced by n∗T∗ + Tρ,B.

Remark 12. There is an equivalent condition to Assumption (A3’) in the above
result, though apparently is less restrictive, in which the uniform continuity for t in
bounded intervals can be substituted by uniform continuity at a single time instant
t∗, namely,

(A3”) There exists t∗ ∈ (0, T∗] such that for any bounded subset B of CT∗ , the

SDS S
(τ)
t∗

(χ) is uniformly continuous in χ ∈ B|[−τ,0] uniformly w.r.t. τ, i.e.

∀ε > 0, ∃δ > 0 : χ, φ ∈ B, ‖χ|[−τ,0] − φ|[−τ,0]‖τ < δ (14)

⇒ ‖S(τ)
T∗

(χ|[−τ,0]) − S
(τ)
T∗

(φ|[−τ,0])‖τ < ε, ∀τ ∈ [T∗, T
∗].

Actually, by (12), the above uniform continuity of S
(τ)
t∗

in B|[−τ,0] holds for all

S
(τ)
jt∗

with j = 1, . . . , n∗, where n∗ now denotes the first integer such that n∗t∗ ≥ T ∗.

Indeed, since S
(τ)
t∗

is uniformly continuous in B|[−τ,0], for an arbitrary ε > 0 there

exists δ1 such that ‖S(τ)
t∗

(χ) − S
(τ)
t∗

(φ)‖τ ≤ ε if ‖χ − φ‖τ < δ1. For S
(τ)
2t∗
, choose δ2

associated with ε2 = δ1 (property (12) plays an essential role here). Recursively, we
conclude the claim in n∗ steps, with δ = min{δ1, . . . , δn∗

}.

4. An example. Li and Kloeden [14, Sec.3,Ex.3.2] gave the following example of

a scalar ordinary differential equation to illustrate their results. Let λ0 = 2
√

3/9
and Λ = [0, λ0] and let f : Λ × R → R be given by

f(λ, x) = −x3 + x+ 4
√

3/9 − λ,

which is illustrated in Figure 1 below. In particular, for λ < λ0 it has a single zero

x(λ+) > 0 and for λ = λ0 a new zero x(λ−

0
) appears.
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Fig. 1. Two equilibria at λ0. One equilibrium for λ < λ0.

Then the ODE
dx

dt
= f(λ, x) (15)

generates a semi dynamical system on the state space Z = R for each λ ∈ Λ. For λ

∈ [0, λ0) the global attractor is the singleton {x(λ+)} and for λ0 the global attrac-

tor is the interval [x(λ−

0
), x(λ+

0
)]. The setvalued mapping λ 7→ Aλ is obviously not

continuous at λ = λ0 (although it is continuous for all other values of λ).

We now introduce a delay DE variation of the above example with the time delay
τ = λ. Consider some a > 0, and let g : R → [0, a] be a globally Lipschitz function

with Lipschitz constant Lg > 0 and with g(−
√

3/3) = 0. We consider the scalar
delay DE

d

dt
x(t) = Fλ(xt) := f(λ, x(t)) + g(x(t− λ)), (16)

where xt ∈ Cλ = C([−λ, 0]; R) is defined as usual. We restrict attention to time
delays λ ∈ [θλ0, λ0] for some 0 < θ < 1, i.e. Λ = [θλ0, λ0] here.

4.1. Well defined SDS and existence of attractors. We check now that each
DDE generates a well posed problem.

Suppose that λ ∈ [θλ0, λ0). Local Lipschitz continuity of the right hand side of
the DDE (16) ensures the local existence and uniqueness of solutions. We will now
show that they are in fact globally defined in time.

Let φ ∈ Cλ be an initial value. If φ(0) < xλ, then Fλ is positive (since both
f and g are), then the solution increases until xλ. It does not matter whether
the solution takes the value xλ or not. The important fact is that the solution
cannot decrease, this would be absurd by the mean-value theorem. On the other
hand, if φ(0) > f(λ, ·)−1(−a), then f being negative is more important than g,
and the solution decreases. The critical point is then f(λ, ·)−1(−a). Whether or
not a solution arrives at max f(λ, ·)−1(−a), there is no blow-up. In particular, if
f(λ, ·)−1(−a) is reached at some time t∗, i.e. f(λ, x(t∗)) = −a, then it cannot
increase again (impossible by the mean-value theorem). Thus all solutions are
globally defined and the DDE (16) generates an SDS S(λ) in Cλ = C([−λ, 0]; R).

The above discussion also shows that the projection S
(λ)
t (φ)(0) of solutions in R

are attracted by the subset Bλ = [xλ, f(λ, ·)−1(−a)] of R. Thus the subset Bλ of Cλ
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defined in terms of Bλ by (7) is an absorbing set for the SDS S(λ). The existence of
a global attractor Aλ (contained in Bλ) then follows from the compactness of the

SDS operators S
(λ)
t for t > λ (and that of attractors Âλ for the SDS Ŝ(λ)).

We observe that the extended semi dynamical systems Ŝ(λ) obtained here from

Theorem 6 are generated by the solutions of the DDE x′(t) = F̂λ(xt) with F̂λ :

Cλ0
→ R defined as F̂λ(ϕ) = Fλ(ϕ|[−λ,0]).

4.2. Equi-properties and continuity. Our first goal now is to prove equi-dissipativity

for the SDS Ŝ(λ) (after that, eventual equi-compactness follows adding an elapsed
time λ0). We will obtain it for any set of parameters of the form [θλ0, λ] with
λ < λ0.

Fix λ ∈ [θλ0, λ0). Observe that a solution with initial data φ such that φ(0) < xλ

reaches any value xλ − ε > φ(0) in a time tε which by the mean-value theorem is
bounded by

tε ≤ xλ − ε− φ(0)

A
with A = sup

[φ(0),xλ−ε]

f(λ, ·).

The case φ(0) > f̂(λ, ·)−1(a) is similar.
Joining both analysis, and by the continuity of f(λ, ·), the equi-dissipativity prop-

erty holds in compact intervals of the parameter [θλ0, λ] with λ < λ0.

Our second goal is to prove the required continuity properties. Let λ, λ′ ∈ Λ and
consider the solutions of the initial value problems

{
x′(t) = F̂λ(xt),
x0 = φ,

{
y′(t) = F̂λ′(xt),
y0 = ψ

for initial values φ, ψ ∈ C([−λ0, 0]; R).
Define z(t) = x(t) − y(t). Then

z(t) = z(0) +

∫ t

0

(F̂λ(xs) − F̂λ′(ys))ds,

and hence from the local and global properties of the functions f and g it follows
that

|z(t)| ≤ |z(0)| + Lf,loc

∫ t

0

|x(s) − y(s)|ds+ |λ− λ′|

+

∫ t

0

|g(x(s− λ)) − g(y(s− λ))|ds

≤ |z(0)| + |λ− λ′| + λLg‖ϕ− ψ‖ + (Lf,loc + Lg)

∫ t

0

|z(r)|dr

+

∫ t

0

|g(y(s− λ)) − g(y(s− λ′))|ds. (17)

(The local Lipschitz constant Lf,loc of f depends on an appropriately chosen region
depending on the initial values φ and ψ).

It is clear from (17), the uniform continuity of the solution y in a compact in-
terval of time, and the Gronwall Lemma that condition (A1) on the continuity of

the SDS Ŝ(λ) in (λ, φ) holds, i.e. the corresponding solutions are close at a fixed t
when (λ′, ψ) is close enough to (λ, φ).
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The condition (A2) does not hold in bounded sets as initial data because of the
last line in (17). But the boundedness of the SDS and the functionals Fλ provide
the equi-continuity of solutions of the attractors, which is the only requirement of
(A2’), and is sufficient to apply the theory (recall Remark 4).

4.3. Discontinuity of attractors at λ0. ¿From the discussion in subsection 4.1,
the attractor Aλ SDS S(λ) for any λ ∈ [θλ0, λ0) is contained in the sets

Bλ =
{
φ ∈ Cλ : φ(s) ∈

[
x(λ+), f(λ, ·)−1(−a)

]
∀s ∈ [−h, 0]

}
,

where x(λ+) > 0 for all λ ∈ [θλ0, λ0]. However, when the parameter λ reaches the
value λ0, a negative equilibrium solution of the DDE (16) appears, which is the

constant function in Cλ0
identically equal to x(λ−

0
) = −

√
3/3. Since the attractor

Â(λ0) contains this negative stationary solution as well as solutions with positive
values and is a connected set we conclude that there exists a discontinuity in the

setvalued mapping λ 7→ Â(λ) at λ0.

4.4. Continuity of attractors for λ ∈ [θλ0, λ0). Let us now assume that the
function g in the DDE (16) also satisfies the condition

supp g
⋂ [

x(λ+), f(λ, ·)−1(−a)
]

= ∅ ∀λ ∈ Λ. (18)

Then by (18), for a sufficient small ε > 0, the set

B
(ε)
λ =

[
x(λ+) − ε, f(λ, ·)−1(−a) + ε

]
.

is an absorbing set in R for the projected dynamics S
(λ)
t (φ)(0) (since the delay term

has no influence near this set). The corresponding situation holds for the dynamics

of the SDS with the subset B(ε)
λ defined in terms of B

(ε)
λ as in (7)).

In particular, the asymptotic behaviour of the DDE near the absorbing set re-
duces to that of the original ODE and the attractor consists of a single solution,

i.e. Aλ = {φλ} where φλ(s) ≡ x(λ+) for all s ∈ [−λ, 0]} and Âλ = {φ̂λ} where

φ̂λ(s) ≡ x(λ+) for all s ∈ [−λ0, 0]}.
Thus the attractors are continuous in λ ∈ [θλ0, λ0) and we conclude they are

equi-attracting as a consequence of Theorem 3.

Remark 13. The above results have been presented, for simplicity, with the param-
eter λ = τ of the family of SDS S(τ) denoting the influence on the phase space Cτ ,
i.e. of the delay directly. It is not difficult to generalize these results to the case
of parametric dependence of the delay. Namely, let Λ be a compact set of R+, and
consider ρ ∈ C(Λ; [T∗, T

∗]), and a family of SDS S(λ) : R+ × Cρ(λ) → Cρ(λ). Us-
ing Theorem 3 and Theorem 5 one can obtain analogous results to the above ones.
Indeed, an analogous and valid example would be x′(t) = Gλ(xt) with Gλ(φ) =
f(λ, φ(0)) + g(φ(−ρ(λ))), for any φ ∈ CT∗ .
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