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Abstract

We prove the existence of attractors for some types of differential problems contain-
ing infinite delays. Applications and examples are provided to illustrate the theory,
which is valid for both cases with and without explicit dependence of time, and with
or without uniqueness of solutions, as well.
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1 Introduction

Retarded differential equations are an important area of applied mathematics due to physical
reasons with non instant transmission phenomena as high velocity fields in wind tunnel exper-
iments, or other memory processes, and specially biological motivations (e.g. [13,23,27]) like
species’ growth or incubating time on disease models among many others.

On the other hand, the asymptotic behaviour of such models has meaningful interpretations
like permanence of species on a given domain, with or without competition, their possible
extinction, instability and sometimes chaotic developments, being therefore of obvious interest.
There exists a wide literature devoted to the stability of fixed points, and also to the study of
global attractors. This is another useful tool but still valid with more general conditions than
those for stability, and the equations for which the existence of an attractor (and so both stable
and unstable regions) can be ensured is therefore an interesting subject which is receiving much
attention.
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The theory of global attractors for autonomous systems as developed by Hale in [15] owes much
to examples arising in the study of (finite and infinite) retarded functional differential equations
[17] (for slightly different approaches see Babin and Vishik [2], Ladyzhenskaya [24], or Temam
[29]). Although the classical theory has been extended in a relatively straightforward manner
to deal with time-periodic equations, general non-autonomous equations such as

x′(t) = F (t, x(t), x(t− ρ(t))),

with variable delay, or

x′(t) =
∫ 0

−h
b(t, s, x(t+ s)) ds,

for distributed delay terms, including the possibility of being h = +∞, fall outside this scope.

Recently, a theory of ‘pullback attractors’ has been developed for stochastic and non-autonomous
systems in which the trajectories can be unbounded when time increases to infinity, allowing
many of the ideas for the autonomous theory to be extended to deal with such examples (cf.
[11,22])). In this case, the global attractor is defined as a parameterized family of sets A(t)
depending on the final time, such that attracts solutions of the system ‘from −∞’, i.e. initial
time goes to −∞ while the final time remains fixed.

The cases in which the hereditary characteristics in the models involve bounded (also termed
finite) delays has already been analysed for instance in [7] and [9]. In the latter, also the
situations in which uniqueness of solutions cannot be ensured (or it is not known) are considered
thanks to the concept of multi-valued semigroup or semiprocess.

However, there are reasons that make sensible the appearance of unbounded delays, for instance
when a problem has different delay intervals (possibly unknown) where may be applied, and a
unified model is required, as in economic situations or the pantograph equation (physics), or
properly a complete influence of the whole past of the state (e.g. versions of the logistic model,
see below).

As far as we know, the existence of attractors in the case of differential equations with infinite
(or unbounded) delays has only been analysed in the autonomous case (e.g. see Hale & Lunel
[17]). This means that the existence of attractors for very simple equations as, for example,

x′(t) = F (x(t), x(qt)), q ∈ (0, 1),

(which includes the interesting pantograph equations, e.g. [21,14,28]), has not been studied yet.

Several technical reasons must be taken into account. On the one hand, for some of these prob-
lems, it is not possible to use the autonomous form x′(t) = f(xt), since f depends explicitly on
time, which motivates the necessity of using the theory of non-autonomous dynamical systems.

On the other hand, being infinite in most cases the time interval influence, the choice of the
phase space for these problems is delicate (see [16] for a discussion on this problem). Even
this is an important difference for stability results (see [19]). This fact also implies that the
compactness techniques to ensure existence of attractor for finite delay equations used in [9]
may not be applied directly here.

Additionally, we point out that uniqueness is now a more rare condition to obtain, which leads
us to state our study in a (more) general multi-valued framework.
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We aim to show, jointly with classical results on global attractors, that the theory of pullback
attractors for non-autonomous dynamical systems (with or without uniqueness) can be very
useful in order to prove the existence of attracting sets for differential equations with infinite
delay.

The content of the paper is as follows. Section 2 is devoted to preliminaries on infinite delay
differential equations and their associated dynamical systems. In Section 3 we recover and state
some new results on attractors which are suitable for the considered equations. Finally, Section
4 is devoted to several applications of the theory, some of them with biologic motivation, as
Logistic or Lotka-Volterra models.

2 Preliminaries. Dynamical systems

In this section we aim to establish briefly some preliminaries on existence and uniqueness of
integro-differential equations with infinite delays, the definitions of (generally multi-valued, if
uniqueness does not hold) semiflows and processes associated to the autonomous and non-
autonomous problems. For a more detailed exposition we refer to [1,16–18].

Let us first introduce some notation: we will consider Rm with its usual Euclidean topology
and denote by 〈·, ·〉 and | · | its inner product and norm respectively. The delay functions will
be denoted as usual by xt, that is, xt(s) = x(t + s) for every s such that it has sense. In this
paper it will be s ∈ (−∞, 0], so that xt : (−∞, 0] → Rm. Also, it will be useful to denote
Rd = {(t, s) ∈ R2, t ≥ s}, BX(y, r) the open ball in a metric space X with center y and radius
r, and P (X) the non-empty subsets of X.

Solutions for delay differential equations

Delay differential and integro-differential equations have been intensively studied for a long
time, and deeply developed since Volterra’s works (see [13,17,23] and the references therein
among others).

Consider the canonical model
x′(t) = f(t, xt), (1)

with f a function regular enough, for example continuous (of course, this may be weakened
from the mathematical point of view, but the biological motivations lead us to consider so), on
suitable spaces to be specified below. This functional may contain, for instance, terms of the
form

F (t, x(t), x(t− ρ(t)) +
∫ 0

−h
b(t, s, x(t+ s))ds+

∫ 0

−∞
c(t, s, x(t+ s))ds,

though for simplicity in the exposition we will restrict ourselves in the distributed term to the
case without the integral over [−h, 0], since it does not contribute significantly to our study,
but only the improper integral.

There are many results concerning existence (and uniqueness) of solutions using for instance
iterative methods, contraction arguments, and other infinite-dimensional fixed point techniques,
among others (see for instance [17, Ch. 12], [16,18–20]). Let us only comment that unlike the
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finite delay case, the initial data is always part of the solution. So, there is not a time with
immediate regularization, and some kind of regularity must be imposed from the beginning (cf.
[1,16–18]). This leads us to work with a canonical phase space:

Cγ = {x ∈ C((−∞, 0]; Rm) : sup
θ∈(−∞,0]

eγθ|x(θ)| <∞ and ∃ lim
θ→−∞

eγθx(θ)}, (2)

where the parameter γ > 0 will be determined later on.

The space Cγ is Banach with the norm ‖ψ‖Cγ := sup
θ∈(−∞,0]

eγθ|ψ(θ)|. Standard results on existence

can be posed here naturally (as we recall below). Due to realistic situations as biological models,
it will also be used the Banach space C+

γ , that is, the positive cone of Cγ.

Other choices are also valid, but we will restrict our attention only to this situation just for
clarity in the presentation (for more comments see Remark 1 below).

Nevertheless, we would like to mention that the infinite delay case may be quite more suitable
from the existence than from the uniqueness point of view, since the right hand side should
now incorporate additional assumptions for uniqueness over more particular functional spaces.
This will make the multi-valued framework more suitable.

As usual, a priori bounds for possible solutions and bounded map in the right hand side of (1),
i.e. that maps bounded sets onto bounded sets, lead to non-explosion of solutions (cf. [18, Ch.
2]) (These are all our considered situations). This implies that solutions are continuable and
well defined for all times, and the study of its asymptotic behaviour is sensible. Some essential
definitions and results in this sense are described now.

Semiflows and processes for delay differential equations

In order to avoid unnecessary repetitions, we shall first state the results for the non-autonomous
case and will particularize later on for the autonomous framework, i.e. without explicit depen-
dence on time.

To construct the dynamical system associated to (1), we need a suitable phase space, for
instance Cγ, and a smooth enough right hand side, for example f ∈ C(R×Cγ; Rm). [If f is only
Caratheodory we would deal with solutions that ar absolutely continuous; however all through
the paper f will be continuous functionals and solutions will be classical]. At least, we can
obtain some local results on the existence of solutions to the initial value problemx

′(t) = f(t, xt), t > τ

xτ = φ,
(3)

for each τ ∈ R and φ ∈ Cγ; i.e. there exist an interval [τ, τ + δ) and a function x ∈ C([τ, τ +
δ); Rm) that satisfies the integral equality x(t) = φ(0) +

∫ t
τ f(s, xs)ds for t ∈ [τ, τ + δ) (e.g.

cf. [18, Th.1.1,p.36]). In the sequel we shall use the notations u(t, τ, φ) or simply u(t) for the
solutions.

Now, if uniqueness of solutions holds, we can construct a (local, i.e. defined for t ∈ (τ, τ + δ))
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two-parameter process U(t, τ, ·) : Cγ → Cγ as

U(t, τ, φ) = ut(·, τ, φ),

where u(·, τ, φ) denotes the unique solution to (3).

However, since we are interested in the study of the long-time behaviour for the problem, we
restrict ourselves to deal with solutions that exist for all times (see Remark 4 below).

Remark 1 Observe that the choice of Cγ as state space makes that any element x ∈ Cγ satisfies
that the map t 7→ xt is continuous. This fact is not necessary in order to construct our two-
parameter semigroup (see Definition 2 below), and to prove the existence of attractors [for
that we will use essentially the squeezing weight of the exponential in the queue]. But it is an
important point in the existence of solutions.

Another difficulty that arises in many cases is the fact that we cannot ensure the uniqueness
of solutions of problem (3), so in order to construct the most general associated multi-valued
dynamical system, we have now to consider all the solutions which are globally defined for
positive times associated to each initial datum. If we assume that for every τ ∈ R and φ ∈ Cγ

there exists at least one solution u(t, τ, φ) defined for any t ≥ τ, then a multi-valued process
U can be defined correctly. Namely, let D(τ, φ) be the set of all solutions u(t, τ, φ) which are
defined for t ≥ τ. Then we put

U(t, τ, φ) = {ut : u(·, τ, φ) ∈ D(τ, φ)}.

This fits precisely into the following definition (here X denotes an abstract complete metric
space; we put this since it will be used not only with Cγ but, for instance, with the positive
cone C+

γ ):

Definition 2 The map U : Rd × X → P (X) is said to be a multi-valued dynamical process
(MDP) on X if
(1) U(t, t, ·) = Id (identity map);
(2) U(t, s, x) ⊂ U(t, τ, U(τ, s, x)), for all x ∈ X, s ≤ τ ≤ t,
where U(t, τ, U(τ, s, x)) = ∪y∈U(τ,s,x)U (t, τ, y) .
The MDP U is said to be strict if

U(t, s, x) = U(t, τ, U(τ, s, x)), for all x ∈ X, s ≤ τ ≤ t.

It can be proved easily (cf. [9]), just using concatenation and translation of solutions to (3),
that U is a strict MDP.

Due to realistic reasons related to the particular models under study (biological, physical, etc.),
we may be interested only in the solutions which remain non-negative for all t ≥ τ. In such a
case we define D+(τ, φ) as the set of all solutions u(t, τ, φ) which are defined for t ≥ τ and such
that ut ∈ C+

γ , for all i and t ≥ τ. Assuming that for all τ and φ ∈ C+
γ such a solution exists,

then we can define the map

U+(t, τ, φ) = {ut : u(·, τ, φ) ∈ D+(τ, φ)}.

When the problem is autonomous, there is no need to mark both initial and final time, but only
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the elapsed time. This will be usually denoted by G(t, ψ) and called multi-valued semiflow. If
the solution of the Cauchy problem is unique, it defines a semigroup in the usual sense.

Although consistency in the definition of a process implies having the same space as initial and
final, let us introduce, for convenience of notation in the assumptions, another map:

Ū(t, τ, ψ) = {u(t, τ, ψ) : u(·, τ, ψ) ∈ D(τ, φ)}.

We also use the analogous notation Ū+ for D+(τ, φ) instead of D(τ, φ) above.

Observe that we have no necessity of introducing the auxiliary process

Ũ(t, s, (u0, ψ)) = (u(t, s, (u0, ψ), ut(·, s, (u0, ψ))))

as in [10] since we are dealing all the time with continuous functions.

The structure of these processes and semiflows comes at last by the solutions and is stated in
the following result. A similar result with finite delay can be found in [9, Prop. 10].

Let us firstly observe that the continuity notion for multi-valued maps is not unique, and the
upper semicontinuity is the suitable notion for results on attractors (see below). A multi-valued
map F : X → P (X) is upper semicontinuous if for every x ∈ X and every neighbourhood M
of F (x), there exists a neighbourhood N of x such that F (y) ⊂ M for any y ∈ N. When the
process is single valued, we recover the usual notion of continuity.

We are again back to the space Cγ as phase space of our problem, instead of X.

Proposition 3 Suppose f ∈ C(R × Cγ; Rm) is bounded and that the differential equation
x′(τ) = f(τ, xτ ) generates a MDP U. Assume that Ū is uniformly bounded in the follow-
ing sense: for every pair (t, s) ∈ Rd and R > 0, there exists a constant M(R, s, t) > 0
such that Ū(θ, s, BCγ (0, R)) ⊂ BRm(0,M(R, s, t)) for all (s, θ) such that s ≤ θ ≤ t. Then,
U(t, s, ·) : Cγ → P (Cγ) has compact values and is upper semicontinuous.

Remark 4 We point out what may seem to be a duplicity in the hypothesis or an “abuse of
notation” in the above statement. As we announced before, we are only concerned with solutions
defined globally in time. In order to obtain that in differential problems, it is usual to proceed by
a priori estimates on possible solutions. This is represented in the above statement “formally”
by the bound for Ū (formal since we have written it with Ū which is composed of solutions).
Local existence and continuation results already cited (cf. [16,18]; see also [9, Corollary 6] for
the case with finite delay) allow to construct correctly global solutions and therefore to define
the MDP U.

In the applications in which we will restrict ourselves to positive cone of solutions, we will have
to do something more than simple a priori estimates, and to prove properly the existence, at
least, of one globally defined positive solution.

Proof. Let ψ ∈ Cγ and t ≥ s be given. We will see that U(t, s, ψ) is compact. Suppose we have
a sequence ϕn ∈ U(t, s, ψ). Let us check we can extract a convergent subsequence.

Indeed, the solutions to the differential problem are xn(τ) = ϕn(τ − t) for τ ∈ [s, t], and
ψ(θ) = ϕn(θ + s− t) for θ ≤ 0.

6



The uniform bound of all xn on [s, t] and the fact that f is bounded gives that {xn} is an
equicontinuous family. Therefore, by the Ascoli-Arzelà theorem we can extract a convergent
subsequence xn′ → x in C([s, t]; Rm). And so, extending x suitably by ψ till −∞, the conver-
gence of these elements also holds in Cγ.

Using the continuity and boundedness of f to obtain an upper bound, we can apply the Lebesgue
Theorem to

xn(t)− xn(s) =
∫ t

s
f(τ, ϕn

τ )dτ

to obtain, passing through the limit, an equality for x which is proved to be a solution, as
desired.

The upper semicontinuity follows analogously. Indeed, by contradiction, for every M neigh-
bourhood of U(t, s, x) there would exist an element y (close enough to x) such that U(t, s, y)
is not contained in M. Consider such a sequence yn → x and elements zn ∈ U(t, s, yn) with
zn 6∈ M. We will see that there exists a convergent subsequence zn′ → z which belongs to
U(t, s, x), a contradiction. Actually, the arguments are the same that in the first part: the
Ascoli-Arzelà Theorem allows to extract the convergent subsequence, and from the equality
zn(t) − zn(s) =

∫ t
s f(τ, yn

τ )dτ we can pass to the limit using the Lebesgue Theorem and con-
clude: z(t)− z(s) =

∫ t
s f(τ, xτ )dτ.

It is straightforward to obtain the autonomous version.

Proposition 5 Suppose f ∈ C(Cγ; Rm) is bounded and that x′(τ) = f(xτ ) generates a semiflow
G. Assume that Ū(·, 0, ·) is uniformly bounded in the following sense: for every t > 0 and
R > 0 there exists a constant M(R, t) > 0 such that Ū(s, 0, BCγ (0, R)) ⊂ BRm(0,M(R, t)) for
all 0 ≤ s ≤ t. Then, G(t, ·) : Cγ → P (Cγ) has compact values and is upper semicontinuous.

Remark 6 The above results remain true for U+, supposed that it is well defined, and the same
type of bounds holds for Ū+.

Remark 7 It is also useful for the theoretical results exposed below (cf. Theorem 14 and its
original version) to observe that a multi-valued map F which is upper semicontinuous and has
closed values has closed graph.

3 Attractors, general results, and infinite delays

Our aim in this section is to expose briefly some of the main results on existence of attractors,
forward and pullback, for multi valued semiflows and processes, which generalize and extend
the stability studies for dynamical systems. As long as semiflows and processes are not compact,
we will only be concerned with asymptotically compact properties and associated results.

Denote by d the metric over X. Let us also denote by dist (A,B) the Hausdorff semi-metric,
i.e., for given subsets A and B we have

dist(A,B) = sup
x∈A

inf
y∈B

d (x, y) .

Definition 8 It is said that the set A ⊂ X is a global attractor of the multi-valued semiflow G
if:
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(1) It is attracting, i.e,

dist (G (t, B) ,A) → 0 as t→ +∞, for all bounded B ⊂ X;

(2) A is negatively semi-invariant, i.e., A ⊂ G (t,A), for all t ≥ 0;
(3) It is minimal, that is, for any closed attracting set Y , we have A ⊂ Y .

In applications it is desirable for the global attractor to be compact and invariant (i.e. A =
G (t,A), for all t ≥ 0), which is usually obtained if the semiflow is strict. This will be the case
in this paper.

When the differential equation is non-autonomous and we wish to study its asymptotic be-
haviour, the above concept is a bit restrictive, and a new formulation, like kernel sections,
skew-product flows, cocycle attractors or pullback attractors may be more suitable. We will be
concerned with the last one, according to the following definition:

Definition 9 The family {A(t)}t∈R is said to be a non-autonomous or pullback attractor of the
MDP U if:

(1) A(t) is pullback attracting at time t for all t ∈ R :

dist (U (t, s, B) , A(t)) → 0 as s→ −∞, for all bounded B ⊂ X;

(2) It is negatively invariant, that is,

A(t) ⊂ U(t, s, A(s)), for any (t, s) ∈ Rd;

(3) It is minimal, that is, for any closed set Y attracting at time t, we have A(t) ⊂ Y .

The pullback attracting property considers the state of the system at time t when the initial
time s goes to −∞.

In the applications it is also desirable for every A (t) to be compact (if so, we shall say that
the attractor is compact). It would be also of interest to obtain the invariance of A (t) (i.e.
A(t) = U(t, s, A(s))). However, in order to prove this we need to assume that the map U (t, s, ·) is
lower semicontinuous (cf. [5,6]), which is a strong assumption (although this may be circumvent
in a probability framework, cf. [25]).

The main idea behind the attractors rely on two facts: an attraction of each bounded set
by another one (the ω-limit set) with “good properties”, and, when possible, some kind of
absorption towards a unique set that makes every ω-limit may be “reduced” to this last one,
as we will see below in the theoretical results.

Naturally, autonomous and non-autonomous cases have different formulations, but the au-
tonomous one can be derived from the non-autonomous case in the standard way: omitting
a final time and going to ∞ instead of coming from −∞, and for the sake of brevity some
autonomous definitions will be omitted here.

The concepts of (shift) orbit until s and ω-limit set at time t are formulated respectively by:

γs(t, B) =
⋃
τ≤s

U(t, τ, B), ω(t, B) =
⋂
s≤t

γs(t, B). (4)
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We have the following result concerning the ω-limit sets:

Theorem 10 (cf. [6, Th. 6]) Let X be a complete metric space. Let U be a multi-valued process,
and suppose that for every t ∈ R and every bounded set B ⊂ X there exists a compact set
D(t, B) ⊂ X such that

lim
s→−∞

dist(U(t, s, B), D(t, B)) = 0. (5)

Then, ω(t, B) defined by (4) is nonempty, compact and the minimal set attracting B at time t.

The following property is actually an equivalent condition to have a compact set D(t, B) sat-
isfying (5) (see Lemma 8 in [6]):

Definition 11 The MDP U is called (pullback) asymptotically upper semicompact if for any
bounded set B ⊂ X and for each t ∈ R, any sequence ξm ∈ U(t, sn, B), where sn → −∞, is
precompact.

The next property says that all the dynamic starting in one element accumulates near one only
set (parameterized in t, of course; though the useful concept is for the autonomous version as
we will see):

Definition 12 The MDP U is called (pullback) point dissipative if for any t ∈ R there exists
a bounded set B0(t) ⊂ X such that

dist(U(t, s, ψ), B0(t)) → 0, as s→ −∞, for allψ ∈ X.

With the above definitions, the main results for existence of attractors which will be valid in
our context are as follows (observe that the definition of asymptotic upper semicompactness
and statement of the theorems may be slightly different in the cited papers).

The autonomous version (adapting in the usual manner the above definitions to a semiflow) is
given by the following:

Theorem 13 [cf. [26, Th. 3 & Remark 8]] Let G be a pointwise dissipative and asymptotically
upper semicompact multi-valued semiflow. Suppose that G(t, ·) : X → P (X) has closed values
and is upper semicontinuous for any t ∈ R+. Then G has the compact global attractor A. It is
minimal among all closed sets attracting each bounded set, and it is invariant: G(t,A) = A for
all t ≥ 0.

It is worth pointing out that there are stronger conditions to ensure existence of attractors, but
they are not valid here. Precisely, if one obtains the existence of a bounded absorbing set (or
a family of bounded absorbing sets in the non-autonomous case) and has some compactness
property of the process, this implies the existence of an attractor. The compactness of the
semiflow or process is easy to obtain, for instance, for finite delay differential equations applying
the Ascoli-Arzelà Theorem, cf. [9], under bounded maps assumption and after the delay time
period, which has no sense here obviously.

The non-autonomous results we will apply are the following:

Theorem 14 [cf. [6, Th. 11]] Let X be a complete metric space, and U a multi-valued dynam-
ical process with closed values, such that for all s ≤ t, U(t, s, ·) is upper semicontinuous and
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asymptotically upper semicompact process. Then, there exists a pullback attractor given by

A(t) =
⋃

B bounded

ω(t, B).

It is desirable to have good properties for {A(t)}, for instance compactness although this uses
stronger assumptions. The next result uses condition (5) from Theorem 10 uniformly for every
bounded set B :

Theorem 15 [cf. [6, Th. 18]] Under the same assumptions of Theorem 14, if there exists a
compact set D(t) which satisfies for any bounded set B ⊂ X

lim
s→−∞

dist(U(t, s, B), D(t)) = 0,

then the closure of the attractor A(t) obtained in Theorem 14, is a compact attractor.

The following theorem does not use the strong assumption of compactness of the process, which
would imply the compactness of the attractor, but still fits to our situation and the above result
giving the desired compactness. It is based in the paper [8], although there it is stated in another
framework of dynamical systems: tempered sets.

We need previously the following definition:

Definition 16 A family B(t) is said pullback absorbing for the process U if for every bounded
set B ⊂ X, there exists a time τ(t, B) such that

U(t, s, B) ⊂ B(t) ∀s ≤ τ(t, B).

Theorem 17 Under the same assumptions of Theorem 14, if there exists a family of absorbing
bounded sets {B(t)}t∈R such that

B(s) ⊂ B(t) ∀ s ≤ t, (6)

then the extra assumption in Theorem 15 holds. Indeed, one can take D(t) = ω(t, B(t)), and
the attractor from Theorem 14 becomes A(t) = ω(t, B(t)).

Proof. The construction of the attractor is standard:

A(t) =
⋃

B bounded

ω(t, B).

By (4), using the absorbing family {B(t)} and the inclusion relation between these sets, one
has for any fixed bounded set B, and times t ≥ r, that there exists a time τ(r, B) such that for
any s ≤ τ(r, B) one has

U(t, s, B) ⊂ U(t, r, U(r, s, B)) ⊂ U(t, r, B(r)) ⊂ U(t, r, B(t))

and, indeed, ω(t, B) ⊂ ω(t, B(t)) for any bounded set B. As B(t) is another bounded set, this
proves that A(t) = ω(t, B(t)).

Remark 18 (i) The assumption of increasing family of absorbing bounded sets can be weak-
ened. Indeed, by the proof, one can see that it is enough to have, for each B(t), a sequence of
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positive values {rk(t)}k∈N increasing to +∞, such that for every rk(t) the following inclusion
holds B(t− rk(t)) ⊂ B(t).

(ii) The compact pullback attractor {A(t)}t has also the following interesting boundedness prop-
erty:

⋃
t≤τ A(t) ⊂ B(τ).

(iii) Given a family {B(t)} of bounded absorbing sets, one could be tempted (to apply the result)
to construct the following family: B̃(t) =

⋃
s≤tB(s). Of course, this is an increasing family of

absorbing sets, as required in the statement of the theorem, but each B̃(t) does not have to be
bounded.

Asymptotic compactness on delay differential equations

Now let us expose, similarly to the continuous properties of semiflows and processes, one of the
properties that will be essential for the construction of attractors. This theoretical presentation,
based on some kind of uniform estimates, will be proved particularly for each of the applications.

Proposition 19 Suppose that f is continuous, bounded and such that U is well defined globally
in time. Let t ∈ R be given, and assume that Ū(t, ·, ·) is uniformly bounded in the following sense:
for every t ∈ R and R > 0, there exists a constant M(R, t) > 0 such that Ū(θ, s, BCγ (0, R)) ⊂
BRm(0,M(R, t)) for all (s, θ) such that s ≤ θ ≤ t. Then, U is asymptotically upper semi-
compact.

Proof. Consider the sequences sn → −∞ and ξn ∈ U(t, sn, ϕn) with ϕn ∈ BCγ (0, R). We will
check that {ξn} is precompact.

By the assumptions on boundedness of f and Ū(t, ·, ·), we can apply the Ascoli-Arzelà Theorem
on solutions to ensure precompactness on compact intervals of time for ξn|[−T,0] for every T > 0.
So, we can obtain a continuous function ψ : (−∞, 0] → Rm such that |ψ(θ)| ≤MR for all θ ≤ 0,
and such that a subsequence, relabelled the same, converges uniformly to ψ on Rm on every
interval [−T, 0].

Actually, we claim that ξn converges to ψ in Cγ. Indeed, we have to see that for every ε > 0
there exists nε such that

sup
θ∈(−∞,0]

|ξn(θ)− ψ(θ)|eγθ ≤ ε ∀n ≥ nε. (7)

Fix Tε such that MRe−γTε ≤ ε/2, and take nε such that t− snε ≥ max
(
Tε,− 1

γ
ln ε

2R

)
. Since the

convergence of ξn to ψ holds in compact intervals of time, in order to prove (7) we only have
to check

sup
θ∈(−∞,−Tε]

|ξn(θ)− ψ(θ)|eγθ ≤ ε ∀n ≥ nε.

By the uniform bound on ψ and the choice of Tε, it suffices to prove the following:

sup
θ∈(−∞,−Tε]

|ξn(θ)|eγθ ≤ ε/2 ∀n ≥ nε.

11



We remind that an element ξn of the (possibly multi-valued) process U has two parts:

ξn(θ) =

ϕ
n(θ + t− sn), if θ ∈ (−∞, sn − t),

un(θ + t, sn, ϕn), if θ ∈ [sn − t, 0],

where un ∈ D(sn, ϕn). Thus, the proof is finished if we prove that

max

{
sup

θ∈(−∞,sn−t)

|ϕn(θ + tn)|eγθ, sup
θ∈[sn−t,−Tε]

|un(θ + t, sn, ϕn)|eγθ

}
≤ ε/2.

The first term can be bounded as follows:

sup
θ≤sn−t

|ϕn(θ + t− sn)|eγθ = sup
θ≤sn−t

|ϕn(θ + t− sn)|eγ(θ+t−sn)eγ(sn−t)

≤Reγ(sn−t) ≤ ε

2
,

thanks to the choice of nε. And finally, the second term is, again by the choice of Tε, less than
ε/2.

The autonomous case follows similarly to the above proof. Actually, it consists essentially of
putting tn = t− sn. For clarity, we give the statement here.

Proposition 20 Suppose that f is continuous, bounded and has no explicit dependence on
time, and is such that G is well defined, and uniformly bounded, that is, for every R > 0, there
exists a constant MR > 0 such that Ū(t, 0, BCγ (0, R)) ⊂ BRm(0,MR) for all t ≥ 0. Then, G is
asymptotically upper semi-compact.

Remark 21 Again we remind that the above results are true for U+, supposed that it is well
defined, and the same type of bounds holds for Ū+.

4 Applications

Next, we consider several situations where the theoretical results in Section 3 can be applied.
Our first examples will be devoted to autonomous equations where the terms are multiplying
themselves as the logistic and Lotka-Volterra models.

A second subsection will be concerned with additive and non-autonomous terms, considering
successive weaker situations in some way, which show some restrictions that have to be taken
into account on parameters to ensure the existence of an attractor.

In many physical and biological applications the variables xi have to be non-negative. Hence,
we need to define a multi-valued semiflow in a more restrictive phase space that Cγ, namely,
as announced before, we will consider

C+
γ = {ψ ∈ Cγ : ψi (s) ≥ 0, for all i and s ≤ 0} .

Firstly, we proceed with a result that shows, for a continuous and “positive” function f, that a
semiflow composed only of positive solutions defined globally in time can be constructed.

12



Lemma 22 Let f be continuous and bounded. Suppose that

fi (t, ψ) ≥ 0, for all i, t and ψ ∈ C+
γ such that ψi (0) = 0. (8)

Then, for any ψ ∈ C+
γ there exist A > t0 and a solution x to x′(t) = f(t, xt) with xt0 = ψ, such

that xt ∈ C+
γ , for any t ∈ [t0, A] .

If for any T0 > t0 there exists B = B (ψ, T0, t0) such that for every solution x ∈ D+(t0, ψ)
satisfying xt ∈ C+

γ , t ∈ [t0, Tx) , Tx ≤ T0, one has

|x (t)| ≤ B, for all t ∈ [t0, Tx) , (9)

then there exists at least one global solution such that xt ∈ C+
γ , for any t ≥ t0.

Proof. Define the approximate functions f ε (t, ψ) = f (t, ψ) + εd, ε > 0, where d = (1, ..., 1),
which satisfy f ε

i (t, ψ) ≥ ε, for all i and ψ ∈ C+
γ such that ψi (0) = 0. Consider an arbitrary

solution xε (t) of the equation x′(t) = f ε (t, xt) corresponding to xt0 = ψ ∈ C+
γ , and defined

in [t0, Aε]. Suppose that xε (t) is not positive for some t. Let the i component of this solution
be the first one such that the respective solution component becomes negative in some interval
(t1, t2) , xi (t) ≥ 0, for t ≤ t1. Thus, by the continuity of f ε in Cγ and (8) we have

d

dt
xε

i (t) = f ε
i (t, xε

t) > 0, for t ∈ (t1, t1 + δ) ,

which is a contradiction. Hence, xε (t) ≥ 0, for all t ∈ [t0, Aε].

We note that following the same lines of the proof of the theorem of existence of solutions
[16, Theorem 2.1] one can choose an interval [t0, A] such that xε (t) are defined for all ε > 0,
t ∈ [t0, A] . Also, there exists η > 0 such that

|xε (t)| ≤ η, for all ε > 0, t ∈ [t0, A] .

The boundedness of f implies that the functions
d

dt
xε (t) are uniformly bounded in C ([t0, A] ; Rm),

so that by the Ascoli-Arzelà theorem there exists a converging subsequence xεn .The limit func-
tion x (t) is a solution of x′(t) = f(t, xt) defined on [t0, A] (see [16, Lemma 2.3]). Clearly,
x (t) ≥ 0 for all t ∈ [t0, A], so that xt ∈ C+

γ as we wanted to prove.

For the second statement, let for any T0 > t0 there exists B (ψ, T0) such that (9) holds. Suppose
that a global solution such that xt ∈ C+

γ , for any t ≥ t0, does not exist. Then for any solution
x (t) one can choose the maximal interval [t0, Tx) where xt ∈ C+

γ and Tx < +∞. Observe that
condition (9) implies that x (t) cannot blow up and cannot oscillate at Tx (by the boundedness
of f). Then, the limit of x in Tx exists. By continuation of solutions (cf. [16, Theorem 2.3]),
x (t) exists on [t0, Tx + δ] but for some i we have xi (Tx) = 0 and xi (t) < 0, for t ∈ (Tx, Tx + δ).
Let

T0 = sup {Tx : x (·) is solution with xt0 = ψ} .

We state that T0 = +∞. If not, we can choose an increasing sequence Txn such that Txn → T0.
Consider any Tm ∈ (t0, T0). Using (9), the boundedness of f and the Ascoli-Arzelà theorem, one
can prove that up to a subsequence xn (·) converges to some function x (·) in C ([t0, Tm] ,Rm)
and x (·) is a solution [16, Lemma 2.3]. Taking Tm → T0 and using a diagonal argument we
obtain a solution x (t) such that xt ∈ C+

γ for all t ∈ [t0, T0) .
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We use again a continuation argument as before, so we can extend the solution to x(T0). Then,
we have that x (t) can be continued to a solution defined on [t0, T0 + δ), δ > 0, with xt ∈ C+

γ

(by the first claim), a contradiction.

Let now Txn → +∞. Repeating the previous argument with Tm → +∞ we obtain a global
solution x (t) such that xt ∈ C+

γ , for any t ≥ t0.

Remark 23 In the next paragraph, the natural phase space for the problem will be C+
γ . Bearing

in mind Remark 6, Proposition 5, Proposition 20 and Remark 21, the rest of theoretical results
will be valid for U+, the MDP of globally defined solutions which are positive in all components,
and Ū+, instead of U and Ū .

4.1 Logistic equation

Consider the delayed logistic equation
dx

dt
(t) = rx (t)

(
1−K−1

∫ 0

−∞
w (s)P (x (s+ t)) ds

)
,

x0 = ψ,
(10)

where x (t) ≥ 0, r > 0, P ∈ C (R; R), P (x) ≥ 0 if x ≥ 0, w ∈ C (R; R+) and there exist
Ci, L > 0, ζ ≥ 1, such that for all x ∈ R

|P (x)| ≤C1 |x|ζ + C2,

P (x)≥L |x| . (11)

Moreover, we assume that ∫ 0

−∞
w (s) e−ηsds <∞, (12)

for some η > 0. In particular, this implies that
∫ 0
−∞w (s) ds <∞.

Remark 24 This model contains as a particular case the standard logistic equation, where
P (x) = x (cf. [27, Sec.3.1]).

We state that the function M : Cγ → R,

ψ 7→M (ψ) =
∫ 0

−∞
w (s)P (ψ (s)) ds

is continuous on Cγ if γ = η
ζ
. Indeed, let ε > 0 be arbitrary. Then in view of (12) for any D > 0

there exists K = K (D, ε) > 0 such that for all ψ ∈ Cγ with ‖ψ‖Cγ
≤ D one has

∫ −K

−∞
w (s) |P (ψ (s))| ds =

∫ −K

−∞
w (s) e−ηs |P (ψ (s))| eηsds

≤
∫ −K

−∞
w (s) e−ηs

(
C1

∣∣∣ψ (s) e
η
ζ
s
∣∣∣ζ + C2e

ηs
)

ds

≤
(
C1D

ζ + C2

) ∫ −K

−∞
w (s) e−ηsds <

ε

3
.
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Then

∣∣∣∣∫ 0

−∞
w (s)P (ψ1 (s)) ds−

∫ 0

−∞
w (s)P (ψ2 (s)) ds

∣∣∣∣
≤
∫ 0

−K
w (s) |P (ψ1 (s))− P (ψ2 (s))| ds

+
∫ −K

−∞
w (s) (|P (ψ1 (s))|+ |P (ψ2 (s))|) ds < ε,

if ‖ψ1 − ψ2‖Cγ
< δ (ε,D) and ‖ψi‖Cγ

≤ D.

Therefore, the map f : Cγ → R defined by

f (ϕ) = rϕ (0)
(
1−K−1

∫ 0

−∞
w (s)P (ϕ (s)) ds

)

is continuous and the existence of a local solution to (10) is guaranteed (cf. [18, Th.1.1,p.36]).
Boundedness of f can be proved analogously. This leads us to the following result.

Lemma 25 For any ψ ∈ C+
γ there exists at least one global solution such that xt ∈ C+

γ , for
any t ≥ 0.

Proof. First, multiplying (10) by an arbitrary solution x (t) such that xt ∈ C+
γ in [0, Tx) we

have
d

dt
|x(t)|2 ≤ 2r |x(t)|2 ,

so that, by the Gronwall lemma,

|x (t)|2 ≤ |ψ (0)|2 exp (2rT0) , for all 0 ≤ t < Tx ≤ T0, (13)

where ψ = x0, so that condition (9) holds. It is evident that condition (8) is satisfied. Hence,
the result follows from Lemma 22.

Lemma 25 implies that a multi-valued semiflow G+ : C+
γ → P (C+

γ ) can be well defined in the
way we have explained before.

Lemma 26 For any bounded set B in C+
γ we have that

⋃
t≥0

G+ (t, B)

is bounded. Moreover, there exists a bounded absorbing set for G+.

Proof. Let x (t) be an arbitrary global solution such that xt ∈ C+
γ for t ≥ 0. Denote c =∫ 0

−∞w (s) ds and b = c− ε, ε > 0. Let ψ (0) ≤ K
bL

. Then (13) gives

|x (t) | ≤ R (T0) =
K

bL
exp (rT0) , for all 0 ≤ t ≤ T0. (14)

We shall prove that for some T0 > 0 the set B0 =
{
x : ‖x‖Cγ

≤ R (T0)
}

is absorbing.
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Observe that T0 can be chosen such that∫ 0

−T0

w (s) ds ≥ b.

We do so, and claim that for such T0 we have that |x (t)| ≤ R (T0), for all t ≥ 0, provided that
|ψ (0)| ≤ K

bL
.

Suppose the opposite. Then, since the problem is autonomous, using (14), and a shift if neces-
sary, there exist a solution x (t) , T1 (ψ) ≥ 0, and times T2 and T3 with T3 > T2 ≥ T1 + T0 such
that

|x (T1)| =
K

bL
, |x (t)| > K

bL
for t ∈ (T1, T2] ,

|x (T2)| = R (T0) , |x (t)| > R (T0) for t ∈ (T2, T3] .

We note that if t ≥ T2, then s+ t ≥ T1, for all s ∈ [−T0, 0], so that using (10)-(11) we have

1

2

d

dt
|x(t)|2≤ r |x(t)|2

(
1−K−1L

∫ 0

−∞
w (s) |x (s+ t)| ds

)
<r |x(t)|2

(
1− 1

b

∫ 0

−T0

w (s) ds
)

,

for t ∈ (T2, T3). Now, from the choice of T0, we deduce that the derivative of |x (t)|2 is negative
on (T2, T3) and we have a contradiction. This implies that the set B0 is absorbing for any
bounded B set such that |ψ (0)| ≤ K

bL
, for all ψ ∈ B. Indeed, using that

sup
θ∈(−∞,−t]

eγ(t+θ) |x (t+ θ)| = ‖ψ‖Cγ

for any solution x (t) , we have

‖xt‖Cγ
= sup

θ∈(−∞,0]

eγθ |x (t+ θ)|

= max

{
sup

θ∈(−∞,−t]

eγθ |x (t+ θ)| , sup
θ∈(−t,0]

eγθ |x (t+ θ)|
}

≤max
{
e−γt ‖ψ‖Cγ

, R (T0)
}
≤ R (T0) , (15)

if t ≥ T (B) .

Consider now an arbitrary bounded set B. Let us prove the existence of T (B) such that any
solution starting in B satisfies |x (t)| ≤ R (T0), for all t ≥ T (B). We have to consider only the
case |ψ (0)| > K

bL
. If we suppose the opposite, then there exists a sequence xk (tk), tk → +∞,

such that |xk (tk)| > R (T0) . We note that T0 can be chosen such that R (T0) >
K
bL
, so that it

follows from the previous results that |xk (t)| > K
bL

, for all t ∈ [0, tk] (if not, we could apply
again the above argument in such a point). Since tk > T0, for k ≥ k0, arguing as before we
obtain that the solutions are decreasing on [T0, tk], so that |xk (t)| > R (T0), for all t ∈ [T0, tk].
We note that s+ t ≥ T0 if t ≥ 2T0 and s ≥ −T0. Hence,

1

2

d

dt
|xk(t)|2 ≤ r |xk(t)|2

(
1−K−1L

∫ 0

−T0

w (s) |xk (s+ t)| ds
)

≤ r |xk(t)|2
(
1−K−1bLR (T0)

)
= −α |xk(t)|2 , α > 0,
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for t ∈ [2T0, tk], so that |xk (tk)| ≤ |xk (2T0)| e−α(tk−2T0) and then in view of (13) there exists
k such that |xk (tk)| < R (T0), a contradiction. Arguing in a similar way as in (15), we obtain
that the set B0 is absorbing.

Furthermore, using an analogous expression to (13) in the time interval [0, TB], we have a
uniform bound. Thus, we have obtained also that

⋃
t≥0

G+ (t, B) is bounded.

As a consequence of Lemma 26, Remark 21, Theorem 13 and Remark 6, we have:

Theorem 27 The semiflow G+ has a compact global invariant attractor.

4.2 Lotka-Volterra equations

Consider the following predator-prey system with a possibly saturating predator [23, p.283]:


x′1(t) = x1 (t) (a− bx1 (t)− cx2 (t)) ,

x′2(t) = x2 (t)

(
−d+

∫ 0

−∞
K (s)

x1 (t+ s)

λ+ vx1 (t+ s)
ds

)
,

where xi (t) ≥ 0, a, b, c, d, λ are positive constants, v is a nonnegative constant, and K :
(−∞, 0] → [0,∞) is also nonnegative, continuous and such that for some γ > 0 we have

∫ 0

−∞
e−γτK (τ) dτ <∞, (16)

∫ 0

−∞
e−γs

∫ s

−∞
K (τ) dτds <∞.

Arguing as in the logistic equation one can prove that the function M : Cγ → R defined by

ψ 7→M (ψ) =
∫ 0

−∞
K (s)

ψ (s)

λ+ vψ (s)
ds

is continuous.

Moreover, since the function ρ : R+ → R+ defined by ρ(θ) = θ/(λ + vθ) is Lipschitz (its
derivative is bounded by 1), multiplying by eγse−γs and using (16), we deduce that M is also
Lipschitz.

As in the logistic case, one can see that M is also bounded. Then, the Cauchy problem has a
solution, unique by the Lipschitz character (cf. [17, Ch. 2, Th. 2.3] or [16,18]).

In this case, the phase space is C+
γ , the positive cone of Cγ defined in (2) with m = 2. Denote

x = (x1, x2). Then it can be proved following exactly the same lines as in the proof of [4, Lemma
5.1] that for any B > 0 there exists B1 such that an estimate for the initial data ‖ψ‖ ≤ B
gives a uniform estimate for any solution |x (t)| ≤ B1, for all t ≥ 0. Hence, the solutions are
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globally bounded and, since Lemma 22 can be applied, the semigroup G+ : C+
γ → P (C+

γ ) is
well defined.

Also, there is a constant R > 0 such that for any B > 0 there exists T (B) for which ‖ψ‖ ≤ B
implies |x (t)| ≤ R, for all t ≥ T. Hence, arguing as in (15), we obtain that the set B0 ={
x : ‖x‖Cγ

≤ R
}

is absorbing.

Again, as a consequence of Remark 21, Theorem 13 and Remark 6, we have:

Theorem 28 The semigroup G+ has a compact global invariant attractor.

4.3 Strong dissipative conditions with and without sublinear terms

In this section we are concerned with two different results. Indeed we first consider a strong
dissipative equation without sublinear terms. This will provide an easy proof of boundedness
without restrictions in the choice of the phase space. A second result is concerned with sublin-
ear terms added to the dissipativity conditions. The way used to obtain estimates will imply
stronger assumptions on the parameter conditions, which will be weakened in the next section.

Case 1: Strong dissipativity without sublinear terms

Observe that the following result is very restrictive, since we are imposing a condition which
points out a predominant importance of the final state over the rest of the delay.

Proposition 29 If f : R × Cγ → Rm is such that the MDP U associated to the equation
x′(τ) = f(τ, xτ ) is well defined, and satisfies

〈f(t, ϕ), ϕ(0)〉 ≤ −α|ϕ(0)|2 + β ∀ϕ ∈ Cγ (17)

for some α > 0 and β ≥ 0, then U is eventually bounded in both forward and pullback senses,
that is, there exists a bounded set B0 ⊂ Cγ such that for any bounded set B ⊂ Cγ if s is fixed,
there exists t0(s, B) such that for any t ≥ t0(s, B) [or analogously, if t is fixed, there exists
s0(t, B) such that for any s ≤ s0(t, B)] the following inclusion holds:

U(t, s, B) ⊂ B0.

Proof. Consider an arbitrary solution to the Cauchy problem x′(t) = f(t, xt) with xs = ϕ ∈
B = BCγ (0, d). Let τ ∈ (s, t). Then

d

dτ
|x(τ)|2 ≤ −2α|x(τ)|2 + 2β,

and so
d

dτ

(
e2ατ |x(τ)|2

)
≤ 2e2ατβ.

Therefore, integrating over [s, τ ] with τ ∈ [s, t] :
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e2ατ |x(τ)|2≤ e2αs|x(s)|2 + 2β
∫ τ

s
e2αρdρ

= e2αs|ϕ(0)|2 +
β

α

(
e2ατ − e2αs

)
.

Notice that we are interested in checking the norm of the arbitrary solution, x, in the phase
space Cγ. Hence:

sup
θ∈(−∞,0]

e2γθ|x(t+ θ, s, ϕ)|2 = max

(
sup

θ∈(−∞,s−t]

e2γθ|ϕ(θ + t− s)|2, sup
θ∈(s−t,0]

e2γθ|x(θ + t)|2
)
.

Observe that the first term on the right hand side is bounded:

e2γθ|ϕ(θ + t− s)|2 = e2γ(s−t)e2γ(θ+t−s)|ϕ(θ + t− s)|2 ≤ d2e2γ(s−t).

For the second term, denote again τ = θ + t. Now we use the estimation on x(τ) : depending
wether γ ≤ α or not, one gets different expressions for the supreme, but both can be written
as follows:

sup
τ∈[s,t]

e−2γte2γτ |x(τ)|2 ≤ e2(s−t)min(γ,α)d2 +
β

α

(
1− e2(s−t)max(γ,α)

)
.

Thus, the ball BCγ (0,
β
α
) is absorbing in both senses: forward (t→ +∞ and s fixed) and pullback

(s→ −∞ and t fixed).

As a direct consequence of Proposition 29, Proposition 3, Proposition 19, and Theorem 17, we
obtain

Theorem 30 Let f ∈ C(R×Cγ; Rm) be bounded and satisfies the condition (17). Then, x′(τ) =
f(τ, xτ ) defines correctly a MDP U and there exists a compact pullback attractor.

Remark 31

(i) Actually, the above case is rather restrictive in the sense that the classical notion of global
attractor for non-autonomous dynamical systems is also suitable (as considered by Chepyzhov
and Vishik [12]). [For the sake of brevity we do not extend more here.]

(ii) The above situation also admits slight modifications, as to allow non-autonomous growth, for
example using a function β = β(t) with suitable growth [a sufficient condition is β ∈ L1(R);
see also Remark 33 (ii)]. Nevertheless, this framework is essentially restrictive, and says
that the effect of the delay is not very significant in comparison with the present time. For
instance, an example is given by the following:

f : R× Cγ → Rm : (t, ϕ) 7→ f̄(t, ϕ(0)) +
∫ 0

−∞
b(s, ϕ(s))ds

where the dissipativity effect is given by f̄ ∈ C(R × Rm; Rm), which satisfies 〈f̄(t, x), x〉 ≤
−α|x|2 + β̄, and, for example, b : R× Rm → Rm Carathéodory (measurable in s, continuous
in x) and satisfying |b(s, x)| ≤ g(s) for all x ∈ Rm being g ∈ L1((−∞, 0)).

However, simple but important examples as the pantograph equation, x′(t) = ax(t)+ bx(qt) for
t ≥ 0 with 0 < q < 1, which is linear, do not fall within and then are not allowed in this case.
So we extend the above result to deal with a sublinear term in a similar way to [9, Theorem 35].
In any case, it is remarkable that, even with this extension, the pantograph example cannot
be handled; actually it will be stated separately in a forthcoming paper with other general
situations.
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Case 2: Nonlinearities with sublinear and non-autonomous terms

Consider the equation

x′(t) = F0(t, x(t)) + F1(t, x(t− ρ(t))) +
∫ 0

−∞
b(t, s, x(t+ s))ds (18)

with F0, F1 ∈ C(R×Rm; Rm), h > 0, ρ ∈ C1(R; [0, h]), and b : R×R×Rm → Rm continuous on
its first and third variables, measurable w.r.t. the second variable, and satisfying the following
conditions:

(A1) There exist positive functions y = m0(r) and y = m1(r) such that m0, e
−γrm1(r) ∈

L1((−∞, 0)) such that

|b(t, s, x)| ≤ m0(s) +m1(s)|x|, ∀t ∈ R.

We will denote

m0 =
∫ 0

−∞
m0(s)ds and m1 =

∫ 0

−∞
e−γsm1(s)ds.

(A2) There exist positive constants k1, k2, α and a positive function β such that

〈x, F0(t, x)〉 ≤ −α|x|2 + β(t), ∀t ∈ R, x ∈ Rm,

|F1(t, x)|2 ≤ k2
1 + k2

2|x|2, ∀t ∈ R, x ∈ Rm.

Additionally, we suppose that |ρ′(t)| ≤ ρ∗ < 1 for all t ∈ R.

Equation (18) is a unified way to treat at the same time fixed, variable and distributed delays
such that our model is valid for each of above situations separately and mixed (e.g. cf. [23] and
the reference therein or [9] for some examples with finite delays, and [18, Ch.8,Sec.5] and the
references therein for the infinite delay case).

Analogously to the above cases, one can see that f(t, xt), the right hand side of (18), is contin-
uous and bounded. Local existence of solutions is guaranteed (cf. [18, Th.1.1,p.36]).

Theorem 32 Consider equation (18) with the above assumptions (A1) and (A2), and suppose
that there exists λ > 0 such that

λ− 2α+ 2k2

(
eλh

1− ρ∗

)1/2

< 0 and (19)

2m1 < λ ≤ 2γ. (20)

Then, the process U : Rd×Cγ → Cγ is well defined and it is eventually bounded in the following
sense:
a) forward, that is, there exists a family of bounded sets {B(t0)}t0∈R such that for every bounded
set B ⊂ Cγ and t0 ∈ R, there exists τ(t0, B) such that U(t, t0, B) ⊂ B(t0) if t ≥ τ(t0, B),
provided the following condition holds:

sup
t∈[t0,+∞)

∫ t

t0
e(2m1−λ)(t−r)β(r)dr <∞ ∀t0 ∈ R. (21)
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b) pullback, that is, there exists a family of bounded sets {B(t)}t∈R such that for every bounded
set B ⊂ Cγ and t ∈ R, there exists τ(t, B) such that U(t, t0, B) ⊂ B(t) if t0 ≤ τ(t, B), if the
following condition holds:

∫ t

−∞
e(2m1−λ)(t−r)β(r)dr <∞ ∀t ∈ R. (22)

Remark 33 (i) The gap condition involving γ and m1 in the statement of the theorem is

satisfied, for instance, by m1(r) = C(γ) eγr

1+(−r)a with a > 1 and C(γ) = γ
2

(∫ 0

−∞

1

1 + (−s)a
ds

)−1

.

(ii) Since e(2m1−λ)(t−s) ≤ 1 in the integral, stronger but simpler conditions than (21) and (22)
are, respectively, that the integrals of β in [t,∞) and (−∞, t] are finite for any t, or more
generally: β ∈ L1(R).

Proof. We start by proving a priori bounds of possible solutions (so in the end we will obtain
that U is well defined): consider a time t0 and a bounded data ϕ ∈ B = BCγ (0, d). We will prove
that U(t, t0, B) comes into a bounded set of Cγ according to the conditions of the theorem.

For an arbitrary solution of (18), using Young’s inequality and (A2), we have the following
estimate (here λ and ε are positive constants to be determined below):

d

dt

(
eλt|x(t)|2

)
= λeλt|x(t)|2 + 2eλt〈x(t), F0(t, x(t)) + F1(t, x(t− ρ(t)))〉

+2eλt〈x(t),
∫ 0

−∞
b(t, s, x(t+ s))ds〉

≤ (λ− 2α+ ε)eλt|x(t)|2 + 2eλtβ(t) +
1

ε
eλt
(
k2

1 + k2
2|x(t− ρ(t))|2

)
+2eλt〈x(t),

∫ 0

−∞
b(t, s, x(t+ s))ds〉.

The term with finite delay will be treated by using a Gronwall inequality in integral form. So,
first we integrate between t0 and t :

eλt|x(t)|2≤ eλt0|x(t0)|2 + (λ− 2α+ ε)
∫ t

t0
eλr|x(r)|2dr + 2

∫ t

t0
eλrβ(r)dr

+
1

ε

∫ t

t0
eλr

(
k2

1 + k2
2|x(r − ρ(r))|2

)
dr

+2
∫ t

t0
eλr〈x(r),

∫ 0

−∞
b(r, s, x(r + s))ds〉dr. (23)

We apply a change of variables, r − ρ(r) = u, in the integral with the finite variable delay.
Separating the part with the initial condition (introducing appropriate exponential terms), we
have
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∫ t

t0
eλr|x(r − ρ(r))|2dr≤ eλh

1− ρ∗

∫ t

t0−h
eλu|x(u)|2du

=
eλh

1− ρ∗

(∫ t0

t0−h
eλu±2γ(t−t0)|x(u)|2du+

∫ t

t0
eλu|x(u)|2du

)

≤ eλhd2

1− ρ∗

∫ t0

t0−h
eλu−2γ(u−t0)du+

eλh

1− ρ∗

∫ t

t0
eλu|x(u)|2du.

Before combining this with (23), we estimate the infinite delay term similarly:

∫ t

t0
eλr〈x(r),

∫ 0

−∞
b(r, s, x(r + s))ds〉dr

≤
∫ t

t0
eλr|x(r)|

∫ 0

−∞
(m0(s) +m1(s)|x(r + s)|)dsdr

≤m0

∫ t

t0
eλr|x(r)|dr +m1

∫ t

t0
eλr|x(r)|‖xr‖Cγdr.

Using Young’s inequality (with another arbitrary positive constant ε̄) for the first term in the
right hand side, and the trivial bound |x(s)| ≤ ‖xs‖Cγ on the second term, and joining with
the last estimate, we deduce from (23) that

eλt|x(t)|2≤ eλt0|x(t0)|2 +

(
λ− 2α+ ε+

eλhk2
2

ε(1− ρ∗)
+ ε̄

)∫ t

t0
eλr|x(r)|2dr

+2
∫ t

t0
eλrβ(r)dr +

(
k2

1

ελ
+
m2

0

ε̄λ

)(
eλt − eλt0

)
+
k2

2d
2eλt0(eλh − e2γh)

ε(1− ρ∗)(λ− 2γ)
+ 2m1

∫ t

t0
eλr‖xr‖2

Cγ
dr.

Taking the less restrictive (minimal) choice ε = k2

(
eλh

1−ρ∗

)1/2
(for convenience we will keep

denoting it by ε) we can neglect one term since by (19)

λ− 2α+ ε+
eλhk2

2

ε(1− ρ∗)
+ ε̄ < 0

if ε̄ is chosen small enough. Thus, we conclude that

eλt|x(t)|2≤ eλt0|x(t0)|2 + 2
∫ t

t0
eλrβ(r)dr +

(
k2

1

ελ
+
m2

0

ε̄λ

)(
eλt − eλt0

)
+
k2

2d
2eλt0(eλh − e2γh)

ε(1− ρ∗)(λ− 2γ)
+ 2m1

∫ t

t0
eλr‖xr‖2

Cγ
dr. (24)

We would like to observe specially that the natural way, that is, to substitute now t by t+ θ to
obtain a useful bound for ‖xt‖, has to be done carefully. Similar estimates to [9] are misleading
here since θ ∈ (−∞, 0] does not allow easy estimates (in comparison with the case θ ∈ [−h, 0]).

The additional assumption (20) has been imposed on the phase space to overcome the cited
difficulty. We use the extra assumption λ ≤ 2γ and so e(2γ−λ)θ ≤ 1 for θ ≤ 0. Multiplying (24)
by e2γθe−2γθ and replacing t by t+ θ, it leads to
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sup
θ∈[t0−t,0]

|x(t+ θ)|2e2γθ

≤ eλ(t0−t)d2 + 2e−λt
∫ t

t0
eλrβ(r)dr +

(
k2

1

ελ
+
m2

0

ε̄λ

)(
1− eλ(t0−t)

)

+
k2d

2
(
e2γh − eλh

)
[(1− ρ∗)eλh]1/2(2γ − λ)

eλ(t0−t) + 2m1e
−λt

∫ t

t0
eλr‖xr‖2

Cγ
dr.

In order to treat the whole norm of ‖xt‖2
Cγ

we need to include the initial data, that is, the
values θ ∈ (−∞, t0 − t]. This gives:

e2γθ|x(t+ θ)|2≤ e−2γ(t−t0)‖φ‖2
Cγ

≤ eλ(t0−t)d2, ∀θ ∈ (−∞, t0 − t].

So, we conclude as wanted

‖xt‖2
Cγ
≤ eλ(t0−t)d2 + 2e−λt

∫ t

t0
eλrβ(r)dr +

(
k2

1

ελ
+
m2

0

ε̄λ

)(
1− eλ(t0−t)

)

+
k2d

2
(
e2γh − eλh

)
[(1− ρ∗)eλh]1/2(2γ − λ)

eλ(t0−t) + 2m1e
−λt

∫ t

t0
eλr‖xr‖2

Cγ
dr.

Multiplying both terms by eλt, Fubini’s theorem and Gronwall’s lemma yield

‖xt‖2
Cγ
≤ λ

λ− 2m1

(
k2

1

ελ
+
m2

0

ε̄λ

)(
1− e(2m1−λ)(t−t0)

)

+d2

1 +
k2

(
e2γh − eλh

)
[eλh(1− ρ∗)]1/2(2γ − λ)

 e(2m1−λ)(t−t0)

+2
∫ t

t0
e(2m1−λ)(t−r)β(r)dr.

Now, we use the condition 2m1 − λ < 0 and (21) or (22) to finish the proof.

Now, it is immediate to obtain the following result

Corollary 34 Under the assumptions of Theorem 32, there exists a pullback attractor {A(t)}t∈R
for the process U.

Proof. Combine Proposition 3, Theorem 14, Proposition 19, and Theorem 32.

Corollary 35 Under the assumptions of Theorem 32, there exists a pullback attractor {A(t)}t∈R
for the process U which, in addition, is compact if any of the following conditions hold:

(a) the function r(t) =
∫ t
−∞ e(2m1−λ)(t−s)β(s)ds is increasing;

(b) β ∈ L1(−∞, t), ∀t ∈ R.

Proof. Observe that the radii of the absorbing bounded sets in the proof of Theorem 32 are
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precisely
λ

λ− 2m1

(
k2

1

ελ
+
m2

0

ε̄λ

)
+ r(t).

This gives condition (6) from (a).

The result follows from Proposition 3, Theorem 15, Theorem 17 and Proposition 19.

The second condition is similar, although stronger, since the exponential in r(t) can be bounded
by 1 and the function

∫ t
−∞ β(s)ds generates a bigger radius function for a family of absorbing

balls.

4.4 Sharp use of the dissipativity for the autonomous case

Opposite to the second case in the above paragraph, in this section we will prove in a different
way with less restrictive conditions that it is possible to obtain boundedness for the semigroup
associated to an autonomous infinite delay differential equation, combining the ideas from Wang
& Xu [30] and Ball [3].

In order to state the main result, we need a preliminary lemma for the estimates on the solutions.

Consider, as before, the non-autonomous equation (18) and assume conditions (A1) and (A2).
We will state firstly an estimate valid for this general equation.

Lemma 36 Under the above conditions, there exist positive values A, B, and δ such that for
any solution x(·) and t ∈ [t0, Tx) the following inequality holds

|x(t)|2 ≤ e−δ(t−t0)|x(t0)|2 +
∫ t

t0
e−δ(t−s)

(
A+ 2β(s) +B‖xs‖2

Cγ

)
ds (25)

Proof. We multiply (18) by x(t) :

1

2

d

dt
|x(t)|2≤−α|x(t)|2 + β(t) +

(
k2

1 + k2
2|x(t− ρ(t))|2

)1/2
|x(t)|

+〈x(t),
∫ 0

−∞
b(t, s, x(t+ s))ds〉

≤−α|x(t)|2 + β(t) +
1

2ε

(
k2

1 + k2
2|x(t− ρ(t))|2

)
+
ε

2
|x(t)|2

+
ε̄

2
|x(t)|2 +

m2
0

2ε̄
+
(∫ 0

−∞
m1(s)|x(t+ s)|ds

)
|x(t)|.

Then

1

2

d

dt
|x(t)|2 ≤ −

(
α− ε

2
− ε̄

2

)
|x(t)|2 + β(t) +

k2
1

2ε
+

1

2ε
k2

2e
2γh‖xt‖2

Cγ
+
m0

2ε̄
+m1‖xt‖2

Cγ
.

Introducing another parameter δ ∈ (0, 2α) (choosing ε, ε̄ small) such that

ε+ ε̄ = 2α− δ, (26)
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we obtain that

d

dt
|x(t)|2 ≤ −δ|x(t)|2 + 2β(t) +

k2
1

ε
+

1

ε
k2

2e
2γh‖xt‖2

Cγ
+
m0

ε̄
+ 2m1‖xt‖2

Cγ
.

Multiplying by eδt and integrating in [t0, t] we have

eδt|x(t)|2 ≤ eδt0|x(t0)|2 +
∫ t

t0
(A+ 2β(s))eδsds+B

∫ t

t0
eδs‖xs‖2

Cγ
ds,

where we have denoted

A =
k2

1

ε
+
m0

ε̄
and B =

1

ε
k2

2e
2γh + 2m1. (27)

For the main result of this section, we will restrict ourselves to the autonomous case. Here on
we suppose, jointly with assumptions (A1) and (A2), that

(A3) β(t) ≡ β and ρ(t) ≡ h for the equation

x′(t) = F0(x(t)) + F1(x(t− h)) +
∫ 0

−∞
b(s, x(t+ s))ds (28)

Before establishing the main theorem, we give an auxiliary result which will be used below.

Proposition 37 The following condition

α > m1 + k2e
γh (29)

is optimal to obtain a pair of values B and δ as in Lemma 36 satisfying in addition that B < δ.

Proof. Due to expressions (26) and (27) in Lemma 36, if we wish B < δ, we put all weight

of (26) in ε. So, we only have to show that the function g(δ) = δ − 2m1 − k2
2

2α−δ
e2γh, which

represents “grosso modo” δ − B, admits a positive value for some δ ∈ (0, 2α). We proceed to
calculate its maximum and to impose to be positive its value there, making the condition on
the dissipativity optimal.

A simple analysis shows that if (and only if) α ≤ k2e
γh/2, then it is not possible to obtain

positive values of g|(0,2α). But if 2α > k2e
γh, the function g may have positive values if we

add the extra condition (29): more precisely, the maximum of g is achieved in δ∗ such that
2α− δ∗ = k2e

γh and g(δ∗) = 2(α−m1 − k2e
γh).

Remark 38 Observe that the above result claims an optimal condition for the dissipativity, not
for the values ε and ε̄, and so neither for B nor A. This is because ε should be taken close to
2α− δ∗ but not exactly equal, since ε̄ must be positive and satisfy (26).

In other words, although the dissipativity condition is optimal (and so is δ∗), the choice we can
do so for A and B is not. While we choose a value B closer to B∗ (this is obviously possible by
continuity, taking ε close to ε∗ = 2α− δ∗), we obtain a value A which grows to infinity as long
as ε̄ goes to zero.
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Theorem 39 Consider the equation (28) with conditions (A1), (A2) and (A3), and that in-
equality (29) holds. Then the generated multi-valued semiflow G is well defined and pointwise
dissipative.

More exactly, denoting B and δ the values from Proposition 37 and the associate value A by
(26)-(27), the following set attracts G(t, ψ) for every ψ ∈ Cγ when t→ +∞:

B0 =

{
ψ : ‖ψ‖2

Cγ
≤ A+ 2β

δ −B

}
.

Proof. Since here we are concerned with the autonomous case, denote for convenience Ā =
A+ 2β. Let K be such that δK = Ā+BK, i.e. K = Ā

δ−B
(w.l.o.g. we can assume that K > 0).

Step 1: We will see that for any R ≥ 1, the open ball BCγ (0, (K̄)1/2) is positively invariant
for K̄ = RK, that is, for every ψ ∈ Cγ with ‖ψ‖2

Cγ
< K̄, any solution x(·) ∈ D(0, ψ) satisfies

‖xt‖2
Cγ
< K̄ for all t ≥ 0.

By a contradiction argument, if not, there exists a time t1 > 0 such that ‖xt‖2
Cγ

< K̄ (in

particular, |x(t)| < K̄ too) for all t < t1 and ‖xt1‖2
Cγ

= K̄. With the above strict inequalities,

this equality means that |x(t1)|2 = K̄.

Now, writing (25) for t0 = 0 and t = t1,

|x(t1)|< e−δt1K̄ +
∫ t1

0
e−δ(t1−s)(Ā+BK̄)ds

= e−δt1K̄ +
Ā+BK̄

δ

(
1− e−δt1

)
.

As long as
Ā+BK̄

δ
=
Ā+BRK

δ
≤ R(Ā+BK)

δ
= RK = K̄,

we obtain |x(t1)| < K̄, a contradiction.

Therefore, we deduce that G is well defined.

Step 2: We prove now the statement of the theorem for a single solution: it is attracted by the
ball B0 = {ψ : ‖ψ‖2

Cγ
≤ K}.

Take the bounded open ball BCγ (0, d
1/2) with d ≥ K (otherwise it is trivial by Step 1). Observe

that the norm in Cγ of a solution with initial datum in the above set is given by

‖xt‖Cγ = sup
s≤0

eγs|x(t+ s)|

= max

(
sup
s≤−t

eγs|x(t+ s)|, sup
s∈[−t,0]

eγs|x(t+ s)|
)

≤max

(
de−γt, sup

s∈[−t,0]
eγs|x(t+ s)|

)
. (30)
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Consider an arbitrary solution x(·). By the first step it is possible, putting K̄ = d, to show that
it is globally bounded (actually, it holds that |x(t)| ≤ d ∀t ≥ 0), and therefore there exists

lim sup
t→+∞

|x(t)|2 = σ.

This means that

∀ε > 0, ∃T1(ε) > 0 s.t. |x(t)|2 ≤ σ + ε ∀t ≥ T1(ε). (31)

Before joining (30) and (31) to obtain a bound on ‖xt‖Cγ we must care about the interval time
[0, T1]. Note that (for t ≥ T1)

sup
s∈[−t,0]

eγs|x(t+ s)| = max

{
sup

s∈[−t,T1−t]

eγs|x(t+ s)|, sup
s∈[T1−t,0]

eγs|x(t+ s)|
}
.

Let now T2(ε) ≥ T1(ε) be such that deγ(T1−T2) ≤ σ+ ε. Using this choice in the first term of the
maximum and (31) in the second term, putting this in (30), we conclude that

∃T2(ε) ≥ T1(ε) such that ‖xt‖2
Cγ
≤ σ + ε ∀t ≥ T2(ε). (32)

On other hand, since we will use the bound obtained in the first step, we fix now a time T3(ε)
such that

e−δtd+
Ā+Bd

δ

(
e−δT3 − e−δt

)
≤ ε ∀t ≥ T3(ε). (33)

Now, recovering (25) for t0 = 0 and splitting the integral into two parts, [0, t−T3] and [t−T3, t]
we have

|x(t)|2 ≤ e−δt|x(0)|2 +
∫ t−T3

0
e−δ(t−s)

(
Ā+B‖xs‖2

Cγ

)
ds+

∫ T3

t−T3

e−δ(t−s)
(
Ā+B‖xs‖2

Cγ

)
ds.

If we assume that t − T3 ≥ T2, using the bound (32) for the second integral and (33) for the
remaining, we conclude that

|x(t)|2 ≤ ε+
Ā+B(σ + ε)

δ

(
1− e−δT3

)
∀t ≥ T2 + T3,

whence passing to the limit if ε goes to zero, we have

σ = lim sup |x(t)|2 ≤ Ā+Bσ

δ
.

In other words, we have deduced that σ(δ − B) ≤ Ā, or equivalently, σ ≤ Ā
δ−B

= K. This
inequality and (32) imply (since ε is arbitrary) the statement of the theorem for a single solution.

Step 3: We prove now the general result: the semiflow is pointwise dissipative, i.e. for any fixed
initial data ψ, the set G(t, ψ) (possibly not a singleton) is attracted by B0.

Firstly let us denote (for an arbitrary η > 0)

B0,η = {ψ : ‖ψ‖2
Cγ
≤ K + η}.

We claim that B0,η is absorbing for G(t, ψ) (since this will be proved being η > 0 arbitrarily
small, we will obtain the main statement of this step).
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We proceed by a contradiction argument. Assume that there exist a sequence of times tn → +∞,
and solutions xn

tn with the same initial data xn
0 = ψ such that xn

tn 6∈ B0,η.

Therefore, by the first step, we deduce that xn
t 6∈ B0 for all 0 ≤ t ≤ tn. Besides this, we

know that solutions are uniformly bounded since it is so for the (unique) initial datum. So,
by Ascoli-Arzelà Theorem and a diagonal procedure argument, we obtain the existence of a
function y ∈ C([0,+∞); Rm) and a subsequence (relabelled the same) such that

xn|[0,T ] → y|[0,T ] in C([0, T ]; Rm), ∀T > 0.

In particular, extending y to R− in the natural way, concatenating with the same datum ψ
(denote this function again by y), we have that xn

t → yt for all t ≥ 0. By standard arguments
(cf. [16]) we deduce that y is solution of the problem, but on the other hand it satisfies

‖yt‖Cγ ≥ K + η, ∀t ≥ 0.

This is a contradiction with the result of the second step since B0 attracts any solution, in
particular y.

Remark 40 (i) Condition (29) is optimal to ensure existence of a pair of values δ and B as
in Lemma 36 and satisfying, in addition, the condition δ < B in Step 1 of the proof. This
allows to obtain a bounded absorbing set and, at last, the existence of attractor under minimal
dissipativity assumptions.

It also says that dissipativity must increase with values m1, k2, γ and h.

(ii) However, it does not imply the smallest radius for the bounded absorbing set as can be seen
in the following proof (see also Remark 38).

Taking into account relations (25), (26) and (27), observe that since the parameter ε̄ has no
influence on the integral with the ‖xs‖, we will play essentially with the parameter ε, making
ε̄ ∼ 0. This means that the absorbing set proved in the theorem is bigger as far as ε̄ becomes
smaller. To obtain the optimal radius of the absorbing set one should optimize the function

r(ε) =

k2
1

ε
+ m0

2α−δ∗−ε

δ∗ − k2
2

ε
e2γh − 2m1

with ε ∈ (ν, ε∗) being ν the value where B(ν) collapse to δ∗, and ε∗ = 2α− δ∗.

(iii) δ positive is necessary to involve an exponential, which is essential in this proof, making a
stronger use of the dissipativity than in [9] and the above section. However, we have only been
able to apply it to the autonomous case.

Corollary 41 Under the assumptions of Theorem 39, there exists a global attractor for the
multi-valued semiflow G associated to the differential equation (28).

Proof. We have only to apply Theorem 13. Observe that the asymptotic compactness follows
from Proposition 20, which can be applied by Step 1 in Theorem 39, and the condition on the
map Ū used in Proposition 5 is satisfied by the same reason, giving the upper semicontinuity
of G (cf. Proposition 5).
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Conclusions

The theory of attractors can be extended with some care to the case of infinite delay differential
equations, even if uniqueness does not hold. We have been able to apply an asymptotically
compact property in a suitable space (although it can be done in more general abstract spaces)
and checked the eventual bounded character or the pointwise dissipativity of the associated
(single or multi-valued) process in some general situations depending on suitable relations of
the parameters.

However, some unbounded delay equations have not been treated in this framework, as for
instance the pantograph equation, which needs to be handled more carefully since the function
ρ containing the delay is now not bounded by any quantity h, and the asymptotic behaviour
depends on the way we see the equation (it has a proper physical meaning only forward in
time). On the other hand, the non-autonomous results admit a comparison on the assumptions
with the corresponding tempered framework (see [8]), where a tempered attractor with better
properties, but bigger in principle, can be obtained. Extensions on these directions will be
object of a forthcoming paper.
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[25] P. Maŕın-Rubio and J. Robinson, Attractors for the stochastic 3D Navier-Stokes equations, Stoch.
Dyn. 3 (2003), 279-297.

[26] V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions,
Set-Valued Anal. 6 (1998), 83-111.

[27] J. D. Murray, Mathematical Biology, Berlin: Springer-Verlag, 1993.

30



[28] H. Péics, On the asymptotic behaviour of a pantograph-type difference equation, J. Differ.
Equations Appl., 6(3) (2000) 257–273.

[29] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, vol. 68 of Applied
Mathematical Sciences. New York: Springer-Verlag, 1997.

[30] L. Wang and D. Xu, Asymptotic behavior of a class of reaction-diffusion equations with delays,
J. Math. Anal. Appl. 281(2) (2003), 439–453.

31


