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Abstract. In this paper, a double time-delayed 2D-Navier-Stokes model is

considered. It includes delays in the convective and the forcing terms. Exis-

tence and uniqueness results and suitable dynamical systems are established.
We also analyze the existence of pullback attractors for the model in several

phase-spaces and the relationship among them.

1. Introduction and statement of the problem. The importance of physical
models for fluid mechanics problems including delay terms is related, for instance, to
real applications where devices to control properties of fluids (temperature, velocity,
etc.) are inserted in domains and make a local influence on the behaviour of the
system (e.g., cf. [19] for a wind-tunnel model).

The study of Navier-Stokes models including delay terms –existence, uniqueness,
stationary solutions, exponential decay, existence of attractors, etcetera– was initi-
ated in the references [5, 6, 7], and after that, many different questions, as dealing
with unbounded domains, and models (for instance in three dimensions for modified
terms) have been addressed (e.g., cf. [28, 11, 21, 23, 9] among others).

While the theory of linear viscoelasticity in fluid mechanics has often considered
the inclusion of delay effects in the viscous part of the model (e.g. cf. [26]), the
inclusion in other parts has not been investigated so often.

In the recent paper [18] a time-delayed term in the Burgers’ equation was con-
sidered. Such a kind of delay in the trajectory that a particle should follow could
present some obstacles to a rigorous physical interpretation. However, as many
other simplified and/or approximative models in fluid mechanics (with truncations,
as the globally modified Navier-Stokes equations, e.g. cf. [4, 15, 16, 27, 20]), this
kind of effect may be interesting to study from the mathematical point of view.
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Consider a bounded domain Ω ⊂ R2, τ ∈ R, and the non-autonomous functional
Navier-Stokes model

∂u

∂t
− ν∆u+ (u(t− ρ(t)) · ∇)u+∇p = f(t) + g(t, ut) in Ω× (τ,∞),

divu = 0 in Ω× (τ,∞),
u = 0 on ∂Ω× (τ,∞),
u(x, τ) = uτ (x) in Ω,
u(x, τ + s) = φ(x, s) in Ω× (−h, 0),

(1)

where ν > 0 is the kinematic viscosity, u = (u1, u2) is the velocity field of the
fluid, p is the pressure, f is a non-delayed external force field, g is another external
force with some hereditary characteristics, ut denotes –as usual– the delay function
ut(s) = u(t+ s) where it has sense. The delay function ρ in the convective term is
assumed to belong to C1(R; [0, h]) with ρ′(t) ≤ ρ∗ < 1 for all t ∈ R, where h > 0 is
fixed, and uτ and φ are the initial data in τ and (τ − h, τ) respectively.

Existence, uniqueness, some regularity features for this model, and some partial
long-time estimates were studied in [25] in dimension two (see [12] for the case
in dimension three). The interesting point of the model in dimension two is that
the natural estimate of u′ is in L4/3(V ′) (see below for the proper definitions), as
the Navier-Stokes equations in three dimensions without delay does. This means
that, without any additional assumption on the phase-space, the appearance of
a delay –however small it be– in the nonlinear term has an important influence.
Therefore, the study of existence of attractor (or pullback attractor) is more involved
for problem (1), leading to the same kind of (lack of uniqueness or lack of continuity
in time) troubles (e.g. cf. [1, 24, 14, 13] for multi-valued approaches).

Our approach in this paper is to modify the phase-space improving slightly the
initial conditions, such that existence and uniqueness of solution hold. For the
associated single-valued process, we will study the existence of pullback attractors
in different universes and the relation among them.

The structure of the paper is as follows. In the rest of this section we recall the ab-
stract setting of the problem with the standard functional spaces, and the definition
of a weak solution to problem (1). In Section 2 we recall for completeness the proof
of existence of weak solutions, and the uniqueness under additional assumptions in
the phase-space (that are closely related to the existence of an energy equality).
Continuity with respect to the initial data are also given. Section 3 provides a very
briefly summary on the theory of minimal pullback attractors, that will be used in
the last part of the paper. Our main results are given in Section 4, where estimates
on the solutions, absorption, and asymptotic compactness are proved, leading to
the existence of several minimal pullback attractors, in different phase-spaces. We
also establish some relations among these families. Finally, Section 5 is devoted to
expose the above results in the autonomous framework. This allows to simplify the
statements and concentrate in the problem of a delay perturbation in the convective
term. Existence of global attractors and relationship among them are so deduced.

We will consider the usual functional spaces to deal with the problem in an
abstract setting (e.g. cf. [17, 29]). Let be

V = {u ∈ (C∞0 (Ω))2 : divu = 0};
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H is the closure of V in (L2(Ω))2 with the norm | · |, and inner product (·, ·), where
for u, v ∈ (L2(Ω))2,

(u, v) =
2∑

j=1

∫
Ω

uj(x)vj(x)dx;

V is the closure of V in (H1
0 (Ω))2 with the norm ‖·‖ associated to the inner product

((·, ·)), where for u, v ∈ (H1
0 (Ω))2,

((u, v)) =
2∑

i,j=1

∫
Ω

∂uj

∂xi

∂vj

∂xi
dx.

We will use ‖·‖∗ for the norm in V ′ and 〈·, ·〉 for the duality between V ′ and V . We
consider every element h ∈ H as an element of V ′, given by the equality 〈h, v〉 =
(h, v) for all v ∈ V. It follows that V ⊂ H ⊂ V ′, where the injections are dense and
continuous, and, in fact, compact.

Define the operator A : V → V ′ as

〈Au, v〉 := ((u, v)) ∀u, v ∈ V.

Let us denote

b(u, v, w) =
2∑

i,j=1

∫
Ω

ui
∂vj

∂xi
wjdx,

for every functions u, v, w : Ω → R2 for which the right-hand side is well defined.
In particular, b has sense for all u, v, w ∈ V, and is a continuous trilinear form

on V × V × V. For suitable u and v (for instance in V ) it is also useful to denote
B(u, v) the operator of V ′ given by 〈B(u, v), w〉 = b(u, v, w) for any w ∈ V.

On other hand, let us recall that the operator b satisfies

b(u, v, v) = 0 ∀u ∈ V, v ∈ (H1
0 (Ω))2, (2)

and since we are in dimension two there exists a constant C > 0, depending only
on Ω, such that

|b(u, v, w)| ≤ C|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2 ∀u, v, w ∈ V. (3)

Before continuing, for short, we introduce the notation Lp
X = Lp(−h, 0;X), which

will be used in the sequel for suitable choices of p and X. The norm in these spaces
will be denoted by ‖ · ‖Lp

X
. On other hand, CH = C([−h, 0];H) will also be used,

and the sup norm in CH will be denoted by | · |CH
. Finally, BE(0, α) will denote

the closed ball in a metric space E of center zero and radius α.

The second delay operator is g : R × CH → (L2(Ω))2, and we assume that it
satisfies the following assumptions:
(H1) for all ξ ∈ CH , the function R 3 t 7→ g(t, ξ) ∈ (L2(Ω))2 is measurable,
(H2) g(t, 0) = 0, for all t ∈ R,
(H3) there exists Lg > 0 such that for all t ∈ R, and for all ξ, η ∈ CH ,

|g(t, ξ)− g(t, η)| ≤ Lg|ξ − η|CH
,

(H4) there exists Cg > 0 such that for all τ ≤ t and for all u, v ∈ C([τ − h, t];H)∫ t

τ

|g(r, ur)− g(r, vr)|2dr ≤ C2
g

∫ t

τ−h

|u(r)− v(r)|2dr.
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Examples of fixed, variable, and distributed delay operators can be found, for in-
stance, in [5, Section 3], [7, Sections 3.5 and 3.6], and [11, Section 3], and we omit
them here just for the sake of brevity.

Remark 1. From (H1)–(H3), for T > τ and u ∈ C([τ − h, T ];H), the function
gu : [τ, T ] → (L2(Ω))2 given by gu(t) = g(t, ut) is measurable and belongs to
L∞(τ, T ; (L2(Ω))2). By using (H4), the mapping

C([τ − h, T ];H) 3 u 7→ G(u) := gu ∈ L2(τ, T ; (L2(Ω))2)

has a unique extension to a mapping G̃ which is uniformly continuous from L2(τ −
h, T ;H) into L2(τ, T ; (L2(Ω))2). We will still denote by g(t, ut) = G̃(u)(t) for each
u ∈ L2(τ − h, T ;H), and therefore assumption (H4) will hold for all u, v ∈ L2(τ −
h, T ;H).

Concerning the goal of finding solutions to problem (1), different choices are pos-
sible for the initial data.

Let us consider that uτ ∈ H, φ ∈ L2
V , and f ∈ L2

loc(R;V ′).

Definition 1. A weak solution to (1) is a function u ∈ L∞(τ, T ;H)∩L2(τ−h, T ;V )
for all T > τ, such that u(τ) = uτ , uτ = φ, and satisfies

d

dt
(u(t), v) + ν〈Au(t), v〉+ b(u(t− ρ(t)), u(t), v) = 〈f(t), v〉+ (g(t, ut), v) ∀v ∈ V,

where the equation must be understood in the sense of D′(τ,∞).

Remark 2. Let us observe that if u is a weak solution to (1), from (3), in particular
we have that there exists a constant C̃ > 0 such that for any v ∈ V,

|b(u(t− ρ(t)), u(t), v)| ≤ C̃‖u(t− ρ(t))‖‖u(t)‖1/2|u(t)|1/2‖v‖,

where we have used the continuous embedding of V into H.
Then, by Young inequality, we conclude that B(u(·−ρ(·)), u(·)) ∈ L4/3(τ, T ;V ′).
Therefore, u′ ∈ L4/3(τ, T ;V ′) too. So, u ∈ C([τ, T ];V ′) and in particular (e.g.

cf. [29]) u ∈ Cw([τ, T ];H) for all T > τ (whence to impose an initial datum uτ ∈ H
is meaningful).

Although the above choice of phase-space will lead to an existence result (see
Theorem 1 below), the well-posedness of the problem in the sense of Hadamard
will require more regularity on the initial data, pointing out that the above was an
unnatural choice (compare with Remark 3 and Theorem 2 below).

2. Existence of solutions, uniqueness, and continuity results. We have the
following result concerning existence of weak solutions. It is also worth mentioning
that the delay in the convective term, even if h is small, does matter in the sense
that uniqueness of solution to (1) is unknown (compare Remark 2 –essentially as
the case without delay in dimension three– with Remark 3 and Theorem 2 below,
where this difficulty is sorted out).

Theorem 1. Consider uτ ∈ H, φ ∈ L2
V , f ∈ L2

loc(R;V ′), and g : R × CH →
(L2(Ω))2 satisfying assumptions (H1)–(H4). Then, there exists at least one weak
solution u(·; τ, uτ , φ) to (1).
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Proof. The existence of weak solution can be proved as in [25, Theorem 2.1], and
we include its proof here just for the sake of clarity.

Consider a special basis of H formed by normalized eigenfunctions of the Stokes
operator, {wj}j≥1, with corresponding eigenvalues {λj}j≥1 being 0 < λ1 ≤ λ2 ≤ . . .
with limj→∞ λj = ∞. Pose the approximate problems (for each k ≥ 1) of finding
uk ∈ Vk := span[w1, . . . , wk] with uk(t) =

∑k
j=1 γjk(t)wj such that

d

dt
(uk(t), wj) + ν〈Auk(t), wj〉+ b(uk(t− ρ(t)), uk(t), wj)

= 〈f(t), wj〉+ (g(t, uk
t ), wj), a.e. t > τ, ∀ 1 ≤ j ≤ k, (4)

fulfilled with the initial conditions

uk(τ) = Pku
τ and uk(τ + s) = Pkφ(s) in s ∈ (−h, 0),

where Pk is the orthogonal projector from H onto Vk.
It is well known (e.g. cf. [5]) that the above system of ordinary functional dif-

ferential equations (the unknowns are {γjk}k
j=1) is well-posed in some local interval

[τ, tk). We fix a value T > τ and will provide uniform estimates that will imply
that actually it holds that tk = T and pass to the limit via compactness arguments,
whence existence of a weak solution on (τ, T ) will be ensured.

Indeed, multiplying each equation in (4) by γjk(t) and summing from j = 1 to
k, we obtain

1
2
d

dt
|uk(t)|2 + ν‖uk(t)‖2 = 〈f(t), uk(t)〉+ (g(t, uk

t ), uk(t)), a.e. t ∈ (τ, tk),

where we have used (2) to remove the nonlinear term b.
By integrating in time, from Hölder and Young inequalities, and the assumptions

on the delay operator g, we obtain that

|uk(t)|2 + 2ν
∫ t

τ

‖uk(s)‖2ds

≤ |uτ |2 +
1
ν

∫ t

τ

‖f(s)‖2∗ds+ ν

∫ t

τ

‖uk(s)‖2ds+
∫ t

τ

|g(s, uk
s)|2ds+

∫ t

τ

|uk(s)|2ds

≤ |uτ |2 + C2
g

∫ 0

−h

|φ(s)|2ds+
1
ν

∫ t

τ

‖f(s)‖2∗ds+ ν

∫ t

τ

‖uk(s)‖2ds

+(1 + C2
g )
∫ t

τ

|uk(s)|2ds

for all t ∈ [τ, tk).
So, we deduce that

|uk(t)|2 + ν

∫ t

τ

‖uk(s)‖2ds

≤ |uτ |2 + C2
g

∫ 0

−h

|φ(s)|2ds+
1
ν

∫ t

τ

‖f(s)‖2∗ds+ (1 + C2
g )
∫ t

τ

|uk(s)|2ds

for all t ∈ [τ, tk).
Now, from Gronwall lemma, we conclude that tk = T, and that {uk} is bounded

in L∞(τ, T ;H) ∩ L2(τ − h, T ;V ). Moreover, from (3) (see also Remark 2) we have
that {duk/dt} is bounded in L4/3(τ, T ;V ′), whence by compactness results, the
Dominated Convergence Theorem, assumption (H4), and Remark 1, we may extract
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a subsequence (relabelled the same) and ensure the existence of a function u ∈
L2(τ − h, T ;V ) with du/dt ∈ L4/3(τ, T ;V ′) with uτ = φ, such that

uk → u strongly in L2(τ − h, T ;H),
uk ⇀ u weakly in L2(τ − h, T ;V ),

duk/dt ⇀ du/dt weakly in L4/3(τ, T ;V ′),
uk(· − ρ(·)) → u(· − ρ(·)) strongly in L2(τ, T ;H),

g(·, uk
· ) → g(·, u·) strongly in L2(τ, T ;H).

(5)

It is standard to pass to the limit in (4). Just for clarity, we point out how to deal
with the delayed convective term, which is the novelty here. Indeed, it holds that

b(uk(· − ρ(·)), uk(·), wj) → b(u(· − ρ(·)), u(·), wj) in L1(τ, T ),

since

|b(uk(t− ρ(t)), uk(t), wj)− b(u(t− ρ(t)), u(t), wj)|
= |b(uk(t− ρ(t)), wj , u

k(t))− b(u(t− ρ(t)), wj , u(t))± b(u(t− ρ(t)), wj , u
k(t))|

≤ |b(uk(t− ρ(t))− u(t− ρ(t)), wj , u
k(t))|+ |b(u(t− ρ(t)), wj , u

k(t)− u(t))|.
We will prove that the first addend in the right hand-side goes to zero in the L1(τ, T )
norm (the second addend follows analogously). Using (3), Hölder inequality, and
the fact that wj is an eigenfunction of the Stokes operator, we have that∫ T

τ

|b(uk(t− ρ(t))− u(t− ρ(t)), wj , u
k(t))|dt

≤ Cλ
1/2
j ‖uk(· − ρ(·))− u(· − ρ(·))‖1/2

L2(τ,T ;H)‖u
k(· − ρ(·))− u(· − ρ(·))‖1/2

L2(τ,T ;V )

×‖uk(·)‖1/2
L2(τ,T ;H)‖u

k(·)‖1/2
L2(τ,T ;V ).

From (5) the above goes to zero, and the claim is proved.
Thus, we conclude that u is a weak solution to (1) in the interval (τ, T ).
By concatenation of solutions, it is clear that we obtain at least one global (de-

fined on (τ,∞)) weak solution to (1).

If we modify slightly the initial data we may improve the above result in the sense
that we gain an energy equality (and therefore uniqueness of solution and continuity
of the solutions with respect to initial data). So we will be in a good position
to study the associated dynamical system (which will be continuous). Roughly
speaking, what we do now is to impose on the initial data the same regularity as
we expect for the weak solutions.

Remark 3. Suppose that uτ ∈ H and φ ∈ L2
V ∩ L∞H . Then, we may improve the

regularity for the operator B(u(· − ρ(·)), u(·)) obtained in Remark 2. Indeed, from
(3) we have that for any v ∈ V,

|b(u(t− ρ(t)), u(t), v)| ≤ C|u(t− ρ(t))|1/2‖u(t− ρ(t))‖1/2‖v‖|u(t)|1/2‖u(t)‖1/2. (6)

Therefore, we can conclude now that B(u(·−ρ(·)), u(·)) ∈ L2(τ, T ;V ′) for all T > τ,
and so u′ ∈ L2(τ, T ;V ′) and u ∈ C([τ, T ];H) for all T > τ. Now, the following
energy equality holds for any solution to (1),

|u(t)|2 + 2ν
∫ t

s

‖u(r)‖2dr

= |u(s)|2 + 2
∫ t

s

〈f(r), u(r)〉dr + 2
∫ t

s

(g(r, ur), u(r))dr ∀τ ≤ s ≤ t. (7)
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Next, we establish a uniqueness result for problem (1).

Theorem 2. Consider uτ ∈ H, φ ∈ L2
V ∩ L∞H , f ∈ L2

loc(R;V ′), and g : R ×
CH → (L2(Ω))2 satisfying assumptions (H1)–(H4). Then, there exists a unique
weak solution to (1), u(·; τ, uτ , φ) ∈ C([τ,∞);H), which satisfies the energy equality
(7).

Moreover, if for short we denote by u(·) and v(·) the corresponding solutions to
(1) with respective initial data (uτ , φ) and (vτ , ψ), then

ess sup
s∈(t−h,t)

|u(s)− v(s)|2 ≤
(
‖φ− ψ‖2L∞H + (λ−1

1 +
ν

2
)
∫ 0

−h

‖φ(s)− ψ(s)‖2ds
)

×exp
(
Ĉ

∫ t

τ

(‖u(s)‖2 + 1)ds
)
, (8)

ν

∫ t

τ

‖u(s)− v(s)‖2ds ≤
(
‖φ− ψ‖2L∞H + (λ−1

1 +
ν

2
)
∫ 0

−h

‖φ(s)− ψ(s)‖2ds
)

(9)

×
[
1 + Ĉexp

(
Ĉ

∫ t

τ

(‖u(s)‖2+1)ds
)∫ t

τ

(‖u(s)‖2 + 1)ds
]

for all t ≥ τ, where Ĉ = C2ν−1(1− ρ∗)−1/2 + C2
g + 1.

Proof. The existence of at least one weak solution was already proved in Theorem
1. The energy equality (7) was given in Remark 3 for any solution to (1). So, it only
remains to check uniqueness, and estimates (8) and (9). Actually, we will obtain
uniqueness as a by-product of (8).

Indeed, consider two solutions u(·) and v(·) to (1) with corresponding initial
data (uτ , φ) and (vτ , ψ) respectively, and denote w = u− v. Then, from (2) and the
energy equality for w, we obtain that

1
2
d

dt
|w(t)|2 + ν‖w(t)‖2 + b(w(t− ρ(t)), u(t), w(t))

= (g(t, ut)− g(t, vt), w(t)), a.e. t > τ. (10)

Now, as φ, ψ ∈ L2
V ∩ L∞H , by (3) we have the following estimate for the trilinear

term b,

|b(w(t− ρ(t)), u(t), w(t))|
≤ C|w(t− ρ(t))|1/2‖w(t− ρ(t))‖1/2‖u(t)‖|w(t)|1/2‖w(t)‖1/2

≤ C ess sup
r∈(t−h,t)

|w(r)|‖u(t)‖‖w(t− ρ(t))‖1/2‖w(t)‖1/2.

Integrating in time (10) and using the above estimate, the assumptions on g, and
Young and Hölder inequalities with a suitable constant (to be fixed later on), we
deduce that

|w(t)|2 + 2ν
∫ t

τ

‖w(s)‖2ds

≤ |w(τ)|2 +
C2

ε

∫ t

τ

ess sup
r∈(s−h,s)

|w(r)|2‖u(s)‖2ds+ ε

∫ t

τ

‖w(s− ρ(s))‖‖w(s)‖ds

+2
∫ t

τ

(g(s, us)− g(s, vs), w(s))ds
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≤ |w(τ)|2 +
C2

ε

∫ t

τ

ess sup
r∈(s−h,s)

|w(r)|2‖u(s)‖2ds+
ν

2

∫ t

τ

‖w(s)‖2ds

+
ε2

2ν

∫ t

τ

‖w(s− ρ(s))‖2ds+
∫ t

τ−h

|w(s)|2ds+ C2
g

∫ t

τ

|w(s)|2ds ∀t ≥ τ.

In particular, after a change of variable in the integral of w(s− ρ(s)), thanks to the
upper bound on ρ′, and choosing ε2 = ν2(1− ρ∗), we arrive at

|w(t)|2 + ν

∫ t

τ

‖w(s)‖2ds

≤ |w(τ)|2 + (λ−1
1 + ν/2)

∫ τ

τ−h

‖w(s)‖2ds

+
C2

ε

∫ t

τ

ess sup
r∈(s−h,s)

|w(r)|2‖u(s)‖2ds+ (1 + C2
g )
∫ t

τ

|w(s)|2ds ∀t ≥ τ.(11)

Thus, neglecting the integral term in the left hand side above, putting s ∈ (t−h, t)
instead of t, and taking the essential supremum in the resulting left hand side, we
conclude that

ess sup
s∈(t−h,t)

|w(s)|2 ≤ ‖wτ‖2L∞H + (λ−1
1 + ν/2)

∫ τ

τ−h

‖w(s)‖2ds

+
(
C2

ε
+ C2

g + 1
)∫ t

τ

(‖u(s)‖2 + 1) ess sup
r∈(s−h,s)

|w(r)|2ds

for all t ≥ τ, whence (8) holds by applying Gronwall lemma.
Finally, (9) is a consequence of (11) by using (8).

Remark 4. It is worth mentioning that even with φ ∈ L2
V alone, the regularisation

of the equation means that after an elapsed time h the weak solution obtained in
Theorem 1 becomes well-posed and continuous. The problem is that before that
elapsed time we cannot guarantee uniqueness of solution. So a possible dynamical
system in such phase-space H×L2

V would be eventually multi-valued, which means
that all the study of the asymptotic behaviour would be an open question (among
many conditional results for this type of problems, we recall the seminal paper by
J. M. Ball [1]).

3. Existence and comparison of minimal pullback attractors. We give a
brief summary of some well-known abstract results on existence and comparison of
minimal pullback attractors for dynamical systems (e.g. cf. [2, 3, 22, 8]).

Consider given a metric space (X, dX), and let us denote R2
d ={(t, τ)∈R2 :τ≤ t}.

A process U on X is a mapping R2
d × X 3 (t, τ, x) 7→ U(t, τ)x ∈ X such that

U(τ, τ)x = x for any (τ, x) ∈ R × X, and U(t, r)(U(r, τ)x) = U(t, τ)x for any
τ ≤ r ≤ t and all x ∈ X.

A process U is said to be continuous if for any pair τ ≤ t, the mapping U(t, τ) :
X → X is continuous.

On other hand, a process U is said to be closed if for any τ ≤ t, and any sequence
{xn} ⊂ X, if xn → x ∈ X and U(t, τ)xn → y ∈ X, then U(t, τ)x = y. It is clear
that every continuous process is closed.

Let us denote by P(X) the family of all nonempty subsets of X, and consider a
family of nonempty sets D̂0 = {D0(t) : t ∈ R} ⊂ P(X).
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Definition 2. We say that a process U onX is pullback D̂0-asymptotically compact
if for any t ∈ R and any sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying
τn → −∞ and xn ∈ D0(τn) for all n, the sequence {U(t, τn)xn} is relatively compact
in X.

Denote

Λ(D̂0, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)D0(τ)
X

∀ t ∈ R,

where {· · · }
X

is the closure in X.
Given two subsets of X, O1 and O2, we denote by distX(O1,O2) the Hausdorff

semi-distance in X between them, defined as

distX(O1,O2) = sup
x∈O1

inf
y∈O2

dX(x, y).

Let be given D a nonempty class of families parameterized in time D̂ = {D(t) :
t ∈ R} ⊂ P(X). The class D will be called a universe in P(X).

Definition 3. A process U on X is said to be pullback D-asymptotically compact
if it is pullback D̂-asymptotically compact for any D̂ ∈ D.

It is said that D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback D-absorbing for the
process U on X if for any t ∈ R and any D̂ ∈ D, there exists a τ0(t, D̂) ≤ t such
that

U(t, τ)D(τ) ⊂ D0(t) ∀ τ ≤ τ0(t, D̂).

Next result was proved in [8, Theorem 3.11].

Theorem 3. Consider a closed process U : R2
d ×X → X, a universe D in P(X),

and a family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) which is pullback D-absorbing for U ,
and assume also that U is pullback D̂0-asymptotically compact.

Then, the family AD = {AD(t) : t ∈ R} defined by AD(t) =
⋃

bD∈D Λ(D̂, t)
X

, has
the following properties:

(a) for any t ∈ R, the set AD(t) is a nonempty compact subset of X, and AD(t) ⊂
Λ(D̂0, t),

(b) AD is pullback D-attracting, i.e., limτ→−∞ distX(U(t, τ)D(τ),AD(t)) = 0 for
all D̂ ∈ D, and any t ∈ R,

(c) AD is invariant, i.e., U(t, τ)AD(τ) = AD(t) for all (t, τ) ∈ R2
d,

(d) if D̂0 ∈ D, then AD(t) = Λ(D̂0, t) ⊂ D0(t)
X

for all t ∈ R.

The family AD is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is a fam-
ily of closed sets such that for any D̂ = {D(t) : t ∈ R} ∈ D, lim

τ→−∞
distX(U(t, τ)D(τ),

C(t)) = 0, then AD(t) ⊂ C(t).

Remark 5. Under the assumptions of Theorem 3, the family AD is called the
minimal pullback D-attractor for the process U .

If AD ∈ D, then it is the unique family of closed subsets in D that satisfies
(b)–(c).

A sufficient condition for AD ∈ D is to have that D̂0 ∈ D, the set D0(t) is
closed for all t ∈ R, and the family D is inclusion-closed (i.e., if D̂ ∈ D, and
D̂′ = {D′(t) : t ∈ R} ⊂ P(X) with D′(t) ⊂ D(t) for all t, then D̂′ ∈ D).
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We will denote by DF (X) the universe of fixed nonempty bounded subsets of X,
i.e., the class of all families D̂ of the form D̂ = {D(t) = D : t ∈ R} with D a fixed
nonempty bounded subset of X.

Now, it is easy to conclude the following result.

Corollary 1. Under the assumptions of Theorem 3, if the universe D contains the
universe DF (X), then both attractors, ADF (X) and AD, exist, and ADF (X)(t) ⊂
AD(t) for all t ∈ R.

Moreover, if for some T ∈ R, the set ∪t≤TD0(t) is a bounded subset of X, then
ADF (X)(t) = AD(t) for all t ≤ T .

4. Dynamical system associated to (1) and long-time behaviour. In view
of Theorems 1 and 2, we will apply the above abstract results in the phase-space
X = H × (L2

V ∩ L∞H ), which is a Banach space with the norm ‖(ζ, φ)‖X = |ζ| +
‖φ‖L2

V
+ ‖φ‖L∞H

for a pair (ζ, φ) ∈ X.
The first consequence after the Theorems 1 and 2 is the following

Corollary 2. Consider given f ∈ L2
loc(R;V ′) and g : R×CH → (L2(Ω))2 satisfying

(H1)–(H4). Then, the biparametric family of mappings S(t, τ) : H × (L2
V ∩L∞H ) →

H × (L2
V ∩ L∞H ), with (t, τ) ∈ R2

d, given by S(t, τ)(uτ , φ) = (u(t), ut) where u is the
weak solution to (1), defines a continuous process.

Now we introduce an additional assumption in order to obtain some energy esti-
mates.
(H5) Assume that νλ1 > Cg, and that there exists a value η ∈ (0, 2(νλ1−Cg)) such

that for every u ∈ L2(τ − h, t;H),∫ t

τ

eηs|g(s, us)|2 ds ≤ C2
g

∫ t

τ−h

eηs|u(s)|2 ds ∀t ≥ τ.

We have the following result (cf. [10]), which proof is included only for the sake
of completeness.

Lemma 1. Consider given f ∈ L2
loc(R;V ′) and g : R× CH → (L2(Ω))2 satisfying

conditions (H1)–(H5). Then, for any (uτ , φ) ∈ H × (L2
V ∩ L∞H ), the following

inequalities hold for the solution u to (1) for all t ≥ s ≥ τ :

|u(t)|2 ≤ e−η(t−τ)(|uτ |2 + Cg‖φ‖2L2
H

) +
e−ηt

β

∫ t

τ

eηr‖f(r)‖2∗dr, (12)

ν

∫ t

s

‖u(r)‖2dr ≤ |u(s)|2+Cg‖us‖2L2
H

+
1
ν

∫ t

s

‖f(r)‖2∗dr+2Cg

∫ t

s

|u(r)|2dr,(13)

where
β = 2ν − (η + 2Cg)λ−1

1 > 0. (14)

Proof. By the energy equality (7) and Young inequality, we have
d

dt
|u(t)|2 + 2ν‖u(t)‖2

≤ β‖u(t)‖2 + β−1‖f(t)‖2∗ + Cg|u(t)|2 + C−1
g |g(t, ut)|2, a.e. t > τ.

Thus,
d

dt

(
eηt|u(t)|2

)
+ eηt

(
2ν − β − (η + Cg)λ−1

1

)
‖u(t)‖2

≤ eηtβ−1‖f(t)‖2∗ + eηtC−1
g |g(t, ut)|2, a.e. t > τ,
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and therefore, integrating in time above and using property (H5), we obtain

eηt|u(t)|2 +
(
2ν − β − (η + Cg)λ−1

1

) ∫ t

τ

eηr‖u(r)‖2 dr

≤ eητ |uτ |2 + β−1

∫ t

τ

eηr‖f(r)‖2∗ dr + Cg

∫ t

τ−h

eηr|u(r)|2 dr

≤ eητ

(
|uτ |2 + Cg

∫ 0

−h

|φ(r)|2dr
)

+ β−1

∫ t

τ

eηr‖f(r)‖2∗ dr + Cg

∫ t

τ

eηr|u(r)|2 dr,

for all t ≥ τ , and from this last inequality and (14), in particular we deduce (12).
Finally, observing that

d

dt
|u(t)|2 + 2ν‖u(t)‖2

≤ ν‖u(t)‖2 + ν−1‖f(t)‖2∗ + Cg|u(t)|2 + C−1
g |g(t, ut)|2, a.e. t > τ,

and integrating in [s, t], by (H4) we conclude (13).

At the light of the previous result, we will now define an appropriate concept of
(tempered) universe for problem (1).

Definition 4. We will denote by DH,L2
H

η (H × (L2
V ∩ L∞H )) the class of all families

of nonempty subsets D̂ = {D(t) : t ∈ R} ⊂ P(H × (L2
V ∩ L∞H )) such that

lim
τ→−∞

(
eητ sup

(ζ,ϕ)∈D(τ)

(|ζ|2 + ‖ϕ‖2L2
H

)
)

= 0.

Observe that the above definition does not make the most use of the natural norm
of (ζ, ϕ) in H × (L2

V ∩L∞H ), but just in H ×L2
H . Another immediate observation is

that the above universe is inclusion-closed.
We will denote by DF (H × (L2

V ∩ L∞H )) the universe of fixed bounded sets in
H × (L2

V ∩ L∞H ).
As a consequence of Lemma 1 we have the following

Corollary 3. Assume that f ∈ L2
loc(R;V ′) satisfies∫ 0

−∞
eηr‖f(r)‖2∗dr <∞, (15)

and g : R × CH → (L2(Ω))2 fulfills conditions (H1)–(H5). Then, the family D̂0 =
{D0(t) : t ∈ R} ⊂ P(H × (L2

V ∩ L∞H )) defined by

D0(t) = BH(0, RH(t))× (BL2
V
(0, RV (t)) ∩BL∞H

(0, RH(t))),

where

R2
H(t) = 1 + β−1e−η(t−2h)

∫ t

−∞
eηr‖f(r)‖2∗dr,

R2
V (t) = ν−1

[
(1 + 3Cgh)R2

H(t) + ν−1‖f‖2L2(t−h,t;V ′)

]
,

is pullback DH,L2
H

η (H × (L2
V ∩L∞H ))−absorbing for the process S on H × (L2

V ∩L∞H )
(and therefore pullback DF (H × (L2

V ∩ L∞H ))−absorbing too), and D̂0 belongs to

DH,L2
H

η (H × (L2
V ∩ L∞H )).
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Proof. Fix t ∈ R. From (12) we deduce that for any D̂ ∈ DH,L2
H

η (H × (L2
V ∩ L∞H ))

there exists τ(D̂, t) ≤ t− 2h such that

|u(t; τ, uτ , φ)|2 ≤ 1 + β−1e−ηt

∫ t

−∞
eηr‖f(r)‖2∗dr

for all t ≥ τ with τ ≤ τ(D̂, t) and (uτ , φ) ∈ D(τ).
In particular, we deduce that ‖ut‖2L∞H ≤ R2

H(t).
Now, putting s = t − h in (13) and using the above estimate, an immediate

computation leads to ‖ut‖2L2
V
≤ R2

V (t).

The fact that D̂0 belongs to DH,L2
H

η (H × (L2
V ∩ L∞H )) follows from the definition

of RH and (15) (cf. Definition 4). The proof is finished.

Lemma 2. Under the assumptions of Corollary 3, the process S is pullback DH,L2
H

η (H
×(L2

V ∩ L∞H ))−asymptotically compact.

Proof. Fix t ∈ R, and consider a family D̂ ∈ DH,L2
H

η (H×(L2
V ∩L∞H )), and sequences

{τn} ⊂ (−∞, t] with τn → −∞, {(uτn , φn)} with (uτn , φn) ∈ D(τn) for all n. Denote
for short un(·) = u(·; τn, uτn , φn).

Analogously to Corollary 3, from Lemma 1 we have that there exists τ(D̂, t) <
t − 4h − 1 such that the subsequence {un : τn ≤ τ(D̂, t)} is bounded in L∞(t −
4h− 1, t;H) ∩ L2(t− 3h− 1, t;V ), and thanks to (H4) and (6), {(un)′} is bounded
in L2(t − 2h − 1, t;V ′). Therefore, by the Aubin-Lions compactness lemma (e.g.,
cf. [17]), there exists u ∈ L∞(t − 4h − 1, t;H) ∩ L2(t − 3h − 1, t;V ) with u′ ∈
L2(t−2h−1, t;V ′) such that, for a subsequence (relabelled the same), the following
convergences hold,

un ∗
⇀ u weakly-star in L∞(t− 4h− 1, t;H),

un ⇀ u weakly in L2(t− 3h− 1, t;V ),
(un)′ ⇀ u′ weakly in L2(t− 2h− 1, t;V ′),
un → u strongly in L2(t− 2h− 1, t;H),
un(s) → u(s) strongly in H, a.e. s ∈ (t− 2h− 1, t).

(16)

From (H4) we also have that

g(·, un
· ) → g(·, u·) strongly in L2(t− h− 1, t;H).

In particular, observe that thanks to the above convergences u ∈ C([t − 2h −
1, t];H) is a weak solution to (1) in (t− h− 1, t) with ut−h−1 as initial datum.

We also deduce from (16) that {un} is equi-continuous on [t−2h−1, t] with values
in V ′. From the boundedness of {un} in C([t− 2h− 1, t];H) and the compactness
of the injection of H into V ′, by the Ascoli-Arzelà theorem we conclude that a
subsequence (relabelled the same) satisfies

un → u strongly in C([t− 2h− 1, t];V ′). (17)

Using once more the boundedness of {un} in C([t− 2h− 1, t];H), we have that for
any sequence {sn} ⊂ [t− 2h− 1, t] with sn → s∗, it holds that

un(sn) ⇀ u(s∗) weakly in H, (18)

where we have used (17) to identify the weak limit.

Claim 1: un → u strongly in C([t− h, t];H).



ATTRACTORS FOR A DOUBLE TIME-DELAYED 2D-NAVIER-STOKES MODEL 13

If not, there would exist ε > 0, a value t∗ ∈ [t−h, t], and subsequences (relabelled
the same) {un} and {tn} ⊂ [t− h, t], with limn tn = t∗, such that

|un(tn)− u(t∗)| ≥ ε ∀n ≥ 1. (19)

Moreover, from (18) we have that

|u(t∗)| ≤ lim inf
n→∞

|un(tn)|. (20)

From the energy equality (7) for un and for u, we deduce that the following functions
are non-increasing in [t− h− 1, t] :

Jn(s) :=
1
2
|un(s)|2 −

∫ s

t−h−1

〈f(r), un(r)〉dr −
∫ s

t−h−1

(g(r, un
r ), un(r))dr,

J(s) :=
1
2
|u(s)|2 −

∫ s

t−h−1

〈f(r), u(r)〉dr −
∫ s

t−h−1

(g(r, ur), u(r))dr.

Moreover, J and Jn are continuous, and by the above convergences, we have that

Jn(s) → J(s) a.e. s ∈ (t− h− 1, t).

Therefore, it is possible to choose {t̃k} ⊂ (t− h− 1, t∗) satisfying limk t̃k = t∗ and

lim
n
Jn(t̃k) = J(t̃k) ∀k.

Consider an arbitrary value δ > 0. By the continuity of J, there exists kδ such that

|J(t̃k)− J(t∗)| < δ/2 ∀ k ≥ kδ.

Now, let us take n(kδ) such that for all n ≥ n(kδ) it holds

tn ≥ t̃kδ
and |Jn(t̃kδ

)− J(t̃kδ
)| < δ/2.

Then, since all Jn are non-increasing, we deduce that for all n ≥ n(kδ)

Jn(tn)− J(t∗) ≤ Jn(t̃kδ
)− J(t∗)

≤ |Jn(t̃kδ
)− J(t∗)|

≤ |Jn(t̃kδ
)− J(t̃kδ

)|+ |J(t̃kδ
)− J(t∗)| < δ.

Therefore, as δ > 0 is arbitrary, we obtain that lim supn→∞ Jn(tn) ≤ J(t∗), and
consequently, by (16),

lim sup
n→∞

|un(tn)| ≤ |u(t∗)|,

whence, jointly with (20) and (18), gives the strong convergence un(tn) → u(t∗) in
H, in contradiction with (19). Thus, Claim 1 is proved.

Claim 2: un → u strongly in L2(t− h, t;V ).
Indeed, by using again the energy equality (7) satisfied by u and un, all the

convergences in (16), and Claim 1, we conclude that ‖un
t ‖L2

V
→ ‖ut‖L2

V
. This con-

vergence of the norms, jointly with the weak convergence already proved in (16),
concludes this Claim 2.

The proof follows from Claims 1 and 2.

From the above results, we may establish the main result of the paper.
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Theorem 4. Assume that f ∈ L2
loc(R;V ′) satisfies (15) and g : R × CH →

(L2(Ω))2 fulfills conditions (H1)–(H5). Then, there exist the minimal pullback at-
tractors {ADF (H×(L2

V ∩L∞H ))(t)}t∈R and {A
D

H,L2
H

η (H×(L2
V ∩L∞H ))

(t)}t∈R, both belonging

to DH,L2
H

η (H × (L2
V ∩ L∞H )) and the following relations hold:

ADF (H×(L2
V ∩L∞H ))(t) ⊂ A

D
H,L2

H
η (H×(L2

V ∩L∞H ))
(t) ⊂ D0(t) ∀t ∈ R. (21)

Moreover, if f satisfies the stronger requirement

sup
s≤0

∫ s

s−1

‖f(r)‖2∗dr <∞, (22)

then both attractors coincide, i.e., (21) becomes an equality for all t ∈ R.

Proof. Since the process S is continuous in H × (L2
V ∩ L∞H ) by Corollary 2, there

exists a pullback absorbing family D̂0 ∈ DH,L2
H

η (H × (L2
V ∩ L∞H )) by Corollary 3,

and the process S is pullback DH,L2
H

η (H × (L2
V ∩L∞H ))−asymptotically compact by

Lemma 2, the existence of A
D

H,L2
H

η (H×(L2
V ∩L∞H ))

and ADF (H×(L2
V ∩L∞H )) follows from

Theorem 3 and Corollary 1 respectively.
Moreover, the inclusion relations in (21) also follow from Corollary 1 and Theo-

rem 3 respectively.
The fact that A

D
H,L2

H
η (H×(L2

V ∩L∞H ))
belongs to DH,L2

H
η (H × (L2

V ∩L∞H )) is due to

Remark 5, since the pullback absorbing family D̂0 ∈ DH,L2
H

η (H × (L2
V ∩ L∞H )) has

closed sections and this universe is inclusion-closed.
Finally, the last claim of the coincidence of both families of pullback attrac-

tors under assumption (22) follows from Corollary 1, taking into account that
supt≤T RH(t) and supt≤T RV (t) are bounded for any T ∈ R.

4.1. A slight improvement: phase-space involving CH . It is clear by the
invariance of the minimal pullback attractors under the process S and from Re-
mark 3 that the second component of any time section of ADF (H×(L2

V ∩L∞H )) and
A
D

H,L2
H

η (H×(L2
V ∩L∞H ))

lives in CH .

The goal of this section is to compare these two families of attractors with others
associated to this problem, related to the space L2

V ∩ CH .
In order to do so, we need to introduce some additional notation.
Analogously to Definition 4, let us introduce a new universe.

Definition 5. Denote by DCH
η (L2

V ∩ CH) the class of all families of nonempty
subsets D̂ = {D(t) : t ∈ R} ⊂ P(L2

V ∩ CH) such that

lim
τ→−∞

(
eητ sup

ϕ∈D(τ)

|ϕ|2CH

)
= 0.

We will also denote by DF (L2
V ∩CH) the universe of fixed bounded sets in L2

V ∩CH .

Observe that DCH
η (L2

V ∩ CH) is inclusion-closed.
Let us also introduce the biparametric family of mappings

U(t, τ) : L2
V ∩ CH → L2

V ∩ CH

for any (t, τ) ∈ R2
d, by U(t, τ)φ = ut(·; τ, φ(0), φ) for any φ ∈ L2

V ∩ CH .
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It is clear that U is also a process on L2
V ∩CH , and that under the assumptions

of Theorem 2, U is continuous.
Before establishing the main result of this section, we need an auxiliar lemma.

Lemma 3. Under the assumptions of Corollary 3, let consider D̂ ∈ DH,L2
H

η (H ×
(L2

V ∩L∞H )) and r ≥ h. Then, the family D̂(r) = {D(r)(τ) : τ ∈ R}, where D(r)(τ) =
{uτ+r(·; τ, uτ , φ) : (uτ , φ) ∈ D(τ)}, belongs to DCH

η (L2
V ∩ CH).

Proof. By Theorem 2 it is clear that D(r)(τ) ⊂ L2
V ∩ CH .

Fix an arbitrary value τ ∈ R and denote by u, for short, the solution to (1) with
(arbitrary) initial data (uτ , φ) ∈ D(τ). From (12) we can deduce that

sup
uτ+r∈D(r)(τ)

(
eητ |uτ+r|2CH

)
≤ e−η(r−h)eητ sup

(uτ ,φ)∈D(τ)

(|uτ |2 + Cg‖φ‖2L2
H

) + β−1e−η(r−h)

∫ τ+r

τ

eηs‖f(s)‖2∗ds.

Taking into account that f satisfies (15), the proof is finished.

Now we may establish the following result.

Theorem 5. Assume that f ∈ L2
loc(R;V ′) satisfies (15) and g : R×CH → (L2(Ω))2

fulfills conditions (H1)–(H5). Then, there exist the minimal pullback attractors
{ADF (L2

V ∩CH)(t)}t∈R and {ADCH
η (L2

V ∩CH)
(t)}t∈R in L2

V ∩ CH for the universes of

fixed bounded sets and for those with tempered growth in L2
V ∩ CH .

Both pullback attractors belong to DCH
η (L2

V ∩ CH) and the following relations
hold:

ADF (L2
V ∩CH)(t) ⊂ ADCH

η (L2
V ∩CH)

(t) ∀t ∈ R, (23)

j(ADF (L2
V ∩CH)(t)) ⊂ ADF (H×(L2

V ∩L∞H ))(t) ∀t ∈ R, (24)

j(ADCH
η (L2

V ∩CH)
(t)) = A

D
H,L2

H
η (H×(L2

V ∩L∞H ))
(t) ∀t ∈ R, (25)

where j : L2
V ∩ CH → H × (L2

V ∩ L∞H ) is defined by j(ϕ) = (ϕ(0), ϕ).
Finally, if f satisfies (22), then, the inclusions in (23) and (24) are in fact

equalities for all t ∈ R.

Proof. From Corollary 3, we have that the family D̂1 = {D1(t) : t ∈ R} ⊂ P(L2
V ∩

CH) given by
D1(t) = BL2

V
(0, RV (t)) ∩BCH

(0, RH(t))

is pullback DCH
η (L2

V ∩ CH)−absorbing for U on L2
V ∩ CH .

It is also immediate to check that D̂1 ∈ DCH
η (L2

V ∩ CH), and its time sections
are closed.

From Lemma 2 we have that U is pullback DCH
η (L2

V ∩CH)−asymptotically com-
pact.

Therefore, we may apply again Theorem 3 and Corollary 1 to conclude the exis-
tence of the minimal pullback attractors in the statement and the inclusion relation
(23).

Relations (24) and (25) through the canonical embedding j from L2
V ∩ CH to

H × (L2
V ∩ L∞H ) can be obtained by the construction of the attractors, arguments

of minimality of minimal pullback attractors, and estimates after a time-shift of
length h, in the same manner as in [23, Theorem 5] or [10, Theorem 23].
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Indeed, in order to prove (24), fix an arbitrary value t ∈ R, and observe that

ADF (L2
V ∩CH)(t) =

⋃
B ⊂ L2

V ∩ CH
B bounded

ΛL2
V ∩CH

(B, t)
L2

V ∩CH

,

where the symbol ΛL2
V ∩CH

denotes the omega-limit construction with respect to
the topology of the space L2

V ∩ CH .
Analogously, we have that

ADF (H×(L2
V ∩L∞H ))(t) =

⋃
B ⊂ H × (L2

V ∩ L∞H )
B bounded

ΛH×(L2
V ∩L∞H )(B, t)

H×(L2
V ∩L∞H )

,

where the symbol ΛH×(L2
V ∩L∞H ) denotes the omega-limit construction with respect

to the topology of the space H × (L2
V ∩ L∞H ).

Now, observe that for any bounded set B ⊂ L2
V ∩ CH , since the operator j is

clearly linear and continuous, then j(B) is also bounded in H × (L2
V ∩ L∞H ).

If x ∈ ΛL2
V ∩CH

(B, t), then there exist sequences {τn}, with τn ≤ t for all n, and
limn τn = −∞, and {xn} ⊂ B, such that

x = lim
τn→−∞

U(t, τn)xn in L2
V ∩ CH .

But this implies that

(x(0), x) = lim
τn→−∞

S(t, τn)(xn(0), xn) in H × (L2
V ∩ L∞H ),

whence we deduce that

j(ΛL2
V ∩CH

(B, t)) ⊂ ΛH×(L2
V ∩L∞H )(j(B), t)

for all bounded set B ⊂ L2
V ∩ CH . Thus, (24) follows.

The inclusion to the right in (25) can be proved analogously. Let us now prove the
inclusion to the left in (25). Indeed, for any t ∈ R and D̂ ∈ DH,L2

H
η (H× (L2

V ∩L∞H )),
we have that for any τ < t− h

distH×(L2
V ∩L∞H )(S(t, τ)D(τ), j(ADCH

η (L2
V ∩CH)

(t)))

= distH×(L2
V ∩L∞H )(S(t, τ + h)(S(τ + h, τ)D(τ)), j(ADCH

η (L2
V ∩CH)

(t)))

= distH×(L2
V ∩L∞H )(j(U(t, τ + h)D(h)(τ)), j(ADCH

η (L2
V ∩CH)

(t)))

≤ C(j)distL2
V ∩CH

(U(t, τ + h)D(h)(τ),ADCH
η (L2

V ∩CH)
(t)),

where we have used the notation introduced in Lemma 3 for the family D̂(h), which
belongs to DCH

η (L2
V ∩CH), and once more the fact that j is a linear and continuous

operator from L2
V ∩ CH to H × (L2

V ∩ L∞H ).Thus, we have that the right-hand side
of the above inequality goes to zero when τ goes to −∞, and so the left-hand side
also does. Therefore, the inclusion

A
D

H,L2
H

η (H×(L2
V ∩L∞H ))

(t) ⊂ j(ADCH
η (L2

V ∩CH)
(t))

follows since A
D

H,L2
H

η (H×(L2
V ∩L∞H ))

(t) is the minimal closed set in H × (L2
V ∩ L∞H )

that attracts any family D̂ ∈ DH,L2
H

η (H × (L2
V ∩L∞H )) at time t in a pullback sense.
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Last claim about the equalities in (23) and (24) when f also satisfies (22) follows
again from Corollary 1 since then it holds that supt≤T RH(t) and supt≤T RV (t)
are bounded for any T ∈ R. This gives immediately the equality in (23). Then,
combining this with the equality in (25) and the equality in (21), we conclude that
(24) becomes an equality too, for all t ∈ R.

Remark 6. Under the assumptions of the above theorem, if besides f satisfies (22),
then, for each T ∈ R, the sets

{ADCH
η (L2

V ∩CH)
(t)}t≤T and {A

D
H,L2

H
η (H×(L2

V ∩L∞H ))
(t)}t≤T

are bounded in L2
V ∩ CH and H × (L2

V ∩ L∞H ) respectively.

5. The autonomous case. In this section we translate and adapt the previous
results to the framework of time-independent forces. Observe that without an ex-
plicit dependence on time, the dynamical system then becomes autonomous, which
means that only the elapsed time is important, rather than the pair of initial and
final times. Actually, the autonomous results are just a particular case of all the
previous exposition, but for some readers it might be a more clear exposition of the
nature of the problem itself without the interferences of non-autonomous modifica-
tions. In particular, we will be able to state the existence of the global attractor for
the cited (autonomous) dynamical system under suitable conditions.

Consider the functional Navier-Stokes model

∂u

∂t
− ν∆u+ (u(t− h) · ∇)u+∇p = f + g(ut) in Ω× (0,∞),

divu = 0 in Ω× (0,∞),
u = 0 on ∂Ω× (0,∞),
u(x, 0) = u0(x) in Ω,
u(x, s) = φ(x, s) in Ω× (−h, 0),

(26)

where all the unknowns were already explained in the introduction of the paper
(h > 0 is fixed and now ρ ≡ h). Observe too that f, the non-delayed external
force field, and g, the external force with some hereditary characteristics, are time-
independent. Let us also observe that in contrast to (1), here τ = 0 (actually, since
the problem is autonomous, the initial time is not relevant).

For the delay operator g we assume that g : CH → (L2(Ω))2 satisfies (observe
that the assumption (H1) holds trivially in this framework):
(H2’) g(0) = 0,
(H3’) there exists Lg > 0 such that for all ξ, η ∈ CH ,

|g(ξ)− g(η)| ≤ Lg|ξ − η|CH
,

(H4’) there exists Cg > 0 such that for all 0 ≤ τ ≤ t, and for all u, v ∈ C([−h, t];H)∫ t

τ

|g(ur)− g(vr)|2dr ≤ C2
g

∫ t

τ−h

|u(r)− v(r)|2dr.

Then, the immediate translation of the first existence result (cf. Theorem 1) is
the following

Theorem 6. Consider u0 ∈ H, φ ∈ L2
V , f ∈ V ′, and g : CH → (L2(Ω))2 satisfying

assumptions (H2’)–(H4’). Then, there exists at least one weak solution u(·; 0, u0, φ)
to (26).
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Of course, the concept of weak solution given in Definition 1 to problem (1) just
needs to substitute τ = 0 to be referred to problem (26).

The trouble of this result arises from the fact that (cf. Remark 2) B(u(· −
h), u(·)) ∈ L4/3(0, T ;V ′), which does not allow to apply an energy equality, and
therefore uniqueness is unknown. However, if we improve slightly the initial data
(cf. Remark 3) we gain B(u(· − h), u(·)) ∈ L2(0, T ;V ′). We state these results
precisely in the following

Theorem 7. Consider u0 ∈ H, φ ∈ L2
V ∩ L∞H , f ∈ V ′, and g : CH → (L2(Ω))2

satisfying assumptions (H2’)–(H4’). Then, there exists a unique weak solution to
(26), which additionally satisfies u(·; 0, u0, φ) ∈ C([0,∞);H) and the energy equality
(7) for all 0 ≤ s ≤ t.

Moreover, if for short we denote by u(·) and v(·) the corresponding solutions to
(26) with respective initial data (u0, φ) and (v0, ψ), then the estimates (8) and (9)
(with τ = 0) hold for all t ≥ 0, where Ĉ = C2ν−1 + C2

g + 1.

Once that a solution operator to problem (26) is suitably given, since continuous
dependence with respect to initial data holds (by the previous theorem), and con-
catenation of solutions is clearly a solution too, one may use the standard results of
(autonomous) dynamical systems (see e.g. [29] for a detailed exposition on concepts
and results). Let us for the sake of brevity just include the very essential elements
we need for our analysis.

Definition 6. A semi flow S on a metric space (X, dX) is a mapping R+ × X 3
(t, x) 7→ S(t)x ∈ X such that S(0) =IdX , and S(t)S(s)x = S(t+s)x for any t, s ≥ 0
and all x ∈ X.

It is said that the semi flow S is continuous if for any t ∈ R+, the mapping
S(t) : X → X is continuous.

The semi flow S is said to be asymptotically compact if for any bounded sequence
{xn} ⊂ X and {tn} ⊂ R+ with limn tn = ∞, the sequence {S(tn)xn} is relatively
compact in X.

A subset B0 ⊂ X is said to be absorbing for the semi flow S if for any bounded
subset B ⊂ X there exists a time T (B) ≥ 0 such that S(t)B := ∪b∈BS(t)b ⊂ B0

for all t ≥ T (B).
A subset A ⊂ X is said to be a global attractor for the semi flow S on X if it is

compact, invariant (i.e. S(t)A = A for all t ∈ R+), and it attracts bounded sets of
X, i.e. limt→∞ distX(S(t)B,A) = 0 for all B ⊂ X bounded.

Observe that from the definition of a global attractor for a semi flow, if it exists,
it is unique. Moreover, it is the minimal closed set with the property of attracting
all bounded sets, and the maximal compact invariant set.

With the above concepts, the basic result on existence of global attractor is the
following.

Theorem 8. (cf. [29]) Consider a semi flow S defined on a metric space (X, dX),
which is continuous. Then, there exists the global attractor A for S if and only if
the semi flow is asymptotically compact and it has a bounded absorbing set B0 ⊂ X.
Moreover, then

A = ω(B0) :=
⋂
t≥0

⋃
s≥t

S(s)B0

X

.
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To apply the above result, as in Section 4 we consider the Banach space X =
H×(L2

V ∩L∞H ), wit the norm ‖(ζ, φ)‖X = |ζ|+‖φ‖L2
V

+‖φ‖L∞H
for a pair (ζ, φ) ∈ X.

After Corollary 2, but within the assumptions of Theorem 7, the family of map-
pings that form a continuous semi flow is now given by S(t) = S(t, 0) from into
X, and for any t ∈ R+, i.e. S(t) : H × (L2

V ∩ L∞H ) → H × (L2
V ∩ L∞H ) given by

S(t)(u0, φ) = (u(t), ut) where u is the weak solution to (26).
In order to obtain asymptotic estimates, we impose this new condition:

(H5’) Assume that νλ1 > Cg, and that there exists a value η ∈ (0, 2(νλ1−Cg)) such
that for any 0 ≤ τ ≤ t and for every u ∈ L2(τ − h, t;H),∫ t

τ

eηs|g(us)|2 ds ≤ C2
g

∫ t

τ−h

eηs|u(s)|2 ds ∀t ≥ τ ≥ 0.

The analogous result to Lemma 1 is the following

Lemma 4. Consider given f ∈ V ′ and g : CH → (L2(Ω))2 satisfying conditions
(H2’)–(H5’). Then, for any (u0, φ) ∈ H × (L2

V ∩ L∞H ), the following inequalities
hold for the solution u to (26) for all t ≥ s ≥ 0:

|u(t)|2 ≤ e−ηt(|u0|2 + Cg‖φ‖2L2
H

) +
1
βη
‖f‖2∗,

ν

∫ t

s

‖u(r)‖2dr ≤ |u(s)|2 + Cg‖us‖2L2
H

+
1
ν
‖f‖2∗(t− s) + 2Cg

∫ t

s

|u(r)|2dr,

where β is given by (14).

Since condition (15) now is fulfilled trivially for a constant f ∈ V ′, as a particular
case of Corollary 3 we have the first ingredient for applying Theorem 8: the existence
of an absorbing set.

Corollary 4. Under the assumptions of Lemma 4, the set

B̂0 := BH(0, R̂H)× (BL2
V
(0, R̂V ) ∩BL∞H

(0, R̂H)) ⊂ H × (L2
V ∩ L∞H ),

where

R̂2
H = 1 + (βη)−1‖f‖2∗, R̂2

V = ν−1[(1 + 3Cgh)R̂2
H + ν−1h‖f‖2∗],

is absorbing for the semi flow S on H × (L2
V ∩ L∞H ).

Second ingredient for applying Theorem 8 is the asymptotic compactness of S,
but this is again a consequence of the previously proved result in Section 4 (see
Lemma 2; observe that the autonomous or non-autonomous formulation is not really
a matter for the application of the energy method).

Lemma 5. Under the assumptions of Lemma 4, the semi flow S is asymptotically
compact.

Main result of this section is the following

Theorem 9. Assume that f ∈ V ′, and g : CH → (L2(Ω))2 satisfies conditions
(H2’)–(H5’). Then, there exists the global attractor ADF (H×(L2

V ∩L∞H )) for S on
H × (L2

V ∩ L∞H ).

Since the adaptation of Section 4.1 is also obvious (we omit the details here just
for the sake of brevity), and we may consider a natural semi flow S̃ : R+×L2

V ∩CH →
L2

V ∩CH given by S̃(t) = U(t, 0), and the continuity of this semi flow and absorption
and asymptotic compactness properties are not difficult to obtain (inherited from
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the proofs in that section), we conclude the following result (compare with Theorem
5).

Theorem 10. Assume that f ∈ V ′, and g : CH → (L2(Ω))2 satisfies conditions
(H2’)–(H5’). Then, there exists the global attractor ADF (L2

V ∩CH) for S̃ on L2
V ∩CH .

Moreover, the following relation holds:

j(ADF (L2
V ∩CH)) = ADF (H×(L2

V ∩L∞H ))

where j : L2
V ∩ CH → H × (L2

V ∩ L∞H ) is defined by j(ϕ) = (ϕ(0), ϕ).
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