
Homogeneous cooling state of a low-density granular flow

J. Javier Brey, M. J. Ruiz-Montero, and D. Cubero
Departamento de Fı´sica Teo´rica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain

~Received 12 June 1996!

The homogeneous cooling state of a granular flow of smooth spherical particles described by the Boltzmann
equation is investigated by means of the direct simulation Monte Carlo method. The velocity moments and also
the velocity distribution function are obtained and compared with approximate analytical results derived
recently. The accuracy of a Maxwell-Boltzmann approximation with a time-dependent temperature is dis-
cussed. Besides, the simulations show that the state of uniform density is unstable to long enough wavelength
perturbations so that clusters and voids spontaneously form throughout the system. The instability has the
characteristic features of the clustering instability which has been observed in molecular dynamics simulations
of dense fluids and predicted by hydrodynamic models of granular flows.@S1063-651X~96!03710-5#

PACS number~s!: 05.20.Dd, 47.50.1d, 47.20.2k

I. INTRODUCTION

Granular materials consist of macroscopic solid particles
immersed in gas or liquid. When driven to rapid flows their
behavior is dominated by the particle collisions and the in-
terstitial fluid plays a negligible role in the flow mechanics.
As an idealization, the granular flow can be considered as
similar to a flowing fluid composed of the grains. In recent
years, this analogy has been used to derive continuum equa-
tions for the evolution of the mass, momentum, and energy
of rapid granular flows. This has led to the proposal of hy-
drodynamiclike equations analogous to the conventional
Navier-Stokes equations for normal fluids@1#. Nevertheless,
unlike usual fluids, the kinetic energy in granular systems is
not conserved in collisions due to inelasticity and also to
surface roughness of the grains. There is a conversion of
kinetic energy into internal energy and the total kinetic en-
ergy of a granular flow tends to decrease in time. As a con-
sequence, a term describing the dissipation of energy in col-
lisions is included in the evolution equation for the energy.

A solid justification of the validity of a hydrodynamic
description for granular flows can only be achieved by start-
ing from a more fundamental description of the system. For
ordinary fluids, the connection between a particle description
and a continuous description is provided by kinetic theory. It
is then not surprising that kinetic theory methods have been
extended to the case of inelastic collisions between particles
@2–6#. In the most idealized case, the grains are modeled by
equal smooth spherical particles, whose interactions only af-
fect the translational degrees of freedom. A more realistic
description requires the consideration of rough particles
@7–9# and also of particles of different sizes@10–12#.

Application of kinetic theory methods implies, firstly, the
derivation of a kinetic equation for the distribution function
and, secondly, the solution of this equation. Although most
of the kinetic equations proposed up to now for granular
flows have been formulated by means of intuitive arguments,
similar to those used in the heuristic derivations of the
Boltzmann and Enskog equations@13#, very recently the
problem has been formulated at the level of a pseudo-
Liouville equation for inelastic spheres@6,14#. From this
equation, the Bogoliubov-Born-Green-Kirkwood-Yvon

~BBGKY! hierarchy for the reduced distributions functions
is derived, and, in the appropriate limits, extensions of the
Boltzmann equation and the revised Enskog equation for dis-
sipative dynamics are obtained.

Once the kinetic equation for the one-particle distribution
function is known, the standard procedure to obtain hydro-
dynamic equations, with explicit expressions for the fluxes
valid up to first order in the fields, is the Chapman-Enskog
expansion@13#. Nevertheless, a difficulty arises during the
application of this method to granular media as a conse-
quence of dissipation in collisions. While the zeroth order
distribution in the case of normal fluids is given by the local
equilibrium distribution, the solution of the corresponding
equation for inelastic collisions is not known. The equation
is formally the same as the one describing the homogeneous
granular state, whose time dependence occurs entirely
through the energy field. In fact, this state plays the same
role for fluids with inelastic collisions as the Maxwellian
does for normal fluids. In the latter case, a local equilibrium
generalization of the Maxwellian provides the reference state
for the study of inhomogeneous states. A similar local cool-
ing state exists for inelastic collisions, but the expression of
the distribution function for this state is not known, even in
the case of a dilute gas described by the~inelastic! Boltz-
mann equation. Then, what is usually done in existing kinetic
theories of granular flows is to introduce some approximated
expression for this reference single particle distribution func-
tion. On the basis of molecular dynamics results and quali-
tative reasoning, a Maxwellian is normally used. Corrections
to it have been recently obtained by introducing expansions
in Hermitian or Sonine polynomials, whose coefficients are
determined in a consistent way@9,14#. It must be noticed that
deviations from the Maxwellian, even if they are quantita-
tively small, can be very important from a physical and also
a practical point of view, since they can even imply the pres-
ence of new contributions to the fluxes which are not present
in normal fluids@4,15#.

Molecular dynamics studies@16–19# have clearly estab-
lished that uniform cooling granular systems are unstable,
and particles spontaneously tend to form clusters surrounded
by regions of low density. This phenomenon has been re-
ferred to as ‘‘clustering instability’’ and has been explained
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using hydrodynamic linear stability theory@20#. Since the
Boltzmann equation describes a low-density gas in which
correlations between colliding particles are neglected, it is
not cleara priori whether it also presents a clustering insta-
bility or, at least, some kind of inhomogeneous instability
which can be considered as a precursor to clustering.

The direct Monte Carlo simulation method was developed
by Bird twenty years ago to simulate the Boltzmann equation
@21,22#. It allows quantitative study of most low-density gas
flows, and can be easily adapted to the case of inelastic col-
lisions between particles. The aim of this paper is to report
some simulation results obtained for the homogeneous cool-
ing state using this method. From the simulations it is pos-
sible to compute the one-particle distribution function over a
quite wide range of velocities and, in particular, precise val-
ues for the fourth and sixth velocity moments are obtained.
This provides a test for the approximated solutions to the
Boltzmann equation discussed above. Also the stability of
the homogeneous cooling state is investigated, showing that
the Boltzmann equation presents an instability which has all
the characteristic features of the clustering instability ob-
served in dense media.

The structure of the paper is as follows. In Sec. II a short
review of recent results obtained by using kinetic theory
methods is presented. The close relationship between the so-
lutions of the Boltzmann and the revised Enskog equations
for the homogeneous cooling state is emphasized. It follows
that the simulation provides results that, when properly
scaled, can be applied to both equations. The simulation re-
sults for the velocity distribution function of the homoge-
neous state are discussed in Sec. III. They are compared with
the available kinetic theory predictions and a quite good
agreement is observed. In particular, it is found that the first
Sonine approximation provides an accurate description over
a quite wide range of values of the restitution coefficient. In
Sec. IV it is shown that for large enough times the cooling
granular medium does not always remain spatially uniform,
but, in some cases, spontaneously particles tend to form a
cluster surrounded by gas of a much lower density. The re-
sults are consistent with a linear hydrodynamics stability
theory which finds that instability requires a minimum size
of the system when periodic boundary conditions are used
@15,23,24#. Besides, this minimum size increases as the res-
titution coefficient approaches unity. Finally, Sec. V pro-
vides a short summary and conclusions.

II. THE HOMOGENEOUS COOLING STATE

In the revised Enskog theory~RET!, the kinetic equation
governing the time evolution of the one-particle distribution,
f (r ,v,t), for a system of inelastic smooth spheres with con-
stant coefficient of restitutiona (0,a<1), is @6#

~] t1v1•¹1! f ~r1 ,v1 ,t !5JE@r1 ,v1 ,tu f #, ~1!

whereJE is the modified Enskog collision operator,

JE@r1 ,v1 ,tu f #5s2E dv2E dV Q~g•ŝ!~g•ŝ!

3@a22ge@r1 ,r12sun# f ~r1 ,v18 ,t !

3 f ~r12s,v28 ,t !2ge@r1 ,r11sun#

3 f ~r1 ,v1 ,t ! f 1~r11s,v2 ,t !#. ~2!

In the above expressions is the diameter of the spheres,
dV is the element of solid angle defined by the unit vector
ŝ pointing from particle 2 to particle 1,s5sŝ, Q is the
Heaviside step function,g5v12v2, and the primes on the
velocities denote scattered values given by

v185v12
1
2 a21~11a!~ŝ•g!ŝ, ~3!

v285v21
1
2 a21~11a!~ŝ•g!ŝ. ~4!

Therefore, fora,1 there is a reduction of the relative ve-
locity along the line of centers so that total momentum is
conserved, while kinetic energy is dissipated. Finally,
ge@r1 ,r2 ,tun# is the equilibrium pair correlation function
corresponding to the density field

n~r ,t !5E dv f ~r ,v,t !. ~5!

The RET is a highly nonlinear equation through the de-
pendence ofge@r1 ,r2un# on f . In the low-density limit, the
Enskog collision operator reduces to

JB@r1 ,v1 ,tu f #5s2E dv2E dVQ~g•ŝ!~g•ŝ!

3@a22f ~r1 ,v18 ,t ! f ~r1 ,v28 ,t !

2 f ~r1 ,v1 ,t ! f 1~r1 ,v2 ,t !#, ~6!

and Eq.~1! becomes the Boltzmann equation. Here we are
interested in the homogeneous cooling state~HCS! for which
the system is spatially uniform and the dynamics is entirely
controlled through the time dependence of the temperature
defined by

3
2 nkBT5E dv1

2 mv
2f , ~7!

wherem is the mass of the particles andkB the Boltzmann
constant. Dimensional analysis and symmetry considerations
show that the normal solution of the Enskog equation de-
scribing the HCS has the form

f H~v,t !5nv0
23~ t !f„v/v0~ t !…, ~8!

where v0(t)5„2kBT(t)/m…
1/2. Besides, the energy balance

equation for the HCS is@6#

] tT~ t !52
2

3nkB
~12a2!v@T~ t !#, ~9!

with v given by
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v@T~ t !#5
p

16
ge~s!m~ns!2v0

3~ t !E dv1dv2f~v1!f~v2!g
3.

~10!

Since all the temperature dependence in Eq.~9! is known,
it can be easily integrated yielding

T~ t !5T~0!S 11
t

t0
D 22

, ~11!

with the time constantt0 given by

t0
215 2

3 ~12a2!v@T~0!#@mnv0
2~0!#21. ~12!

Of course, this equation only holds if the system was already
in the HCS att50. Substitution of Eq.~8! into Eq. ~1! and
use of Eq.~9! leads to

~12a2!Ff~v !1
v
3

]

]v
f~v !GW@f#5I @v/f#, ~13!

whereW andI are functionals off proportional tov and the
collision term, respectively,

W@f#5
p

8E dv1dv2f~v1!f~v2!g
3, ~14!

I @v1uf#5E dv2E dV Q~g•s!~g•ŝ!

3@a22f~v18!f~v28!2f~v1!f~v2!#. ~15!

Let us notice that Eq.~13! does not contain the equilibrium
correlation function and remains unchanged in the low-
density limit. The only difference between the solutions of
the Enskog equation and the Boltzmann equation describing
the HCS is a constant factor in the expression ofv@T(t)#,
i.e., the rate of change of the temperature from both equa-
tions differs by a constant, namely, the equilibrium pair cor-
relation function of two spheres at contact. Therefore, when
properly scaled, the solutions of both the Enskog and the
Boltzmann equations for the HCS coincide.

Although Eq.~13! is a closed equation forf, solving it is
not an easy task, and only approximated solutions have been
found up to now. In particular, in Refs.@9# and @14# the
function f is expanded in a series of Sonine polynomials
S1/2
( j )

f~v !5f~0!~v !(
j50

`

ajS1/2
~ j !~v2!, ~16!

where f (0)(v)5p23/2e2v2 corresponds to the Maxwell-
Boltzmann distribution with a time-dependent temperature
and the Sonine polynomials are defined by@13#

Sl
j~x!5 (

p50

j
G~ j1 l11!

~ j2p!!p!G~p1 l11!
~2x!p. ~17!

From the normalization condition and the definition of tem-
perature Eq.~7! it follows thata051 anda150. Besides, if
contributions to the moments nonlinear ina2 are neglected
~first Enskog approximation!, it is found that@14,25#

a25
16~12a!~122a2!

81217a130a2230a3 . ~18!

From the expression ofS1/2
(2) and Eq.~8! it is easily seen

that

3

5

^v4&H
^v2&H

2 511a2 , ~19!

where

^v l&H5
1

nE dvv l f H~v,t !, ~20!

are the velocity moments. The fact that the absolute value of
the right hand side of Eq.~18! is bounded by 0.2 has been
used to justify the approximation of the homogeneous solu-
tions of the Enskog and Boltzmann equations by the
Maxwell-Boltzmann distribution. Of course, this argument is
of limited value, not only because it is restricted to the first
three terms of the Sonine expansion of the distribution func-
tion, but also because the own coefficienta2 has been calcu-
lated in the first Enskog approximation.

III. SIMULATION RESULTS
FOR THE HOMOGENEOUS COOLING STATE

The direct simulation Monte Carlo method@21# was
devised in order to mimic the dynamics described by the
Boltzmann equation, and has been successfully applied to a
wide range of phenomena in rarefied gases. Since the method
has been extensively discussed in Refs.@21# and@22#, it will
not be described here. The only modification needed to apply
it to a gas of inelastic hard spheres is given by the expression
of the postcollision velocities,

v1*5v12
11a

2
~g•ŝ!ŝ, ~21a!

v2*5v21
11a

2
~g•ŝ!ŝ. ~21b!

In our simulations we have used the so-called ‘‘time-
counter’’ method, which involves the calculation of repre-
sentative collisions and, at each collision, the time counter of
the cell in which the collision takes place is advanced by an
amount appropriate to the collision. Although there exist
other alternative schemes which are more accurate for ex-
treme nonequilibrium situations, such as the NTC method
@22#, they are equivalent to the time-counter method for our
present purposes.

The system we have considered consists ofN particles
enclosed between two plates perpendicular to they axis
separated by a distanceL. In the simulation the system is
split intoNc cells which are layers of the same width parallel
to the plates. All the cells have initially the same number of
particles, i.e., the initial density is uniform. Periodic bound-
ary conditions are applied in they direction. Besides, we
have used reduced units defined bym51, kBT(0)51/2, and
l51, wherel[(A2pns2)21 is the mean free path.
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As a first test of whether the simulation reproduces the
HCS, we have checked the scaling property given by Eq.~8!.
In Fig. 1 we have plotted

g~vx ,t !5n21v0
3~ t !E dvydvzf ~v,t !, ~22!

as a function ofcx[vx /v0(t) for several values of the res-
titution coefficient, namely,a50.3,0.5,0.7, and 0.9. Of
course, in the simulation the right hand side of Eq.~22! is
computed by discretizing the velocity space and counting the
number of particles with velocities inside each of the inter-
vals. The time-dependent temperature has been measured us-
ing its definition, Eq.~7!. The numerical values of the tech-
nical parameters of the simulation areN51000, L510l,
andNc520. Besides, the time step over which it is assumed
that free motion and collisions are uncoupled has been taken
Dt50.1, and the reported distributions correspond tot525,
having been averaged over 150 trajectories. The statistical

uncertainties are smaller than the symbols used to represent
the data. The initial distribution has been in all cases a Max-
wellian with a temperatureT(0). From Fig. 1 it is seen that
the scaling law is verified by the simulation data. Further-
more, over the used scale, the data are perfectly fitted by the
Maxwell-Boltzmann distributionfx

(0)(cx)5p21/2exp(2cx
2).

Similar results are obtained for the reduced distributions of
the other two components of the velocityvy andvz . There-
fore, if deviations from a Gaussian distribution are to be
observed, a much finer scale must be used. This will be done
later on.

The time evolution of the temperature for each of the
values ofa given above is shown in Fig. 2. Also plotted are
the best fits to the right hand side of Eq.~11! with t0 an
adjustable parameter. Again an excellent agreement is ob-
tained. Besides, Fig. 3 shows that the values oft0 obtained in
this way are reproduced, within the error bars, by Eq.~12!

FIG. 2. Time evolution of the temperature for several values of
the restitution coefficient. In all cases, the initial state was homoge-
neous with a Maxwellian velocity distribution. The symbols are
results from the simulation, and the solid line is the best fit to Eq.
~11!.

FIG. 3. Values of the parameterto defined in Eq.~11! as a
function of the restitution coefficient. The points have been ob-
tained from the fitting in Fig. 2, while the solid line corresponds to
Eq. ~24!.

FIG. 4. Time evolution of the fourth~diamonds! and sixth
~crosses! velocity moments fora50.9. The initial state is homoge-
neous with a Maxwellian distribution of velocities.

FIG. 1. Scaled marginal velocity distribution function for the
HCS as a function of the reduced velocity for several values of the
restitution coefficient.
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with v@T(0)# computed from the initial Maxwell distribu-
tion, i.e.,

v@T~0!#5
p

16
~ns!2v0

3~0!E dv1dv2f
~0!~v1!f

~0!~v2!

52S p

mD 1/2~ns!2@kBT~0!#3/2, ~23!

t0
215 1

6 ~12a2!n~0!, ~24!

wheren54s2n(pkBT/m)
1/2 is the collision frequency. No-

tice that, since Eq.~11! only holds in the HCS, this result
confirms the accuracy of the Maxwell-Boltzmann approxi-
mation to describe the time evolution of the temperature in
this state. To investigate deviations from that approximation
we have studied the forth and sixth velocity moments. The
details of the simulations are the same as described above,
but now in order to improve the statistical accuracy the num-
ber of trajectories has been largely increased. The results we
will discuss in the remainder of this section have been aver-
aged over 105 trajectories.

In Fig. 4 we present a typical time evolution of the ratios
between the moments obtained from the simulation and
those corresponding to a Maxwell-Boltzmann distribution.

This is defined with the actual temperature of the system
obtained from the simulation. Therefore, what is being mea-
sured are deviations of the velocity distribution of the system
from a Gaussian, but not a direct estimation of the accuracy
of the Maxwell-Boltzmann approximation, in which the tem-
perature is consistently computed in the same approximation,
i.e., using Eqs.~11! and ~24!. When this is done, the devia-
tions of the ratios from unity increase by a factor which is
roughly of the order of 2. From Fig. 4 it is seen that, after a
transient initial period of time, the ratios reach quite steady
values, then providing accurate quantitative measures of the
non-Gaussianity of the distribution function of the HCS. The
displayed curves correspond toa50.9, but a similar behav-
ior is obtained for other values of the restitution coefficient.
The only relevant qualitative change is that fora smaller
than a given value to be specified below, the ratio of the two
fourth moments increases during the transient regime and the
stationary value is larger than unity. The same change occurs
to the ratio of the sixth moments.

The results of the simulation for the fourth moments in
the HCS can be compared with the theoretical prediction
given by Eq.~19!. The agreement is quite good as shown in
Fig. 5, implying the accuracy of the expression fora2 ob-
tained in the first Enskog approximation. In particular, ac-
cording to Eq.~19!, the fourth moment of the HCS coincides

FIG. 5. Comparison of the value of the fourth moment in the
HCS as obtained from the simulation~diamonds! and the theoretical
prediction obtained in the first Enskog approximation~solid line!.

FIG. 6. Values of the sixth velocity moments in the HCS as a
function of the restitution coefficient.

FIG. 7. Scaled marginal velocity distribution function for the
HCS fora50.8. The solid line corresponds to Eq.~25!.

FIG. 8. The same as Fig. 7 but fora50.99.
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with that of the Maxwellian fora51/A2, which is very close
to the value estimated from the simulation. In Fig. 6 we have
plotted the results for the sixth moment, again divided by the
Maxwellian value. As expected, the discrepancies are now
larger, although the curve has a similar shape. We are not
aware of any theoretical calculations of this moment to use
for a comparison.

Given that Eq.~19! provides a good estimation for the
coefficienta2, it is interesting to determine whether the sec-
ond Sonine approximation is also a good approximation for
the distribution function of the HCS. Figures 7 and 8 depict
the normalized distributiong(cx ,t)/fx

(0)(cx) as a function of
cx for a50.8 and 0.99, respectively. The points correspond
to simulation results obtained at four different times. Each of
them has been averaged over 105 trajectories. The solid line
is Eq. ~16! with the series truncated atj52, i.e.,

fx~cx!

fx
0~cx!

511a2S21/2
~2! ~cx

2!511
a2
2 S cx423cx

21
3

4D ,
~25!

with a2 given by Eq.~19!. Notice the different scales used in
both figures. The agreement is again excellent, especially
taking into account the very small discrepancies we are mea-
suring.

IV. CLUSTERING INSTABILITY

The focus of this section is the study of the stability of the
HCS using the direct simulation Monte Carlo method. It
must be noticed that the results reported in this section can
not be directly translated to a dense gas described by the
Enskog equation, since the equivalence between this equa-

FIG. 9. Time evolution of the density profile along theY direction for an initially homogeneous system witha50.95 andL520.
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tion and the Boltzmann equation discussed in Sec. II is re-
stricted to the HCS, but it fails as long as deviations from
this state are considered. We were interested in whether the
cluster instability which has been observed in molecular dy-
namics simulations of granular flows in one@16–18# and two
dimensions@19# is also present in the Boltzmann equation.
Molecular dynamics simulations show that the granular me-
dium becomes spontaneously nonuniform and there is a ten-
dency of particles to form clusters or ‘‘inelastic microstruc-
tures’’ surrounded by low-density regions. This tendency
increases with the inelasticity of the particles. In some cases
the clusters develop a finite time singularity referred to as
‘‘inelastic collapse’’ whereby most of the particles become
concentrated at a point cluster. In inelastic collapse a group
of particles collide infinitely often in a finite time so that the
spacing between particles in this group becomes zero. On the
other hand, in the cluster instability particles in the same
cluster are close together, but not in contact. While the clus-
tering instability is of hydrodynamic origin, in the sense that
it is predicted by an hydrodynamic description of the system
@20#, the inelastic collapse is of a local nature and, therefore,
cannot be captured by a hydrodynamic description.

A very significant result from linear hydrodynamic stabil-
ity theory is that the instability of the HCS is confined to
perturbations with large enough wavelength@23,24,15#.
More precisely, for each value of the restitution coefficient
a there is a critical valuek* (a) such that perturbations with
wave numberk.k* (a) are always stable. In a given system,
the smallest wave numberkm allowed for a perturbation or
fluctuation can be estimated as 2p/L, whereL is the param-
eter length characterizing the size of the system. It is clear
that for the system geometry we used in our simulations,L
coincides with the distance between the two plates perpen-
dicular to they axis, since no spatial dependence in thex and
z directions is considered. Ifkm.k* (a) the HCS will be
asymptotically stable because the fluctuations that would
lead to the development of instabilities are not compatible
with the boundary conditions.

In Fig. 9 we present the time evolution of the density
profile along they direction for one realization of an initially
homogeneous system witha50.95 andL5200. The number
of particles isN543104. In spite of the noise inherent to
the fact that no average is being used, the spontaneous for-
mation of a wave perturbation with wavelengthL clearly
shows up for times about 2700. Similar results were obtained
for all the realizations we have simulated. As the amplitude
of the perturbation grows no oscillatory behavior is ob-
served. Besides, the simulation results show that the pressure
of the system remains approximately uniform and, conse-
quently, the temperature also shows a wave-shaped perturba-
tion. Let us notice that the instability appears for times much
larger than those used in the preceding section to investigate
the velocity distribution of the HCS. The process ends up
with the formation of a cluster with a high concentration of
particles surrounded by a gas of much lower density. This
can be identified with the cluster instability observed in mo-
lecular dynamics simulations. Nevertheless, it must be kept
in mind that what we are studying are solutions of the Bolt-
zmann equation and, therefore, their validity is restricted to
low density gases. As a consequence, one should not expect
our results to give a quantitative description of the nature of

the cluster as observed in molecular dynamics simulations.
For the same reason, the direct simulation Monte Carlo
method cannot lead to inelastic collapse. By definition, ve-
locities of colliding particles are not correlated in this simu-
lation technique, and velocity correlations are one of the
main signatures of inelastic collapse. The relevant conclu-
sion emerging from Fig. 9 is that the Boltzmann equation
contains the physical mechanisms which are responsible for
the appearance of the ‘‘seed’’ of the cluster instability.

To investigate whether there is a critical valuek* as dis-
cussed above, we have simulated a system with the same
valuea50.95 of the restitution coefficient but withL540.
In this case, no instability was observed even for times much
larger than those considered in the simulation in Fig. 9. As a
stronger test, we introduced an initial perturbation of the
form n(y,0)5n0(110.3 sinky), wherek52p/L. The pertur-
bation decayed quite fast in all the realizations. We conclude
that the system is stable, supporting the dependence of sta-
bility on the size of the system.

Finally, in order to check the dependence ofk* on a we
considered a system of widthL540 anda50.8. Again, a
spontaneous wave-shaped perturbation develops quite soon
and, at later times, the particles concentrate in a narrow layer
forming a cluster. In fact, the effect is faster and stronger
than in the case reported in Fig. 9. This was to be expected
since now the restitution coefficient is smaller. In conclusion,
the simulation results fully confirm that the Boltzmann equa-
tion is qualitatively consistent with the scenario of stability
which has been derived from hydrodynamic theories and ob-
served in molecular dynamics simulations of inelastic dense
fluids.

V. CONCLUSIONS

It has been shown that the direct simulation Monte Carlo
method provides a useful tool to study low-density inelastic
fluids. When applied to the homogeneous cooling state, it
allows a quite accurate measurement of the velocity distribu-
tion function for arbitrary values of the restitution coeffi-
cient. The results are in good agreement with the analytical
solution of the Boltzmann equation in the first Enskog ap-
proximation, specially for values of the restitution coefficient
not too small. In particular, an excellent agreement is found
for the fourth velocity moment. The same tool can be used to
investigate other states of the granular medium, even far
from equilibrium.

We have also studied the stability of the uniform state by
analyzing both the appearance of spontaneous inhomogene-
ities in the system and the response to an initial sinusoidal
perturbation of small amplitude. Large enough systems are
unstable and develop inhomogeneities which for large
times lead to the formation of particle clumps. Since the
Boltzmann equation, and consequently the simulation, ne-
glects correlations between colliding particles, it cannot cor-
rectly describe the system in the long time limit, even if the
initial density average was very low. Nevertheless, it must
qualitatively capture some of the characteristic physical fea-
tures which are precursors of the cluster state. Therefore, a
careful analysis of the instability of the Boltzmann equation,
combining both theory and simulation, seems to be worth-
while. We emphasize that the conclusion that the homoge-
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neous fluid is unstable in the low-density limit is not re-
stricted in any way.

Of course, a better understanding of the initial stage of the
cluster formation may be obtained by using the modified
Enskog equation discussed in Sec. II, since it incorporates
spatial correlations between particles. Very recently, the di-
rect simulation Monte Carlo method has been extended to
this equation, and some initial promising results for the uni-
form shear flow state of a normal fluid have been obtained
@26#. We plan to study the development of the clustering
instability in the modified Enskog equation by using this

simulation technique to analyze the influence of spatial cor-
relations in the formation of clusters.
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