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Homogeneous cooling state of a low-density granular flow
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The homogeneous cooling state of a granular flow of smooth spherical particles described by the Boltzmann
equation is investigated by means of the direct simulation Monte Carlo method. The velocity moments and also
the velocity distribution function are obtained and compared with approximate analytical results derived
recently. The accuracy of a Maxwell-Boltzmann approximation with a time-dependent temperature is dis-
cussed. Besides, the simulations show that the state of uniform density is unstable to long enough wavelength
perturbations so that clusters and voids spontaneously form throughout the system. The instability has the
characteristic features of the clustering instability which has been observed in molecular dynamics simulations
of dense fluids and predicted by hydrodynamic models of granular fl@1€63-651X96)03710-5

PACS numbgs): 05.20.Dd, 47.50td, 47.20-k

I. INTRODUCTION (BBGKY) hierarchy for the reduced distributions functions
is derived, and, in the appropriate limits, extensions of the
Granular materials consist of macroscopic solid particleBoltzmann equation and the revised Enskog equation for dis-
immersed in gas or liquid. When driven to rapid flows their sipative dynamics are obtained.
behavior is dominated by the particle collisions and the in- Once the kinetic equation for the one-particle distribution
terstitial fluid plays a negligible role in the flow mechanics. function is known, the standard procedure to obtain hydro-
As an idealization, the granular flow can be considered adynamic equations, with explicit expressions for the fluxes
similar to a flowing fluid composed of the grains. In recentvalid up to first order in the fields, is the Chapman-Enskog
years, this analogy has been used to derive continuum equaxpansion[13]. Nevertheless, a difficulty arises during the
tions for the evolution of the mass, momentum, and energwpplication of this method to granular media as a conse-
of rapid granular flows. This has led to the proposal of hy-quence of dissipation in collisions. While the zeroth order
drodynamiclike equations analogous to the conventionatlistribution in the case of normal fluids is given by the local
Navier-Stokes equations for normal fluifl§. Nevertheless, equilibrium distribution, the solution of the corresponding
unlike usual fluids, the kinetic energy in granular systems isquation for inelastic collisions is not known. The equation
not conserved in collisions due to inelasticity and also tois formally the same as the one describing the homogeneous
surface roughness of the grains. There is a conversion afranular state, whose time dependence occurs entirely
kinetic energy into internal energy and the total kinetic en-through the energy field. In fact, this state plays the same
ergy of a granular flow tends to decrease in time. As a conrole for fluids with inelastic collisions as the Maxwellian
sequence, a term describing the dissipation of energy in codoes for normal fluids. In the latter case, a local equilibrium
lisions is included in the evolution equation for the energy. generalization of the Maxwellian provides the reference state
A solid justification of the validity of a hydrodynamic for the study of inhomogeneous states. A similar local cool-
description for granular flows can only be achieved by starting state exists for inelastic collisions, but the expression of
ing from a more fundamental description of the system. Fothe distribution function for this state is not known, even in
ordinary fluids, the connection between a particle descriptioithe case of a dilute gas described by theelastio Boltz-
and a continuous description is provided by kinetic theory. Itmann equation. Then, what is usually done in existing kinetic
is then not surprising that kinetic theory methods have beetheories of granular flows is to introduce some approximated
extended to the case of inelastic collisions between particlesxpression for this reference single particle distribution func-
[2—6]. In the most idealized case, the grains are modeled btion. On the basis of molecular dynamics results and quali-
equal smooth spherical particles, whose interactions only atative reasoning, a Maxwellian is normally used. Corrections
fect the translational degrees of freedom. A more realistido it have been recently obtained by introducing expansions
description requires the consideration of rough particlesn Hermitian or Sonine polynomials, whose coefficients are
[7-9] and also of particles of different siz€$0—12. determined in a consistent wf§,14]. It must be noticed that
Application of kinetic theory methods implies, firstly, the deviations from the Maxwellian, even if they are quantita-
derivation of a kinetic equation for the distribution function tively small, can be very important from a physical and also
and, secondly, the solution of this equation. Although most practical point of view, since they can even imply the pres-
of the kinetic equations proposed up to now for granularence of new contributions to the fluxes which are not present
flows have been formulated by means of intuitive argumentsin normal fluids[4,15].
similar to those used in the heuristic derivations of the Molecular dynamics studigsl6—19 have clearly estab-
Boltzmann and Enskog equatiof&3], very recently the lished that uniform cooling granular systems are unstable,
problem has been formulated at the level of a pseudoand particles spontaneously tend to form clusters surrounded
Liouville equation for inelastic spherg$,14]. From this by regions of low density. This phenomenon has been re-
equation, the Bogoliubov-Born-Green-Kirkwood-Yvon ferred to as “clustering instability” and has been explained
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using hydrodynamic linear stability theof0]. Since the
. . . . . — 2 -~ -~

Boltzmann equation describes a low-density gas in which ~ Jelr1,vatlfl=0o dezf dQ 0(g- 0)(g- 0)
correlations between colliding particles are neglected, it is
not cleara priori whether it also presents a clustering insta- X[a~?ge[ry,ri—afn]f(ry,vy,t)
bility or, at least, some kind of inhomogeneous instability
which can be considered as a precursor to clustering.

The direct Monte Carlo simulation method was developed Xf(ry,vy,H)f(ry+o,v,,1)]. 2
by Bird twenty years ago to simulate the Boltzmann equation
[21,22. It allows quantitative study of most low-density gas In the above expression is the diameter of the spheres,
flows, and can be easily adapted to the case of inelastic coti) is the element of solid angle defined by the unit vector
lisions between particles. The aim of this paper is to reporr pointing from particle 2 to particle lg=oa, O is the
some simulation results obtained for the homogeneous cooHeaviside step functiong=v;—v,, and the primes on the
ing state using this method. From the simulations it is posvelocities denote scattered values given by
sible to compute the one-patrticle distribution function over a

Xf(ri—ovy,t)—gelry,ri+ofn]

quite wide range of velocities and, in particular, precise val- Vi=vi— 3 a Y1+ a)(0- g0, ©)
ues for the fourth and sixth velocity moments are obtained.
This provides a test for the approximated solutions to the Vi=Vo+ 1 a Y1+ a)(o-g)o. (4

Boltzmann equation discussed above. Also the stability of

the homogeneous cooling state is investigated, showing thatherefore, fora<<1 there is a reduction of the relative ve-

the Boltzmann equation presents an instability which has allocity along the line of centers so that total momentum is

the characteristic features of the clustering instability ob-conserved, while kinetic energy is dissipated. Finally,

served in dense media. Oer1.r2,t|n] is the equilibrium pair correlation function
The structure of the paper is as follows. In Sec. Il a shorcorresponding to the density field

review of recent results obtained by using kinetic theory

methods is presented. The close relationship between the so- n(r,t)zJ dvf(rvt). (5)

lutions of the Boltzmann and the revised Enskog equations

for the homogeneous cooling state is emphasized. It follows

that the simulation provides results that, when properly

scaled, can be applied to both equations. The simulation r

sults for the velocity distribution function of the homoge-

neous state are discussed in Sec. lll. They are compared with

the available kinetic theory predictions and a quite good jB[rl,vl,t|f]:a2J dsz dQO(g-o)(g- o)

agreement is observed. In particular, it is found that the first

The RET is a highly nonlinear equation through the de-
yendence ofj[ry,r,/n] on f. In the low-density limit, the
nskog collision operator reduces to

Sonine approximation provides an accurate description over X[ 2f(ry, vy, 0 (ry,v5,t)
a quite wide range of values of the restitution coefficient. In
Sec. IV it is shown that for large enough times the cooling —f(ro,ve,fa(rva, ], (6)

granular medium does not always remain spatially uniform,

but, in some cases, spontaneously particles tend to form %nd Eq.(l). becomes the Boltzmanq equation. Here we are
cluster surrounded by gas of a much lower density. The rel_nterested in the homogeneous cooling s(&i€S) for which

sults are consistent with a linear hydrodynamics stabilitythe system is spatially uniform and the dynamics is entirely

theory which finds that instability requires a minimum sizeco?trogeg through the time dependence of the temperature
of the system when periodic boundary conditions are useéje ined by

[15,23,24. Besides, this minimum size increases as the res-

titution coefficient approaches unity. Finally, Sec. V pro- %nkBTzf dvi mu2f, 7)
vides a short summary and conclusions.

wherem is the mass of the particles akg the Boltzmann
constant. Dimensional analysis and symmetry considerations
Il. THE HOMOGENEOUS COOLING STATE show that the normal solution of the Enskog equation de-
scribing the HCS has the form
In the revised Enskog theoRET), the kinetic equation

governing the time evolution of the one-particle distribution, fu(v,t)= nv53(t)¢(v/u0(t)), (8
f(r,v,t), for a system of inelastic smooth spheres with con-
stant coefficient of restitutioa (0<a<1), is[6] where vy(t) = (2kgT(t)/m)*2. Besides, the energy balance

equation for the HCS i§6]

(at+V1'V1)f(r1,Vl,t)ZJE[rl,Vl,t“], (1) 5tT(t):_3nikB(1_a2)w[T(t)]: (9)

where 7t is the modified Enskog collision operator, with w given by
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16(1- a)(1—2a?)
ATV 70 30 [ dvadvad(v) 410" =g e 18

(10

_ o From the expression d8?) and Eq.(8) it is easily seen
Since all the temperature dependence in(@yjis known, that

it can be easily integrated yielding

t) 2 3w
TO=TO)| 1+ | (11) 5 (092 =1l+ap, (19
0
with the time constant, given by where
-1_2 _ 2 2 -1
o s (manel TOlms)] (42 <U|>H:%f dvo'fy(v,b), (20)

Of course, this equation only holds if the system was already

in the HCS att=0. Substitution of Eq(8) into Eq.(1) and  gre the velocity moments. The fact that the absolute value of
use of Eq.(9) leads to the right hand side of Eq18) is bounded by 0.2 has been

used to justify the approximation of the homogeneous solu-
W[ ¢]=I[v/¢], (13 tions of the Enskog and Boltzmann equations by the
Maxwell-Boltzmann distribution. Of course, this argument is
of limited value, not only because it is restricted to the first
three terms of the Sonine expansion of the distribution func-
tion, but also because the own coefficiagthas been calcu-
lated in the first Enskog approximation.

(1-a?)

d
d(v)+ % gqﬁ(v)

whereW andlI are functionals ofp proportional tow and the
collision term, respectively,

T
Wlol=3 f dvadvo (V1) d(v2) 9P, (14)
IIl. SIMULATION RESULTS
FOR THE HOMOGENEOUS COOLING STATE

| = | dv f dQ 6(g o) (g o
[val¢] j 2 (g-0)(g ) The direct simulation Monte Carlo methd®1] was
-2 / "n_ devised in order to mimic the dynamics described by the

Xla " dw1) ¢(va) =~ $lo) d(v)]. (19 Boltzmann equation, and has been successfully applied to a
Let us notice that Eq(13) does not contain the equilibrium Wide range of phenomena in rarefied gases. Since the method
correlation function and remains unchanged in the low-nas been extensively discussed in RE#d] and[22], it will
density limit. The only difference between the solutions ofnot be described here. The only modification needed to apply
the Enskog equation and the Boltzmann equation describinjto @ gas of inelastic hard spheres is given by the expression
the HCS is a constant factor in the expressionwT(t)],  Of the postcollision velocities,
i.e., the rate of change of the temperature from both equa-

tions differs by a constant, namely, the equilibrium pair cor- *x_ ., 1+_a Ay n
relation function of two spheres at contact. Therefore, when iTVi 2 (g-a)0, (213
properly scaled, the solutions of both the Enskog and the
Boltzmann equations for the HCS coincide. . 1+« o
Although Eq.(13) is a closed equation fap, solving it is V2=Vot ——(g-0)o. (21b

not an easy task, and only approximated solutions have been

found up to now. In particular, in Ref49] and [14] the |y our simulations we have used the so-called “time-
function ¢ is expanded in a series of Sonine polynomialsqqynter” method, which involves the calculation of repre-
S(11/)2 sentative collisions and, at each collision, the time counter of
the cell in which the collision takes place is advanced by an
amount appropriate to the collision. Although there exist
other alternative schemes which are more accurate for ex-
treme nonequilibrium situations, such as the NTC method
where ¢ (v)=m"3%""* corresponds to the Maxwell- [22], they are equivalent to the time-counter method for our
Boltzmann distribution with a time-dependent temperaturgpresent purposes.

B(v)= ¢<0><v>j§0 a;Sixv?), (16)

and the Sonine polynomials are defined[th] The system we have considered consistdNoparticles
. enclosed between two plates perpendicular to yhaxis
J I'(j+1+1) separated by a distande In the simulation the system is

S00= pzo (j—p)!p!'T(p+1+1) (=x)P. (17 split into N, cells which are layers of the same width parallel
to the plates. All the cells have initially the same number of
From the normalization condition and the definition of tem-particles, i.e., the initial density is uniform. Periodic bound-
perature Eq(7) it follows thata,=1 anda,=0. Besides, if ary conditions are applied in thg direction. Besides, we
contributions to the moments nonlinearan are neglected have used reduced units definedrby=1, kgT(0)=1/2, and
(first Enskog approximationit is found that{14,25 A=1, wherer=(y27no?) ! is the mean free path.
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FIG. 1. Scaled marginal velocity distribution function for the FIG. 3. Values of the parametéy defined in Eqg.(11) as a
HCS as a function of the reduced velocity for several values of thdunction of the restitution coefficient. The points have been ob-
restitution coefficient. tained from the fitting in Fig. 2, while the solid line corresponds to

Eq. (24).

As a first test of whether the simulation reproduces the
HCS, we have checked the scaling property given by(8q. uncertainties are smaller than the symbols used to represent
In Fig. 1 we have plotted the data. The initial distribution has been in all cases a Max-
wellian with a temperatur&(0). From Fig. 1 it is seen that
the scaling law is verified by the simulation data. Further-
more, over the used scale, the data are perfectly fitted by the
Maxwell-Boltzmann distributiong{?)(c,) = 7~

g(vx,t)=n’lvg(t)f do,dv,f(v,t), (22)

. 2
as a function ofc,=v,/v(t) for several values of the res- exp(—c,).

titution coefficient, namely,a=0.3,0.5,0.7, and 0.9. Of Similar results are obtained for the reduced distributions of
course, in the simulation the right hand side of E2p) is  the other two components of the velocity andv,. There-
computed by discretizing the velocity space and counting théore, if deviations from a Gaussian distribution are to be
number of particles with velocities inside each of the inter-observed, a much finer scale must be used. This will be done
vals. The time-dependent temperature has been measured laer on.

ing its definition, Eq.(7). The numerical values of the tech-  The time evolution of the temperature for each of the
nical parameters of the simulation ake=1000, L=10\, values ofa given above is shown in Fig. 2. Also plotted are
andN.=20. Besides, the time step over which it is assumedhe best fits to the right hand side of Ed.1) with ty an

that free motion and collisions are uncoupled has been takesdjustable parameter. Again an excellent agreement is ob-
At=0.1, and the reported distributions correspond+®5, tained. Besides, Fig. 3 shows that the valueabtained in
having been averaged over 150 trajectories. The statisticéhis way are reproduced, within the error bars, by B)
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FIG. 2. Time evolution of the temperature for several values of
the restitution coefficient. In all cases, the initial state was homoge-

neous with a Maxwellian velocity distribution. The symbols are

5

0 15

20 25 80 35 40
!

FIG. 4. Time evolution of the fourthdiamond$ and sixth

results from the simulation, and the solid line is the best fit to Eq.(crossegvelocity moments foww=0.9. The initial state is homoge-
neous with a Maxwellian distribution of velocities.

(12).
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FIG. 5. Comparison of the value of the fourth moment in the
HCS as obtained from the simulati¢gtiamond$ and the theoretical
prediction obtained in the first Enskog approximatisnlid line).

FIG. 7. Scaled marginal velocity distribution function for the
HCS for «=0.8. The solid line corresponds to E5).

with [ T(0)] computed from the initial Maxwell distribu- This is defined with the actual temperature of the system
tion, i.e., obtained from the simulation. Therefore, what is being mea-
sured are deviations of the velocity distribution of the system
™ from a Gaussian, but not a direct estimation of the accurac
o[ T(0)]= 1—6(ncr)2v8(0)j dvydvo¢ ¥ (v1) % (v2) of the Maxwell-Boltzmann approximation, in which the tem- Y
perature is consistently computed in the same approximation,
i.e., using Eqs(11) and (24). When this is done, the devia-
tions of the ratios from unity increase by a factor which is
roughly of the order of 2. From Fig. 4 it is seen that, after a
t51=é(1—a2) v(0), (24)  transient initial period of time, the ratios reach quite steady
values, then providing accurate quantitative measures of the
wherev=40?n(mkgT/m)¥2 is the collision frequency. No- non-Gaussianity of the distribution function of the HCS. The
tice that, since Eq(11) only holds in the HCS, this result displayed curves correspond dc=0.9, but a similar behav-
confirms the accuracy of the Maxwell-Boltzmann approxi-ior is obtained for other values of the restitution coefficient.
mation to describe the time evolution of the temperature inThe only relevant qualitative change is that fersmaller
this state. To investigate deviations from that approximatiorthan a given value to be specified below, the ratio of the two
we have studied the forth and sixth velocity moments. Th&ourth moments increases during the transient regime and the
details of the simulations are the same as described ab0V§t,ationary value is larger than unity. The same change occurs
but now in order to improve the statistical accuracy the num+g the ratio of the sixth moments.
ber of trajectories has been largely increased. The results we The results of the simulation for the fourth moments in
will discuss in the remainder of this section have been averthe HCS can be compared with the theoretical prediction
aged over 1dtrajectories. given by Eq.(19). The agreement is quite good as shown in
In Fig. 4 we present a typical time evolution of the ratios Fig. 5, implying the accuracy of the expression for ob-
between the moments obtained from the simulation andained in the first Enskog approximation. In particular, ac-
those corresponding to a Maxwell-Boltzmann distribution.cording to Eq(19), the fourth moment of the HCS coincides

T 1/2
:Z(E) (no)[keT(0)]%2 (23
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FIG. 6. Values of the sixth velocity moments in the HCS as a
function of the restitution coefficient. FIG. 8. The same as Fig. 7 but far=0.99.
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FIG. 9. Time evolution of the density profile along thedirection for an initially homogeneous system witt+0.95 andL = 20.

with that of the Maxwellian fowr=1/,/2, which is very close b(C) a, 3

i imulati i —5—=1+a,S?)(c2) =1+ —| ci—3c2+ -

to the value estimated from the simulation. In Fig. 6 we have ;0 2912 Cx 2 | SXxT o

. . .. X X

plotted the results for the sixth moment, again divided by the (25)
Maxwellian value. As expected, the discrepancies are now

larger, although the curve has a similar shape. We are n

aware of any theoretical calculations of this moment to Use oth figures. The agreement is again excellent, especially

for a comparison. . . taking into account the very small discrepancies we are mea-
Given that Eq.(19) provides a good estimation for the suring.

coefficienta,, it is interesting to determine whether the sec-
ond Sonine approximation is also a good approximation for
the distribution function of the HCS. Figures 7 and 8 depict IV. CLUSTERING INSTABILITY

the normalized distributiog(c,,t)/ ¢{"(c,) as a function of  The focus of this section is the study of the stability of the
¢y for =0.8 and 0.99, respectively. The points correspondHCS using the direct simulation Monte Carlo method. It
to simulation results obtained at four different times. Each ofmust be noticed that the results reported in this section can
them has been averaged over ifjectories. The solid line not be directly translated to a dense gas described by the
is Eq. (16) with the series truncated a2, i.e., Enskog equation, since the equivalence between this equa-

ith a, given by Eq.(19). Notice the different scales used in
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tion and the Boltzmann equation discussed in Sec. Il is rethe cluster as observed in molecular dynamics simulations.
stricted to the HCS, but it fails as long as deviations fromFor the same reason, the direct simulation Monte Carlo
this state are considered. We were interested in whether theethod cannot lead to inelastic collapse. By definition, ve-
cluster instability which has been observed in molecular dylocities of colliding particles are not correlated in this simu-
namics simulations of granular flows in offls5—1§ and two lation technique, and velocity correlations are one of the
dimensiong[19] is also present in the Boltzmann equation. Main signatures of inelastic collapse. The relevant conclu-
Molecular dynamics simulations show that the granular meSion emerging from Fig. 9 is that the Boltzmann equation
dium becomes spontaneously nonuniform and there is a te¢ontains the physical mechanisms which are responsible for
dency of particles to form clusters or “inelastic microstruc- the appearance of the “seed” of the cluster instability.
tures” surrounded by low-density regions. This tendency T0 investigate whether there is a critical vakie as dis-
increases with the inelasticity of the particles. In some casegussed above, we have simulated a system with the same
the clusters develop a finite time singularity referred to asvalue @=0.95 of the restitution coefficient but with=40.
“inelastic collapse” whereby most of the particles become!n this case, no instabil_ity was observed even for times much
concentrated at a point cluster. In inelastic collapse a groufrger than those considered in the simulation in Fig. 9. As a
of particles collide infinitely often in a finite time so that the Stronger test, we introduced an initial perturbation of the
spacing between particles in this group becomes zero. On tHerm n(y,0)=ne(1+ 0.3 sirky), wherek=2/L. The pertur-
other hand, in the cluster instability particles in the samdation decayed quite fast in all the realizations. We conclude
cluster are close together, but not in contact. While the clusthat the system is stable, supporting the dependence of sta-
tering instability is of hydrodynamic origin, in the sense thatbility on the size of the system.
it is predicted by an hydrodynamic description of the system Finally, in order to check the dependencekdfon o we
[20], the inelastic collapse is of a local nature and, thereforeconsidered a system of width=40 anda=0.8. Again, a
cannot be captured by a hydrodynamic description. spontaneous wave-shaped perturbation develops quite soon
A very significant result from linear hydrodynamic stabil- and, at later times, the particles concentrate in a narrow layer
ity theory is that the instability of the HCS is confined to forming a cluster. In fact, the effect is faster and stronger
perturbations with large enough waveleng3,24,13. than in the case reported in Fig. 9. This was to be expected
More precisely, for each value of the restitution coefficientsince now the restitution coefficient is smaller. In conclusion,
« there is a critical valué* () such that perturbations with the simulation results fully confirm that the Boltzmann equa-
wave numbek>k* («) are always stable. In a given system, tion is qualitatively consistent with the scenario of stability
the smallest wave numbésg, allowed for a perturbation or which has been derived from hydrodynamic theories and ob-
fluctuation can be estimated as-2., wherelL is the param- se_rved in molecular dynamics simulations of inelastic dense
eter length characterizing the size of the system. It is cleafiuids.
that for the system geometry we used in our simulatians,
coincides with the distance between the two plates perpen-
dicular to they axis, since no spatial dependence inxrend
z directions is considered. K,>k*(a) the HCS will be It has been shown that the direct simulation Monte Carlo
asymptotically stable because the fluctuations that wouldnethod provides a useful tool to study low-density inelastic
lead to the development of instabilities are not compatibldluids. When applied to the homogeneous cooling state, it
with the boundary conditions. allows a quite accurate measurement of the velocity distribu-
In Fig. 9 we present the time evolution of the densitytion function for arbitrary values of the restitution coeffi-
profile along they direction for one realization of an initially cient. The results are in good agreement with the analytical
homogeneous system with=0.95 and_ =200. The number solution of the Boltzmann equation in the first Enskog ap-
of particles isN=4x 10 In spite of the noise inherent to proximation, specially for values of the restitution coefficient
the fact that no average is being used, the spontaneous fanet too small. In particular, an excellent agreement is found
mation of a wave perturbation with wavelengthclearly  for the fourth velocity moment. The same tool can be used to
shows up for times about 2700. Similar results were obtainethvestigate other states of the granular medium, even far
for all the realizations we have simulated. As the amplitudefrom equilibrium.
of the perturbation grows no oscillatory behavior is ob- We have also studied the stability of the uniform state by
served. Besides, the simulation results show that the pressuagalyzing both the appearance of spontaneous inhomogene-
of the system remains approximately uniform and, conseities in the system and the response to an initial sinusoidal
guently, the temperature also shows a wave-shaped perturbgerturbation of small amplitude. Large enough systems are
tion. Let us notice that the instability appears for times muchunstable and develop inhomogeneities which for large
larger than those used in the preceding section to investigatemes lead to the formation of particle clumps. Since the
the velocity distribution of the HCS. The process ends ugBoltzmann equation, and consequently the simulation, ne-
with the formation of a cluster with a high concentration of glects correlations between colliding particles, it cannot cor-
particles surrounded by a gas of much lower density. Thigectly describe the system in the long time limit, even if the
can be identified with the cluster instability observed in mo-initial density average was very low. Nevertheless, it must
lecular dynamics simulations. Nevertheless, it must be kepgualitatively capture some of the characteristic physical fea-
in mind that what we are studying are solutions of the Bolt-tures which are precursors of the cluster state. Therefore, a
zmann equation and, therefore, their validity is restricted tacareful analysis of the instability of the Boltzmann equation,
low density gases. As a consequence, one should not expemmbining both theory and simulation, seems to be worth-
our results to give a quantitative description of the nature ofvhile. We emphasize that the conclusion that the homoge-
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neous fluid is unstable in the low-density limit is not re- simulation technique to analyze the influence of spatial cor-
stricted in any way. relations in the formation of clusters.

Of course, a better understanding of the initial stage of the
cluster formation may be obtained by using the modified
Enskog equation discussed in Sec. Il, since it incorporates ACKNOWLEDGMENTS
spatial correlations between particles. Very recently, the di-
rect simulation Monte Carlo method has been extended to This research was partially supported by Grant No. PB96-
this equation, and some initial promising results for the uni-0534 from the Direccio General de InvestigaaioCientfica
form shear flow state of a normal fluid have been obtained Tecnica (Spain. We are very grateful to Dr. M. H. Ernst
[26]. We plan to study the development of the clusteringfor enlightening discussions and also for providing us with
instability in the modified Enskog equation by using thisresults prior to publication.
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