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Formal derivation of dissipative particle dynamics from first principles
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We show that the Markovian approximation assumed in current particle-based coarse-grained techniques,
like dissipative particle dynamics, is unreliable in situations in which sound plays an important role. As an
example we solve analytically and numerically the dynamics of coarse-grained harmonic systems by using first
principle methods, showing the presence of long-lived memory kernels. This effect raises questions about the
connection of these approaches at their current form to molecular dynamics.
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The processes underlying the behavior of large physical
and biological macromolecular assemblies span a range of
length and time scales that often require coupling of micro-
scopic interactions with continuum-level properties that can-
not be presently bridged by techniques like molecular dy-
namics. This has recently led to revisiting existing or
developing new coarse-graining schemes. Particle-based
methods [1-5] based on the dissipative particle dynamics
(DPD) methodology have been used extensively in recent
years as models for addressing such systems at the mesos-
copic level [6,7]. One of the appeals of DPD is the capability
of reproducing hydrodynamic behavior through the conser-
vative, dissipative, and stochastic pairwise forces that are
mass and momentum conserving. Manifestations of the con-
tinuum properties at the mesoscale have been extensively
investigated. Nevertheless, this methodology is still lacking a
clear connection with the underlying microscopic level. In
Ref. [4] a derivation of DPD from the microscopic level was
proposed. However, this derivation was based on a series of
ad hoc assumptions about the form of the conservative, dis-
sipative, and noise forces. In particular, it was assumed that
the fluctuating forces are Markovian. A more fundamental
approach was presented in Ref. [5], in which the equation of
motion for the dissipative particles was obtained by means of
projection operators. As a result, the dissipative forces
present memory kernels and the fluctuating forces are
coupled to the dissipative terms via the fluctuation-
dissipation theorem. However, the DPD-like equations of
motion are only obtained when it is assumed that the fluctu-
ating forces are Markovian and the memory kernels collapse
into the familiar dissipative forms, functions only of the in-
stantaneous values of the coarse-grained variables. In Ref.
[5], this was justified by arguing that the coarse-grained vari-
ables are mesoscopic, and therefore slow when compared
with the microscopic variables. Since this was a central re-
quirement for obtaining the equations of motion, it merits
verification.

In this work we show that the Markovian approximation
is not applicable in situations in which sound plays an im-
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portant role. We first study the general case and the condi-
tions for the failure of the Markovian approximation due to
sound propagation. Then, as an example, we obtain the
memory kernels of the coarse-grained dynamics of cubic har-
monic lattices in several dimensions by using first principle
methods. Harmonic lattices are paradigmatic for the kind of
memory effect discussed here because elastic wave propaga-
tion is the only dissipation mechanism in these systems. We
have recently used projector operators to formally derive the
stochastic equations of motion for inhomogeneous harmonic
lattices [8]. We use these results as a starting point in order to
evaluate here for the first time the required memory kernels,
analytically in one dimension and numerically in two and
three dimensions.

Consider a coarse-grained harmonic system by partition-
ing the volume into mesoscopic regions k. We define the
coarse-grained particles by choosing the set of all center of
mass coordinates X; and velocities V, of all particles inside
each region k as the relevant variables. Then, by using
Mori’s projection operator theory [9], the following equation
of motion for the coarse-grained variables is obtained [8]:

Mk_d‘;kt(t) =-> (Aklxz(f) + ftd7¢kl(7)vl(t_ T)) +Ry(1),
/ 0
(1)

where M, is the mass of each coarse-grained particle; Ay is
a conservative force matrix, ®y(¢) is a memory kernel defin-
ing dissipation; and Ry(r) is a random force satisfying
(Ry(1))=0 and the fluctuation-dissipation theorem
(R (t)R)(0))=kzT®,/(t), where kj is the Boltzmann constant
and T is the temperature. In these last equations the averages
are taken with an initial distribution close to thermal equilib-
rium. Total momentum conservation implies that =,®;,(z)
=3,R,(1)=0, so that if we decompose each random force as a
sum of independent variables Ry (f)=2,.&,, we can rewrite
(1) in a form that resembles the equation of motion of a DPD
system,
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FIG. 1. Time evolution of the profiles of u(x,7) (solid line) and
dul dt(x,1) (shaded region) in a one-dimensional system: (a) initial
condition, (b) after a time 7,/2, (c) after a time 7y, (d) after a time
evolution 7,/2 from (b), but with a different profile, du/dt, given by
the dashed line in (b).

2D S0 - X0 - o)

dt I#k
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However, only if the kernels are Dirac delta functions we
obtain the DPD equation of motion. This would imply that
the set of coarse-grained variables {X;,V,} is Markovian.
To show that this is not the case when sound propagation
is considered, let us focus on a simple one-dimensional solid.
At the macroscopic level, the displacement field u(x,7) [10]
is defined as the deviation from equilibrium of the particles
whose equilibrium site is x. If we neglect the micro-
scopic fluctuations, we can express the mesoscopic
variables as  Xp(1)=(Xp)eq+/ 5,((]”1) dxu(x,r) and V()
= ﬁ,ﬁk“) dx du(x,t)/dt, where [ is the size of the coarse-
grained regions and (- - )., denotes equilibrium averages. In
the simplest case the displacement field verifies the wave
equation ¢*u/df*=v? Puldx*, where v is the speed of sound
in the material. The general solution to this equation is given
by u(x,t)=f(x—vt)+g(x+vt), with a front f(x) and g(x) trav-
eling to right and left, respectively. Note that the ratio 7,
=[/v defines a mesoscopic time scale because [ is mesos-
copic. Now consider that initially all coarse-grained particles
are in their equilibrium positions with zero velocity except
one, which we label as k=0. In Fig. 1(a) we have plotted the
corresponding fields u(x,0) (solid line) and (du/dt)(x,0)
(shaded area). Assume that the fluctuations are small enough
so that the fronts are not destroyed. Then, Figs. 1(b) and 1(c)
show the profiles after a time 7,/2 and 7, respectively. Now
imagine that at the intermediate time t=7,/2 we change the
velocity field du/dt so that the set of coarse-grained variables
{X},V;} remains the same, as shown in Fig. 1(b) (dashed
line). Figure 1(d) shows the profiles after a time 7,/2. We can
clearly see that the values of the coarse-grained variables are
very different from the former case shown in Fig. 1(c), even
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though they had the same values at t=7,/2. Therefore, the
knowledge of the values at a previous instant is not suffi-
cient. Instead, we need to know the complete profiles of u
and du/dt at a given time or, equivalently, the complete pre-
vious history of {X;,V,} to specify the present state.

The arising memory kernels are the consequence of the
perturbations traveling inside the coarse-grained particles by
sound propagation. This phenomenon is due to the space
discretization introduced by the coarse graining and we ex-
pect it to be present even if we consider fluctuations, higher
dimensions, or take into account anharmonic effects, as long
as the mesoscopic time scale associated with sound propaga-
tion is comparable with the relevant time scale of the meso-
scopic particles. If 7, is much shorter than other characteris-
tic times associated with distinct dissipation mechanisms
present in the system, then the memory kernels due to sound
propagation would collapse in the longer time scales and the
previous discussion no longer applies. However, in situations
in which sound propagation plays an important role, the
coarse-grained variables must change in the same scale given
by 7, in order to account properly for it, which implies the
effect described above.

As an example, let us consider a d-dimensional cubic har-
monic lattice with only first neighbor interactions. Units are
defined so that the mass of each oscillator, the force con-
stants, and the equilibrium spacings are set to unity. We
coarse-grain the system by grouping the oscillators into cu-
bic clumps, each containing n? oscillators. It was shown in
Ref. [8] that the conservative force Ay, is the inverse of the
matrix (X;X;)eq/kpT. In harmonic systems, the mesoscopic
time scale that characterizes the dynamics of the coarse-
grained particles is given by wave propagation only, which in
our units is 7,=n. Therefore, by changing to t'=¢/n, with
V,=dX,/dt"=nV,, Eq. (1) becomes

dV. * t* * Ed *
dtf =- E[ (AHX,+ f dr @ (DV (¢ - T)) +R,, (3)

0

*

where Ail=n2‘d1\kl, &, =n*"®;;, and R}t:nz‘de. Since we
have set all internal parameters to unity, we expect that all
variables in Eq. (3), and, in particular, A,; and ®,, are on the
order of O(1), even in the mesoscopic limit n— 0. The ana-
lytic and simulation results we present later confirm this scal-
ing in all three relevant physical dimensions, i.e., d=1, 2,
and 3.

To continue analytically, we restrict ourselves temporarily
to the one-dimensional (1-D) case. Let us consider a finite
chain of N oscillators with fixed ends and then take the ther-
modynamic limit (N— o0) at the end of the calculations. The
force matrix for the oscillators in this system is given by
A;;=26;=1(8; js1+ 9, j-1). Using the analytical expression for
the inverse matrix Ai'j1=min(i,j)[1 —-max(i,j)/(N+1)] [11],
we obtain

(XiXpeg M- 15 . ([1 +2min(k,l)n—n])
kT~ 6n M 2
( 1+2max(k,l)n—n>

x| 1-
2(N+1)

(4)

Next, we invert this matrix in two steps. First we multiply it
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by A, which leads to a tri-diagonal matrix Sy
=2(X X1 )eqAr i/ kgT=ad;+b(8; j1+ 8, j_1), with a=1/3n
+2n/3 and b=(n>-1)/6n. Strlctly speaking, the first and last
columns of S do not follow that tri-diagonal form, but this is
irrelevant in the thermodynamic limit. Now we invert the
matrix S by using the form Si'=C»*/l, which leads to C
=1/Va*-4b* and v=—(a/b—+/(a/b)*~4)/2. The fact that
a/b>2 for any n guarantees that |v|<1 and consequently
S~! vanishes at the boundaries. The force matrix is then
given by A=A X S, resulting in

3 6n®
A= 24m2\n-1
Ik~1]
(e 1)k—1(1+2" —\3n\2+n ) . 5)

n* -1
In the mesoscopic limit (n— ), it reduces to [14]

!’_ f—2
2\3nV2 +n )
nz -1 kl

2 Eg —
Ay~ =GB Dl - B (6)
n

Note that since |2—\e"§| <1, Eq. (6) predicts an exponential
decay of the conservative force, in contrast with the standard
linear decay used in DPD simulations [2].

Let us now turn our attention to the memory kernels.
The  autocorrelation — matrix  C,,(r")=(V,(¢") V}k(0)>eq
satisfies the same equation as VZ, Eq. (3), but without the
random force [9]. Taking the Laplace transforms ¢(s)
=[g dt" exp(=st )P (1), c(s)=[{ dt” exp(=st")C*(t"), we ar-
rive at

*

> b (s)ep () = C(0) = scps) - 2

14

Cz'z(s) (7)

where C,,(0)=8,n’kzT/M,. The autocorrelation matrix can
also be readily calculated in the mesoscopic limit using the
macroscopic wave equation [8], leading to

Cult") = CyO)(1 + 8 (" = [k = 1])12, (8)
where g(x)=(1-|x|)H(1-|x|) and H(x) is the Heaviside unit

step function. Therefore, we can compute the kernels by in-
verting the autocorrelation matrix

Cll(o) (

— | Sule*+s—1)+e*

s(1+k— z\)(e 5 i (1- 5k1))
©)

We do that in two steps. First we multiply ¢ by the interme-
diate matrix Ry;=cosh(s) &;—(1/2)(8 111+ 6_1). The result-
ing matrix is tridiagonal and can be inverted using the same
method we applied for the conservative force. The final re-
sult for the memory kernel is

culs) =

o [k-1]
Bls) = %[mhwn  cosh(s)]+ Squ(s)]
— 58— % , (10)
where
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FIG. 2. Memory kernels <pzl(t*) in one dimension.

£s) = sinh(s) — s c.osh(s) + u(s) ’ (11)

s — sinh(s)

and

u(s) = Vs[cosh(s) — 1][s + s cosh(s) — 2 sinh(s)]. (12)

The first piece of information we can extract from (10) is the
friction coefficient that would be used in a DPD theory,

f dt” ®, (") = 1in3 du(s) =0, (13)
0 5=
which vanishes here for all k and [. This result could be
explained by the absence of real “dissipation” effects in har-
monic systems like thermal conduction [12]. Additionally,
due to the discontinuities in the time derivative of the auto-
correlation function (8), we expect that the memory kernels
contain several Dirac delta functions, as we have also seen
numerically [8]:

O () == 81t k=1 +1)= 8" - |k=1]-1)
+28(1" = k= 1)) + @, (1), (14)

where gozl(t*) is an otherwise smooth function of time. The
discontinuities arise at the mesoscopic times ¢"=¢/n that the
wave fronts of the perturbed coarse-grained particle (contain-
ing n oscillators, with n— o) reach the boundaries of the
coarse-grained particles as a consequence of the sound
propagation. In principle, we could obtain (p,tl(t*) by calcu-
lating the inverse Laplace transform of (10). However, this is
cumbersome and we actually prefer to calculate them nu-
merically from molecular dynamics simulations, which also
serves as a way to check the calculations. We present in Fig.
2 the first five memory kernels computed from a simulation
with groups of n=10 000 oscillators. The highly oscillatory
raw data has been coarse grained in time by applying the
time convolution ®(1)— [dr®(7)0(t—7), where 6(1)
=2¢(2t/A)/A, with A*=A/n=0.01 [8]. The numerical
Laplace transform of these kernels is in complete agreement
with the analytical prediction given by (10). We can observe
that the kernels are very slow decaying, having a significant
magnitude at the end of the plot. In fact, we can use (10) to
show that the absolute value of the kernel |, ()| is nonin-
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FIG. 3. Full memory kernels CI)Z(t*) oscillating around the con-
servative force values Azl in two dimensions. For a fixed oscillator
k chosen at the origin of the grid (0, 0), the various curves corre-
spond to different oscillators / along the grid.

tegrable. This is a consequence of the fact that the analytic
continuation of ¢,(s) presents an infinite number of singu-
larities on the imaginary axis (s=iw with real w).

We have calculated numerically the memory kernels in
higher dimensions. Figure 3 shows the first memory kernels
of a two-dimensional system with square clumps containing
(400)? oscillators. The data have been smoothed out with a
mesoscopic time step of A"=0.05. The behavior of the ker-
nels is very similar to that of the one-dimensional case. The
first two kernels (solid and dashed lines) display the same
Dirac deltas (conditioned in the figure by the convolution
time step A"), as predicted by Eq. (14) in the one-
dimensional case. Additionally, we present in Fig. 4 the re-
sults of a three-dimensional system with cubic clumps con-
taining (95)* oscillators and A*=0.1. Because the length of
the clumps is too small to allow for a smooth representation
of the kernels, we have also plotted in Fig. 4 the analogous
results (dotted and dash-dotted lines) of a one-dimensional
system with a similar clump size of 100 oscillators per group
and A"=0.1. The behavior of the kernels remains similar.

The presence of the memory kernels, and the correspond-
ing colored noise forces [13], would render the simulation of
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FIG. 4. The same system as in Fig. 3, but in three dimensions.
The dotted and the dash-dotted lines are the corresponding func-
tions of a 1-D system, plotted here as a reference.

the dissipative particles dynamics impractical due to com-
puter memory limitations. A more promising approach would
be to add new internal variables to the description so the
process becomes Markovian. However, it is not clear if this
can be done using a finite number of new internal variables.
The thermodynamic variables (local density and internal en-
ergy) used in Refs. [4,5] would not account for the internal
memory effect we have described in this work. This can be
seen by considering a velocity perturbation traveling inside
the coarse-grained particles. The center of mass, the local
volume, and the internal energy of the coarse-grained par-
ticle would only be affected by the perturbation when it
reaches the boundaries of the particle. On the other hand, a
particle-based method could still be used if we regard them
as virtual particles carrying energy, instead of representing
portions of the system. In any case, the formalism used or the
assumptions made would need to be closely related or
checked at the microscopic level.
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