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Computer simulations of localized small polarons in amorphous
polyethylene

David Cubero and Nicholas Quirke
Department of Chemistry, Imperial College, London, SW7 2AY, United Kingdom

(Received 20 October 2003; accepted 14 January)2004

We use a simple mean field scheme to compute the polarization energy of an excess electron in
amorphous polyethylene that allows us to study dynamical properties. Nonadiabatic simulations of
an excess electron in amorphous polyethylene at room temperature show the spontaneous formation
of localized small polaron states in which the electron is confined in a spherically shaped region
with a typical dimension of 5 A. We compute the self-trapping energy te-bed6+ 0.03 eV, with

a lifetime on the time scale of a few tens of picoseconds.2@4 American Institute of Physics.

[DOI: 10.1063/1.1667471

I. INTRODUCTION —0.3 eV. All the simulations presented in this article start
from levels below the mobility edge.

Polyethylene is the simplest organic insulator, playing @ The article is organized as follows: in Sec. Il we describe
very important role in a number of technological applicationsthe methods and simulation details. In Sec. Ill we describe
such as high tension insulation. Despite a vast literaturethe mean-field approach we have used to carry out dynamical
concerned with the experimental characterization of its elecgjmyjations. In Sec. IV we describe the self-trapped polaron.

electronic transport at the molecular level. An understanding

of the mechanisms of charge transport in these materials is
important in determining the electronic and optical properties;, veTHODS
and in the development of new materials with more reliable
insulating and other properties. We have used a mixed quantum-classical approach to
Recent femtosecond spectroscopy experiments havaudy the dynamics of an excess electron in amorphous poly-
shown the existence of shallow self-trapped polarons in ulethylene at room temperature. The electron is treated
trathin alkane layers on a silv@dl) surfacé’ In addition, quantum-mechanically while each methylene group is
recent Car-Parrinello simulatiohbave shown the spontane- treated as a classical particle. A fast Fourier transform block
ous formation of self-trapped polarons in bulk crystalline Lanczos diagonalization algorittfrvas used to compute the
polyethylenglmodeled using four chains of seven methyleneadiabatic electronic states of each classical configuration ev-
units in periodic boundary conditions, each one initially all- ery time step. The time evolution of the system was gener-
trang. This shallow polaron has been linked to the formationated on a Born—Oppenheimer potential energy surface using
of two opposite trans-gauche defects in a single chain, witlthe molecular dynamics code DLPOIYhe Hamiltonian of
the electron trapped in the rotated portion of the chain. Irthe classical subsystem contains all the standard ingredients
this paper, we will demonstrate the formation of localizedused to simulate polyethyleribond stretch, valence angles,
polarons in amorphous polyethylene. As in bulk crystallineand dihedrals termlus the interaction energy with the ex-
polyethylene we find very small polarons, with self-trappingcess electron, which is computed using the Hellman—
energies comparable with the thermal enekgff, but the Feynman theorefhTransitions between different electronic
geometry of the self-trapped state is very different, beingenergy surfaces are allowed and computed by means of the
essentially isotropic, reflecting the underling symmetry ofTully’s fewest switches surface hopping algoritAm.
the dielectric phase. However, with such small self-trapping We have simulated polyethylene systems employing a
energies one could question the physical meaning of suckingle chain in a cubic box with periodic boundary condi-
localized polaron states. We will show that the lifetime of tions. The chain was made of 360 gHnits, though we have
these states is large enough to allow them to play a vergplso performed simulations with a chain of 1215 Qithits
important role in electron transport. for comparison purposes. The initial equilibrium configura-
In our previous work we developed a new pseudopotentions of amorphous polyethylene at room temperature were
tial for electron—polyethylene interactions, which has beergenerated using the procedure described in Ref. 5. The elec-
used to study electronic states in crystalline and amorphousonic wavefunctions are represented on a grid of G246’
configurations of polyethylene. These states are found to bpoints, depending on the system size. We estimate the uncer-
in good agreement with the experimental datale also  tainty in the results due to grid size as 0.02 eV. All interac-
have been able to locate the mobility edgeparating local- tions were truncated at,=9 A, with all electronic energies
ized and extended stajesn amorphous polyethylene at including a long-range correction based on the polarizability
about the vacuum level. The localized states extend to abointeraction®
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Ill. MEAN FIELD APPROACH due to the other induced dipoles. Assumi{@gand summing
the contribution of all induced dipoles in a statistical way, we

The interaction energy between the excess electran at jpiain an equation fof(r):1°

and the CH units atR; can be decomposed into repulsive
§ . 0 |r+s|
and attractive parts: f(r)=1—wnaf ds g(s)sZJ| CORETRY
0 r-s
V(r.Ri>=; Vi(lr=Rj[)+VP(r,R), (1) ®)
with
WhereVJT(r) is a short-range repulsive pair potentiahd VP
@s the elec_trostatic energy that accqunts for the point charge- o(r,s,t)= iz(sz+t2—r2)(sz+r2—t2)+(r2+t2—32).
induced-dipole polarization interaction: 2s
9

VP(r,R)=— %2 pi-EYS(Ir=Ry), (2)  In Eq.(8) nis the number density ang(r) is the pair cor-
! relation function of the dipole system, usually taken as the
with equilibrium pair correlation function in absence of the excess
electron. Strictly speaking(r) should be modified due to
E(0)_ Rj—r the presence of the electron; however, neglecting this pertur-
P T TeR o © i i
|R] rl bation has been shown to be very successful when applied to
simple polarizable fluids* With this approach (r) has to be
solved numerically using an iterative self-consistent method,
p;=aE; (4)  butonly once and as a result we obtain a pairwise additive
interaction energy that can be computed efficiently every
the dipole moment of the united atonwith a polarizability  time step.
tensoral- . SJ(I’) is the SWitChing function that vanishes when The first d|ff|cu|ty in app|y|ng this mean-field approach
r—0, accounting for the finite size of the methylene units.to polyethylene is that the polarizability for the methylene
The local electric field at each atoB) is the solution of the  ynits is not a scalar but a tensor. In fact we will show later

the direct electric field due to the excess electron, and

set of equations that the mean-field approximation breaks down for strong
anisotropy in the polarizability tensor. Another difficulty
Ej= E}°>+|§j T(R;,Ry) - ayEx, (5)  arises when the system is made of dipoles of different polar-

izability, which again is our case, since our pseudopotential
contains two different polarizability centers: one at the center

. _ N “ 3 _ ka
with T(RJ-,Rk)—(3Rijjk—1)/Rjk, Rjk=R;—Ry, and Ry of the CH, units (in A%)

=Rk /Rjc. Knowledge of the local electric fiel&; allows

one to compute the force exerted on each atom due to the 0.5
o . b : i
pola_r|zat|on |nter_act|on a$<;S|Fj |¢>, where ¢ is the elec o= 1.12 (10)
tronic wavefunction andAppendix A 2 164
3 . . .
FfzeT(r,Rj)ijrkE R_f‘((pj PRkt (Pj- Rji) Pk (ina coord.lnate system along the symmetry axes of the me-
#1 Nk thylene unit), and another at the center of the C—C bonds
+(Px- R P = 5(Pj - Rji) (P Rj) Rji) - (6) 2103
The first term in(6) is the force due to the direct field created ac_c= 0 (11)
by the electror{which because of Newton’s third law is mi- 0

nus the force exerted by the dipglen the electronand the
second is the result of the interaction with all other induced@along the C—C bond
dipoles. In Refs. 4 and 5 we solved self-consistently the set These complications are difficult to overcome theoreti-
of equationg5) using an iterative approach for several con-cally. We show below, however, that this is not necessary,
figurations of bulk polyethylene. However, the calculation issince a naive application of Lekner’'s mean-field method to
very expensive and utterly prohibitive in a simulation of the polyethylene already provides good results.
dynamics of an excess electron in polyethylene since the In Fig. 1 we have plotted the screening functibfr)
interaction energy has to be computed every time step.  (solid line) that results when we use E(8) with a total
In 1967 Lekner proposél a mean field approach to average polarizability for the methylene units,
compute the polarization interaction of a point charge ina — B
system of isotropic dipole&vith a scalar polarizabilityy). In acn,= sl Tracy,) + Tr(ac-0)]=1.788 A, (12
this approximation, the local field at each atom is replaced byq the pair correlation functiog(r) of the CH, units in
E-=E(°>f(|R-—r|) 7 amorphous PE at room 'temp'erature computed from a mo-
A ! ’ lecular dynamics simulations in absence of the excess elec-
wheref(r) is a function that accounts for the screening oftron. This radial distribution function only contains the pairs
the direct electric field exerted by the electron at the dipole connected by a van der Waals interactions, which is consis-
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1.5— T T T . . . —— TABLE I. Comparison of the energy levels between a full many-body self-
% consistent and a mean field calculation.
X

n EN® EN —En® (¢n®ln'")
0 —-0.224 0.148 0.996
1 —0.191 0.153 0.969
2 -0.171 0.154 0.985

f(r) 3 ~0.148 0.139 0.972
4 -0.104 0.140 0.990
5 —0.083 0.147 0.920
6 —0.036 0.138 0.198
7 —0.025 0.139 0.119

X
0 | | | | | | | |
0 1 2 3 4 5 6 7 8 9 . . . .
r (A) lation of the same amorphous configuration but with a larger

cutoff radiusr =9+ 3 A shows that the proper Lorentz limit
FIG. 1. Screening functioh(r). The solid line is the mean-field result. The IS recovereddotted line in Fig. 1. This deviation is of little
dash and dotted lines correspond to the screening function for the electronpractical importance, since the wavefunctions of both sys-
Cliz pair com;?&uted from_afull many-body simulation with a cutoff radius of tems are practically indistinguishable and the error in the
LCO;(S; Sgi(:slz , respectively. The crosses correspond to the ele¢@orG- energy levels is lower than 0.01 &grovided the same long
' range correction based on the Lorentz fadtpris added,
which in this case is as large ad.41 e\Vj.

tent with the pseudopotential itself, since the polarizabilites ~ Apart from the large fluctuations in the C—C-bond
were computed bgb initio methods for alkanes ignoring the screening function, the full-many body screening functions
intramolecular dipole—dipole interactidn. are in qualitative agreement with the mean field function,

In order to probe this approximation we have computedvith the former clearly higher near the first minimum. This
the effective screening functions from simulations of amor-deviation is responsible for an increase in the absolute value
phous PE at room temperature using the full many-body selfof the polarization energy and thus a decrease of the energy
consistent approadlEq. (5)], defined for each dipole species levels. In Table | we present a comparison between the en-
as the average over all dipoles of the quanp’pyEfo)/Efo) ergy levels obtained with the full-many body simulation and
tion of a PE chain containing 1215 GHinits are shown in tion plotted in Fig. 1 for both dipole species and the same
Fig. 1. The screening function of the.,, centers(dashed configuration. It can be seen that all energy levels are shifted

3 :

line in Fig. 1) is very smooth, suggesting that a mean fielddo_"‘;]n Ey approx:inatfely the Sa“?de am(?ur_n of QtIB%Z EV
approach would succeed for this type of dipole, where thé\:'tdt e error tahenf_ rom our g”f reso utlo_n erroan :ﬂzt
anisotropy of the polarizability tensor is relatively weak, (€ deviation in the Tirst six wavefunctions is very s

However, the results for C-C dipole&rosses are not projection of one normalized eigenstate on the other is close

smoothly varying and, even though the data seem to be scaft%lljrn;?gn sznr;a\é?ﬁ;?ng;;‘Setesr?]rgfzggttem for different con-

tered around the CHscreening function, the dispersion is , . o )
Since our interest is in the lowest energy levels, we will

large enough to reject a mean field treatment. . ! ) ; :
All screening functions share common features. In thelse this mean-field method in our simulations of the dynam-
limit r—0, f(r) tends to unity, since the direct Coulomb ICs, corre(_:tlng all energy levels byO_.15 eV, which can be
ncluded in the long-range correction constant. Then, the

interaction with the electron becomes dominant, and in th d by th | ) h q h
opposite limitr —oo the screening function should approach orce_exe__\rte_ yt € excess e ectron in eact] atom due to the
polarization interaction is best computed directly from the

(in isotropic systems like amorphous Pthe Lorentz local ! :
factorf, = 1/(1+ (8/3)7a) (see, for example, Ref. 12since ~ 'Nteraction energy,

at long distances the direct electric field is viewed locally as 1 ©) ©)

a constant field. It can be proven that all solutions of the V"=~ 52 Ei”-ap- BV T(Ir—=Ry)) (13
mean field Eq.(8) tend to this limit(see Appendix B as .

indeed does our numerical solution of the mean field equawhere the switching factog(r) has been included in the
tion in Fig. 1 (solid line). However, the screening function Screening factorf(r)]. With F{=—V,VP, whereV; is the
measured from the full many-body simulation appears tdgradient with respect t&;, we obtain

tend to a higher valuédashed ling The reason for this p_ R Pr() B () N P

deviation is that the local electric field was computed solving Fi=eT(r.R)p;+ (B o BOVf(r =R (19
qu. (5) for all dipoles inside a cutoff sphere of raQuug IV. THE LOCALIZED SMALL POLARON

=9 A centered at the excess electron. Since the main contri-
bution to the screening function at each dipole comes from  An excess electron introduced into amorphous polyeth-
the surrounding dipoles, the screening of the direct electriylene is expected to interact with the dielectric and be
field due to the dielectric itself is not properly accounted fortrapped in a distorted region. In Fig. 2 we show the time
at dipoles close to the surface of the cutoff sphere. A simuevolution of the three components of the center of mass and
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FIG. 4. Electronic energy levels versus time for a simulation starting from
FIG. 2. Components of the excess electron center of rimes, in Ang- an excited state showing a nonadiabatic relaxation. The black squares denote
stromg as a function of time from an initially unperturbed configuration of the current energy level.
amorphous PE at room temperature. Crosses are the localization length of
the electron at each time. System boundary edges are included as a reference

(horizonta[ dotted lines though the actual position is arbitrary because of excited state. The relaxation involves a series of energy hops,
the periodic boundary conditions. . . .. .
indicating a strong nonadiabatic interaction, eventually form-
ing the self-trapped state after about 7 ps.
We present in Fig. 5 the results with a smaller system
nbox of lengthL =21.41 A starting from the ground state. In
this case the initial relaxation is not optimally mimicked,

perature unperturbed by the presence of the excess electr ince the initial state, though localized, extends through most

These quantities were computed under periodic boundar? fche system_, but the final self-t_rap_ped state is well charac-
conditions following the procedure sketched in Appendix C. erized, showing the same localization length of about 5 A.
Note that at the beginning the electron is in a state below th-el—hese smaller systems are much easier to simulate, reducing
mobility edg€ and thus localized. However, this state is notdrasncally the computer time used. In the following we will
stable and the electron explores part of the system, ending LR{esent results computed using this smaller system size.

after about 1 ps in a localized state with a smaller length. We . It_ is clear f.ror_n Fig. 3 or 4 that, despltg the fact that the
present in Fig. 3 the time evolution of the energy spectru inetic energy is increased due to a reduction of the localiza-

for the same simulation. In this case the electron remains if}o" length, the mterac‘qon energy becomes more negat'lve.
the ground state, showing an adiabatic relaxation. We hav his can only be explained in terms of a smaller repulsion

observed similar behavior in all our simulations, though In|nteract|0n and/or a larger polarization interact This is
' ’P-\e reason these states are usually called self-trapping po

some cases or if the initial state is not the ground state w . . ;
arons. Part of the energy gained goes to the dielectric to

witnessed larger relaxation times, of the order of 5-10 ps. |
create the distortion that makes possible this polaron state.

Fig. 4 we show the time evolution of the energy levels in aTh diff bet h 4 and the distort
simulation where the excess electron was initially in the flrst € difference between the energy gained and the distortion
energy(both in absolute valyeshould be still positive, since

the localization length of the excess electron in a micro
canonical simulation starting from the ground state of a
amorphous PE system of length=32.12 A at room tem-

O_.,IAI.. II I_ Wr——7T— 71T 71T 71T 71T 7T 1T T 71
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Ul \, AN \ r o Y
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FIG. 3. Electronic energy levels versus time for the same simulation shown
in Fig. 2. FIG. 5. The same as Fig. 2 but for a simulation with a smaller system size.
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we observe this self-trapped state in every simulation. Howedensity was always smaller in the presence of the electron
ever, this energyor more precisely minus this enejgyior-  than the minimum local density in the unperturbed system.
mally called the self-trapping enerdyis difficult to measure These changes, which in some systems amounted to a 50%
from a microcanonical simulation, since the total energy isreduction in local density, clearly indicate the formation of a
conserved and thus it is transferred to the dielectric in thesavitylike region by means of which the electron lowers its
form of thermal energy. energy.

In order to compute the self-trapping energy it is more In order to compare our results in amorphous PE with
convenient to perform a simulation in the canonical en-the self-trapped state found in crystalline®Rie have moni-
semble. We have used the Andersen thermostat, which getered the dihedral angle distribution and found no significant
erates trajectories in the canonical ensemble this case, difference between the gauche population before and after
the quantity that is minimized in the self-trapping process ishe polaron is formed, reflecting the fact that in the disor-
not the total energy but the free enely%;. We have com- dered phase the electron has many more ways to distort the
puted this free energy using the acceptance ratio method fatielectric than in the crystalline phase, in which the electron
classical systems, which is described in detail in Ref. 15. Taan only create a cavitylike region by abruptly creating two
sum up, we need to compute the cons@rhat satisfies the gauche defects in the otherwise all-trans chains.

equation In addition, we have observed that the self-trapped po-
laron is sensitive to the temperature of the system. Simula-

> h(Up—U;+C)=>, h(U;—Uy—C), (15  tions at 350 K show a larger polarization energy, with a

m m’ smaller localization length of about 4.2 A, while a system at

where h(x)=(1+expBX) ! is the Fermi function g 200 K shows a more extended excess electron with a typical

=1/kgT) andU, andU, are the total energies of the classi- '€ngth of 6.4 A.

cal systemsJ, andU; at the configurations (in a simula- The calculat?ons presented above predict that the self-
tion of system 1 or m’ (equilibrium configurations of sys- trapping energy is of the same order as the thermal energy at
tem 0. The free energy differenc&F is then given by room temperature kgT=0.026 eV), and as a result we
would expect rapid trapping and detrapping giving rise to
BAF=—In(ny/ng)+ BC, (16 hopping conduction assisted by phonons. This is in fact what

we observe in the simulations. In Fig. 6 we present the com-
sampled in each system. Since we are interested in the eRonents of the center of mass of the electron as a function of

ergy difference between the unperturbed ground state and igne for two typical long si_mulations s_h.owing a hOP bgtween
self-trapped state, we chod#, as the Hamiltonian of the self-trapping states at different positions. The lifetime of

polyethylene system without the excess electron, dpds each s_tate_is about one order_of magnitude larger than the
the full Hamiltonian with the electron hold at the ground €l@xation time to the self-trapping statesps), demonstrat-

state. Therefore, the self-trapping energy is given by ing the physicgl relevance of these self-@rapped s.tates, re-
gardless of their small self-trapping energies. The time evo-

BAGs=F1—(Fo+(Eo)o), (17)  lution of the electronic energy in these simulations shows
where (Ep)o is the average of the electronic ground statetat tr;s ;stan a?|aba(';|c _pro;:essr,], theTEIectkr)on stzzyllr}gt_ln the
energy over the equilibrium configurations of the unper-f‘:Jroun state surtace during the hop. The observed iTeime 15

in agreement with the widely accepted model for adiabatic

turbed polyethylene system. Averaging ovex3 simula- : o . . e
tions of 10 ps of adiabatic dynamics we obtainad hopping conduction in polaron theot¥in which the lifetime

= —0.27+0.01 eV and(Eg)o= —0.21+0.02 eV, which im- 'S estimated as
pliesAG,= —0.06+0.03 eV. Moreover, the averaged local-

where n; and nq are the total number of configurations

ization length of the self-trapped polaron was5@1 A and r=v"texp(E,/kgT), (18)
of spherical shape, in agreement with the microcanonical
simulations. with v being a typical phonon frequency responsible for the

It is worth noting that a direct calculation of the self- detrapping, andE, an activation energy, here to be identified
trapping energy as the total energy difference of the twawith the self-trapping free energ&G,,=—0.06+0.03 eV.
states(apart from neglecting the entropy chahgmes not Since the optical frequencies in polyethylene are in the range
produce an acceptable value due to the large thermal fluctu&00—1600 cm'’ the corresponding phonon energies
tions of each variablé~0.1 eV). It is much more efficientto are about one order of magnitude larger tfBpand thus
use an approach such as the acceptance ratio method, anly the acoustic or torsioné@ransversalphonons, with fre-
which the energy difference of both systems is computed foguencies in the rangeOr< 250 cm *,8 can be responsible
each configuration of both simulations. for the destruction of the self-trapping state. As a resuilt.

We have observed a correlation between the selfis of the order of a picosecor{dr largey, which is about the
trapping polaron and the local density of the dielectric. In allsame time scale for the relaxation to these states, and the
cases we found that the center of mass of the excess electrerponential factor ir{18) provides the factor of 10 observed
was within 2 A of the global minimum of the local atomic in the simulations.
density(defined as the number of atomic centers in a sphere  Furthermore, this analysis and the simulation results
of radius equal to the electron localization length divided byshow that the dynamic behavior at the temperature consid-
the volume of the sphereFurthermore, this minimum local ered is dominated by the low-laying energy states and thus
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energy change between an unperturbed dielectric system and
a system perturbed by the presence of the electron. This is
the energy required to remove the self-trapped state and is
small when compared to the activation energy for excitation
to extended states from unperturbed configurations, i.e.,
~0.3 eV, thereby providing a justification of the method em-
ployed in Ref. 5, in which the effect of the excess electron on
the dielectric was neglected. From Ref. 5, we expect elec-
trons thermally excited to energy levels above the mobility
edge to provide a contribution to the zero-field mobility of
order of 10 3 cn?/Vs, which is in good agreement with the
highest values found in experiments.

However, the smallness of the self-trapping energy sug-
gests a hopping mechanism assisted by phonons, which is in
fact observed in the simulations. The lifetime of each self-
trapping state is observed to be on the time scale of a few
tens of picoseconds. We show that this timescale is consis-
tent with an adiabatic model for detrapping and the com-
puted value of the self-trapping energy.

Since the electron is localized and nondegenerate, the
corresponding contribution to the mobility can be computed
using the Einstein formuld by measuring the diffusion co-
efficient from very long time simulations. Preliminary calcu-
lations show that the contribution to the mobility due to hop-
ping between these self-trapped states may well be about the
same order of magnitude as the mobility due to excited elec-
trons above the mobility edge. These simulations are re-
ported elsewher®

APPENDIX A: POLARIZATION FORCES

In principle, the force on each dipojecould be com-
puted from the gradient of the polarization enek§y How-

FIG. 6. The same as Fig. 2 but for two different long simulations showing a€Ver, it is easier to calculate it from the local electric field.
hopping mechanism between the self-trapped states.

providing a posteriorijustification of the use of the Lekner’s
mean field method, which describes correctly only the lowest

energy states.

V. CONCLUSIONS

Assume a simple dipolp atr, then the electrostatic force on
the dipole will be

F= lim [—qgE(r)+qE(r+d)]=(p-V)E(r).

d—0,d—p

(A1)

If we now consider the full system with dipolesRf and an
electron atry, the electric field everywhere is given by

(A2)

E(n)=E(r)+ 2 T(r,R)-px,
We have shown that even when a complex nonpolar di- k
electric like amorphous polyethylene with two species of anwith E((r)=—e(r—ro)/|r—r,|%. Using these equations,
isotropic polarizable dipoles is considered, a simple meamogether with

field approach neglecting these details produces good results

when one is only interested in the lowest energy levels of the VE®(r)=eT(r,ro) (A3)
excess electron. This method makes dynamical simulationsnd
feasible. , /
Nonadiabatic simulations of an excess electron in amor- IT( . Imin - 8 X=X

phous PE at constant energy show the formation of a small X [r=r/[*\ fr—r7| 7mn
self-trapped polaron with a reduced localization length of 5 (X=X (X=X

on picosecond timescales. The wavefunction is isotropic m ,m n n ,” Sim
and centered around a small cavitylike region created by the [r=r'| r=r'|
electron. In order to calculate the self-trapping energy we (X — X ) (X — X1 (Xn— X1)
have performed adiabatic simulations in the canonical en- (A4)

_ 7|3 ’
semble using the Andersen thermostat. The self-trapping en- r=r|

ergy is estimated to b&G4;= —0.06+0.03 eV from the free we obtain(6).
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APPENDIX B: LONG DISTANCE LIMIT OF THE (glr|y and (@p|r-r|e)—(p|r|¢)-(¢|r|#), respectively.

SCREENING FUNCTION However, under periodic boundary conditions these quanti-
The first step to find the long distance limit of the meanti€s are not vyell defined mathematic_ally even for_ Igcalized

field f(r) is to prove states, and different values are obtained if the origin of the

3 system is chosen so that the boundaries cross a region where
t+r . . . -y .

L =22 ~2 the electron has a significant density probability. Following

ot=r) 8! fh_qu sTorsh), (B1) the localization criterion presented in Ref. 5, we have over-

come this problem by choosing each origin component at the

grid points so that the absolute value of the ffbvacross the

J't+r corresponding boundary is minimized, where

|

where 6 is given by Eq.(9). Since fort#r

ds s 2(r,s,t)
t—r|

CIDZJdSan-Vd) (Cy

andn is a unit vector perpendicular to the boundary surface.
This procedure guarantees that wave function has decayed at

it is only left to prove that it is properly normalized. Revers- the houndaries and the localization length is well defined.
ing the order of integration

(s—r—t)(s+r—'[)(s—rth)(s+r+t)\t+r
2s°
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e
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