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Inhomogeneous multiscale dynamics in harmonic lattices
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We use projection operators to address the coarse-grained multiscale problem in harmonic systems.
Stochastic equations of motion for the coarse-grained variables, with an inhomogeneous level of
coarse graining in both time and space, are presented. In contrast to previous approaches that
typically start with thermodynamic averages, the key element of our approach is the use of a
projection matrix chosen both for its physical appeal in analogy to mechanical stability theory and
for its algebraic properties. We show that thermodynamic equilibrium can be recovered and obtain
the fluctuation dissipation theoreanposteriori All system-specific information can be computed

from a series of feasible molecular dynamics simulations. We recover previous results in the
literature and show how this approach can be used to extend the quasicontinuum approach and
comment on implications for dissipative particle dynamics type of methods. Contrary to what is
assumed in the latter models, the stochastic process of all coarse-grained variables is not necessarily
Markovian, even though the variables are slow. Our approach is applicable to any system in which
the coarse-grained regions are linear. As an example, we apply it to the dynamics of a single
mesoscopic particle in the infinite one-dimensional harmonic chain20@5 American Institute of
Physics. [DOI: 10.1063/1.1829253

I. INTRODUCTION the form of the equations to be used based on an equivalent

_ _ _ footing or framework is currently lacking.
The processes underlying the properties of materials and We have used the projection operator approach of Mori

biological assemblies often span a range of length and Um&nd Zwanzid to obtain the dynamical equations of an inho-

scales. In understanding and predicting their behavior, i . . .
; o . mogeneous multiscale system. To illustrate this, we solve
would be desirable to start from an atomistic description

which could be capable of exhibiting the continuum andexactly the mu_ItiscaIe inhomoger_1eous problem for harmonig
macroscopic behavior of the system. Molecular dynamicSYStéms. In this regard, harmonic systems, apart from their
(MD) alone is presently incapable of bridging scales of suctpbvious adequacy as a first approximation for solids, provide
orders of magnitude. Coarse-graining schemes that tackRn excellent framework to probe these ideas. The projector
different aspects of this broad problem are currently an acoperator approach has been used extensively in the past. One
tive area of research. Of particular interest is the possibilityof the main drawbacks has been the evaluation of the formal
to follow the system dynamically and not just obtain its ther-expressions obtained by the theory. By using an algebraic
modynamic properties. projection and in analogy to mechanical stability, we obtain
A number of “mesoscale” dissipative particle dynamics functional forms of the forces that can be computed by a
(DPD) type methods, for example, introduce particlelike series of short molecular dynamics simulations. The key
variables in continuous equations and associate with therpoint of our approach is that we avoid altogether the first step
conservative, dissipative, and random fort&sthe origin averaging and obtain the thermodynamic equilibrium
and appropriate functional form of these forces is still nOtpropertiesa posteriori The mechanical analogy has been

3,4 ; ; ;
fully resolve_d. A different approach that_z_nms to avoid first introduced in the literature by Deutch and Silbey for a
these equations altogether relies on exploiting through effi- . S .10

ngle particle in a latticé In that respect, our results can be

cient numerical integration techniques a large number of" ) o .
short MD simulations.Another level of complexity is intro- considered a generalization of their work. We also recover as

a@épecial case the results of Adelman and Doll for atom/solid

grained. One of the most successful methods under this cagrface scattering in harmonic latticésAdditionally, the
egory, the quasicontinuufnjnvolves no explicit time nor formalism provides a connection to the quasicontinuum
finite temperature. A generalization has been attempted bugethod with explicit time and finite temperature. Finally, we
the dynamics have been introducaihoc’ One of the main  comment on the form of the random forces and memory
remaining challenges in such methods remains the reflectiorkernels that are usually assumed in other mesoscale dissipa-
at boundaries between regions of different level oftive dynamics type of methods.

descriptior. Coarse-grained dynamics that can systemati-  The paper is organized as follows: In Sec. Il we intro-
cally describe the system at different scales in both time angduce the system and the coarse-grained scheme. In Sec. Il
space remain a challenge. A general scheme that prescrib@g describe the equations for the coarse-grained variables
using the Mori formalism. In Sec. IV we introduce a differ-
dElectronic mail: s.yaliraki@imperial.ac.uk ent projection matrix and rederive the theory using that inner
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lll. MORI THEORY

The equations of motion for these variables can be ob-
tained in a straightforward manner by using the Mori projec-

tion operator formalisml.The equations are obtained by pro-
X v XV jecting onto the subspace spanned by the relevant variables.
X(3_ v, The projection operator is determined by the choice of the
Lj inner product B,C) in the Hilbert space of all functions

B(x,v) and C(x,v) of phase space coordinates is cus-
tomary to choose canonical equilibrium averag&s Q)
=(BC)eq, Where

FIG. 1. Example of a coarse-graining scheme in a 2D harmonic system.

[ d¥xdNuB(x,v)e” "keT

J‘ d NXdNU efH/kBT

<B(X1U)>eq: ) (4)

product, which allows us to obtain closed expressions for the

results in Sec. IV and a numerical procedure to comput% being the Boltzmann constant afiche temperature. We

them in Sec. V. In Sec. VI we propose a simulation proceynen optain the following linear generalized Langevin equa-
dure to study the dynamics. We apply the theory developegs-

in the previous sections to study the coarse-grained dynamics

of a single mesoscopic particle in the infinite one- dXy (1)

dimensional(1D) harmonic chain in Sec. VII. Finally, Sec. g~ vk, )
VIII provides a short summary and conclusions.

M d\(/jk(t) =—2 [Ak|X|(t) + ftd7¢kl(7)v|(t_ 7)
t | 0

Il. SYSTEM DETAILS AND COARSE-GRAINING
SCHEME
_ _ _ _ _ +R(1), (6)

We consider a harmonic system of dimensgboonsist-
ing of N particles of massn,. We will assume that the in- whereAy, is a renormalized matrix forceb,,(t) a memory
teraction between any two particles only depends on the digernel, andR,(t) a force which contains the information of
tance between them. The Hamiltonian of this system is  the nonrelevant variables we have left out. We have dropped

d 1 1 the spatial labelg. in these expressions for clarity, because
— i S - the Hamiltonian we are using here does not provide any cou-

H_,,,Zl 2 2 Mvint 3 .EJ Xiow X, | @ pling between the different components.

The explicit expressions for the unknown quantities in
Eqg. (6) involve complicated functions containing formal pro-
jection operators. However, the following information can be
obtained relatively easilysee Chap. 8 of Ref.)9the force
Ry(t) satisfies

wherex; , andv; , are theu components of the deviation
from the equilibrium position and velocity of the partidle
respectively, andh\;; is a symmetric matrix that satisfies the
stability condition

Zi A;;=0. 2 (Re(1))=0 @

The variables of interest are the coordinates and velocities gnd
the center of mass of each of the coarse-grained regions of

the system <Rk(t)Rl(0)>:kBT¢k|(t)’ (8)
1 X 1 X where (- --) denotes averages over a statistical ensemble of
Xk,M=M—k2 MiX; 4, Vk,,FM—kE Mivi 4, (38)  the initial conditions that is close to equilibrium. Equation
1 1

(8) is called the non-Markovian fluctuation-dissipation theo-
WhereMkzZikmi is the total mass of the coarse-grained re-rem. It guarantees that the system admits the thermodynamic
gion or particlek. The number of oscillators in each region is equilibrium solution.
allowed to vary in accordance with the desired coarse- The advantage of this approach is that it provides us with
graining level. For example, if we are interested in keepingequations of motion where the forces are decomposed in
the atomistic level in one part of the system, the correspondthree parts. The first two are functions of the relevant vari-
ing regions contain only one oscillator and the coarseablesX(t) andV(t) alone, and can be identified with con-
grained variables are just the coordinates and velocities cfervative and dissipative type force terms, respectively. The
the original oscillators. At the same time, not every oscillatorforce R,(t) can be considered as a random force. Therefore,
need to be related to a coarse-grained particle. We may kthe equations can be cast inside the theory of stochastic pro-
interested in coarse-graining completely a part of the systernesses. While the physical interpretation of these equations is
comprising many oscillators. In that case no indtdg asso- clear, the main problem resides in finding both closed forms
ciated with such region. We present in Fig. 1 an example obf these expressions fox,, and ®,(t) as well as ways of
an inhomogeneous coarse-graining scheme. actually computing them in practice. This is not an easy task
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even in the case of linear systems. For example, with this . ~
projection method, we find the matriX,, as the inverse of mgi(t = -2 Ajdi), (14)
the matrix(X;, X)eq/KeT, i.€., .

k
S o, KK Kfieq) o g mak0)=—3 [(1-P)Al;,  &(0)=0, (15)
| kBT |’ kBT J

This inverse matrix is generally difficult to compute. SpecialWhere the dot denotes time derivative,
care is required as can be seen by noting that the individual

Set NAIVIS A=(1-P)A(1-P! 16
elements(X,z)eq do not exist in the thermodynamic limit R ( A ) 18
(N—<) because of translational invariance. andP is a projection matrix defined by
p= s 1
IV. MORI THEORY WITH A SPECIAL INNER PRODUCT 17 Mgy KOk (17)
A. The mechanical analog: Random forces wherek(i) denotes the index of the group in which the os-

The expressions in the preceding section have been of§illator i belongs and®" the transposed matrix.
tained by using equilibrium averages as the inner product. Note that |fx5(x1,z<t2,...) IS thevector formed by all
Although with this approach we obtained straightaway Eqsoscillators’ coordinatesP’x= X gives a vector whose com-

(5)—(9), it is not clear how one can proceed further. ponents are the centers of mass of the coarse-grained par-
A better insight is gained if we use instead an innerticles. In addition, ifi or j belongs to a region that has been
product with the following properties: totally coarse grained, theR;;=0. Thus, if bothi and ]
_ belong to such regions, thek, =A;; .
. S Y=(v; V=6 —1 . )= N A
i X5,0) = (V1,001,0) = 01 07 (X000 0) (10(')) It is easy to show that the new force matAxis sym-

_ o o metric and satisfies the stability conditid@). Therefore,
. Using this inner prpduct, the prpjectlon operator fgrmal-qk(t), and thus the random forcd®(t), are expressed in
ism produces the equivalent equations of the preceding segsyms of the mechanical problef®4)—(15). In fact, using the

tion. Specifically, we recover E@5) and a modified equation algebra we present below, we can show that the random
for the time derivative oV/(t), Eq. (6) that now involves &  ¢,rces can be further written as

memory kernel related to the time convolution of the posi-
tion X(t). Integrating by parts this integral we arrive at

Mkd\;k(t) =-—> [A"'X|(t)+ f drBi(PVy(t—7)
t [ 0

k

R(t)=—>, 2 AL (D) +0,(D] ], (18)

wherex(t) ando(t) are the solution of the mechanical prob-
lem (14) with the initial conditionsx(0)= (I — P")x(0) and

+ B(D)X(0) |+ Ry(1), (1)  0(0)=(1—PYv(0). This is a generalization of the results
presented in Ref. 10 for a single particle in a lattice.
where we have writteAk'zE!‘E}Aij . We now need to com- The mechanical problem generatedAys related to the

pute the random forcB,(t) and the memory kernel function original mechanical problem of the underlying lattice but
B (t). The latter is connected to the former by the projec-instead the center of mass of the coarse-grained particles are

tion operators formalism as fixed, as illustrated by the fact that the following property is
. obeyed at all times:
Bk|(t):_JOdT[‘CRk(T)VX|(O)]M| ’ (12) ﬁtqk(t):ﬁqu(t)zo, (19)
where £ is the Liouvill€’ operator of the system. We later whereM;;= &;m; is the mass matrix.
relate each quantity to those of the preceding sedtime Note that if initially there is no disorder in the coarse-
Eq. (6)]. grained lattice, i.e., there are only collective initial deviations

The random force is in general a complicated function offrom equilibrium, therR(t) =0 at all times. This is a crucial
the initial coordinates and velocities of the system. In harproperty of linear systems that will allow us to compute the
monic systems, however, it can be expressed as a linear funeglevant magnitudes of the coarse-grained theory from
tion of the initial conditiongsee Sec. 8.5 of Ref)9IThis will  simple simulations.
further allow us to establish a mechanical force analogy with ~ The solution of Eqs(14)—(15 can be formally written
a reference mechanical system in which the coarse-graineb
variables are held fixed. Kron T

We start by assuming At =Re(e7a%(0), i (20)

i where() is the frequency matrix given b§2=M ~*A andi

Rd(t)=>, ak(t)mix;(0) +rk(tymiv;(0). (13  is_the imaginary unit. Equatioril9) is a consequence of

! AP'=0, which implies2P'=0. Thus, the subspace gener-
Consistency requires that the time dependent coefficients aeted byP! corresponds to eigenvectors dfwith zero eigen-
given byr!((t)zf},drq:((r) and the set of equations values, each one corresponding to every coarse-grained par-
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ticle. As a consequence, neith@rnor A possess an inverse. and
However, since both matrices are diagonalizalfleq sym-

metric and Q is Hermitian with the scalar producty Ry (t)= —2 (pk,(t)xl(o)ﬂik(t), (28)
=x'My), we can define the pseudoinvel@e* so that !
0 l0=00"1=1-P!, Q pt=0. (21) Eq. (26) is just EQ.(6).

_ . Finally, note that Eqs(25) and(2) imply the following
Then, the pseudoinverge *=(Q~')*M~* turns out to be  expected property of the conservative force
symmetric.

}I) Ay=0. (29)
B. Memory kernel
We have obtained the random forces through the transe. Fluctuation-dissipation theorems
formation to an equivalent mechanical system. We can now

tackle the kerneB,,(t), which using Egs(13) and(12), can
be written as

Using the explicit expression€l3) and (24), and the
integration formula for Gaussian distributions, we readily
obtain

t T ~ ~
Buh="3 fodr fo a7 (7 )A (22 (R(ORI(0))3= ke TDy(1), (30

whereA!=2}Aij. In the limit t—o, eachgX(t) decays to where (---)5o denotes averages over the initial conditions

zero as the initial perturbatiofl5) is propagated to the With the canonical distributionp(x,v)>exp(-=H/kgT),
boundaries of the system by elastic waves. However, sinc¥nere’t has the same form as the Hamiltonian of &,

Eq. (22) involves a double time integral, in genergy,(t) but with A instead ofA. This is the version of the fluctuation
does not decay to zero with time. A better representation i§lissipation theorem that appears in Ref. 11. We show in Ap-
obtained by calculating the integrals in E@2) using Eq.  Pendix A that the averages taken with-)j in Eq. (30) are
(20), which leads to the same as the constrained averagegyx o defined by

the canonical distribution with the center of mass of the

Ba()=Pia(t) = Pw(0), 23 “coarse-grained” particles(, fixed at their equilibrium val-
where ues (Kp=0), providing a physical meaning to the
A fluctuation-dissipation equatiai30). Nevertheless, note that
O (t)=—> A}[AflM q"(t)]j (24)  Eq.(30) does not hold for general constrained averages
]
Ny N —HIkgT ¢ Pty _
with the following properties (B(x,0))x _Jdxd"wB(x,v)e ® S(Px Xo)’ @31
0 J dNxdNve "% 5(Pix— X,)
2 O()=0 and Dy (t)=Dy(t). (25)

| with X, different from their equilibrium values.
For our purposes it is more convenient to invoke the

This kernel is expected to vanish &s e in the thermody-  gtangard form of the fluctuation-dissipation theorem, involv-
namic limit (N—), in which case the boundaries are re- ing the random forc&,(t)

moved. Note that we have used the same letter to name this
kernel and the one we obtained in Sec. IIl using equilibrium  (R(t)R;(0))eq=kg TP (1), (32

averages as the inner product. We will show in Sec. IV C thaE/vhere the averages are taken with the full equilibrium distri-
they are indeed the same.

We can now return to the generalized Langevin equatior? ution usingA. We can prove Eq32) straightaway by using

(11), which becomes the following algebraic identity:

dVi(t) A-l=A-IAPA-IPAA T+ A TAPA-I(1—P)

— kl__
M4 Z[A PuOIX(®) +(1=PHYATIAPA I+ (1-PHA L(1—-P), (33

—E td o Vi(t— whereA ™! is the pseudoinverse @ defined in similar fash-
2 ] drPu(nVi(t=7) ion to Eq.(21) by A"'A=AA"1=|—Py. (Py);;= N is the
projector on the translational modgiven by Eq.(2)], the
z only zero frequency mode in regular lattices.
=2 2(HX(0)+Ry(). (26) y duency g

Using a similar algebra it can be readily shown that the

. . N . conservative forceé\, defined by Eq(27) is the same as the
_Equaﬂon(ZG) is the generall_zgnon to the present arbltraryforce we obtained ﬂ] sec. Il )ijef(iqr(\eg) by E@). Alterna-
inhomogeneous coarse graining of the results of Adelmar,avely we can prove this by tal,<ing the linflt—0 in Eqs.(6)
and Doll for atom/solid surface scattering in harmonic ! :

S and(26). SinceV,(t)—0 in that limit and both equations are
solids: S o . i
. . e exact for any initial condition, they must contain necessarily
Note that with the identifications the same conservative force
Ag=A"-d(0) (27 Finally, note that if we write Eq(5) as
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t The above results are general and not particular to linear
deTVl(t—T)=X|(t)—X|(0), (34 systems. However, in harmonic systems there is a simpler
way to compute the autocorrelation matrix. In fact,

Cr(t)=Vi(1)V(0), (39

whereV,(t) is the velocity of the coarse-grained partiklan
the system starting from the following initial conditions:

Xi(0)=0 andv;(0)= &), Vi(0), (40)

+R(D), (39 with V,(0)>=M kgT. This method exploits the fact that the
where Ag=Ay+ 74, Pu=Pq— 7, and Re=3,yX;  hoiseR(t) vanishes with this particular choice of the initial
+Ry. Therefore, by changing,, we can obtain an infinite conditions, as shown in Sec. IV A.
number of different equations of motion, all with a random
force R satisfying the fluctuation-dissipation formul&0)
(though with® instead of®). However, the corresponding B. Numerical calculation of the kernel
kerneld,, at long times converges te vy, resulting in an  and conservative forces

artificial nondecaying memory effect. FurthermoR, (as Note that Eqs(15) and (19) imply that if the groupk

well as Ry) does not satisfy the standard fluctuation-contains only one oscillator, and it is connected through the
dissipation formula32). In fact, in general the fluctuations force matrix A with other single-oscillator groups, then
of those random forces diverge in the unconstrained thermqqr(t)zo for all i and henceb(t)=R,(t)=0 at all times.
dynamic equilibrium due to translational invariance. There-Thys in a region where we have kept the atomistic descrip-
fore, we will refer in the following to the Langevin equation tjgn  the generalized Langevin equati®®) reduces to the
given by Eq.(6) or equivalently Eq(26). original Newton’s equation.
Therefore, the problem is reduced to computing the con-
servative forces\,, and the kernel®,(t) for those coarse-
V. A FEW IMPORTANT RESULTS grained particles that belong to actual coarse-grained regions
or in the proximities of them. Because of E&7), we just
The expressiori24) we obtained for the memory kernel need to calculate the memory kern@l,(t). This can be
is still too formal for most practical situations. In this section done by solving Eq(14) numerically. Then, by using Eq.
we present a few exact results that will facilitate its calcula-(22) we can obtains,(t). This involves a double numerical
tion both analytically and numerically. integration. The long time limit oB,,(t) gives®,(0), from
which we can determind ,; and®(t).
Alternatively, we can use the more direct method of Cai
Let us consider the velocity autocorrelation matrix et al® In this approach we run a molecular dynamics simu-
C()=(Vi()V1(0)) og. (36) :iﬂiﬂ Co(;‘ntdhiﬁogérmonlc system starting from the following

multiply this equation by an arbitrary constapt and add it
to Eq. (6) we obtain

Mkd\;k(t) =-2 [Xk|X|(t)+ fthakl(T)Vl(t_T)
t | 0

A. Velocity autocorrelation function

Multiplying Eq. (6) by V,(0) and taking equilibrium aver-

ages we obtain a set of differential equations without noise Xi(0)=€di) andv;(0)=0. (41)
dCy () t Next, _the center of mass of the coarse-grained partic_les is
My = —E dr[ Ay + Py (t—7)]C (1), kept fixed by means of an external force on each oscillator
a Im 20 Fki - Therefore, Eq(26) becomes
(37 )
which together with the initial condition Cy(0) Z Fi (D) —[ A+ ®p(t)]e=0. (42)

= 6MkgT determineC,(t). Alternatively, if we know

Ci(t) we can deriveby,(t) from these equations. gy getermining the external force required to keep the center
In Appendix B we take advantage of this relationship 0ot mass fixed we can obtain the conservative forces and the

show that ifCy(t) presents a discontinuity in its derivative memory kernel. This method is also applicable to situations
at timet, then the memory kernel presents a Dirac-delta siny, \yhich the harmonic character is a first-order approxima-
gularity at the same time To be more precise, tion of a more complex system.

. AC The methods above provide us with a numerical repre-
Cu(0) Cu(ty) . . - .
D (t)y=— C0 5(t)+2 Wﬁ(t—t,) sentation ofd(t) at a high accuracy. This is numerically
1(0) r 1(0) “exact” in the microscopic time scale. However, the kernel
+ ot (38) is likely to display a highly oscillatory behavior when we

. i , look at it on a coarser time scale. In order to obtain a rea-
where ACy(t;) =Cy(t,) —Cy(t, ), t, denotes the times sonable smooth function in the mesoscopic time scale we
where Cy(t) is discontinuous, andy(t) is an otherwise need to coarse grain in time further. We can do that as fol-
smooth function. This property will become useful when welows: let us callé and A>§ the basic time steps in the mi-
consider coarse graining in the time scale in Sec. VII. croscopic and mesoscopic time scales, respectively. One im-
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mediate approach would be to calculate the coarse-graindtie atomic time scales. This would imply that the full sto-
kernel dy(t) at the center of the mesoscopic interyals a  chastic proces§X(t),V(t)} would be Markovian in the rel-
simple time integral: evant time scale. We will show next that this should not be

- 1 [yan assumed.

d(t)) = —f dr®(7), (43

A Jy-ar

with tj=A(j +1/2). However, the set of datg(tj) is going  VII. AN EXAMPLE: COARSE-GRAINING
to depend strongly on the particular choice we have made dN THE 1D HARMONIC CHAIN
the exact location of the mesoscopic tintes For example,

if we look at®(t;+ & fi in Eq4 i i
it we look at®(; + ), defined as in Eq43) but integrating the dynamics of a single coarse-grained particle or blob

from t;—/A/2+ 6 to t;+/A/2+ & instead, we may obtain a ¢ db " llators in th di ional
very different value due to the high oscillatory behavior of 0rmed byn consecutive osciliators In the one-dimensiona
g[lnlte harmonic chain. For simplicity we set all intrinsic

the raw data. Nevertheless, we can define instead the coard . . .
arameters of the chain to unitthe mass of each oscillator,

grained kernel at; as the average of all these possible valuesf[:)h lasti tant d th ilibri ing bet
inside that time step. This is equivalent to calculating the € elastic constant, an € equiibrium spacing between
following convolution: them). Let us denote withX and V the relevant variables

(now scalar magnitudgof the single blob. Due to transla-

Let us illustrate the above results with a simple example:

- tional invariance, the conservative fordeon the blob van-
CD(t)_f dr®(7)8(t=7), (49 ishes. This can be shown by usif?)— in Eq. (9).
Therefore, the generalized Langevin equatibnbecomes
where
dv(t) t
2 2 2 - _
0(I)ZK(1_|I|K)H(1_|t|K>’ (45) n at fodrq)(T)V(t 7)+R(1). (49

and H(x) is the Heaviside unit-step function. By applying We now use the method proposed in Sec. VA to com-
Eq. (44) two times, we are able to reproduce the analyticalpute the memory kernel. The autocorrelation function can be
results for the example we present in Sec. VII. obtained by studying the dissipation of an initial velocity
perturbation consisting of all oscillators at rest at the equilib-
rium positions except the ones in the blob, which start in-
VI. AN “AB INITIO” METHOD FOR THE SIMULATION stead with velocity/,. The time dependent velocity(t) of
OF THE DYNAMICS the coarse-grained particle can be computed directly from the
Once we knowd,(t) numerically we can simulate the ©Xact solution of the infinite 1D harmonic chain, which is

dynamics by using a DPD-like algorithm. If we assume thatexPressed in terms of Bessel functions,

the stochastic proce&k(t) is Gaussiariwhich is justified as n n
long as we consider small deviations from equilibrjuthen V() =Vo>, >, Jgji—j(20), (50)
it is determined by the first momenté7) and (8). In this i=1j=1

case, we can exploit the propertig) to generate the set of
correlated variablesx,(t) by using a set of independent
Gaussian variable§ = — &, so thatR(t)=2, & and

2 2
(€ (1) €kr11(0)) eq=Ke TP (1) (Syyr Sikr — Sk 11 1) (46) &_uza_u (51)
a2 ox?

or from the macroscopic displacement fieigk,t),*? which
verifies the wave equation

This is the essential ingredient used in DPD to preserve mo-
mentum conservation. In fact, since E¢®9) and(25) imply  This equation can be solved easily by standard methods, and
the velocity is obtained by integratingu(x,t)/Jt over the

Akkz—E Ay and @kk(t)z—z D (1), (47) blob’s region. Both methods provide the same result for
[#k %k largen,
respectively, we can write E@6) in the form V(1) ~Vo(1—t/mH(1—t/n) (52
0 .
dV,(t . .
MKA=2 (_Akl[xl(t)_xk(t)] Note thatV(t) changes in a time scale of ordern. We
dt I#k already see from Eq52) that the velocity autocorrelation

t decay is not exponential but linear, which is an indication
—f drd(t— T)[V|(T)—Vk(7')]+§k|(t)], that the stochastic process is non-Markovian. We can solve
0 Eq. (49) by using Laplace transfornt.This is done in Ap-

(48 pendix C. By changing to the proper time scafe=t/n,

H * *) — * H
which very much resembles the DPD equations of motionWIth ©* (%) =n®(nt"), we obtain

However, the first question that arises is whether we can o

consider®(t) as Dirac-delta functions, as customary in f dt* d*(t*)=2, (53
. . 0

DPD. It is frequently argued that they can be considered so

because the coarse-grained variables are slow compared dad
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t*

FIG. 2. Scaled memory kernd* =n® as a function ot* =t/n (without FIG. 3. Memory kernel connecting two coarse-grained particles separated
the Dirac deltas at* =0, 1) for a coarse-grained particle in a 1D harmonic by two blobs in the 1D harmonic chain.

chain.
scheme in DPD. However, this work relies on the Markovian
O (1*)=8(t*) — S(t* — 1)+ e —H(t* —1)e’" ~L(t* +1) assumption for the dynamics, which we have shown to be
. unjustified. We present in Fig. 3 the scaled memory kernel
S H(t —K)e k(= 1)k(t* —k)*? &3 =nd; connecting two coarse-grained particlesand |
“, (k—2)! separated by two coarse-grained particles, jike-,|=3, as
computed from a molecular dynamics simulation with blobs
(t*—k)*  2(t*—k) of sizen=10000. As before, the raw data has been coarse

(54) grained in time with a mesoscopic time stég"=A/n

K(k—1) k-1
Note that the Dirac deltas appear as a consequence of th.:eo'Ol' Itis cilearly seen that the kernel is on the mesoscopic
time scalet*=t/n, as expected. In fact, by applying

time scale change. At the microcospic time scale the auto- . . .
correlation function(50) does not present discontinuities in the theqry of Sec. VA.we obtam that this kernel gon.tams
o R three Dirac-delta functions at different mesoscopic times,
its time derivative. M * " : oo
B . 25(t* —3)— 8(t* —2)— 5(t* — 4) (recognizable in Fig. 3 as
We have plotted in Fig. 2 the memory kerr@lithout lines going out of scale aroundt* =3, which is the time it
the Dirac-delta functionsgiven by Eq.(54). We have also Ines going out ot s u » WRICH 15 ime 1

calculated numerically this kernel by using the method oftake"S the sound to propagate from one blob to the other. We

Sec. VB. Both results are indistinguishable in the plot. It isIrsrao;tnt(;]?hzorrsrfglc;?ii:t?ointzlf;Cﬁia?);ﬁ)rrrfssls?::soéItshelivﬁtre?g_
clear that the kernel has not decayed completely in the time 9 9 '

scale ofV(t)(t*~1), and thus we cannot approximate it
with a single Dirac delta and the random term as white noise\,/”" CONCLUSIONS
even in the limitn—co. We have applied projection operators to the coarse-
This phenomenon is general and has implications begrained multiscale problem in harmonic systems with an in-
yond this particular example. The reason for this long-livedhomogeneous level of coarse graining. The customary ap-
kernels is that the time scale ¥j(t) is given by the dissi- proach of using equilibrium averages as inner product
pation, which in harmonic systems is due to wave propagaproduces the right generalized Langevin equation, but the
tion, and the decay time scale of the kernels is on the samexplicit expressions are difficult to calculate. Using an alter-
time scale. This is clear from Eqél4)—(15). In the mesos- native inner product we have been able to provide explicit
copic limit A tends toA, and q!‘(t) tends to the solution of expressions for the conservative forces, the memory kernels
the mechanical problem consisting of an initial perturbationand the random forces, in terms of a mechanical analog.
around the edge of the coarse-grained red¢iobhus,®,(t) Based on these expressions, we have shown that the memory
will not appreciably decay at least until the elastic waveskernels and the velocity autocorrelation functions can be
have removed the perturbation, which will be about the timecomputed in linear systems from a single molecular dynam-
it takes for the sound to cross the mesoscopic region, i.e., i@s simulation. These results represent a generalization of
mesoscopic time. This is a memory effect that occurs insid@revious analytical work on harmonic lattices involving the
the coarse-grained particles, causing the whole process to loerivation of a series of algebraic properties.
non-Markovian. Therefore, we cannot consider the kernels or  In addition, a method that resembles DPD has been pro-
the autocorrelation function of the random forces Dirac-deltgposed and is applicable to any system in which the coarse-
functions, such as in DPD. grained region is linear. This can also be seen as a natural
In Ref. 14, Espaal justified the DPD method by study- extension of the quasicontinuum method to account for finite
ing the equation of motion of an infinite number of coarse-temperature and dynamics. Moreover, we have shown that
grained particles in the one-dimensional harmonic chain. Inthe memory kernels and also the autocorrelation function of
contrast to the example discussed above, now the infinitthe random forces used in the simulations should not be con-
harmonic chain is partitioned into an infinite number of sidered as Dirac-delta functions, as customary in most ap-
blobs, each one formed lyconsecutive oscillators, which is proaches, without justification. Instead, the proposed simula-
more closely related to the customary coarse-grainingions would need to include the computation of the time
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convolutions involving memory kernels. In order to accountLet us now consider the variable change franto center
for the fluctuation-dissipation theorem, the random forcesnass coordinateX = P'x plus a number of relative coordi-
need to be generated using a colored noise algorithm. Othefates which we will represent using vectorial notation as
wise, one risks that the system simulated does not tend to the Each variables; can be defined as the difference between
thermodynamic equilibrium. Methods addressing this issughe componenk; of the oscillatori and a fixed reference
exist in the literaturé>® however, further work is required oscillator inside the same group. Then, the quanB(x)

to test their efficiency in these particular problems. =(x—X)(x—X)! as a function of{X,¢} does not depend
on the center of mass coordinat¥s i.e., it is a function
ACKNOWLEDGMENT of & alone: B(x+AX)=B(x) for all A\ and x. We show
This work was funded in part by the EU growth project N€xt that for any function with the same propert&(x))a
SENTIMATS under Contract No. G5RD-CT-2001. =(B(X))x,=0-

APPENDIX A: CONSTRAINED AVERAGES Equation(16) implies

Starting from Eq(13) we obtain

(R(DRI(0)) A= (1) M(xx)aM'(0) X Ax=xXAX— XIAX+ 2xIAX, (A2)
=g (1)'M(1—PY(xx)i(1~P)M'(0)
=g (1) M((x—X)(x=X)")aM'(0).

being x'Ax a function of ¢ alone. Therefore, using this ex-
(A1) pression and changing variables we obtain

[ dVxB(x)exp( —x'Ax/2kgT) &( Px)

B(x —0= =
(B(X))x-0 [ dVx exp — x'Ax/2kg T) 8(Px)
[ dNxB(x)exp( —x'Ax/2ksT) 8(P'x) | dXdEB(x)exp( — x'Ax/2kgT) 8(X)
J dNx exp( — x!AX/2KgT) 8( Ptx) [ dXdé exp( —xtAx/2kgT) S(X)
[ dEB(x)exp— x'Ax/2kgT) [ dXdEB(x)exp — x!Ax/2kgT)
_ e " —(B(X))a. (A3)
S déexp —x'Ax/2kgT) J dXdéexp —x'Ax/2kgT)
|
APPENDIX B: SINGULARITIES WhereAC(t,)=('3(t,+)—('3(t,_). Inserting this expression in
IN THE MEMORY KERNEL Eq. (B2) we obtain
Let us consider the Fourier transform of the autocorrela- M| - . ot
tion function 2 ({[)kl’(w)cl’l(w)N_m C(O)+2r AC(t))e |
|/
o (B4)
Chi(w)= J . dte ' “'Cy(t) (B1)  On the other hand, sina®w) should be bounded in the limit
w—o, we also have
and analogously for the memory kerngl(w). In this rep- C,(0)
resentation, Eq(37) becomes 2 dar(@)Cin(@)~ da(@)Mi— . (B5)
|!
2 Bir (0)€11 () =M [C(0) — i wCyy(@)] Combining both expressions
I 1 . .
~————|C(0)+ >, AC(t,)e '“t|, B6
Sin(w) du(©)~— &gy | C(O+ 2 AC(L) (B6)
— > Ay . (B2)
I’ @ in the limit w—. The inverse transform is given by
Assume Ck|(t) is discontinuous at the times Ea. (38).
=14,t5,... . Then, the asymptotic behavior of,(w) in the
limit @—o can be obtained by integration by pafts APPENDIX C: CALCULATION
OF THE MEMORY KERNEL
c(w)~ C_(O)_i C(0)+2 A'C(tr)efiwt, , (B3) The Laplace transform of the autocorrelation function
w? T V(s) is obtained from Eq(52) as
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e S+s—1

U(S):j dtre STV (t*) =V, 5
0 s

Using the properties of the Laplace transfoffme can solve
Eq. (49 for the Laplace transform of the memory kernel

¢*(s),
w, . Vo—sv(s) s(e’—1)
¢ (8= v(S)  1+e¥(s—1) (2
The limit s— 0 gives the time integral ob* (t*),
¢*(0)= det*d)*(t*)=2. (c3
0

Let us defined* as the scaled memory kernel without the

singularities(Appendix B

* (1%) = D* (%) — [ S(t*) — S(t* — 1)]. (C4
Then,

R (es_ 1)2

$*(s)= (CH)

eS+e?(s—1)
We can rewrite this expression as

1—2e (s+2) 4 g=2(s+2)

¢* (s+2)= eI (C6)
(S+ 1) 1+ S‘F—l
and then use the Taylor expansion %) !

=3, ~0(— 1) with x=exp(—s—2)/(s+1), to obtain

(CD

J. Chem. Phys. 122, 034108 (2005)
¢*(s)=(s—1) 1—e I(s—1)"2+2(s—1)1]
+k2 (—1)ke sKs—1)"*[1+2(s—1)
=2

+(s—1)?]. (C7)

This expression can be inverted easily term by term by using

the inverse Laplace transform formulas af-Ha) " and
exp(—snf(s).® The final expression is given by E(p4).
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