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We use projection operators to address the coarse-grained multiscale problem in harmonic systems.
Stochastic equations of motion for the coarse-grained variables, with an inhomogeneous level of
coarse graining in both time and space, are presented. In contrast to previous approaches that
typically start with thermodynamic averages, the key element of our approach is the use of a
projection matrix chosen both for its physical appeal in analogy to mechanical stability theory and
for its algebraic properties. We show that thermodynamic equilibrium can be recovered and obtain
the fluctuation dissipation theorema posteriori. All system-specific information can be computed
from a series of feasible molecular dynamics simulations. We recover previous results in the
literature and show how this approach can be used to extend the quasicontinuum approach and
comment on implications for dissipative particle dynamics type of methods. Contrary to what is
assumed in the latter models, the stochastic process of all coarse-grained variables is not necessarily
Markovian, even though the variables are slow. Our approach is applicable to any system in which
the coarse-grained regions are linear. As an example, we apply it to the dynamics of a single
mesoscopic particle in the infinite one-dimensional harmonic chain. ©2005 American Institute of
Physics. @DOI: 10.1063/1.1829253#

I. INTRODUCTION

The processes underlying the properties of materials and
biological assemblies often span a range of length and time
scales. In understanding and predicting their behavior, it
would be desirable to start from an atomistic description
which could be capable of exhibiting the continuum and
macroscopic behavior of the system. Molecular dynamics
~MD! alone is presently incapable of bridging scales of such
orders of magnitude. Coarse-graining schemes that tackle
different aspects of this broad problem are currently an ac-
tive area of research. Of particular interest is the possibility
to follow the system dynamically and not just obtain its ther-
modynamic properties.

A number of ‘‘mesoscale’’ dissipative particle dynamics
~DPD! type methods, for example, introduce particlelike
variables in continuous equations and associate with them
conservative, dissipative, and random forces.1,2 The origin
and appropriate functional form of these forces is still not
fully resolved.3,4 A different approach that aims to avoid
these equations altogether relies on exploiting through effi-
cient numerical integration techniques a large number of
short MD simulations.5 Another level of complexity is intro-
duced when the system needs to be inhomogeneously coarse
grained. One of the most successful methods under this cat-
egory, the quasicontinuum,6 involves no explicit time nor
finite temperature. A generalization has been attempted but
the dynamics have been introducedad hoc.7 One of the main
remaining challenges in such methods remains the reflections
at boundaries between regions of different level of
description.8 Coarse-grained dynamics that can systemati-
cally describe the system at different scales in both time and
space remain a challenge. A general scheme that prescribes

the form of the equations to be used based on an equivalent
footing or framework is currently lacking.

We have used the projection operator approach of Mori
and Zwanzig9 to obtain the dynamical equations of an inho-
mogeneous multiscale system. To illustrate this, we solve
exactly the multiscale inhomogeneous problem for harmonic
systems. In this regard, harmonic systems, apart from their
obvious adequacy as a first approximation for solids, provide
an excellent framework to probe these ideas. The projector
operator approach has been used extensively in the past. One
of the main drawbacks has been the evaluation of the formal
expressions obtained by the theory. By using an algebraic
projection and in analogy to mechanical stability, we obtain
functional forms of the forces that can be computed by a
series of short molecular dynamics simulations. The key
point of our approach is that we avoid altogether the first step
of averaging and obtain the thermodynamic equilibrium
propertiesa posteriori. The mechanical analogy has been
first introduced in the literature by Deutch and Silbey for a
single particle in a lattice.10 In that respect, our results can be
considered a generalization of their work. We also recover as
a special case the results of Adelman and Doll for atom/solid
surface scattering in harmonic lattices.11 Additionally, the
formalism provides a connection to the quasicontinuum
method with explicit time and finite temperature. Finally, we
comment on the form of the random forces and memory
kernels that are usually assumed in other mesoscale dissipa-
tive dynamics type of methods.

The paper is organized as follows: In Sec. II we intro-
duce the system and the coarse-grained scheme. In Sec. III
we describe the equations for the coarse-grained variables
using the Mori formalism. In Sec. IV we introduce a differ-
ent projection matrix and rederive the theory using that innera!Electronic mail: s.yaliraki@imperial.ac.uk
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product, which allows us to obtain closed expressions for the
results in Sec. IV and a numerical procedure to compute
them in Sec. V. In Sec. VI we propose a simulation proce-
dure to study the dynamics. We apply the theory developed
in the previous sections to study the coarse-grained dynamics
of a single mesoscopic particle in the infinite one-
dimensional~1D! harmonic chain in Sec. VII. Finally, Sec.
VIII provides a short summary and conclusions.

II. SYSTEM DETAILS AND COARSE-GRAINING
SCHEME

We consider a harmonic system of dimensiond consist-
ing of N particles of massmi . We will assume that the in-
teraction between any two particles only depends on the dis-
tance between them. The Hamiltonian of this system is

H5 (
m51

d S (
i

1

2
miv i ,m

2 1
1

2 (
i , j

xi ,mAi j xj ,mD , ~1!

wherexi ,m and v i ,m are them components of the deviation
from the equilibrium position and velocity of the particlei,
respectively, andAi j is a symmetric matrix that satisfies the
stability condition

(
i

Ai j 50. ~2!

The variables of interest are the coordinates and velocities of
the center of mass of each of the coarse-grained regions of
the system

Xk,m5
1

Mk
(

i

k

mixi ,m , Vk,m5
1

Mk
(

i

k

miv i ,m , ~3!

whereMk5( i
kmi is the total mass of the coarse-grained re-

gion or particlek. The number of oscillators in each region is
allowed to vary in accordance with the desired coarse-
graining level. For example, if we are interested in keeping
the atomistic level in one part of the system, the correspond-
ing regions contain only one oscillator and the coarse-
grained variables are just the coordinates and velocities of
the original oscillators. At the same time, not every oscillator
need to be related to a coarse-grained particle. We may be
interested in coarse-graining completely a part of the system
comprising many oscillators. In that case no indexk is asso-
ciated with such region. We present in Fig. 1 an example of
an inhomogeneous coarse-graining scheme.

III. MORI THEORY

The equations of motion for these variables can be ob-
tained in a straightforward manner by using the Mori projec-
tion operator formalism.9 The equations are obtained by pro-
jecting onto the subspace spanned by the relevant variables.
The projection operator is determined by the choice of the
inner product (B,C) in the Hilbert space of all functions
B(x,v) and C(x,v) of phase space coordinates.9 It is cus-
tomary to choose canonical equilibrium averages (B,C)
5^BC&eq, where

^B~x,v !&eq5
* dNxdNvB~x,v !e2H/kBT

* dNxdNve2H/kBT
, ~4!

kB being the Boltzmann constant andT the temperature. We
then obtain the following linear generalized Langevin equa-
tions:

dXk~ t !

dt
5Vk~ t !, ~5!

Mk

dVk~ t !

dt
52(

l
FLklXl~ t !1E

0

t

dtFkl~t!Vl~ t2t!G
1Rk~ t !, ~6!

whereLkl is a renormalized matrix force,Fkl(t) a memory
kernel, andRk(t) a force which contains the information of
the nonrelevant variables we have left out. We have dropped
the spatial labelsm in these expressions for clarity, because
the Hamiltonian we are using here does not provide any cou-
pling between the different components.

The explicit expressions for the unknown quantities in
Eq. ~6! involve complicated functions containing formal pro-
jection operators. However, the following information can be
obtained relatively easily~see Chap. 8 of Ref. 9!: the force
Rk(t) satisfies

^Rk~ t !&50 ~7!

and

^Rk~ t !Rl~0!&5kBTFkl~ t !, ~8!

where ^¯& denotes averages over a statistical ensemble of
the initial conditions that is close to equilibrium. Equation
~8! is called the non-Markovian fluctuation-dissipation theo-
rem. It guarantees that the system admits the thermodynamic
equilibrium solution.

The advantage of this approach is that it provides us with
equations of motion where the forces are decomposed in
three parts. The first two are functions of the relevant vari-
ablesX(t) and V(t) alone, and can be identified with con-
servative and dissipative type force terms, respectively. The
force Rk(t) can be considered as a random force. Therefore,
the equations can be cast inside the theory of stochastic pro-
cesses. While the physical interpretation of these equations is
clear, the main problem resides in finding both closed forms
of these expressions forLkl and Fkl(t) as well as ways of
actually computing them in practice. This is not an easy task

FIG. 1. Example of a coarse-graining scheme in a 2D harmonic system.
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even in the case of linear systems. For example, with this
projection method, we find the matrixLkl as the inverse of
the matrix^Xl 8Xl&eq/kBT, i.e.,

(
l 8

Lkl8
^Xl 8Xl&eq

kBT
5(

l 8

^XkXl 8&eq

kBT
L l 8 l5dkl . ~9!

This inverse matrix is generally difficult to compute. Special
care is required as can be seen by noting that the individual
elements^Xl

2&eq do not exist in the thermodynamic limit
(N→`) because of translational invariance.

IV. MORI THEORY WITH A SPECIAL INNER PRODUCT

A. The mechanical analog: Random forces

The expressions in the preceding section have been ob-
tained by using equilibrium averages as the inner product.
Although with this approach we obtained straightaway Eqs.
~5!–~9!, it is not clear how one can proceed further.

A better insight is gained if we use instead an inner
product with the following properties:

~xi ,m ,xj ,n!5~v i ,m ,v j ,n!5d i j dmnmi
21, ~xi ,m ,v j ,n!50.

~10!

Using this inner product, the projection operator formal-
ism produces the equivalent equations of the preceding sec-
tion. Specifically, we recover Eq.~5! and a modified equation
for the time derivative ofV(t), Eq. ~6! that now involves a
memory kernel related to the time convolution of the posi-
tion X(t). Integrating by parts this integral we arrive at

Mk

dVk~ t !

dt
52(

l
FAklXl~ t !1E

0

t

dtbkl~t!Vl~ t2t!

1bkl~ t !Xl~0!G1R̂k~ t !, ~11!

where we have writtenAkl5( i
k( j

l Ai j . We now need to com-
pute the random forceR̂k(t) and the memory kernel function
bkl(t). The latter is connected to the former by the projec-
tion operators formalism as

bkl~ t !52E
0

t

dt@LR̂k~t!,Xl~0!#Ml , ~12!

whereL is the Liouville9 operator of the system. We later
relate each quantity to those of the preceding section@see
Eq. ~6!#.

The random force is in general a complicated function of
the initial coordinates and velocities of the system. In har-
monic systems, however, it can be expressed as a linear func-
tion of the initial conditions~see Sec. 8.5 of Ref. 9!. This will
further allow us to establish a mechanical force analogy with
a reference mechanical system in which the coarse-grained
variables are held fixed.

We start by assuming

R̂k~ t !5(
i

qi
k~ t !mixi~0!1r i

k~ t !miv i~0!. ~13!

Consistency requires that the time dependent coefficients are
given by r i

k(t)5*0
t dtqi

k(t) and the set of equations

miq̈i
k~ t !52(

j
Âi j qj

k~ t !, ~14!

miqi
k~0!52(

j

k

@~ I 2 P̂!A# i j , q̇i
k~0!50, ~15!

where the dot denotes time derivative,

Â5~12 P̂!A~12 P̂t! ~16!

and P̂ is a projection matrix defined by

P̂i j 5
mi

Mk~ i !
dk~ i !,k~ j ! , ~17!

wherek( i ) denotes the index of the group in which the os-
cillator i belongs andP̂t the transposed matrix.

Note that if x5(x1 ,x2 ,...) is thevector formed by all
oscillators’ coordinates,P̂tx5X gives a vector whose com-
ponents are the centers of mass of the coarse-grained par-
ticles. In addition, ifi or j belongs to a region that has been
totally coarse grained, thenP̂i j 50. Thus, if both i and j
belong to such regions, thenÂi j 5Ai j .

It is easy to show that the new force matrixÂ is sym-
metric and satisfies the stability condition~2!. Therefore,
qk(t), and thus the random forcesR̂k(t), are expressed in
terms of the mechanical problem~14!–~15!. In fact, using the
algebra we present below, we can show that the random
forces can be further written as

R̂k~ t !52(
i

k S (
j

Ai j @ x̂ j~ t !1 v̂ j~ t !# D , ~18!

wherex̂(t) andv̂(t) are the solution of the mechanical prob-
lem ~14! with the initial conditionsx̂(0)5(I 2 P̂t)x(0) and
v̂(0)5(I 2 P̂t)v(0). This is a generalization of the results
presented in Ref. 10 for a single particle in a lattice.

The mechanical problem generated byÂ is related to the
original mechanical problem of the underlying lattice but
instead the center of mass of the coarse-grained particles are
fixed, as illustrated by the fact that the following property is
obeyed at all times:

P̂tqk~ t !5 P̂Mqk~ t !50, ~19!

whereMi j 5d i j mi is the mass matrix.
Note that if initially there is no disorder in the coarse-

grained lattice, i.e., there are only collective initial deviations
from equilibrium, thenR̂k(t)50 at all times. This is a crucial
property of linear systems that will allow us to compute the
relevant magnitudes of the coarse-grained theory from
simple simulations.

The solution of Eqs.~14!–~15! can be formally written
as

qk~ t !5Re~eiVt!qk~0!, ~20!

whereV is the frequency matrix given byV25M 21Â and i
is the imaginary unit. Equation~19! is a consequence of
ÂP̂t50, which impliesV P̂t50. Thus, the subspace gener-
ated byP̂t corresponds to eigenvectors ofÂ with zero eigen-
values, each one corresponding to every coarse-grained par-
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ticle. As a consequence, neitherV nor Â possess an inverse.
However, since both matrices are diagonalizable (Â is sym-
metric and V is Hermitian with the scalar productxy
5xtMy), we can define the pseudoinverseV21 so that

V21V5VV215I 2 P̂t, V21Pt50. ~21!

Then, the pseudoinverseÂ215(V21)2M 21 turns out to be
symmetric.

B. Memory kernel

We have obtained the random forces through the trans-
formation to an equivalent mechanical system. We can now
tackle the kernelbkl(t), which using Eqs.~13! and~12!, can
be written as

bkl~ t !5(
j
E

0

t

dtE
0

t

dt8qj
k~t8!Ai

l ~22!

whereAi
l5( j

l Ai j . In the limit t→`, eachqi
k(t) decays to

zero as the initial perturbation~15! is propagated to the
boundaries of the system by elastic waves. However, since
Eq. ~22! involves a double time integral, in generalbkl(t)
does not decay to zero with time. A better representation is
obtained by calculating the integrals in Eq.~22! using Eq.
~20!, which leads to

bkl~ t !5Fkl~ t !2Fkl~0!, ~23!

where

Fkl~ t !52(
j

Aj
l @Â21Mqk~ t !# j ~24!

with the following properties

(
l

Fkl~ t !50 and Fkl~ t !5F lk~ t !. ~25!

This kernel is expected to vanish ast→` in the thermody-
namic limit (N→`), in which case the boundaries are re-
moved. Note that we have used the same letter to name this
kernel and the one we obtained in Sec. III using equilibrium
averages as the inner product. We will show in Sec. IV C that
they are indeed the same.

We can now return to the generalized Langevin equation
~11!, which becomes

Mk

dVk~ t !

dt
52(

l
@Akl2Fkl~0!#Xl~ t !

2(
l
E

0

t

dtFkl~t!Vl~ t2t!

2(
l

Fkl~ t !Xl~0!1R̂k~ t !. ~26!

Equation~26! is the generalization to the present arbitrary
inhomogeneous coarse graining of the results of Adelman
and Doll for atom/solid surface scattering in harmonic
solids.11

Note that with the identifications

Lkl5Akl2Fkl~0! ~27!

and

Rk~ t !52(
l

Fkl~ t !Xl~0!1R̂k~ t !, ~28!

Eq. ~26! is just Eq.~6!.
Finally, note that Eqs.~25! and ~2! imply the following

expected property of the conservative force

(
l

Lkl50. ~29!

C. Fluctuation-dissipation theorems

Using the explicit expressions~13! and ~24!, and the
integration formula for Gaussian distributions, we readily
obtain

^R̂k~ t !R̂l~0!& Â5kBTFkl~ t !, ~30!

where ^¯& Â denotes averages over the initial conditions
with the canonical distributionr̂(x,v)}exp(2Ĥ/kBT),
whereĤ has the same form as the Hamiltonian of Eq.~1!,
but with Â instead ofA. This is the version of the fluctuation
dissipation theorem that appears in Ref. 11. We show in Ap-
pendix A that the averages taken with^¯& Â in Eq. ~30! are
the same as the constrained averages^¯&X050 defined by
the canonical distribution with the center of mass of the
‘‘coarse-grained’’ particlesX0 fixed at their equilibrium val-
ues (X050), providing a physical meaning to the
fluctuation-dissipation equation~30!. Nevertheless, note that
Eq. ~30! does not hold for general constrained averages

^B~x,v !&X0
5

* dNxdNvB~x,v !e2H/kBTd~ P̂tx2X0!

* dNxdNve2H/kBTd~ P̂tx2X0!
, ~31!

with X0 different from their equilibrium values.
For our purposes it is more convenient to invoke the

standard form of the fluctuation-dissipation theorem, involv-
ing the random forceRk(t)

^Rk~ t !Rl~0!&eq5kBTFkl~ t !, ~32!

where the averages are taken with the full equilibrium distri-
bution usingA. We can prove Eq.~32! straightaway by using
the following algebraic identity:

Â215Â21AP̂tA21P̂AÂ211Â21AP̂tA21~ I 2 P̂!

1~ I 2 P̂t!Â21AP̂tA211~ I 2 P̂t!A21~ I 2 P̂!, ~33!

whereA21 is the pseudoinverse ofA defined in similar fash-
ion to Eq.~21! by A21A5AA215I 2PT . (PT) i j 51/N is the
projector on the translational mode@given by Eq.~2!#, the
only zero frequency mode in regular lattices.

Using a similar algebra it can be readily shown that the
conservative forceLkl defined by Eq.~27! is the same as the
force we obtained in Sec. III, defined by Eq.~9!. Alterna-
tively, we can prove this by taking the limitT→0 in Eqs.~6!
and~26!. SinceVk(t)→0 in that limit and both equations are
exact for any initial condition, they must contain necessarily
the same conservative force.

Finally, note that if we write Eq.~5! as

034108-4 D. Cubero and S. N. Yaliraki J. Chem. Phys. 122, 034108 (2005)
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E
0

t

dtVl~ t2t!5Xl~ t !2Xl~0!, ~34!

multiply this equation by an arbitrary constantgkl and add it
to Eq. ~6! we obtain

Mk

dVk~ t !

dt
52(

l
F L̄klXl~ t !1E

0

t

dtF̄kl~t!Vl~ t2t!G
1R̄k~ t !, ~35!

where L̄kl5Lkl1gkl , F̄kl5Fkl2gkl , and R̄k5( lgklXl

1Rk . Therefore, by changinggkl we can obtain an infinite
number of different equations of motion, all with a random
force R̄ satisfying the fluctuation-dissipation formula~30!
~though withF instead ofF̄). However, the corresponding
kernelF̄kl at long times converges to2gkl , resulting in an
artificial nondecaying memory effect. Furthermore,R̄k ~as
well as R̂k) does not satisfy the standard fluctuation-
dissipation formula~32!. In fact, in general the fluctuations
of those random forces diverge in the unconstrained thermo-
dynamic equilibrium due to translational invariance. There-
fore, we will refer in the following to the Langevin equation
given by Eq.~6! or equivalently Eq.~26!.

V. A FEW IMPORTANT RESULTS

The expression~24! we obtained for the memory kernel
is still too formal for most practical situations. In this section
we present a few exact results that will facilitate its calcula-
tion both analytically and numerically.

A. Velocity autocorrelation function

Let us consider the velocity autocorrelation matrix

Ckl~ t !5^Vk~ t !Vl~0!&eq. ~36!

Multiplying Eq. ~6! by Vl(0) and taking equilibrium aver-
ages we obtain a set of differential equations without noise

Mk

dCkl~ t !

dt
52(

l 8
E

0

t

dt@Lkl81Fkl8~ t2t!#Cl 8 l~t!,

~37!

which together with the initial condition Ckl(0)
5dklMkkBT determineCkl(t). Alternatively, if we know
Ckl(t) we can deriveFkl(t) from these equations.

In Appendix B we take advantage of this relationship to
show that ifCkl(t) presents a discontinuity in its derivative
at time t, then the memory kernel presents a Dirac-delta sin-
gularity at the same timet. To be more precise,

Fkl~ t !52F Ċkl~0!

Cll ~0!
d~ t !1(

r

DĊkl~ t r !

Cll ~0!
d~ t2t r !G

1wkl~ t !, ~38!

where DĊkl(t r)5Ċkl(t r
1)2Ċkl(t r

2), t r denotes the times
where Ċkl(t) is discontinuous, andwkl(t) is an otherwise
smooth function. This property will become useful when we
consider coarse graining in the time scale in Sec. VII.

The above results are general and not particular to linear
systems. However, in harmonic systems there is a simpler
way to compute the autocorrelation matrix. In fact,

Ckl~ t !5Vk~ t !Vl~0!, ~39!

whereVk(t) is the velocity of the coarse-grained particlek in
the system starting from the following initial conditions:

xi~0!50 and v i~0!5dk~ i !,lVl~0!, ~40!

with Vl(0)25MlkBT. This method exploits the fact that the
noiseRk(t) vanishes with this particular choice of the initial
conditions, as shown in Sec. IV A.

B. Numerical calculation of the kernel
and conservative forces

Note that Eqs.~15! and ~19! imply that if the groupk
contains only one oscillator, and it is connected through the
force matrix A with other single-oscillator groups, then
qi

k(t)50 for all i and henceFkl(t)5Rk(t)50 at all times.
Thus, in a region where we have kept the atomistic descrip-
tion, the generalized Langevin equation~6! reduces to the
original Newton’s equation.

Therefore, the problem is reduced to computing the con-
servative forcesLkl and the kernelsFkl(t) for those coarse-
grained particles that belong to actual coarse-grained regions
or in the proximities of them. Because of Eq.~27!, we just
need to calculate the memory kernelFkl(t). This can be
done by solving Eq.~14! numerically. Then, by using Eq.
~22! we can obtainbkl(t). This involves a double numerical
integration. The long time limit ofbkl(t) givesFkl(0), from
which we can determineLkl andFkl(t).

Alternatively, we can use the more direct method of Cai
et al.8 In this approach we run a molecular dynamics simu-
lation of the harmonic system starting from the following
initial condition:

xi~0!5edk~ i !l and v i~0!50. ~41!

Next, the center of mass of the coarse-grained particles is
kept fixed by means of an external force on each oscillator
Fk( i ) . Therefore, Eq.~26! becomes

(
i

k

Fk~ i !~ t !2@Lkl1Fkl~ t !#e50. ~42!

By determining the external force required to keep the center
of mass fixed we can obtain the conservative forces and the
memory kernel. This method is also applicable to situations
in which the harmonic character is a first-order approxima-
tion of a more complex system.

The methods above provide us with a numerical repre-
sentation ofFkl(t) at a high accuracy. This is numerically
‘‘exact’’ in the microscopic time scale. However, the kernel
is likely to display a highly oscillatory behavior when we
look at it on a coarser time scale. In order to obtain a rea-
sonable smooth function in the mesoscopic time scale we
need to coarse grain in time further. We can do that as fol-
lows: let us calld andD@d the basic time steps in the mi-
croscopic and mesoscopic time scales, respectively. One im-
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mediate approach would be to calculate the coarse-grained
kernel F̄kl(t) at the center of the mesoscopic intervalj as a
simple time integral:

F̄~ t j !5
1

D E
t j 2D/2

t j 1D/2

dtF~t!, ~43!

with t j5D( j 11/2). However, the set of dataF̄(t j ) is going
to depend strongly on the particular choice we have made of
the exact location of the mesoscopic timest j . For example,
if we look atF̄(t j1d), defined as in Eq.~43! but integrating
from t j2/D/21d to t j1/D/21d instead, we may obtain a
very different value due to the high oscillatory behavior of
the raw data. Nevertheless, we can define instead the coarse-
grained kernel att j as the average of all these possible values
inside that time stepD. This is equivalent to calculating the
following convolution:

F̄~ t !5E dtF~t!u~ t2t!, ~44!

where

u~ t !5
2

D S 12utu
2

D DHS 12utu
2

D D , ~45!

and H(x) is the Heaviside unit-step function. By applying
Eq. ~44! two times, we are able to reproduce the analytical
results for the example we present in Sec. VII.

VI. AN ‘‘ AB INITIO’’ METHOD FOR THE SIMULATION
OF THE DYNAMICS

Once we knowFkl(t) numerically we can simulate the
dynamics by using a DPD-like algorithm. If we assume that
the stochastic processRk(t) is Gaussian~which is justified as
long as we consider small deviations from equilibrium!, then
it is determined by the first moments:~7! and ~8!. In this
case, we can exploit the properties~25! to generate the set of
correlated variablesRk(t) by using a set of independent
Gaussian variablesjkl52j lk , so thatRk(t)5( lÞkjkl and

^jkl~ t !jk8 l 8~0!&eq5kBTFkl~ t !~dkl8d lk82dkk8d l l 8!. ~46!

This is the essential ingredient used in DPD to preserve mo-
mentum conservation. In fact, since Eqs.~29! and~25! imply

Lkk52(
lÞk

Lkl and Fkk~ t !52(
lÞk

Fkl~ t !, ~47!

respectively, we can write Eq.~6! in the form

Mk

dVk~ t !

dt
5(

lÞk
H 2Lkl@Xl~ t !2Xk~ t !#

2E
0

t

dtFkl~ t2t!@Vl~t!2Vk~t!#1jkl~ t !J ,

~48!

which very much resembles the DPD equations of motion.
However, the first question that arises is whether we can
considerFkl(t) as Dirac-delta functions, as customary in
DPD. It is frequently argued that they can be considered so
because the coarse-grained variables are slow compared to

the atomic time scales. This would imply that the full sto-
chastic process$X(t),V(t)% would be Markovian in the rel-
evant time scale. We will show next that this should not be
assumed.

VII. AN EXAMPLE: COARSE-GRAINING
IN THE 1D HARMONIC CHAIN

Let us illustrate the above results with a simple example:
the dynamics of a single coarse-grained particle or blob
formed byn consecutive oscillators in the one-dimensional
infinite harmonic chain. For simplicity we set all intrinsic
parameters of the chain to unity~the mass of each oscillator,
the elastic constant, and the equilibrium spacing between
them!. Let us denote withX and V the relevant variables
~now scalar magnitudes! of the single blob. Due to transla-
tional invariance, the conservative forceL on the blob van-
ishes. This can be shown by using^X2&→` in Eq. ~9!.
Therefore, the generalized Langevin equation~6! becomes

n
dV~ t !

dt
52E

0

t

dtF~t!V~ t2t!1R~ t !. ~49!

We now use the method proposed in Sec. V A to com-
pute the memory kernel. The autocorrelation function can be
obtained by studying the dissipation of an initial velocity
perturbation consisting of all oscillators at rest at the equilib-
rium positions except the ones in the blob, which start in-
stead with velocityV0 . The time dependent velocityV(t) of
the coarse-grained particle can be computed directly from the
exact solution of the infinite 1D harmonic chain, which is
expressed in terms of Bessel functions,

V~ t !5V0(
i 51

n

(
j 51

n

J2u i 2 j u~2t !, ~50!

or from the macroscopic displacement fieldu(x,t),12 which
verifies the wave equation

]2u

]t2
5

]2u

]x2
. ~51!

This equation can be solved easily by standard methods, and
the velocity is obtained by integrating]u(x,t)/]t over the
blob’s region. Both methods provide the same result for
largen,

V~ t !;V0~12t/n!H~12t/n!. ~52!

Note thatV(t) changes in a time scale of order;n. We
already see from Eq.~52! that the velocity autocorrelation
decay is not exponential but linear, which is an indication
that the stochastic process is non-Markovian. We can solve
Eq. ~49! by using Laplace transforms.13 This is done in Ap-
pendix C. By changing to the proper time scalet* 5t/n,
with F* (t* )5nF(nt* ), we obtain

E
0

`

dt* F* ~ t* !52, ~53!

and
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F* ~ t* !5d~ t* !2d~ t* 21!1et* 2H~ t* 21!et* 21~ t* 11!

1 (
k52

`

H~ t* 2k!et* 2k~21!k
~ t* 2k!k22

~k22!!

3S ~ t* 2k!2

k~k21!
1

2~ t* 2k!

k21
11D . ~54!

Note that the Dirac deltas appear as a consequence of the
time scale change. At the microcospic time scale the auto-
correlation function~50! does not present discontinuities in
its time derivative.

We have plotted in Fig. 2 the memory kernel~without
the Dirac-delta functions! given by Eq.~54!. We have also
calculated numerically this kernel by using the method of
Sec. V B. Both results are indistinguishable in the plot. It is
clear that the kernel has not decayed completely in the time
scale of V(t)(t* ;1), and thus we cannot approximate it
with a single Dirac delta and the random term as white noise,
even in the limitn→`.

This phenomenon is general and has implications be-
yond this particular example. The reason for this long-lived
kernels is that the time scale ofVk(t) is given by the dissi-
pation, which in harmonic systems is due to wave propaga-
tion, and the decay time scale of the kernels is on the same
time scale. This is clear from Eqs.~14!–~15!. In the mesos-
copic limit Â tends toA, andqi

k(t) tends to the solution of
the mechanical problem consisting of an initial perturbation
around the edge of the coarse-grained regionk. Thus,Fkl(t)
will not appreciably decay at least until the elastic waves
have removed the perturbation, which will be about the time
it takes for the sound to cross the mesoscopic region, i.e., a
mesoscopic time. This is a memory effect that occurs inside
the coarse-grained particles, causing the whole process to be
non-Markovian. Therefore, we cannot consider the kernels or
the autocorrelation function of the random forces Dirac-delta
functions, such as in DPD.

In Ref. 14, Espan˜ol justified the DPD method by study-
ing the equation of motion of an infinite number of coarse-
grained particles in the one-dimensional harmonic chain. In
contrast to the example discussed above, now the infinite
harmonic chain is partitioned into an infinite number of
blobs, each one formed byn consecutive oscillators, which is
more closely related to the customary coarse-graining

scheme in DPD. However, this work relies on the Markovian
assumption for the dynamics, which we have shown to be
unjustified. We present in Fig. 3 the scaled memory kernel
F3* 5nF3 connecting two coarse-grained particlesk and l
separated by two coarse-grained particles, i.e.,uk2 l u53, as
computed from a molecular dynamics simulation with blobs
of size n510 000. As before, the raw data has been coarse
grained in time with a mesoscopic time stepD* 5D/n
50.01. It is clearly seen that the kernel is on the mesoscopic
time scale t* 5t/n, as expected. In fact, by applying
the theory of Sec. V A we obtain that this kernel contains
three Dirac-delta functions at different mesoscopic times,
2d(t* 23)2d(t* 22)2d(t* 24) ~recognizable in Fig. 3 as
lines going out of scale!, aroundt* 53, which is the time it
takes the sound to propagate from one blob to the other. We
report the corresponding analytical expressions of this prob-
lem and the genelarization to higher dimensions elsewhere.

VIII. CONCLUSIONS

We have applied projection operators to the coarse-
grained multiscale problem in harmonic systems with an in-
homogeneous level of coarse graining. The customary ap-
proach of using equilibrium averages as inner product
produces the right generalized Langevin equation, but the
explicit expressions are difficult to calculate. Using an alter-
native inner product we have been able to provide explicit
expressions for the conservative forces, the memory kernels
and the random forces, in terms of a mechanical analog.
Based on these expressions, we have shown that the memory
kernels and the velocity autocorrelation functions can be
computed in linear systems from a single molecular dynam-
ics simulation. These results represent a generalization of
previous analytical work on harmonic lattices involving the
derivation of a series of algebraic properties.

In addition, a method that resembles DPD has been pro-
posed and is applicable to any system in which the coarse-
grained region is linear. This can also be seen as a natural
extension of the quasicontinuum method to account for finite
temperature and dynamics. Moreover, we have shown that
the memory kernels and also the autocorrelation function of
the random forces used in the simulations should not be con-
sidered as Dirac-delta functions, as customary in most ap-
proaches, without justification. Instead, the proposed simula-
tions would need to include the computation of the time

FIG. 2. Scaled memory kernelF* 5nF as a function oft* 5t/n ~without
the Dirac deltas att* 50, 1! for a coarse-grained particle in a 1D harmonic
chain.

FIG. 3. Memory kernel connecting two coarse-grained particles separated
by two blobs in the 1D harmonic chain.
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convolutions involving memory kernels. In order to account
for the fluctuation-dissipation theorem, the random forces
need to be generated using a colored noise algorithm. Other-
wise, one risks that the system simulated does not tend to the
thermodynamic equilibrium. Methods addressing this issue
exist in the literature,15,16 however, further work is required
to test their efficiency in these particular problems.
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APPENDIX A: CONSTRAINED AVERAGES

Starting from Eq.~13! we obtain

^R̂k~ t !R̂l~0!& Â5qk~ t ! tM ^xxt& ÂMql~0!

5qk~ t ! tM ~12 P̂t!^xxt& Â~12 P̂!Mql~0!

5qk~ t ! tM ^~x2X!~x2X! t& ÂMql~0!.

~A1!

Let us now consider the variable change fromx to center
mass coordinatesX5 P̂tx plus a number of relative coordi-
nates which we will represent using vectorial notation as
j. Each variablej i can be defined as the difference between
the componentxi of the oscillatori and a fixed reference
oscillator inside the same group. Then, the quantityB(x)
5(x2X)(x2X) t as a function of$X,j% does not depend
on the center of mass coordinatesX, i.e., it is a function
of j alone: B(x1lX)5B(x) for all l and x. We show
next that for any function with the same property,^B(x)& Â

5^B(x)&X050 .

Equation~16! implies

xtAx5xtÂx2XtAX12xtAX, ~A2!

being xtÂx a function ofj alone. Therefore, using this ex-
pression and changing variables we obtain

^B~x!&X0505
* dNxB~x!exp~2xtAx/2kBT!d~ P̂tx!

* dNx exp~2xtAx/2kBT!d~ P̂tx!

5
* dNxB~x!exp~2xtÂx/2kBT!d~ P̂tx!

* dNx exp~2xtÂx/2kBT!d~ P̂tx!
5

* dXdjB~x!exp~2xtÂx/2kBT!d~X!

* dXdj exp~2xtÂx/2kBT!d~X!

5
* djB~x!exp~2xtÂx/2kBT!

* dj exp~2xtÂx/2kBT!
5

* dXdjB~x!exp~2xtÂx/2kBT!

* dXdj exp~2xtÂx/2kBT!
5^B~x!& Â . ~A3!

APPENDIX B: SINGULARITIES
IN THE MEMORY KERNEL

Let us consider the Fourier transform of the autocorrela-
tion function

ckl~v!5E
0

`

dte2 ivtCkl~ t ! ~B1!

and analogously for the memory kernelfkl(v). In this rep-
resentation, Eq.~37! becomes

(
l 8

fkl8~v!cl 8 l~v!5Mk@Ckl~0!2 ivckl~v!#

2(
l 8

Lkl8

cl 8 l~v!

iv
. ~B2!

Assume Ċkl(t) is discontinuous at the timest
5t1 ,t2 ,... . Then, the asymptotic behavior ofckl(v) in the
limit v→` can be obtained by integration by parts17

c~v!;
C~0!

iv
2

1

v2 F Ċ~0!1(
r

DĊ~ t r !e
2 ivtrG , ~B3!

whereDĊ(t r)5Ċ(t r
1)2Ċ(t r

2). Inserting this expression in
Eq. ~B2! we obtain

(
l 8

fkl8~v!cl 8 l~v!;2
Mk

iv F Ċ~0!1(
r

DĊ~ t r !e
2 ivtrG .

~B4!

On the other hand, sincef~v! should be bounded in the limit
v→`, we also have

(
l 8

fkl8~v!cl 8 l~v!;fkl~v!Mk

Cll ~0!

iv
. ~B5!

Combining both expressions

fkl~v!;2
1

Cll ~0! F Ċ~0!1(
r

DĊ~ t r !e
2 ivtrG , ~B6!

in the limit v→`. The inverse transform is given by
Eq. ~38!.

APPENDIX C: CALCULATION
OF THE MEMORY KERNEL

The Laplace transform of the autocorrelation function
V(s) is obtained from Eq.~52! as
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v~s!5E
0

`

dt* e2st* V~ t* !5V0

e2s1s21

s2
. ~C1!

Using the properties of the Laplace transform,18 we can solve
Eq. ~49! for the Laplace transform of the memory kernel
f* (s),

f* ~s!5
V02sv~s!

v~s!
5

s~es21!

11es~s21!
. ~C2!

The limit s→0 gives the time integral ofF* (t* ),

f* ~0!5E
0

`

dt* F* ~ t* !52. ~C3!

Let us defineF̂* as the scaled memory kernel without the
singularities~Appendix B!

F̂* ~ t* !5F* ~ t* !2@d~ t* !2d~ t* 21!#. ~C4!

Then,

f̂* ~s!5
~es21!2

es1e2s~s21!
. ~C5!

We can rewrite this expression as

f̂* ~s12!5
122e2~s12!1e22~s12!

~s11!S 11
e2~s12!

s11 D , ~C6!

and then use the Taylor expansion (11x)21

5(k>0(21)kxk with x5exp(2s22)/(s11), to obtain

f̂* ~s!5~s21!212e2s@~s21!2212~s21!21#

1 (
k>2

~21!ke2sk~s21!2k21@112~s21!

1~s21!2#. ~C7!

This expression can be inverted easily term by term by using
the inverse Laplace transform formulas of (s1a)2n and
exp(2st)f(s).18 The final expression is given by Eq.~54!.
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