

Improving the Design Process of VLSI Circuits by Means of a Hardware Debugging
System: UNSHADES-1 Framework

M.A. Aguirre, J. Tombs, A. Torralba and L.G. Franquelo

Escuela Superior de Ingenieros. Universidad de Sevilla
Avda. Camino de los Descubrimientos s/n,

4109 Sevilla (SPAIN)
aguirre@gte.esi.us.es, jon@gte.esi.us.es,, torralba@ieee.org, leopoldo@ieee.org

Abstract – Due to the increase in size and complexity of VLSI
integrated circuits, new design tools are becoming needed.
Telecommunications and Electronic Industry demand designs
that integrate intensive digital signal processing blocks and
complex control tasks. Rapid Prototyping techniques introduce
a new stage into the design flow that overcome the drawbacks of
simulation stage and shorten design times. Advanced FPGAs
can host the design for its emulation and can run inserted into
the final system. The benefits of their use go beyond the simple
rapid prototyping approach, and are able to provide additional
information and other useful tasks that will be presented in this
paper.

I. INTRODUCTION

Due to the increasing complexity of many electronic
projects, the design flow of VLSI integrated circuits has to be
completed [1] with the use of some prototyping or emulation
techniques. Figure 1 show the complete design flow
including the prototype phase. The traditional simulation
stage isn’t enough, because stimuli generation does not
always represents all the run-time situations and, in most of
cases, it’s almost impossible to generate enough data to
activate all cases in the deepest design blocks inside the
design hierarchy tree. Stimuli are usually generated using
well controlled models of the system. However, if the
prototype is essayed using the physical elements of the final
system, non controlled (in terms of modelling) situations can
be introduced taking into account the real external
components. At the same time internal scope techniques have
to be introduced to obtain information about what is actually
happening inside the system.

The prototype is typically supported by means of an

advanced SRAM-FPGA [4] these can normally work at high
clock frequencies. The main advantages of using FPGAs for
this purpose are basically: First, there’s an unlimited number
of configuration cycles, that allows the verification of
multiple versions of the circuit netlist, and second the
emulated version can be produced with extra circuitry and
pins for providing extra execution-time information.

Advanced FPGA’s are SRAM based programmable

circuits that can host large digital circuits with a reasonable
device behaviour. These devices are typically built with other
features very useful for building the prototyping system
itself, such as many electrical iopin standards, JTAG ports,
clock skew compensation, general purpose multipliers, on-
chip memory blocks… etc.

The concept of a Hardware Debugger [6-7] is more ample
than a simple prototyping system . Using an advanced FPGA,
it not only can emulate the final circuit but it can provide
information about how the circuit is working during
execution, and eventually provide more control on the
running device that can be exploited for a better analysis.
Basically the added capabilities are: cycle by cycle stepping
of the entire circuit, extract run-time information for internal
scope, and, eventually, produce modifications in the internal
registers.

HIGH LEVEL

DESCRIPTION
HIGH LEVEL
SIMULATION

SYNTHESISTECHNOLOGY

PLACEMENT, ROUTING
AND SHIPMENT

SYNTHESIS

ADD DEBUG CIRCUIT

FPGA TECHNOLOGY

PHYSICAL COMPILER
FOR EMULATOR

SYSTEM WITH EMULATOR MAN-MACHINE INTERFACE

CONFIGURATION MAP INTERNAL REGISTER

Fig 1. Modified VLSI Design Flow

Most FPGA foundries offer debugging packages that

support recording internal signals into a synthesised
memory, like an internal logic analyser. These products are
Chipscope from Xilinx [9-10] and SignalTap from ALTERA.
Basically they consist of a circuit for the run-time condition
detection that triggers the signal capture process. Some
memory resources are reserved for recording the preselected
signals. All of these resources that have to be included in the
same circuit netlist. The size and behaviour of the placed and
routed circuit depends strongly of how many signals and
clock cycles are going to be to be recorded and the presence
of those elements strongly affects to the behaviour of the
emulated circuit. The extra size and the modified
performance of the circuit is called the overhead of the
debugging system.

This paper presents UNSHADES-1, a different approach

based on VIRTEX FPGAs where some special features that
are exclusive to this FPGA are exploited for constructing a
hardware debugger system. UNSHADES-1 means
UNiversity of Sevilla HArdware Debugging System and is
based on the platform HADES-1 [2,5]. The complete
system, software and hardware are inserted into the Xilinx

standard design packages, Foundation and Alliance. This
paper is organised as follows: Section II shows an overview
of the VIRTEX properties that are useful for UNSHADES
system. Section III describes how to execute the step by step
system. In section IV a two wires system for controlling the
debugger is presented and Section V y VI briefly present
some ideas about the software and finally section VII will
show the conclusions.

II. HARDWARE DEBUGGING SYSTEM

UNSHADES-1 is a system independent hardware

debugger where the designed circuit is substituted in the final
system by one advanced FPGA, a device taken from
VIRTEX series from Xilinx. A computer supports the
interface man-machine. UNSHADES board [5] is basically a
smart link between the FPGA and the computer, where it can
download the configuration to the FPGA and can read and
write partial information of that configuration. This features
play an important role in our system because it means that
FPGA can be explored and manipulated in order to obtain
inner view and control of the device during execution.

VIRTEX FPGAs [7] form a family of devices from Xilinx

that support large amount of system gates with high level
circuit performance. The next paragraphs will highlight the
most interesting features of these FPGAs for our purpose.

Using the SelectMap port Virtex can be easily, configured,

read and written, totally or partially. The information can be
moved as 8-bits wide data at a high speed (until 60Mb/s)
during the partial reading and writing. This allows fast
selecting of the information to read or modify.

Secondly, there’s a single-clock cycle process for saving

the internal state (the contents of the all the Flip-flops) for
external reading: the CAPTURE_VIRTEX macro. After the
execution of the macro the saved state can be uploaded to the
host and the information about the actual register contents
can be linked with their designer’s names, given during
design time thus making the recorded information
comprehensive to the user. The state information is copied to
special dedicated memory cells that are not included in the
common resources of the FPGA and this process doesn’t
contributes to the overhead of the UNSHADES-1 system.

Finally, all the Virtex flip-flops have a clock enable input

for enabling synchronous changes. This input can be safely
manipulated to control the execution of the design instead of
using signals that control on the clock wires themselves.

III. STEP BY STEP EXECUTION

Stopping a system clock is not easy in large FPGAs,

because clocks are compensated using phase compensation
techniques that need several clock cycles to be settled and
cannot be resumed. Before the system stops, a debug
condition has to be reached, this is done with a pre-

programmed condition that watches the running system.
When the condition is satisfied the system freezes the circuit.
Instead of stopping the system clock the Clock Enable input
of all the flip-flops can be used to freeze the circuit. In this
case, the circuit can be frozen partially. We have used this
input for obtaining a full control of the execution process,
free of glitches.

With an extra external input, a simple state machine can

control the clock enable input of the flip-flops. At every
rising edge of this signal a finite state machine enables the
system a single clock cycle and activate the CAPTURE
macro. After this, the host can upload the new information.

For introducing a step-by-step execution mechanism into

the design netlist the following steps have to be performed:
1. Attach the line freeze to all flip-flops that are going to

be frozen. This can be done introducing the flowing
code into the high level description code (for example,
in VHDL) [9].

if(clk’event) and clk=’1’)then
 if(freeze=’1’) then

 end if;
 end if;
2. This line will be controlled by a state machine that de-

asserts it when the freeze condition is taken and
produces the CAPTURE_VIRTEX procedure.

3. The PC uploads the information containing the circuit
state.

4. Using an external line the PC activates the circuit for a
single clock cycle. The next clock cycle a new
CAPTURE_VIRTEX procedure is activated.

5. Again the PC uploads the information.
Steps 4 and 5 can be repeated as many times as desired,

and, at every step the register contents can be recorded in a
file with a valid format suitable for being displayed in a
waveform viewer.

Figure 2 depicts an block scheme of how the described

system works where CAPTURE_VIRTEX macro is activated
when the clock enable is deasserted.

FINITE STATE MACHINE
ACTIVATES A SINGLE
CLOCK PULSE

CLOCK
ENABLE

EXECUTION TIME
STOP CONDITION

EXTERNAL PAD

D Q

CLK

CAPTURE_VIRTEXCLK

Fig 2. Step by step machine

The number of consumed resources for this circuit is

negligible, less than one hundred system gates and it can be
shown that there’s no effect on the circuit behaviour, because

the run-time condition for activating the capture system is a
simple comparator.

The pullup resistor provides a bi-directional character to

the external pad. It indicates that the circuit is running when
low, but after the condition, it goes to resistive high ready for
management by the step by step system.

IV. TWO WIRES METHOD

This section will explain how the UNSHADES-1 emulator
informs to the control computer about the detection of a
particular event. We have introduced a two wires method.
Thus, our debugger will have an overhead of two pin for its
own control. These two lines are:

• Event line: This line is shared with the external pin
used in the step by step method. It is an open
collector line (as explained before). When the
circuit is working, this line is deasserted. All the
programmed events are or-ed to this line. When
any event is asserted then after a readback process
the event can be identified.

• Resume line: This line will reactivate the circuit
after an event has been detected, or erase the run-
time event.

Figure 3 shows a scheme of how the system is built. It can be
seen that both systems step by step and two-wires controller
share the Event Line, due to the three state character.

After an event the emulator has to get the necessary
information for the user. The method is associated to the
Xilinx macro CAPTURE_VIRTEX, where the circuit state is

copied in one clock cycle to an special configuration
memory. After this trigger the system can be stopped (and
stay frozen) or continue working. In the first case the
debugging process loses the synchronization with the
external system but no clock cycles are lost and in the second
the emulation gives the information of a single snapshot of
the system.

Note that the debugging condition is not restricted to a

single condition. The user can fix a priori as many conditions
as desired. Main advantage of this method is that the actual
debug condition that triggers the system is identified in the
same way as the internal registers and signals.

V. INSERTION OF THE DUBUGGING CIRCUIT

Debug circuit can be automatically inserted into the

emulator without being resynthesized. The designer takes
decisions about which wires or registers have to be watched
to define the trigger condition for the first snapshot. Note that
due to the pure parallel nature of hardware all conditions are
watched simultaneously. One comparator has to be inserted
per event. This extra circuit can be inserted to the high level
code, but some design time can be improved if the circuit is
inserted to the structural netlist (VHDL, EDIF,...) at the
previous stage of physical implementation. The main
advantage is that the designer debugs the final netlist, and
doesn’t have to re-synthesise the complete design, which is
more or less 40% of the total synthesis time. This task can be
done automatically using a tool that is being developed in our
department.

VI. UNSHADES SOFTWARE

The Man-machine interface is an essential part of a

hardware debugger. In the same way that information is
presented, performance superior to the complete system is
obtained as the system can be inspected and manipulated. In
this way the system has to be fast and effective. We take
advantage with the partial reconfiguration techniques of
VIRTEX device. The reconfiguration time is then very fast
because only a small part of the FPGA has to be inspected or
configured. For example, a frame (the minimum amount of
information transferred) of VIRTEX 50 can be inspected in
less than 10 microseconds.

In order to display step-by-step information, a standard

format (vcd) database is produced and a waveform viewer
displays the evolution of the emulated circuit.

Moreover, if we have the system in a frozen state some

manipulations can be produced in the state, allowing the
modification of the values of the flip-flop contents. This
novel idea is also being developed in the new software tool.

EVENT LINERESUME LINE

CONDITION 1 CONDITION nCONDITION 2

DET 1 DET 2 DET n

EDGE DETECTOR

Fig 3. Two wires control system

VI. CONCLUSIONS

The idea of debugging digital circuits in run-time is
attractive. Due to the improvements of the FPGA’s the
circuit can be emulated and inserted into the final system
previously to being sent to the foundry. FPGA’s provide
more features than expected and can be instrumented for the
design process. In our Department we have developed
UNSHADES-1, a new tool for debug digital circuits. With
the insertion of an extra logic the circuit can be emulated in a
controlled way without being affected of the control circuit
itself. UNSHADES system present an alternative non
exclusive to the commercial debugging systems.

VII. REFERENCES

[1] Dollas, A. Kanopoulos, N. “Reducing Time to Market
Through Rapind Prototyping”. IEEEComputer, Feb.
1995.

[2]A.Burst, B.Spitzer, M.Wolff, K.D. Müller-Glasser. “On
Code Generation of Rapid Prototyping Unsing CDFI”.
OOPSLA’98, Vancouver, CA

[3] Hutchings B., Nelson B. and Wirthlin M.J.. “Designing
and Debugging Custom Computing Applications”. IEEE
Design & Test of Computers. Jan-March 2000. pp 20-
28.

[4] Koch A. “A Comprehensive Prototyping-Platform for
Hardware-Software Codesign”. 11th IEEE Internation
Workshop on Rapid System Prototyping. Paris Jun-
2000. pp78-82.

[5] M.A. Aguirre, J. Tombs, A. Torralba, L.G. Franquelo
“HADES-1: A rapid prototyping environment based on
advances FPGA´s”. Proceedings of the Design of
Circuits and Integrated Systems, DCSI’01 Oporto 2001.

[6] Timothy Wheeler, Paul Graham, Brent Nelson, and Brad
Hutchings, ``Using design-level scan to improve FPGA
design observability and controllability for functional
verification,'' in Proceedings of the Eleventh
International Workshop on Field Programmable Logic
and Applications, pp. TBA, Belfast, Northern Ireland,
August 2001.

[7] Paul Graham, Brent Nelson, and Brad Hutchings,
``Instrumenting Bitstreams for Debugging FPGA
Circuits,'' in J. Arnold and K. Pocek, editors,
Proceedings of the Ninth Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, pp.
TBA, Rohnert Park, CA, April 2001.

[8] Blind for the reviewing process
[9] Xilinx. Co.”The Programmable Logic Data Book”. 2001.
[10] Xess Co. XSV Board V1.0 Manual. March 2000

