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Abstract. Reconstructive transformations of layered silicates as mica muscovite take place at much lower temperatures than 
expected. A possible explanation is the existence of breathers within the potassium layer. Numerical analysis of a model shows 
the existence of many different types of breathers with different energies and existence ranges which spectrum coincides 
approximately with a statistical theory for them. 
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INTRODUCTION 

Some silicates experience reconstructive transforma­
tions, which implies the breaking of the bond between 
silicon and oxygen, a particularly strong one. There­
fore, high activation energies and a very slow reaction 
speed are expected. In the laboratory, temperatures above 
1000°C are necessary. In nature, many years are re­
quired. However, recent experiments in some layered sil­
icates such as mica muscovite have been performed at 
temperatures 600° C below the lowest experimental re-
suhs previously reported [1,2]. The authors of these ar­
ticles have performed experiments with layered silicates 
and, in particular, with mica muscovite, in an aqueous 
solution with lutetium nitrate during 3 days at 300°C. 
After that time about 36% of muscovite has been trans­
formed into lutetium disilicate [3]. The lack of explana­
tion from an approach based on conventional Chemical 
Kinetics suggested the exploration of new hypotheses. 
Reactions of this type will be referred hereafter as Low 
Temperature Reconstructive Transformations (LTRT). 

>From Transition State Theory, a transition state with 
higher energy than the reactants has to be formed for the 
reaction to take place. The activation energy E^ is the 
height of the energy barrier that has to be overcome. The 
rate of reaction is, therefore, proportional to the number 
of linear vibration modes or phonons with energy above 
iia- This number is proportional to the Boltzmann factor 
exp{—Ei,/RT), i.e., the fraction of phonons with energy 
above E^, bringing about Arrhenius' law: 

k = Aexp{-E;,/RT) (1) 

where k is the reaction rate constant and the pre-
exponential factor A is known as the frequency factor. 

There is, however a different type of excitations than 
the phonons, which appears for large amplitudes of vi­
bration where the intrinsic anharmonicity of the atomic 
bonds can no longer be ignored. They have received con­
siderable attention from the Nonlinear Physics commu­
nity during the last decade and are known as anharmomc 
modes, intrinsic localized modes or discrete breathers. 
The mathematical proof of their existence and the meth­
ods to obtain them with machine precision in mathemat­
ical models has been firmly stablished in Ref [4]. In this 
seminal article the authors also suggest that breathers 
could produce an apparent violation of Arrhenius' law. 
Breathers are localized, that is, they involve only a few 
particles or atoms. The conditions for their existence are 
the anharmonicity of the potentials and that their fre­
quency has to be outside the phonon band. They are 
called soft if their frequency is below the phonon band, 
which is only possible in systems with an optical phonon 
band, of hard if their frequency lies above the phonon 
band. Ahhough the subject is still under discussion it 
seems very unlikely that they can be observed by spec­
troscopic means due to their localized nature, the small 
number of them and the basic principles of Physics [5]. 

We have tried to explore the breather hypothesis, that 
is, that in mica muscovite, there exist breathers, that they 
have enough energy to overcome the activation energy, 
and that there are enough of them to influence the reac­
tion speed [3]. 

THE M O D E L 

We have considered vibration in the cation layer, where 
the potassium ions form a rough hexagonal lattice (see 
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FIGURE 1. Interlayer sheet of the mica muscovite. The cir­
cles represent the potassium ions. 

Fig. 1). So far, we have only taken into account off-plane 
vibrations. The model is a classical one with Hamilto-
nian: 

500 

FIGURE 2. Muscovite far infrared spectrum 

given by: 

F(M) =Z)(1 -exp(-Z)V)) + 7M^ (3) 

withZ) = 453. l lcm-\Z)2^ 36.0023 A-2 and7= 49884 
cm^'A^^. To determine the potential, we have also taken 
into account the limitation to the K+ displacement due to 
the muscovite structure. 

H = l -mul- -V{un) K X N- -Mij/ (2) 
n'eNN 

where m = 39.1 amu is the mass of a potassium cation, K 
is the elastic constant of the cation-cation bond, V{Ufi) is 
an on-site potential, and the second sum is extended to 
the nearest-neighbours.The value of the elastic constant 
K is taken as 10 ± 1 N/m after Ref [6]. 

For the on-site potential, the linear frequency is known 
after Ref [7], where a band at 143 cm^' is assigned 
to the K+ vibration perpendicular to the K+-plane in 
infrared spectra from 30 to 230 cm^'. To obtain more 
characteristics of the nonlinear potential V, we have per­
formed far infrared spectra above 200 cm^' in CNRS-
LADIR ^ We observe bands at 260, 350 and 420 cm"' 
as shown in Fig. 2, which we tentatively assign to higher 
order transitions of the same vibration. 

Using standard numerical methods to solve the 
Schrodinger equation for the K+ vibrations, with a 
potential composed of the linear combination with three 
gaussians and a polynomial of degree six, with ad­
justable parameters, we have been able to find a suitable 
potential that fits these bands and their intensities. It is 
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BREATHERS IN MUSCOVITE 

With this model we can obtain breathers with machine 
precision, using numerical methods based on the anticon-

0 10 20 30 40 50 
E (KJ/mol) 

00 300 400 500 
E (KJ/mol) 

FIGURE 3. Relative frequency versus energy for soft (left) 
and hard (right) breathers in the muscovite model. Note the 
different energy scales. The phonon band is also shown. Vo= 
167.5 cm-1 ^ 5-1012 Hz. 
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FIGURE 4. Energy density in the thermalized muscovite's 
model. The units in the x and j ' axes are in lattice units. 

tinuous limit. That is, starting with a coupling parameter 
K = {) and a single excited atom, we obtain the exact so­
lution using the Newton method in the frequency space. 
By path continuation, we obtain breathers at the physical 
value of K. 

Due to the characteristic of the potential V, there are 
both types of breathers, soft and hard ones. They are 
symmetric and their energies and frequencies can be ob­
tained and are shown in Fig. 3. The expected activa­
tion energy for the reconstructive transformation is about 
100-200 KJ/mol or higher [8]. Therefore we can see that 
hard breathers in this model may have enough energy to 
overcome the energy barrier. 

BREATHER STATISTICS 

In order to obtain the breather statistics numerically, first 
we deliver to a system of 50 x 50 atoms a given energy 
with random positions and velocities. After some time of 
evolution the system is thermalized, but it is difficult to 
distinguish breathers from the subjacent sea of phonons. 
Second, by adding some dissipation at the borders, the 
system is cooled, the phonons disappear but the breathers 
are left in place. We repeat this procedure several hun­
dreds of times, calculate the breather energies and obtain 
the mean number of breathers and their energy distribu­
tion. Fig. 4 shows an example of the distribution of en­
ergy density after thermalization, and Fig. 5 shows the 
resuhing breather after the cooling process. The breather 
energy cannot be taken away by the phonons because 
its frequency lies outside the phonon band. Among other 
magnitudes we obtain that the mean number of breathers 
per site (Wb) is around 10^^. 

Breathers have different statistics than the phonons as 
they tend to populate higher energies [9]. In this refer­
ence, a theory for breather statistics has been developed. 

FIGURE 5. Energy density in muscovite's model after cool­
ing. An asymmetric multibreather can be observed. The units 
in the x and j ' axes are in lattice units. 

It is based on the following assumptions: 

• 2D breathers have a minimum energy A. This is an 
established fact proven in Ref [10] 

• Breathers are created through an activation pro­
cess, i.e., the creation rate is proportional to 
exp(-£ ' /^r ) 

• Large breathers have longer lives than smaller ones 
as it has been observed in numerical experiments. A 
destruction rate of the form l/(£' - A)̂  is proposed, 
where z is a parameter to be determined. 

• At thermal equilibrium, the number of breathers 
created and destroyed are equal for each energy. 
That is e\p{-E/RT) = CPh{E)/{E - Af, with C 
a constant independent of the energy and Ph{E) dE 
is the probability of existence (or the mean fraction) 
of breathers with energy between E and E + dE. 

With this hypothesis the following magnitudes are 
obtained: 

The mean energy per atom is given by: 

{E)=A+{z+l)kBT, 

with kB being the Boltzmann constant. 
The probability density Ph{E) is: 

ME) P z+\ 

r(z+i 
-( i?-Afexp[-/3(i?-A)] , 

(4) 

(5) 

with/3 = l /ke r . 
The cumulative probability C\,{E), i.e., the probability 

that a breather has energy higher than E, is given by: 

Cb(i?) = 
r(z+l,/3(g-A)) 

r(z+i) (6) 

where r ( z + l,x) = j^-f Qx<;){—y)dy is the first incom­
plete Gamma function. 
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However, the distribution of breathers obtained numer­
ically cannot be fitted with this theory with the only ad­
justable parameter being z. This should be obvious by 
detailed observations of Fig. 5, where it can be seen that 
the breather is not a single symmetric breather, but a 
multibreather, i.e., several atoms have similar energies. 
In other simulations we obtain different multibreathers 
or single breathers with different symmetries or lack of 
them. Therefore, there is a zoo of breathers, each one of 
them with a different minimum energy A, parameter z 
and probability of appearance. Moreover, breathers may 
also have a maximum energy, due to different types of bi­
furcations. It appears in Fig. 3-left (for the hard breathers 
on the right hand side, the path has not been continued 
further, so the maximum energy is not known). Also, if 
they are or become unstable they will not be observed in 
numerical simulations or in nature. 

Therefore, we have modified the theory, with a maxi­
mum energy EM, the previous magnitudes become: 

The probability density: 

/3^+i(£'-A)^exp[-/3(£'-A)] 
ME) = (7) r(z+l,/3(i?M-A)) 

where /(z + 1 , x) = J^y^ exp (-y) dy is the second incom­
plete gamma function. 

The cumulative probability: 

r (z+l , /3( i?-A)) 
Cb{E) = 1 (8) 

7(z+l,/3(i?M-A))-

With these modifications we can fit the probability 
density using six different types of breathers, each one 
with a different probability of existence Pi. This is, how­
ever an approximation, as it is likely that there are many 
more involved. However, even with several hundreds of 
simulations it is not possible to obtain a good definition 
of the numerical Ph{E) and only an approximation for 
large energies above 100 KJ/mol because the probabil­
ity of occurrence of each breather with a given energy is 
very low. 

EFFECT ON THE REACTION SPEED 

The number of breathers is much smaller than the num­
ber of phonons, about one to a thousand, but only the ex­
citations with energy above the activation energy, which 
is estimated to be ::; 100-200 KJ/mol will influence the 
reaction rate. The increase of the reaction rate with 
breathers will be roughly equal to the ratio between the 
number of breathers and the number of phonons above 
the activation energy, i.e., {rib) Cb{E)/Cpii{E). We esti­
mate it at about 10^ - 10^, in other words, as the three 
days experimental time leads to about 30% of the trans­
formation performed, the time without breathers to ob­
tain the same result would be 10^ - 10^ times larger and 

thus, completely unobservable. Furthermore, breather lo­
calization will increase the probability of delivering the 
energy to break a bond, which will increase the reaction 
rate. 

We certainly cannot consider the breather hypothesis 
as proven, as the statistic theory is only a heuristic one 
and it is not based on first principles. We also need a 
theory to obtain the different probabilities of existence 
of different breathers, and obtain them numerically. We 
do not know how the energy is delivered and how a 
quantum treatment would modify our conclusions. At 
present we are working on these problems. But the fact 
remains that there is presently no other explanation and 
that breathers are localized and tend to populate states 
with higher energy than phonons. Recently, it has been 
observed that localized vibrations, produced by alpha ra­
diation, travel extremely long distances along the lattice 
directions, bringing about the sputtering of an atom at the 
crystal surface [11]. This further reinforces our hypothe­
sis. We can conclude that breathers are good candidates 
to explain LTRT. 
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