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Summary: Control of weld quality is one of the most 
important and complex processes to be carried out on 
production lines. Neural Networks have shown good 
results in fields such as modelling and control of physical 
processes. It is suggested in this article that a neural 
classifier should be used to carry out non-destructive 
on-line analysis. This system has been developed and 
installed at resistance welding stations. Results confirm 
the validity of neural networks used for this type of 
application. 

Introduction 

The resistance welding methods used for numerous 
industrial applications where hi gh-ou tpu t production is 
requi red have reached a high degree of reliability. One 
special case in point is the automobi le industry where the 
requirements of an increasingly competitive market have 
made it necessa ry to use high- productivity welding tech
niques, and to fi nd on· li ne systems which detect those 
wo rk pieces in which the joint produced is defect ive. 

Vario us no n·destructive o n· line co nt rol techniques 
have been developed in order to esta blish the quality of 
the welded joint obtained . A control system generally 
com prises three basic elements : a transmitter, a receiver 
and a discriminato r. The transmitter is a transducer 
wh ich excites the welded wo rkpiece, whose response to 
excita tio n is picked up in a nother transducer which in 
turn passes on the signa l to a device which decides 
whether or no t the workpiece is to be rejected . Among the 
va rio us met hods of energy exci tation I special mention 
shou ld be made of ultrasonics, X-rays and electromag
netic waves. 

Majo r d rawbacks of the techniques mentioned are high 
equ ipment cos t, lack of flexibility in their application and 
the time required to test the weld , all o f which means tha t 
applicat io n to a production line is almost unviable. 

The topic of modell ing the physica l process of welding 
based on on·line control has been widely st ud ied 2 with the 
objective of rela ting welding co nt rol parameters to the 
mechanica l properties which wo uld be obta ined from 
previous tests. T his methodology docs not , howeve r, 
gua rantee tha t the weld produced will meet expectations 
because of the existence of a combinat io n o f uncontrolled 
pa rameters which may affect joint quality, such as 
impurities in the surfaces to be joined, the sta te of these 
su rfaces , etc. 

In the present work , following the line taken in prev io us 
investiga tio ns, a supervision system has been develo ped 
wh ich makes it possible to predi ct on·line the ult imate 
strength of the joint as a funct ion of welding parameters 
obtained directly from the process. If the calculated 
ultima te st rengt h is below a certain th reshold the work · 
piece is rejec ted . The supervision system set·u p uses 
neu ra l networks, a pplication of which has been success
fully developed in fields such as recognition of patterns or 
contro l o f industrial processes.) Such networks a re pro
posed as classifiers to determine the soundness of the 
weld . 

The weld ing process used is described hereunder with 
special reference to control paramete rs . The relationship 
between the values of the physical quantities measured 
and linked togeth er in the process and the ultimate 
strength obtained experimen ta ll y are stud ied . Then, the 
p'aper present s the neu ral networks, descri bing them with 
specia l attention to thei r a pplication as classifiers. Finally, 
the paper describes the applica tion developed , ana lysing 
the data obta ined on the production line. 

Description of welding station 

From this poi nt onwards, the term resistance welding 
sta tion4 wi ll be used . It sho uld be pointed out , however, 
that the supervision system proposed ca n easily be 
applied to o the r types of station . 

At the sta tions considered , a shaft/ socket assembly is 
joined by means of a pure resistance welding process, as 
shown in Fig. I. This welding station has a controller4 

which gove rns the current source which , in this case, is a 
rect ifier . 

1 Joint cross-section. 
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4 Detail of previous figure. 

The energy supplied to the joint is determined as a 
function of the phase angle of the rectifier in each cycle, the 
sinusoidal waveform of the supply voltage, and the 
number of complete cycles which constitute welding time. 

The welding phases are: pre-heating, heating and 
post-heating (Fig. 2) corresponding to the number of 
pre-heating cycles, the number of welding cycles and the 
number of cooling cycles respectively. In each phase the 
triggering angle of the rectifier is defined as a percentage 
but, in the satisfactory development of a weld, in addition 
to the geometric and energy parameters already ex
plained, there are other relevant uncontrolled factors such 
as metallurgical factors (impurities on the surface, oxides 
and surface treatments such as chromium plating), ambi
ent contamination, etc. All these factors affect the ultimate 
strength finally obtained in the joint, and their presence 
establishes the need for a system to supervise weld quality. 

Because of the nature of the welding operation, the 

Table J Ultimate strength values, kg 

Chromium- Chromium-
Order Normal Oxidised plated plated 

1 5090 3886 3400 4500 
2 4802 4402 3902 4850 
3 5190 3872 4386 3966 
4 5600 3786 4516 5010 
5 4884 2810 3810 4896 
6 4862 3358 4384 3792 
7 5022 2390 2900 4138 
8 4720 3610 4270 4026 
9 5080 2450 4098 4672 

Table 2 Current form factors 

Chromium- Chromium-
Order Normal Oxidised plated plated 

1 0.3574 0.0122 0.2211 0.2960 
2 0.4587 0.2283 0.2198 0.2977 
3 0.5629 0.1170 0.3240 0.2877 
4 0.4723 0.1348 0.3148 0.3133 
5 0.4430 0.1140 0.2939 0.3586 
6 0.4590 0.0830 0.2531 0.3980 
7 0.4102 0.0168 0.1995 0.3176 
8 0.3857 0.0000 0.3015 0.3068 
9 0.3980 0.0456 0.3372 0.2954 

recording of the electrical current waveform passing 
through the zone where the weld is formed contains the 
history of the joint. As shown in Fig. 3 and 4, however, 
class~fication based on the waveforms generated requires 
a detailed study of their forms. 

Relationship between ultimate strength and 
cu rrent cu rves 

In order to study the relationship between the waveforms 
recorded and the corresponding ultimate strength values, 
36 specimens were tested which were divided into four 
groups characterised by their surface state. Table 1 shows 
the ultimate strength values obtained from tensile tests. 

Based on the current waveform data recorded by 
oscilloscope, the form factor for each wave was calculated, 
being defined as: 

Im~ if! 
N 

[1] 

where i is the sampled value of the current circulating 
between the electrodes of the welder and N is the number 
of samples. The values obtained for the specimens in 
Table 1 are shown in Table 2, normalised from 0 to 1. 

Statistical analysis of Tables 1 and 2 based on Student's 
Tconfirms the existence of a correlation greater than 95% 
between the ultimate strength and the 1ffi value, which 
validates the hypothesis that·a function exists by which 
these are related. 

Figure 5 is a graph showing the relationship between 
the ultimate strength and Iffi. The linear correlation 
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coefficient between the two variables IS low (0.63), 
indicating a need to approximate by means of functions 
more complex than the linear, using a larger volume of 
information and more powerful classifiers. 

6 Network for NOT pattern classification. 

Neural networks 

In order to increase the volume of information con
sidered it was decided that a discrete histogram should be 
used, dividing the sampled current intensity curve into 
eight energy levels. One of the advantages of using this 
histogram is that it is easy to obtain by simple digital 
electronics, allowing it to be calculated at low computing 
cost or, which is the same thing, in real time. Table 3 
shows the histograms obtained for the specimens listed in 
Table 1. 

Multi-layer perception has been successfully used for 
identification and classification of patterns in non-de
structive tests. These networks consist of various layers of 
closely inter-connected units operating in parallel, ~s 

shown in Fig. 6. 
Each unit generates an internal activity proportional to 

the weighted sum of its input signals. Its output is 
produced by applying the function y (shown in Fig. 7) to 
the internal activity. 

Table 3 Test histograms 

Type 

A 

B 

c 

D 

Order 

1 
2 
3 
4 
5 
6 
7 
8 
9 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0-0.5V 

16 
15 
16 
16 
15 
16 
16 
16 
16 
18 
17 
17 
17 
17 
17 
18 
18 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
16 
17 
17 
17 
17 
16 
17 
16 
16 

0.5-1V 

2 
3 
2 
2 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1-1.5V 

4 
3 
5 
3 
2 
3 
5 
4 
5 
9 
5 
9 
8 
8 
8 
9 

13 
11 
4 
5 
3 
3 
4 
4 
4 
4 
3 
5 
3 
3 
4 
3 
2 
4 
3 
3 

1.5V-2V i':'2.5V 

34 240 
25 240 
22 240 
25 240 
16 207 
28 240 
37 240 
30 240 
33 240 

230 240 
46 240 

121 240 
113 240 
150 240 
178 240 
227 240 
236 240 
201 240 

55 240 
60 240 
28 240 
35 240 
37 240 
46 240 
72 240 
37 240 
31 240 
39 240 
36 240 
33 240 
37 240 
31 240 
18 240 
34 240 
34 240 
36 240 

2.5-3V 

240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 

3-3.5V 

144 
216 
227 
224 
240 
229 
198 
163 
184 

o 
18 
o 
1 
2 
o 
o 
o 
o 

19 
29 
96 
93 
75 
49 

8 
84 

117 
77 
82 
67 

102 
147 
177 
107 
89 
75 

3.5V-4V 

o 
o 

26 
4 

71 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
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7 Output function y(-) of a neuron. 

learning process is particularised. 
Determina tion of the error signal is a recurring process 

which begins in the output units: 

[4] 

where tpj is the jth component of desired output when the 
input pattern p is applied to the network and y( . ) is the 
derivate of the neuron transfer function. The signal error 
for the concealed units, for which there is no known 
desired output, is defined as: 

b pj = y'j(l~WpjOpJ IbpkWkj 
k 

[5] 

This algorithm is applied until the network, for each input 
applied, generates the desired output with a maximum 

[2] error. 

The back-propagation learning algorithmS is used to 
obtain a desired group of connections approximating to a 
given function. The weights of each connection Wjj are 
modified in an amount proportional to the product of an 
error signal bj linked to the said connection by the output 
from the unit to which it belongs, OJ, 

[3] 

where p represents the index of the pattern on which the 

Application 

To establish the validity of the method formulated a weld 
monitoring system was designed for which a block 
diagram is shown in Fig. 8. 

For this application a specific data acquisition system 
was developed, of which a working diagram is given in 
Fig. 9. This system comprises eight counters which show 
increments as a function of the analogue/digital 
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conversion of the current signal. The signal is sampled every 
50 µsec throughout the welding process (0.5 sec). This 
specific hardware makes it possible to calculate the 
histogram, i.e. the input data for the neural network, as soon 
as welding finishes. These data are read by the control 
computer and the neural network located in the computer 
memory is activated. For this purpose the neural network was 
previously configured in a learning phase using the data 
given in Table 3. The neural network selected has a concealed 
layer with 25 units and an output neuron. The number of 
iterations required in the learning process, which is carried 
out at a SUN 10 workstation, was 450000. 
 
The system was checked by installing it on the production 
line. The total number of specimens tested was 450. 
Classification results were: 98% of samples correctly 
classified (438 correctly welded and three with an ultimate 
strength less than what was required) while the remaining 2% 
generated intermediate output in the neural network or which 
is the same thing, classification in a zone of uncertainty 
coinciding with ultimate strength values very close to the 
minimum permissible. 
 
 
 

Conclusions 
This paper describes a weld supervision system based on 
neural networks. The system represents an initial phase in 
learning to classify welds produced on the basis of data 
obtained as they are formed. In a second phase, the system 
was installed on a production line allowing real-time quality 
control of welding. The system was checked on 450 
specimens, all of which were correctly classified. The same 
technique is now being applied to gas-shielded electric arc 
welding (MIG/MAG) using sliding windows.6 
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