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Abstract

We prove nonexistence of breathers (spatially localized and time-periodic oscilla-
tions) for a class of Fermi-Pasta-Ulam lattices representing an uncompressed chain
of beads interacting via Hertz’s contact forces. We then consider the setting in which
an additional on-site potential is present, motivated by the Newton’s cradle under
the effect of gravity. We show the existence of breathers in such systems, using both
direct numerical computations and a simplified asymptotic model of the oscillator
chain, the so-called discrete p-Schrodinger (DpS) equation. From a spectral analysis,
we determine breather stability and explain their translational motion under very
weak perturbations. Numerical simulations demonstrate the excitation of traveling
breathers from simple initial conditions corresponding to small perturbations at the
first site of the chain. This regime is well described by the DpS equation, and is found
to occur for physical parameter values in granular chains with stiff local oscillators.
In addition, traveling breather propagation can be hindered or even suppressed in
other parameter regimes. For soft on-site potentials, a part of the energy remains
trapped near the boundary and forms a surface mode. For hard on-site potentials
and large to moderate initial excitations, one observes a “boomeron”, i.e. a traveling
breather displaying spontaneous direction-reversing motion. In addition, dispersion
is significantly enhanced when a precompression is applied to the chain. Depending
on parameters, this results either in the absence of traveling breather excitation on
long time scales, or in the formation of a “nanopteron” characterized by a sizeable
wave train lying at both sides of the localized excitation.
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1 Introduction

The study of nonlinear waves in granular crystals is the object of intensive
research, both from a theoretical perspective and for practical purposes, e.g.
for the design of shock absorbers [55,20], acoustic lenses [58] or diodes [4].
Due to the nonlinear interactions between grains, several interesting types of
localized waves can be generated in chains of beads in contact. Solitary waves
are the most studied type of excitations and can be easily generated by an
impact at one end of a chain [47,17,26,41,51,55]. These solitary waves, in the
absence of an original compression in the chain (the so-called precompression),
differ from classical ones (i.e. KdV-type solitary waves [48]) due to the fully
nonlinear character of Hertzian contact interactions. Indeed, their decay is
super-exponential and their width remains unchanged with amplitude [16,60].

Another interesting class of excitations consists of time-periodic and spatially
localized oscillations. Such waves may correspond to Anderson modes [27] in
the presence of spatial disorder, or to defect modes localized at an impurity
in a granular chain under precompression [61]. A different class of spatially
localized oscillations that occur in the absence of defects consists of discrete
breathers, which originate from the combined effects of nonlinearity and spa-
tial discreteness (see the review [19]). These waves exist in diatomic granular
chains under precompression [3,62,30], with their frequency lying between the
acoustic and optic phonon bands and can be generated e.g. through mod-
ulational instabilities. However, because precompression suppresses the fully
nonlinear character of Hertzian interactions, these excitations inherit the usual
properties of discrete breathers, i.e. their spatial decay is exponential and their
width diverges at vanishing amplitude, i.e. for frequencies close to the bottom
of the optic band [30].

For granular systems without precompression, the above discussion raises
the question of existence of spatially localized oscillations. Defect modes in-
duced by a mass impurity have been numerically observed in unloaded gran-
ular chains [24,34], but these excitations were found to occur only on short
transients. The existence of long-lived localized oscillations as been only re-
ported for granular chains including on-site potentials in addition to the usual
Hertzians interaction [32,59]. Models in this class describe e.g. the small am-
plitude waves in a classical Newton’s cradle [28], which consists of a chain
of beads attached to pendula (see figure 1, left). In [32], static and moving
breathers were numerically observed as a result of modulational instabilities of
periodic traveling waves, and extremely stable static breathers were generated
from specific initial conditions. In addition, a reduced model, the so-called
discrete p-Schrodinger (DpS) equation was derived as an asymptotic model
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for small amplitude oscillations in the Newton’s cradle, and successfully re-
produced the above localization phenomena. The discrete breathers possess
special properties both in the original cradle model and the simplified DpS
system, i.e. their spatial decay is super-exponential and their width remains
nearly constant at small amplitude.

-

Fig. 1. Left : prototypical Newton’s cradle. Right : stiff Newton’s cradle, consisting
of an array of clamped cantilevers decorated by spherical beads (displacements are
amplified for clarity).

In this paper we extend the above results in two directions.

Firstly, we prove in section 2 the nonezistence of time-periodic spatially lo-
calized oscillations in uncompressed granular chains in the absence of local
potentials. This result seems surprising at a first glance, because Hertzian
models of granular chains fall within the class of Fermi-Pasta-Ulam (FPU)
lattices, which sustain discrete breathers under some general assumptions on
the interaction potentials and particle masses (see [50] and references therein).
However these conditions do not hold for uncompressed granular chains. Us-
ing a simple averaging argument, we show that the non-attracting character of
Hertzian interactions between grains (repulsive under contact, and vanishing
in the absence of contact) precludes the existence of time-periodic localized
oscillations, both for spatially homogeneous or inhomogeneous chains.

Our second contribution concerns the case of (generalized) Newton’s cradles,
i.e. spatially homogeneous granular chains incorporating a local harmonic or
anharmonic potential (taking the form of an even quartic polynomial). We
analyze the existence and qualitative properties of time-periodic and traveling
breathers, and the possible excitation of traveling breathers from an impact
at the end of a chain. We consider two different situations corresponding re-
spectively to the absence or existence of a precompression of the chain, and
yielding quite different dynamical behaviors. The case without precompression
is examined in section 3, were we obtain the following results.

(1) In section 3.2, we use a Newton method to compute branches of site- and
bond-centered breathers parametrized by their frequency w > wg (wg be-
ing the linear frequency of the local oscillators). These branches bifurcate
from the trivial equilibrium when w — wy (where analytical approxima-
tions of breather profiles are also obtained), and can be continued up to
a strongly nonlinear regime. The spectral stability of these breather so-
lutions is analyzed for some parameter values, and depends on the type



(and strength) of the local anharmonicity. In addition, we observe a near-
degeneracy in the spectrum (associated with a so-called “pinning mode”
[1]), resulting in a transition from static to traveling breathers under very
small perturbations.

Having obtained traveling breathers from small perturbations of static
ones, we study in section 3.3 if they can arise from much simpler initial
conditions, and attempt to excite the first site of a Newton’s cradle.

(2) In section 3.3.1, we identify four different dynamical regimes depend-
ing on the parameter values (and time scales) considered. The first one
corresponds to small initial excitations, and long (generally finite) time
intervals on which the dynamics of Newton’s cradle and the DpS equa-
tion are similar (this is in agreement with recent theoretical results of
[2]). In this regime, the main stress wave takes the form of a traveling
breather propagating almost freely along the chain. The second regime
is obtained for harmonic on-site potentials in the limit of large ampli-
tude perturbations, were soliton-like excitations are observed, a situation
reminiscent of [47,26]. In the third regime, which occurs for soft on-site
potentials and large to moderate initial excitations, a significant part of
the energy does not propagate and remains trapped near the boundary
(forming a so-called surface mode [46]), while a small amplitude travel-
ing breather is generated. The last regime corresponds to hard on-site
potentials and large to moderate initial excitations (or sufficiently long
time scales). In that case, the initial perturbation produces a “boomeron”
(direction-reversing traveling breather) reminiscent of excitations previ-
ously obtained in particular integrable models (see [13] and references
therein).

(3) In section 3.3.2, we examine possible experimental realizations of these
kinds of granular lattices and the related observation of moving breathers
after an impact (i.e. an initial excitation of the first site of the chain).
As it follows from the results of section 3.3.1, the DpS regime giving
rise to (almost) freely-propagating breathers is realized for small enough
impact velocities. Combining this result with suitable scaling arguments,
we deduce that moving breathers would not be observable in practice in a
classical Newton’s cradle acting under gravity. In addition, we argue that
reasonably simple mechanical systems with stiff local oscillators could be
tailored so that the DpS regime takes place. As a prototype for which this
situation occurs, we consider the chain of identical clamped cantilevers
represented in figure 1. Each cantilever is decorated by two spherical
beads attached to its center, and the beads of two successive cantilevers
are tangent at the ground state. Using a reduced oscillator chain model of
this system (calibrated for realistic material parameter values), we check
that an impact on the first cantilever generates indeed a moving breather.

Lastly, the case of a Newton’s cradle under precompression is studied in sec-



tion 4. Since precompression adds effectively a linear component to Hertzian
interactions, this system falls within a more standard class of models, the so-
called mixed Klein-Gordon/Fermi-Pasta-Ulam lattices [35]. Traveling or static
breathers close to envelope solitons of the (focusing) continuum nonlinear
Schrédinger (NLS) equation exist in such systems, at least in the small ampli-
tude limit and on long transients [21,22]. They can be easily generated from
modulational instabilities, starting from “well-prepared” initial data leading
to similar dynamics in the original lattice and the NLS equation. However,
for a highly localized initial disturbance of the chain, such as the excitation
of a single particle, no correspondence with the NLS equation has been math-
ematically established up to now. Whether traveling breathers may form or
not after an impact is therefore a nontrivial theoretical problem. Another
interesting question concerns the qualitative properties of the corresponding
breathers (if they form), and in particular the differences compared to trav-
eling breathers in uncompressed chains. In numerical simulations, we observe
the formation of an important dispersive wave train and the generation or
absence of a traveling breather depending on the local potential. Traveling
breather propagation does not occur (at least on the timescale of the simu-
lations) with our choice of harmonic and soft on-site potentials, a property
that we (heuristically) relate to the growth rates of modes during modula-
tional instability. A traveling breather is observed in the hard potential case,
but is found much less localized than in the absence of precompression. In
addition, the main pulse is sitting on a sizeable nondecaying oscillatory tail
extending at both sides, the ensemble forming a so-called “nanopteron” [5].
According to our findings, the precompression introduces therefore a very dif-
ferent phenomenology (compared to the case of section 3), where dispersion
becomes much more dominant and different effects of the local anharmonicity
are observed.

To conclude this paper, we state in section 5 some relevant theoretical prob-
lems left open in this study, and discuss our results from a more general
perspective in connection with possible experiments.

2 Non-existence of breathers in FPU chains with repulsive inter-
actions

We consider an infinite chain of particles of masses m,, > 0, interacting with
their nearest neighbors via anharmonic potentials V,,. This type of system
(which can be thought of in general, i.e., for unequal masses m,,, as a spatially
inhomogeneous FPU lattice) corresponds to the Hamiltonian

H = Z—x' VTt — ) (1)
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where x,, denotes the particle displacements from the ground state. We con-
sider interaction potentials V,, of the form

Va(z) = Wal(=2)],

where (a); = max(a,0), W,, € CY(RT,RT), W/(0) =0 and W/(x) > 0 for all
x > 0. The form of V,, implies that particle interactions are repulsive under
compression (i.e. for x < 0) and unilateral (interaction forces vanish under
extension, i.e. for x > 0).

Moreover we assume
W, (z) < f(z) Vo el[0,r], ¥n > nq, (2)

for some real constant » > 0, integer ny and a monotone increasing function
f € C°([0, r]) satisfying f(0) = 0. For example, these assumptions are satisfied
with f(z) = sup,,>,, W), () if the functions W, are convex in [0, r] and belong
to some finite set for n > ng (this is the case in particular for spatially periodic
systems). Another example is given by Hertzian interactions

1
Wn x) = nxan‘f‘l’
(x) p it
where the coefficients v, «,, > 0 depend on material properties and particle
geometry. In that case one can choose f(xr) = vz (and r = 1) provided
Yo <y and a,, > a > 0 for all n > ny.

The Hamiltonian (1) leads to the equations of motion

My &y =V (X1 — 20) — Vi (X — 2p1), n€EZL. (3)
In what follows we show that under the above assumptions, the only time-
periodic breather solutions of (3) are trivial equilibria. Due to the transla-
tional invariance of (1), breathers are defined as time-periodic solutions which
converge (uniformly in time) towards translations =, = cx € R as n — +o0.
This implies that relative particle displacements vanish at infinity, i.e. one has

[l = @0alz=n) = 0 0

for a T-periodic breather. In what follows, we prove in fact a more general
nonexistence result of nontrivial periodic solutions vanishing as n — +o0.

Theorem 1 All time-periodic solutions of (3) satisfying
iz — @y = 0 (5)

are independent of t and increasing with respect to n.



Proof. Let us consider a T-periodic solution of (3) and integrate (3) over one
period. This yields the equality

Fn = L'n41,

where F,, = & [ V!_ (2a(t) — 2,-1(2)) dt is the average interaction force be-

tween masses n — 1 and n. Consequently F,, = F' is independent of n.

Now let us check that F vanishes thanks to the bound (2) uniform in n. We
have for all n

Fl= g [ Wil (aa(t) = 2a0) )
< W] s = 7).

Taking into account (5) and (2), the above inequality yields for n large enough
1E| < [ f[(@n1 = @)+ Ml = fll (@1 — 20)+ [l ]
since f is increasing. It follows that
|F| < f(|rp-1 — zn||z) — 0 as n — +oo

hence F = 0.

Now we use the fact that the interactions between particles are repulsive, i.e.
we have —V!(x) = W/[(—x)+] > 0. Since the T-periodic functions F,(t) =
V! (n(t) — 2,_1(t)) are negative, continuous and satisfy [] F,(t)dt = 0
as shown previously, we have consequently F,(t) = 0 for all ¢ and n. Using
(3), this implies #,, = 0 and thus z,, is an equilibrium solution (due to time-
periodicity). Moreover one has z,, > x,_; since F,, = 0. "

We note that the above arguments do not work if an on-site potential is added
to (1), because the average interaction forces are no more independent of n.
In the next section, we numerically show the existence of breathers for such
type of nonlinear lattices.

3 Breathers in uncompressed granular chains with local potentials
3.1 Models and methods

In this section we consider an extension of the Hertzian chain (1) incorporating
local potentials. We analyze the existence and qualitative properties of time-



periodic and traveling breathers (section 3.2), and illustrate how to excite
traveling breathers from simple initial conditions (section 3.3). Our approach
is based both on numerical and asymptotic methods.

In section 3.2.1, the modified Gauss-Newton method introduced in [8] is used
to compute branches of breather solutions bifurcating from the ground state.
Their spectral stability is investigated in section 3.2.2, in relation with their
translational motion under perturbations. More precisely, their Floquet spec-
tra display (in addition to the usual double eigenvalue +1) an extra pair of
eigenvalues very close to unity. As an effect of this near-degeneracy, we show
that small perturbations of the breathers along an associated pinning mode
generate a translational motion with negligible radiation, according to the pro-
cess analyzed in [1]. In addition, the concept of Peierls-Nabarro barrier [12,42]
allows one to approximate the amount of energy required for the depinning of
stable breathers.

In addition to the direct approach described above, the main qualitative prop-
erties of small amplitude breathers are also captured from the asymptotic limit
of the DpS equation. In particular, we derive quasi-continuum approximations
of the breather profiles valid at small amplitude. These approximate breathers
have a compact support, which provides a reasonable approximation to the
super-exponential decay of the exact breathers (in analogy to what is known
for the approximation of solitons in uncompressed granular chains [47,16]).

Having observed the mobility of static breathers under small perturbations in
section 3.2, we explore in section 3.3 the excitation of traveling breathers from
a velocity perturbation at the end of a semi-infinite chain. In section 3.3.1, we
show the relevance of the DpS equation for describing (over long finite times)
the traveling breather propagation after a small amplitude initial perturbation.
In addition, we show the failure of the DpS equation for capturing new types
of waves (surface modes and boomerons) showing up for anharmonic local
potentials and (mainly) for larger perturbations. In section 3.3.2, we argue
that the traveling breather excitations obtained in section 3.3.1 are relevant
in the context of impact mechanics, i.e. can be obtained in granular chains
with local potentials for realistic parameter values.

3.1.1 Hertzian granular chains with on-site potentials

We consider a nonlinear lattice with the Hamiltonian
1.

where



The system (6) corresponds to a chain of identical particles in the local poten-
tial W, coupled by the classical Hertz potential V' describing contacts between
smooth non-conforming surfaces. Unless explicitly stated, the on-site potential
W will be chosen harmonic with

W(y) ==y (8)

1
2
In that case, the dynamical equations read

iin + Yo = (Un1 = )Y = (Un = yur1) ¥ (9)

Figure 1 depicts two examples of such systems. In practical situations, the
assumption of a local harmonic potential implies that the model will be valid
for small amplitude waves and suitable time scales on which higher order terms
can be neglected. In order to capture higher order effects, different parts of
our analysis will be extended to symmetric anharmonic local potentials

1 S
W) =5y"+ 79" (10)

where the parameter s measures the degree of anharmonicity.

In the work [32], long-lived static and traveling breather solutions of (9) have
been numerically observed, starting from suitably chosen localized initial con-
ditions, or from small perturbations of unstable periodic traveling waves. How-
ever, the classical result of MacKay and Aubry [40] proving the existence of
static breathers near the anti-continuum limit does not apply in that case.
Indeed, if Hertzian interactions forces are cancelled (or equivalently, if one
considers breathers in the limit of vanishing amplitude), one obtains an infi-
nite lattice of identical linear oscillators, and the nonresonance assumption of
reference [40] is not satisfied. The anti-continuum limit can be only used for
models incorporating anharmonic on-site potentials, and under the assump-
tion of weak Hertzian interactions whose applicability is rather limited [33].
Moreover, other existence proofs based on spatial dynamics and the center
manifold theorem [31] do not apply, due to the fully-nonlinear character of in-
teraction forces (the same remark holds true in the case of traveling breathers
[56]). Variational tools [50] may be suitable to obtain existence proofs in this
context, but this question is outside the scope of the present paper, where we
chiefly resort to numerical and asymptotic methods.

In the following section, we recall the relation between (9) and the asymptotic
model given by DpS equation [32].



3.1.2  The discrete p-Schraodinger limit

Small amplitude solutions of system (6)-(8) can be well approximated by an
equation of the nonlinear Schrodinger type, namely the discrete p-Schrodinger
(DpS) equation with p =5/2

P10 = (Vg1 — Un)|Unt1 — Un|p_2 — (Un — Vp—1)|Un — Un—l‘p_z- (11)

The most standard model reminiscent of this family of equations is the so-
called discrete nonlinear Schrodinger (DNLS) equation, studied in detail in a
number of different contexts, including nonlinear optics and atomic physics
over the past decade [36]. However, the DpS equation is fundamentally differ-
ent in that it contains a fully nonlinear inter-site coupling term, corresponding
to a discrete p-Laplacian.

To make the connection with the DpS equation more precise, we sum up some
basic elements of the analysis of [32]. Let us consider the lattice model (9) and
the DpS equation

QiToAn = (An—i-l — An) |An+1 — An|1/2 — (An — An—l) |An — An—1|1/2> (12)

1
where 75 = 5(;4( \‘}7)72 ~ 1.545 and I' denotes Euler’s Gamma function. Given a

~

solution of (12) and € > 0 small enough, one obtains an approximate solution
of (9)

y*PP(t) = 2€Re [ A, (e"/%t) e ]. (13)

The approximate solution (13) and amplitude equation (12) have been derived
in [32] using a multiple-scale expansion. According to [2], for initial conditions
of the form y,,(0) = 2eRe [ A,(0)]+0(e¥?), §,(0) = —2eIm [ A4,(0) ] +O0(¥/2)
with € & 0, this approximation is O(¢%/?)-close to the exact solution of (9) at
least up to times ¢t = O(e~'/2) (see also numerical results of [32] comparing
the DpS approximation and exact solutions of (9)). Moreover, for some family
of periodic traveling wave solutions of the DpS equation, the ansatz (13) is
O(€3/?)-close to exact small amplitude periodic traveling waves of (9) [32].

Lastly, it is interesting to mention that the DpS equation depends on the terms
of (9) up to order O(|y|?/?) (see [32], section 2.1). It follows that this equa-
tion remains unchanged for smooth anharmonic on-site potentials W (y) =
1y*+ O(|y|*), because the associated extra nonlinearity is at least quadratic.
Consequently, the addition of a local anharmonicity doesn’t change the dy-
namics of (9) for small amplitude waves, on the time scales governed by the
DpS equation.
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3.2 FExistence and properties of static and traveling breathers

3.2.1 Bifurcations of static breathers from the ground state

The work of [32] illustrated the existence of time-periodic and spatially local-
ized solutions of the DpS equation. Figures 2 and 3 (top left panels) display
the profiles of spatially antisymmetric or symmetric breather solutions of the
DpS equation (11). These are sought by using the standard stationary ansatz
for DNLS type equations of the form v, = exp(iut) u,, with g > 0 and u,, € R.
The resulting coupled nonlinear algebraic equations read

— ity = (Uny1 — Up)|Uns1 — un|1/2 — (Up — Up—1)|Un — un—1|1/2 (14)

and are solved via a fixed point iteration of the Newton-Raphson type, for free
end boundary conditions (equation (14) is considered for n = 1,..., N with
up = uy and un4q d:CfuN).

Note that equation (11) has a scale invariance, since any solution v, (t) gener-
ates a one-parameter family of solutions av,(|a|'/?t), a € R. Thanks to this
scale invariance, the whole families of antisymmetric and symmetric breathers
can be reconstructed from the case = 1 of (14). In particular, breather am-
plitudes are oc 2 and the breather width remains unchanged when u — 0, a
property that strongly differs from the broadening of DNLS breathers at small
amplitude (see e.g. [10], section 3).

In what follows we approach the two breather profiles using a quasi-continuum
approximation. Fixing p = 1 and introducing wy, = (Un41 — Up) [thnr1 — un|"/?,
equation (14) becomes

Wpt1 — 2Wy + Wp_1 + Wy, \wn|_1/3 =0, (15)

where the nonlinear coupling has been linearized (at the expense of having
an on-site nonlinearity non-differentiable at the origin). The spatial profiles of
figures 2 and 3 suggest to use the so-called staggering transformation w, =
(=1)™ f(n), which yields

fln+1) =2f(n) + f(n — 1) = =4f(n) + f(n) | f(n)| />, (16)

Now we look for an approximate solution F' of (16). For this purpose we use
the formal approximation F(n + 1) ~ F(n) £ F'(n) + 5F"(n), in same the
spirit as the approximations of soliton profiles performed in reference [47]
(the accuracy of this approximation will be checked a posteriori by numerical

11



computations) ? . This leads to the differential equation
F" = —4F + F|F|7Y/3, (17)

which possesses a family of compactly supported solutions F'(x) = tg(x + ¢),
where 3.3 3
g(x) = (E) cos® (%) for |z] < g, g = 0 elsewhere.
Replacing f by its approximation F' and performing appropriate choices of
sign and spatial shifts in F', one obtains the symmetric approximate solutions
of (15)
1

w = (=1)"g(n), wP = (=1)"g(n+ 3):
The case p = 1 of (14) yields w,, = w,_1 — w,, therefore we get the fol-
lowing quasi-continuum approximations of the antisymmetric and symmetric
breather profiles

u) = (=1)" [g(n) + g(n — 1)], (18)

1

uf? = (1" [on + 5) +gln — 3)]. (19)

The first graphs of figures 2 and 3 show the excellent agreement of these
approximations with the numerical solutions of the stationary DpS equation.
Returning to the ansatz (13) and the time-dependent (non-renormalized) DpS
equation (12), we obtain approximate breather solutions of (9) taking the form

1/2
YO (t) = 2eu® cos (wpt), wp=1+ 62—, s=1,2. (20)
To
It is interesting to observe that approximation (20) is unaffected by smooth
on-site nonlinear terms for € ~ 0, since we have noticed that the DpS equation
remains unchanged.

In what follows we compare the above approximations with breather solutions
of (9) computed numerically for free end boundary conditions (equation (9) is
considered for n = 1,..., N with yy £ y; and yny11 = yn). According to the
approximate form (20), we expect to obtain families of site- and bond-centered
solutions bifurcating from the ground state when w — 1.

Let us denote Y,, = (yn, Un). We use an adapted Gauss-Newton method de-
scribed in [8] to compute zeros Y;,(0) = (y,(0),0) of the time-7;, map of the
flow of (9), where T, = i—’; denotes the breather period. These initial condi-
tions correspond to breathers even in time. An example of computation of a
breather with frequency wy, = 1.1 is shown in figure 3 (the initial guess used for
the Newton method is the site-centered approximate breather solution derived

2 Note that w,, corresponds to a spatially modulated binary oscillation, and a con-
tinuum approximation is obtained for its envelope, whereas the continuum approx-
imation of [47] was performed on the full soliton profiles.

12



from the DpS equation). The bottom right panel of figure 3 compares the ini-
tial breather positions computed by the Newton method and their evolution
at t = 100 Ty, which shows that the breather oscillations are extremely stable.
The super-exponential spatial decay of the breather is shown in figure 4 (see
[33] for a recent analytical proof).

Using the above numerical scheme and path-following, we compute branches
of breather solutions parametrized by their frequency w, > 1. At the end of
the Newton iteration, we get a relative residual error

o () - YaO)hllee
{Y2(0)} ]l

and an incremental error

Iy 0) = B0} 108
- (k+1) ~
[{yn "7 (0)}, 1

corresponding to the relative variation of particle positions between the k-th
and (k + 1)-th Newton iterates.

1074

inc

We obtain two branches of breather solutions of (9) with different symmetries.
They consist of bond-centered breathers, i.e. spatially antisymmetric solutions
satisfying y_,+1 = —y, (figure 2) and site-centered breathers (figure 3). The
latter possess subtle symmetry properties. Since the Hertz potential is non-
even, equation (9) is not invariant by the symmetry Sy, := y_,. However,
the set of Tp-periodic solutions of (9) is invariant under the transformation
S"Yn(t) = —y_n(t +Tp/2). The site-centered breathers of (9) are left invariant
by S” and not by S (their asymmetry under S increases with wy, as shown in
figure 3). In contrast, the DpS equation admits both symmetries S and 5,
which both leave the site-centered DpS breathers invariant. These different
types of symmetries are illustrated by figures 2 and 3, which compare the
approximations (20) with breather solutions of (9) computed by the Newton
method. While approximation (20) is excellent at small amplitude (case w, =
1.01), its accuracy deteriorates in a more strongly nonlinear regime (case wy, =
1.1).

More details on the continuation of discrete breathers in wj, are shown in figure
4 (right panel), which compares the maximal amplitude of the bond-centered
and site-centered breather solutions of (9) when wy, is varied (the continuation
is performed for w, € (1,2]). Both solutions bifurcate from y, = 0 when
wp — 17, and their amplitude increases with wy,.

More generally, considering system (6) with the local anharmonic potential
(10) and choosing s € [—1, 1], we obtain branches of site-centered and bond-
centered breathers bifurcating from the origin when w, — 17 (results not

13



shown). The persistence of both types of symmetries is due to the evenness of
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Fig. 2. Top left panel: spatially antisymmetric solution u, of the stationary DpS
equation (14), computed numerically for g = 1 (marks). This solution is compared to
the quasi-continuum approximation usll) defined by equation (18) (continuous line).
The other graphs compare a bond-centered breather y, solution of (9) computed
numerically (marks) and its quasi-continuum approximation yy(Ll) (continuous line).
The top right plot corresponds to a small amplitude breather (w, = 1.01), and the
bottom plot to a more strongly nonlinear regime (w, = 1.1). Particle positions are
plotted at the instant of maximal amplitude.

In what follows we study in more detail the energy barrier separating site-
centered and bond-centered breathers. As illustrated below in section 3.2.2,
this allows us to approximate the so-called Peierls-Nabarro energy barrier,
which corresponds to the amount of energy required to put a stable static
breather into motion under a momentum perturbation.

A notion of energy barrier separating discrete breathers is usually defined as
follows (cf. also [42]). From (18)-(20), one can deduce a family of approzimate
static breather solutions of (6)-(10)

pu(t) = 2elglnt 5 — Q)+ gln— 5~ QU-1)" cos(wrt),  (21)

2
where w, = 1+ % and @ € R (the cases Q = 0 and Q) = 1/2 correspond-
ing respectively to site-centered and bond-centered breathers). According to
the work of [42], approximate traveling breather solutions of (6)-(10) can be
obtained from (21). Their dynamics is described by an effective Hamiltonian,
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Fig. 3. Top left panel: spatially symmetric solution u,, of the stationary DpS equa-
tion (14), computed numerically for g = 1 (marks). This solution is compared to
the quasi-continuum approximation u'?) defined by equation (19) (continuous line).
Top right panel: small amplitude site-centered breather y,, solution of (9) computed
numerically for w, = 1.01 (marks) and its quasi-continuum approximation yg) (con-
tinuous line). Particle positions are plotted at the instant of maximal amplitude.
Bottom left panel: same computation for w, = 1.1, corresponding to a more strongly
nonlinear regime. In the bottom right plot, the breather computed numerically for
wp = 1.1 is compared to its evolution at t = 1007} (marks).

whose critical points correspond to site-centered and bond-centered breathers
having the same area A = fOT” S, 42 dt. The absolute energy difference Epn
between the two breather solutions provides an approximation of the Peierls-
Nabarro barrier. However, because the latter appears to be very small in sys-
tem (6)-(10) (a phenomenon that will be illustrated in section 3.2.2), its evalu-
ation requires a very precise computation of breather solutions. The definition
of Epy yields additional numerical difficulties, due to the fact that the two
breather frequencies have to be retrieved from a given area 4. Due to these
difficulties, we shall use a more straightforward approach. We define (following
ref. [12]) the approximate Peierls-Nabarro barrier Epy = |Es. — Epe| as the
absolute difference between the energies F., Ej. of site- and bond-centered
breathers having the same frequency.

We obtain extremely small values of Epy both for harmonic and anharmonic
on-site potentials, even quite far from the small amplitude regime. This result
is illustrated by figure 5 for s = —1/6, s = 0 and s = 1. For small amplitude
breathers (w, ~ 1.01 in our computations), the different values of s yield
comparable values of Epy, of the order of 107 — 10715, We find that Epy
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Fig. 4. Left plot: moduli of the initial breather positions computed by the Newton
method, plotted in semi-logarithmic scale. Computations are performed for a chain
of 99 particles and a site-centered breather with frequency w, = 1.1. Right plot:
maximal amplitude at ¢ = 0 of breather solutions of (9) as a function of their
frequency wy. The continuous line corresponds to bond-centered breathers, and the
dashed line to site-centered breathers (note that the two graphs are very close).

increases with the breather amplitude but remains very small in our parameter
range (e.g. Epy is close to 107 for wy, = 1.5 and s = —1/6). The harmonic case
yields even much smaller barriers (by 3 — 4 orders of magnitude for w, = 1.3).
As shown by figure 5, the smaller relative energy difference between site-
centered and bond-centered breathers is also achieved in the harmonic case.

In order to correctly interpret the results of figure 5, we should stress that
our computation of Epy yields sometimes only a rough approximation, but
captures nevertheless the correct orders of magnitude (which is our objective
here, since the above definition of Epx provides itself only an approximation
of the true Peierls-Nabarro barrier). This originates from the finite precision
of the breather computation and the very small values of the energy ratio
Epn/Ep. (or equivalently Epy/FEq.) that we obtain. If one approximates the
numerical error on breather positions by the incremental error €., then the
relative error made on Epy is of order €. Fy./Epy. Since we get €, ~ 1078,
the relative error on Epy is of order unity in the worst case of figure 5 (s = 0,
Wy = 15)

The above results indicate that extremely small perturbations of the breathers
are capable of putting them into motion (even more critically for harmonic
on-site potentials), a phenomenon that will be illustrated in the next section.

3.2.2  Breather stability and mobility
In this section we examine the stability properties of spatially antisymmetric

and symmetric breather solutions of (11) and (6), and link these properties
with the existence of traveling breather solutions. The linear (spectral) sta-
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Fig. 5. Approximate Peierls-Nabarro barrier computed as a function of breather
frequency, for different degrees of anharmonicity of the on-site potential (top left
plot : s = —1/6, top right plot : s = 0, bottom plot : s = 1). The red curves give the
energy Fy. of bond-centered breathers defined by (6). The blue curves correspond to
the approximate Peierls-Nabarro barriers Epy (see text), and the black curve to the
relative energy ratio Epy/Ep. between the energy barrier and the bond-centered
breather energy.

bility of breather solutions of (11) is investigated by means of the perturba-
tion [36]:

vn(t) = exp(ipt) [u, + (a, exp(At) + by exp(A*t))] (22)

where w,, is a spatially symmetric or antisymmetric solution of (14) homoclinic
to 0. The resulting linear problem for the eigenvalue A and the eigenvector
(@n,by)T (where T denotes transpose) is solved by standard numerical linear
algebra solvers and the results are depicted by means of the spectral plane
(A, A;) of the eigenvalues A = A\, +i);. Note that in this Hamiltonian system,
whenever A is an eigenvalue, so are \*, —\ and —\*. In addition, the breather
stability properties remain qualitatively unchanged for all values of p. This
follows from the scale invariance of (11) pointed out in section 3.2.1, which
also implies the linear dependence of the eigenvalues A on u. However, we note
in passing that this simplification is obviously not valid for the model (9).
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From the bottom panels of Fig. 6, we can infer that spatially antisymmetric so-
lutions are spectrally stable (due to the absence of eigenvalues of non-vanishing
real part) and therefore should be structurally robust, a result confirmed by
our direct numerical simulations (data not shown here).

0.05 5
=0 = 0
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Fig. 6. The profiles (top panels) and the linear stability (bottom panels) of the
spatially antisymmetric solution of the DpS equation are shown for the values of
w = 1 (left panels) and p = 10 (right panels). This inter-site solution is linearly
stable.

On the other hand, the stability and associated dynamical properties are more
interesting in the case of the site-centered solution of Fig. 7. In this case, we
can observe the presence of a real eigenvalue pair. As can be seen in the bottom
panel of Fig. 7, the real part of the relevant eigenvalue pair (which corresponds
to the instability growth rate) grows linearly with the eigenvalue parameter
1, inducing a progressively stronger instability for larger amplitude solutions.
The dynamical manifestation of this instability is illustrated in Figure 8. Here
we perturb the dynamically unstable solution of the right panel of Fig. 7 by a
uniformly distributed random perturbation (of amplitude 0.01). The projec-
tion of this random field on the unstable eigenvector of the site centered mode
excites the manifestation of the dynamical instability of this mode which is, in
turn, illustrated in the space-time evolution (where the colorbar corresponds
to the field |v,(¢)|?) of Fig. 8. Clearly, the instability of the site-centered mode
is associated with a “translational” eigenmode of the linearization problem,
whose excitation induces the motion of the localized mode.

Having determined the spectral stability of bond-centered and site-centered
breather solutions in the DpS equation, we now consider the same problem for
their analogues in the original lattice (6), including in our analysis the effect
of a possible addition of a local anharmonic potential (10).

We have computed the Floquet spectrum of (6)-(10) linearized at the bond-
centered breather and the site-centered breather, for different values of the
breather frequency w, € (1,2] and the anharmonicity parameter s € [—1,1].
The Floquet spectrum includes a quadruplet of eigenvalues close to +1 and
eigenvalues on the unit circle accumulating near e*27/“» . The spectral proper-
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Fig. 7. The top panel is directly analogous to the results of Fig. 6, but for the case
of the site-centered solution. The presence of a (rather small) real eigenvalue pair
of linearly growing magnitude as p increases can be observed in the spectral plane
and is more clearly highlighted in the figure of the bottom panel.
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Fig. 8. The figure shows the space-time contour plot of the square modulus of
the field |v,(t)|? for equation (11). The initial condition is a site-centered localized
mode (from the right panel of Fig. 7), perturbed by a uniformly distributed random
perturbation of amplitude 0.01. The perturbation leads to the manifestation of the
instability of the site-centered mode which, in turn, leads to its mobility.

ties of these discrete breathers differ from usual ones [43] for several reasons.
Firstly, no bands of continuous spectrum are present on the unit circle for the
infinite chain. This is due to the fact that system (9) linearized at y,, = 0 (the
limit of a breather solution at infinity) consists of an infinite chain of uncou-
pled identical linear oscillators, and thus the phonon band reduces to a single
frequency, equal to unity in the present case. Secondly, another nonstandard
property originates from the quadruplet of eigenvalues close to +1. Due to
the Hamiltonian character of (9), +1 is always at least a double eigenvalue of
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the Floquet matrix. In addition, we always find an extra pair of eigenvalues
in the immediate vicinity of +1 corresponding to a pinning mode (see below).
This contrasts with the case of Klein-Gordon lattices, where this situation is
a codimension-one phenomenon, occurring near critical values of the coupling
constant and for particular classes of on-site potentials [1,7].

In what follows we describe the evolution of the quadruplet of eigenvalues close
to +1 for w, = 1.1 and s € [—1,1]. The following figures display the moduli
and arguments of these eigenvalues for the bond-centered breather (figure 9)
and the site-centered breather (figure 10). For the bond-centered breather, a
pair of Floquet multipliers A\, \~! emerges from the unit circle after a collision
at +1, for s > s4 ~ 0.26. For the site-centered breather, a pair of multipliers
M AT (with A > 1) exists for s < s§ & 0.05, and enters the unit circle for
s > s after a collision at +1.
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Fig. 9. Arguments (upper plot) and moduli (lower plot) of the quadruplet of Flo-
quet eigenvalues A close to +1, corresponding to system (9)-(10) linearized at the
bond-centered breather. Computations are performed for wp = 1.1, and eigenvalues
are plotted as a function of the anharmonicity parameter s € [—1,1].
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Fig. 10. Same plot as in figure 9, for the site-centered breather with wy, = 1.1.

From the above spectral study, one can infer that for harmonic on-site poten-
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tials (i.e. s = 0) and w = 1.1, the site-centered breather is weakly unstable
and the bond-centered breather is spectrally stable. These results agree with
the above results obtained for the DpS equation. This provides a consistent
picture, given that the DpS equation correctly approximates breather profiles
of amplitudes ¢ = O((w, — 1)?) for wy, ~ 1 (section 3.2.1). The DpS admits
weakly unstable site-centered and stable bond-centered breather solutions,
and approximates the dynamics of (9) for O(e) initial data on times of or-
der O(¢71/2) [2]. Hence, we expect a parallel to the instability of site-centered
modes of the DpS dynamics in Eq. (9). Note that these instabilities are ex-
tremely small for w, close to 1, because the instability of the site-centered
breather is already very weak at the renormalized (slow) time-scale of the
DpS equation (see figure 7), and becomes O(e/?) times weaker at the level of
(9) for a breather with amplitude e.

The above picture persists for s &~ 0, but the site-centered and bond-centered
breathers display a change of stability at the two different critical values s =
so® > 0 (sg being quite small), after which their dynamical stability differs
from the stability of the DpS breathers. It would be interesting to analyze
the possible bifurcations of new types of time-periodic breathers near these
critical values of s (perhaps subcritical pitchfork bifurcations at the points

s = 8%, s =53), and this problem will be considered in a future work.

In what follows we illustrate the effect of the additional Floquet eigenvalues
close to +1 on the breather dynamics, considering the case w, = 1.1 and s = 0.
Figure 11 compares an eigenvector associated with one of these eigenvalues
and the renormalized discrete gradient

Gn = yn—i—l(o) - yn—l(o)
" Un41(0) = Yaa(0)2

which reveals that the two profiles are very close. The associated mode will
thus be referred to as a translation mode or pinning mode, and the effect of
a perturbation along its direction is to shift the breather center [7]. This is

precisely the type of mode associated with the instabilities reported in figures
9 and 10 for s € [—1,1].

The existence of this mode has the effect of enhancing the breather mobility.
To illustrate this, we perturb at ¢t = 0 the velocity components of a stationary
breather, adding the discrete gradient g, multiplied by a velocity factor c.
The kinetic energy imprinted to the lattice is then ¢?/2. We consider below
the energy density at the n-th site, which is defined from (6):

1. 2
en = g U+ W) + 2 (40— yur) Y™ (23)

Fig. 12 shows the energy density plot in the system of Egs. (6)-(8), for a
bond-centered breather (with frequency w, = 1.1) perturbed with ¢ = 2 -

21



10~*. This perturbation results in a translational motion of the breather at an
almost constant velocity with negligible dispersion. A nearly identical figure is
obtained for the site-centered breather having the same frequency (result not
shown). These results illustrate the strong mobility of discrete breathers in the
present model. They are consistent with the approximation Epy of the Peierls-
Nabarro barrier computed previously, since we found Epy ~ 1.77 - 107! for
s = 0 and w, = 1.1 (see figure 5). The above momentum perturbation increases
the kinetic energy of the bond-centered breather by ¢?/2 = 2 - 1078, which is
well-above Epy.

To describe the effect of breather perturbations below the Peierls-Nabarro
barrier, it is convenient to consider the breather energy center

/
Zn +m ne,

n=n'—m

n’+m
Zn:n/—m 67l

X = (24)

with n/ being the location of the maximum energy density of the breather and
m > 0 an integer which accounts for the width of the breather (we have fixed
m = 5). Figure 12 displays X (¢) for c = 3-107% ie. ¢?/2 = 4.5-107"2 lying
below Epy. In that case, only the unstable site-centered breather is able to
move along the lattice (it is able to jump 2 sites but gets pinned subsequently).
For the stable bond-centered breather, a transition from pinning to mobility
is obtained for ¢ > ¢, ~ 6.19 - 1075. The value of the Peierls-Nabarro barrier
resulting from dynamical simulations is thus ¢?/2 ~ 1.92-107'!, which is quite
close to the approximation Epy computed previously.

The same features can be observed for anharmonic on-site potentials, de-
pending on the stability or instability of the site- or bond-centered breather.
More precisely, for s > s}, arbitrarily small perturbations along the pinning
mode put the unstable bond-centered breather into motion, whereas there is
a perturbation threshold for bond-centered breather mobility when s < s}.
Similarly, for s < s§, arbitrarily small perturbations along the pinning mode
give rise to site-centered breather motion, and a perturbation threshold for
site-centered breather mobility is found when s > sj. In addition, in the ab-
sence of a mobility threshold, the escape time of the moving breather diverges

when the size of perturbation goes to 0.
3.8 Waves resulting from a localized perturbation

3.3.1 Traveling breathers, boomerons and surface modes

Having demonstrated the mobility of breather modes in the DpS equation, in
direct analogy with the dynamics of the full oscillator model, we attempt the
excitation of the first site of a Newton’s cradle and the associated DpS chain,
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Fig. 11. Pinning mode (full line) and discrete gradient (dashed line) corresponding
to a bond-centered (left plot) and site-centered (right plot) stationary breather in
system (9), for the breather frequency w, = 1.1. The components of the pinning
mode correspond to particle positions at ¢ = 0 (initial particle velocities vanish).
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Fig. 12. Left plot: energy density plot of a moving breather in system (6)-(8), ob-
tained by perturbing along the pinning mode a bond-centered stationary breather
with frequency w, = 1.1. The initial velocity perturbation has a magnitude
¢ =2-107%, and the traveling breather propagates at velocity v ~ 5.364-10~%. The
same type of perturbation applied to a site-centered breather results in a nearly
identical figure with v ~ 5.446 - 10~* (result not shown). Right plot: time-evolution
of the breather energy center of a bond-centered (full line) and site-centered (dashed
line) breather, for a different velocity perturbation ¢ = 3-107°, which corresponds
to an increase of kinetic energy below the Peierls-Nabarro barrier.

and observe the ensuing space-time evolution.

Consider the equation (12) on a semi-infinite lattice with n > 1 and a free end
boundary condition at n = 1. We numerically compute the solution of (12)
with the initial condition

A1(0) = —i, A, (0) = 0 for n > 2. (25)

It can be clearly seen in Fig. 13 that the result is the formation of a localized
excitation which is traveling robustly through the chain. This is the traveling
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breather resulting from the mobility of the discrete breathers that we consid-
ered before. In addition to this strongly localized excitation, a small amplitude
dispersive wave train having a rather complex structure is emitted from the
boundary. Until relatively large values of 7, the modulus of the solution dis-
plays small variations within an extended region which is broadening with
time (shaded area in the left panel of figure 13) and decays rather sharply
when n is further increased (see the solution profile in the right panel of figure
13). We cannot consider this excitation to be a surface mode of the chain [46],
as its profile is fairly extended and decays slowly with time. It is rather remi-
niscent of a self-similar spreading modulated periodic pattern, as shown by the
space-time diagram of figure 14. At the sharp edge of this regular pattern, high
frequency spatial oscillations are generated in a region which is initially small
but become thicker as time increases. This behavior is reminiscent of dispersive
shocks studied in the FPU model and other nonlinear dispersive Hamiltonian
systems (see [25,15] and references therein). Additional small amplitude trav-
eling breathers eventually escape from the dispersive wave train, as shown in
the right panel of figure 13. In addition, between the large amplitude traveling
breather and the highly oscillatory region one observes a slowly modulated
periodic pattern of very small amplitude. Its structure is detailed in the right
panels of figures 13 (inset) and 14. This pattern appears nearly stationary on
the timescale of the simulation, as shown in figure 14 (left plot).

According to the above numerical observations, the initial perturbation gen-
erates a rather complex dynamics which has yet to be explained. The mod-
ulated periodic wave following the traveling breather and the macroscopic
evolution of the highly oscillatory region might be described in the framework
of Whitham’s equation [15], using periodic traveling wave solutions of the DpS
equation explicitly computed in [32].

For all ¢ > 0 small enough, the above solution of DpS corresponds to an
approximate solution of (9) given by (13), satisfying y2PP(0) = 0, y7*(0) =
2e4+0(%%), 15P°(0) = O(€%/?) and 42PP(0) = 0 for n > 3. Figures 15 compares
this approximate solution and the solution of (9) with initial condition

Yn(0) =0, 9:1(0) =2¢ 9,(0) =0 for n > 2 (26)

for a small value of €. One can see that the DpS equation and the full oscil-
lator model give rise to similar dynamics, i.e. the initial impulse splits into a
traveling breather followed by a small oscillatory tail and a dispersive wave
train. Note that the profiles of the exact and approximate solutions are quite
close over a long transient, but the traveling breather velocity is slightly over-
estimated by the DpS approximation (13). Figure 16 (left panel) describes
the energy density in Newton’s cradle after the initial perturbation (26). The
propagation of a localized excitation at an almost constant velocity is clearly
visible, as well as the broadening and decay of the dispersive wave train emit-
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Fig. 13. Evolution of |A,(7)| under the DpS equation (12), for the initial condition
A (0) = —idp1 (0;; denotes the usual Kronecker symbol). The space-time diagram
(left panel) displays the solution in grey levels. Notice the robust propagating lo-
calized mode (traveling breather), as well as the presence of a weak residual (fairly
extended) excitation near the boundary. The spatial profile of the solution is shown
at two different times (right panel), the blue curve corresponding to 7 = 502.5 and
the black one to 7 = 4000. In the latter case, one can notice the broadening and
decay of a dispersive wave train, and the emission of two additional small ampli-
tude traveling breathers, following the main robust localized excitation. The inset
provides a zoom on a small amplitude extended wave following the main localized
excitation, for 7 = 4000.
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Fig. 14. Real part of the solution A, (7) computed in figure 13. The space-time
diagram (left panel) shows the propagating localized excitation followed by different
modulated spatially periodic patterns. The right panel displays (for 7 = 4000) the
details of the small amplitude oscillations behind the large amplitude traveling
breather.

ted from the boundary. The modulated periodic patterns previously obtained
with the DpS equation correspond (via the ansatz (13)) to modulated periodic
traveling waves propagating in Newton’s cradle. Their structure is detailed in
figure 16 (right panel). The different strips correspond (from top to bottom)
to the traveling breather excitation followed by a small oscillatory tail, and the
dispersive wave train including a highly oscillatory region followed by slowly
modulated periodic traveling waves. As we previously conjectured, different
parts of the wave train might be described (via Whitham’s equation) as mod-
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ulations of the periodic traveling waves analyzed in [32].

The DpS approximation becomes inaccurate when the initial velocity is not
small, but the phenomena described above are still observed provided the
initial velocity is not too large or for sufficiently long chains. In addition, the
dynamics at high initial velocity displays new dynamical features illustrated
by figures 17 and 18 (for 9;(0) = 10° and a chain of 1400 particles). At the
early stage of the dynamics (i.e. over a few periods of local oscillations), a
wave train is emitted from the boundary, with two soliton-like excitations
appearing at its edge (figure 17). This is reminiscent of the phenomenology
described in [26,47]. As the localized waves propagate from one site to the
next, their amplitudes get slowly modulated (for the above initial velocity, the
period of internal oscillations is around 170 times larger than the inverse wave
velocity). The two pulsating solitary waves correspond in fact to a traveling
breather whose internal oscillations are very slow compared to its velocity.
Figure 18 illustrates the traveling breather profile, displaying two different
nearly-symmetric configurations at different times. One can notice important
differences with the case of small initial velocities detailed in figure 15. In the
present case, the breather has a much broader spatial extent and displays a
different velocity profile. In addition, the localized excitation is followed by a
larger (and more irregular) oscillatory tail, in which steepenings of wave crests
give birth to new soliton-like excitations and dispersive shocks.

n

Fig. 15. Left : comparison between the solution of (9)-(26) (black curve) and its
approximation given by (12)-(13)-(25) (blue curve), for a small amplitude initial
excitation with ¢ = 0.9548 - 1073, Particle displacements y,(t) are plotted at a
fixed time t = 13432 (corresponding to 7 &~ 415). The inset displays a zoom on the
traveling breather excitation propagating in the nonlinear chain (9). Right : particle
velocities in system (9) near the traveling breather excitation, at two different times
t = 16173.5 (top) and t = 16177.5 (bottom) where the profiles have two different
odd- and even-parity symmetries.

In what follows we analyze the effect of considering the local anharmonic
potential (10). Due to the smoothness of W, the DpS equation remains un-
changed with respect to the harmonic case, as observed in section 3.1.2. Conse-
quently, the dynamics of (9) after the impact is expected to remain unchanged
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Fig. 16. Left : energy density (23) in system (9) after the initial perturbation (26)
with € = 0.9548 - 1073, plotted for ¢ € [0,5000]. Right : sign of the particle displace-
ments y,(t) in a shorter time interval, for ¢ € [16080, 16180]. White corresponds to
positive values, black to negative values and grey to vanishing displacements.
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Fig. 17. Solution of (9)-(26) for the initial velocity g (0) = 10°. The spatial profiles
of particle displacements (left panel) and velocities (right panel) are plotted at
t = 23.63. Two localized compression waves reminiscent of Nesterenko’s soliton are
visible near the sites n = 280 and n = 244.

for small excitations, on the time scales given in section 3.1.2. However, it is
interesting to examine possible additional effects of anharmonicity occurring
on longer time scales or for large amplitude excitations. For example, a trap-
ping of large amplitude traveling breathers can occur in Klein-Gordon lattices
[12,42], due to the Peierls-Nabarro energy barrier separating site-centered and
bond-centered breathers.

In order to characterize the breather motion we consider the traveling breather
energy center X (t) defined by (24). The average velocity of the traveling
breather is computed as the slope of the linear least squares approximation of
the function X (¢), taking only into account the points for which the traveling
breather is sufficiently far from the boundary in order to eliminate boundary
effects. Figure 19 displays the traveling breather velocity and maximum en-
ergy density (computed from (23)) as a function of the initial velocity ¢, (0),
for different values of the parameter s < 0. As expected, the different graphs
are very close at small initial velocity where the DpS equation drives the dy-
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Fig. 18. Same as in figure 17, with the solution plotted at a later time ¢ = 96.58.
The inset in the left panel details particle positions near the traveling breather
excitation at t = 96.58. The right panel insets provide a zoom on particle velocities
at t = 83.75 (left) and ¢ = 93.15 (right), showing the transition between two different
configurations displaying some imperfect reflectional symmetry.

namics. In this regime, the traveling breather velocity scales as the square root
of the initial velocity, as it follows from the ansatz (13).

Discrepancies with the DpS approximation appear at larger velocities depend-
ing on the magnitude of s. In particular, for s < 0 the graphs of figure 19 are
interrupted above some critical velocities, because the solution blows-up in
finite time when the initial velocity exceeds some threshold. Below this value,
the anharmonicity of the on-site potential with s < 0 decreases the breather
velocity. The energy of the traveling breather (including its kinetic energy)
becomes much smaller because a part of the initial energy remains trapped
in the form of a surface mode located near n = 1. The possibility of excit-
ing a surface mode by an impact was already pointed out in reference [14],
for a mixed Klein-Gordon - FPU chain with a sinusoidal local potential, and
a Morse interaction potential instead of the fully-nonlinear Hertzian interac-
tions. This phenomenon is illustrated in figure 20 for s = —0.7, where the
initial perturbation ¢;(0) = 0.94 generates a surface mode and a traveling
breather of smaller amplitude. In a companion paper [33], we have numeri-
cally computed these surface modes using the Newton method. For s < 0,
we have found spectrally stable surface modes with frequencies ws =~ 1 lying
below to unity (albeit linear instabilities occur at low enough frequencies).
When wy, — 1, their energy and amplitude vanish, opening the possibility of
exciting such modes for arbitrarily small initial velocities of the first particle.

Note that the above-mentioned blow-up phenomenon is due to potential (10)
with s < 0 and does not occur for W(y) = 1 — cosy, which corresponds
e.g. to the gravitational potential acting on the usual Newton’s cradle. In the
latter case, the dynamics resulting from the impact becomes rather similar
to the phenomena studied in [14]. For sufficiently large impact velocities the
traveling breather is replaced by a kink reminiscent of Nesterenko’s soliton
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Fig. 19. Maximum energy density (left plot) and velocity (right plot) of the traveling
breather generated in system (6)-(10) with initial condition (26), for several values
of 91(0) and anharmonicity parameter s < 0.

[47], resulting in the ejection of a finite number of particles at the end of the
chain (result not shown).

Un(t)
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Fig. 20. This figure illustrates the excitation of a surface mode and a traveling
breather in system (6)-(10) with s < 0, following a perturbation of the first particle
(initial condition (26)). Left plot: space-time diagram showing the interaction forces
fn=—(yn— yn+1)i/2 for s = —0.7 and 31(0) = 0.94. Forces are represented in grey
levels, white corresponding to vanishing interactions (i.e. beads not in contact) and
black to a minimal negative value of the contact force. Right plot: snapshot of
particle velocities at ¢ ~ 587, for s = —1/6 and 9;(0) ~ 1.87.

In the case s > 0 of (10) we can observe a different scenario, illustrated by fig-
ure 21 for s = 1. The traveling breather doesn’t move at constant velocity, but
instead behaves like a “bouncing ball” against the boundary at n = 1, i.e. it
experiences alternating phases of deceleration, direction-reversing, accelerated
backward motion towards the boundary, and rebound at the boundary (top
left panel of figure 21). During a few rebounds, the breather center behaves like
a Newtonian particle in an almost constant effective force field, which increases
with the imprinted initial velocity (compare the top and bottom panels) and
with the anharmonicity parameter s (results not shown). Figure 22 displays
a traveling breather profile at the onset of direction-reversing. The rebound
dynamics can be followed by phases of intermittent trapping or erratic motion
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of the breather (figure 21, top right panel).

These traveling breathers with direction-reversing motion are reminiscent of
excitations known as “boomerons”, consisting of direction-reversing solitons
discovered in different kinds of integrable models (see [13] and references
therein), but the link between both phenomena remains quite speculative at
this stage. Although we have no clear explanation of the origin of direction-
reversing for the traveling breather, one possibility might be its interaction
with other nonlinear waves visible in figure 22, which are confined between
the traveling breather and the boundary.

To complete the results of figure 21, it is interesting to notice that the traveling
breather can reach the opposite side of a finite chain before direction-reversal
when s is fixed and ¢;,(0) = 2¢ is sufficiently small. Indeed, the solution of
system (6)-(10) remains close to the DpS approximation for bounded values
of 7 = €'/t (i.e. over long times t = O(e"/?) ) when ¢ is small enough in (26)
2]. According to our numerical observations, the traveling breather solution of
the DpS system (12)-(25) propagates monotonically through the chain. Conse-
quently, the traveling breather solution of (6)-(10) does not display any spon-
taneous direction-reversal while traveling through the chain, provided g,(0) is
small enough. The same phenomenon can occur in a finite chain when ,(0)
is fixed and s > 0 is small enough, since spontaneous direction-reversal is
not observed for s = 0, and the trajectories of (6)-(10)-(26) depend contin-
uously on s € [0,400) in the uniform topology on bounded time intervals.
However, on the basis of numerical simulations realized for different values of
s and initial velocities, we conjecture that direction-reversal may take place in
semi-infinite chains as soon as s > 0 and 7;(0) # 0 in (26). According to the
above arguments, we expect the first direction-reversal to occur at some time
t = T'(e, s) satisfying lim,_ (61/2T(€, s)) = +oo and lim,_ g+ T'(€, s) = +00.

Lastly, we would like to comment on the absence of surface mode excitation
observed in figure 21 for s = 1. In the work [33], we have computed surface
mode solutions of the chain for s = 1 using the Newton method. We have
obtained spectrally stable surface modes with frequencies lying above (and
close t0) wmin &~ 1.96, whose energies lie above some finite threshold. Such
modes cannot be excited with the initial perturbations considered in figure
21, whose energies lie well below this excitation threshold.

3.3.2  Traveling breathers resulting from impacts in stiff Newton’s cradles

As seen in the previous section, a small velocity perturbation at the end of
a Newton’s cradle results in the propagation of a highly localized traveling
breather at an almost constant velocity, well separated from a much slower
dispersive wave train. This dynamics is driven by the DpS equation governing
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Fig. 21. Illustration of the direction-reversing phenomenon occurring during trav-
eling breather propagation, for the on-site potential (10) with s = 1 and an initial
condition of the form (26). The space-time diagrams indicate the energy density
(23). The upper left plot corresponds to ¢1(0) = 1.9. During a few rebounds, the
breather center behaves like a Newtonian particle in an almost constant effective
force field, alternating phases of deceleration, direction-reversing, accelerated back-
ward motion and rebound at the boundary. The upper right plot corresponds to
larger integration times, on which an erratic breather motion and phases of in-
termittent trapping can be observed. The bottom plot corresponds a lower initial
velocity 91(0) = 1.5, for which the traveling breather deceleration becomes much
smaller.

the nonlinear evolution of small initial data over long (but finite) times. When
the initial velocity is not small, we have identified in Newton’s cradle different
types of dynamical phenomena which are not described by the DpS equation.
These phenomena depend on the on-site potential : observation of soliton-like
localized waves at high initial velocities for harmonic potentials, excitation of
a surface mode of significant amplitude for soft potentials, and generation of
a direction-reversing traveling breather for hard potentials.

In this section, we analyze conditions under which mechanical systems in-
volving Hertzian interactions and local potentials do not exhibit the above
phenomena, so that the main pressure wave propagates almost freely in the
form of a highly localized traveling breather. For this purpose, we have to
discuss under which physical conditions the DpS equation drives the dynam-
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Fig. 22. Particle velocities for s = 1 and the initial condition (26) with y;(0) ~ 1.87.
The traveling breather profile is shown at two different times close to direction-re-
versing (the left panel corresponds to t ~ 238, and the right panel to ¢ ~ 241).
Nonlinear waves confined between the traveling breather and the boundary are also
visible.

ics. This analysis is done in section 3.3.2.1, where we derive a dimensionless
parameter A\ characterizing the DpS regime. From this study, we recover the
fact that the usual Newton’s cradle acting under gravity lies far beyond the
DpS regime (it supports soliton-like excitations instead of traveling breathers
[26,47]). However, the analysis of section 3.3.2.1 can be used as a guide to define
other mechanical models supporting traveling breather excitations. In section
3.3.2.2, we introduce such a system consisting of a chain of stiff cantilevers
decorated by spherical beads, calibrated using realistic material parameter
values.

Traveling breathers described by the DpS equation could have interesting ap-
plications for the control of stress waves in granular systems, since they allow
for a coherent and highly-localized energy transport. Moreover, the internal
oscillation of traveling breathers may allow resonance phenomena to occur,
opening e.g. the possibility of breather interactions with defect modes of the
chain. As an application, we show in section 3.3.2.2 that the above cantilever
chain can act effectively as a granular shock reflector.

3.3.2.1 Dimensional analysis of the DpS limit In sections 3.1.2 and
3.3.1, we have described the DpS limit and the associated dynamical regime for
equation (9) written in a normalized form (or for its generalization with local
anharmonicity (10)). In this section, we consider a chain of identical beads of
mass m sitting in local anharmonic potentials, described by the Hamiltonian

5

4

2
2t Z (@ — 20) Y, (27)

m . k

where 7 is the nonlinear stiffness of Hertzian interactions, k the linear stiffness
of local potentials and s measures the strength of local anharmonicity. Our
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aim is to analyze the evolution of the initial condition
2,(0) =0, 2,(0) =V ,,1. (28)

In what follows, we use suitable scalings to rewrite this problem in normalized
form. This allows us to analyze in which parameter regime the DpS equation
drives the dynamics, which induces the propagation of a traveling breather
as described in section 3.3.1. As we shall see, this case occurs when the ini-
tial velocity is sufficiently small compared to a reference value depending on
parameters.

Let us first consider two interacting beads, one being initially at rest and the
other having an initial velocity V', and temporarily neglect the local restoring
force of the on-site potentials. After collision, their contact time is approxi-
mately equal to 2.43 73, with 75, = [m?/(¥?V)]/®, and their maximal compres-
sion distance is close to 0.76 5, where § = (mV?/)?° [39,17]. Moreover, the
stiffness constant of Hertzian interactions linearized at precompression 9§ is of
the order of k; = YV9.

Including back the local restoring forces, the displacement £ at which Hertzian
and local forces equilibrate satisfies v¢%2 = k¢ and is given by ¢ = (k/v)2.
In addition, the period of local oscillations is 277, with 7. = (m/k)'/2.

Now we are ready to perform a suitable rescaling of (27). Setting z,(t) =
€ yn(t/7.), the Hamiltonian (27) is mapped to the normalized form (6)-(10)
with s = 5¢2/k. Moreover, the initial condition (28) reads in dimensionless
form

yn(o) =0, yn(o) = \*/? 5n,17 (29>
where p
A= ?" (30)

measures the relative strengths of the Hertzian interaction at initial velocity
V and the local potential. Since x; = m/77, we have equivalently

m

A= —
kr?’

(31)

i.e. \1/2 measures (up to a multiplicative constant) the relative duration of
local oscillations and binary collisions of free beads.

From (29) and the results of section 3.3.1, we deduce that the DpS regime
giving rise to (almost) freely-propagating breathers takes place when A%/? is
small enough. According to definition (30), the linear stiffness of local oscilla-
tors must dominate the effective Hertzian stiffness «;,, which depends on the
initial velocity. Equivalently (from equation (31)), local linearized oscillations
must be sufficiently fast compared to the collision of two free beads occurring
at the given initial velocity. In addition, one can observe that \>/? = V/V,
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with V, = m~Y2 k52 ~4=2. Consequently, the DpS equation drives the dynam-
ics when the initial velocity is small compared to the reference velocity V.
determined by the model parameters.

To illustrate the above computations, let us consider the excitation of the first
bead of a classical Newton’s cradle (as represented in figure 1), in which the
local potential is due to gravity. In this system, impact propagation is usually
analyzed under the assumption of small bead displacements [28], leading to
the case § = 0 of (27). The period of local oscillations (generally of the order
of a second) being much larger than the collision time between two beads
(typically of the order of 0.1 ms [39]), we are then extremely far from the DpS
regime. For example, for a classical Newton’s cradle with strings of length
50cm and binary collision time 2.437, = 0.077ms (value taken from [39]
for an impact velocity of 1.1 m.s™!), one obtains A\*/? ~ 1.75 - 10". In that
case, the propagating wave takes the form of a soliton-like excitation which is
reminiscent of the primary compression pulse represented in figure 17.

In section 3.3.2.2 below, we introduce a mechanical system for which local
oscillators are much stiffer and the DpS dynamics becomes relevant.

3.3.2.2 Application to a chain of cantilevers decorated by spherical
beads Several types of mechanical models have been devised to analyze
the properties of discrete breathers experimentally, see e.g. [11,54,37,23]. In
this section we introduce a simplified model of the cantilever system sketched
in figure 1 (right picture). We consider the form (27) analyzed previously
(restricting ourselves to harmonic on-site potentials) and examine the more
general situation when the lattice is spatially inhomogeneous. With this model,
we shall observe that a moving breather generated by an impact on the first
cantilever can be almost totally reflected by a localized impurity corresponding
to a moderate increase of the bead radii on a single cantilever.

We begin by introducing a simplified model of the cantilever system of (the
right panel of) figure 1, where cantilever compression is neglected and bead
deformations are treated quasi-statically. More precisely, each bead is seen as
an elastic medium at equilibrium, clamped at a cantilever at one side, and
either free or in contact with one bead of a neighboring cantilever at the
opposite side. So any bead deformation is fully determined by two cantilever
positions, and can be approximated by Hertz’s contact law. In addition, each
cantilever decorated by two spherical beads is described by a point-mass model
which approximates the dynamics of the slower bending mode, following a
classical approach in the context of atomic force microscope cantilevers [52].
Under these approximations, our model incorporates a single degree of freedom
per cantilever, namely its maximal deflection.

34



The point-mass model is obtained as follows. Using a rod model and under the
assumption of small deflection, a cantilever clamped at both ends and bent by a
force applied to its mid-point can be represented by an equivalent linear spring
of stiffness k = 192 £ I¢~3, where E is the cantilever’s Young modulus, /¢ its
length and I = w h3/12 its area moment of inertia, w, h denoting the cantilever
width and thickness respectively (see e.g. [38], pp. 77 and 81). For a cantilever
without attached beads, the first bending mode frequency satisfies wyi, ~
22.4[EI/(pA)]*/20=2 ([38], p.102) where p denotes the cantilever density and
A = w h its cross section. A single cantilever is then represented by an effective
mass m* = k/w?, =~ 0.38m,, where m, = pAl is the exact cantilever mass.
The effective mass of a cantilever decorated by two beads of masses my is
then m = m* + 2m,,. For beads of radius R and density d we fix consequently

m = 0.38m, + (8/3)mdR3.

Now let us describe the model for a one-dimensinal chain of such cantilevers,
where all beads are made of the same material with Young’s modulus £ and
Poisson coefficient v. We denote by R, = R Ji’n the radius of the two beads of
the nth cantilever (R being a reference value and R,, an adimensional number),
7, (t) the maximal cantilever deflections and m,, = 0.38 m, + (8/3)7dR3 their
effective masses. The array of decorated cantilevers is then described by the
Hamiltonian

My . k 2
Ho=30 5 i+ 5+ & (e — 2nen) Y, (32)
where v, = 7, is the nonlinear stiffness constant of Hertzian interactions
EV2R
T N ~ 3(1—v2)
and 1, = 2R,Rny1/(R, + Rui1)]Y? (see e.g. [38]). Note that m, and 7,
are constant in the particular case when R, is constant, which leads to the

homogeneous system (27) (or its normalized form (6)) previously analyzed.

between two beads on different cantilevers n and n+ 1, defined by v =

Setting x,(t) = {y,(t/7.) as in section 3.3.2.1, the Hamiltonian (32) yields
the following equations of motion in dimensionless form

. 3/2 3/2
M Yn + Yn = 77n—1(yn—1 - yn)—i-/ - nn(yn - yn-i-l)—i-/ ) (33)

where p1,, = m,,/m. In particular, if all beads have radius R (i.e. R, = 1) then
Nn = fn = 1 and one recovers system (9).

Our main purpose is to analyze an impact problem in a chain of N cantilevers
with free end boundary conditions, where the first cantilever is hit by a striker
at t = 0. For this purpose we consider a simpler initial condition where all
cantilevers with index n > 2 are initially at rest and the first cantilever has
initial velocity V' and zero deflection. This corresponds to fixing the initial
condition (28), which yields (29) in rescaled form.
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Numerical simulations are performed for a chain of N = 200 stainless steel
cantilevers with p = 8 - 103kg.m™3, £ = 193 GPa, ¢ = 25 mm, w = 5 mm,
h = 1 mm, decorated by teflon beads with d = 2.2-103kg.m™3, £ = 1.46 GPa,
v = 0.46 [51]. All beads have radius R = 2.38 mm, except at the middle of
the chain where Rloo can be tuned.

We fix the impact velocity V = 1m.s™!, which yields 7, ~ 0.047 ms. Since
7. ~ 0.025 ms, we have A /= 0.29 and \*/? is small. Consequently, according to
the results of section 3.3.2.1, the DpS approximation is valid in the spatially
homogeneous case, or in sufficiently long homogeneous segments of a chain
including defects. As a result, the initial impact generates a traveling breather
and a fairly extended wave train emitted from the boundary, as previously
described in section 3.3. From our simulations, the traveling breather velocity
is close to 2030 sites per second. Evaluating the traveling breather charac-
teristics at n = 80, we find a maximal bead velocity close to 0.5m.s™! (i.e.
half the impact velocity), a maximal cantilever deflection close to 11 ym and a
maximal interaction force close to 2.8 N. The pulse duration is close to 3.8 ms
and the period of internal oscillations close to 0.14ms ~ Ty/(1.1), Ty = 277,
being the period of linear local oscillations.

When the breather reaches the defect site, it appears to be almost totally
reflected for a large enough inhomogeneity, whereas it remains significantly
transmitted for a sufficiently small inhomogeneity. This phenomenon is illus-
trated by figure 23, which compares the cases Rigo = 1.6 (almost total reflec-
tion) and Rio = 1.1 (partial reflection), showing the high sensitivity of the
reflection to the strength of the inhomogeneity. After the breather reflection
by the defect for Rigo = 1.6, a small part of the vibrational energy remains
loosely trapped near the defect site (an excitation not visible in figure 23 due
to smallness of interaction forces). Such phenomena resulting from breather-
defect interactions have been already numerically observed in different types of
Klein-Gordon lattices (see [63,9] and references therein). In the present model,
almost total reflection occurs for physically realistic parameter values, which
suggests potential applications of such systems as shock wave reflectors.

To close this section, let us note that the other dynamical regimes identified in
section 3.3 may be also of practical interest. Another shock-redirection mech-
anism exists for hard anharmonic on-site potentials, which yield direction-
reversing traveling breathers for large enough impact velocities (see figure
21). This suggests that both reflection mechanisms (based either on defects
or hard local anharmonicity) could be combined to devise an efficient shock
wave reflector working for a large range of impact velocities. In addition, the
surface modes observed for a soft on-site anharmonicity may have potential
applications for energy scavenging, or for the design of acoustic diodes [4].
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Fig. 23. Space-time diagrams showing the interaction forces f,, = —yn(xn —Tp41)7
in system (32) for the impact problem described in the text (forces are expressed
in V). Forces are represented in grey levels, white corresponding to vanishing in-
teractions (i.e. beads not in contact) and black to a minimal negative value of the
contact force. Left plot : Ry = 1.6. Right plot : Rygp = 1.1.

4 Traveling breathers under precompression

In section 3 we have analyzed the properties of discrete breathers in chains of
oscillators coupled by fully nonlinear Hertzian interactions. We have obtained
highly-localized static breathers, which display a super-exponential spatial
decay and have an almost constant width in the small amplitude limit. More-
over, small perturbations of the static breathers along a pinning mode generate
traveling breathers propagating at an almost constant velocity with very small
dispersion.

These properties are largely due to the fully-nonlinear coupling between oscil-
lators, which reduces the phonon band to a single frequency. Intuitively, the
absence of linear coupling terms enhances localization, because linear disper-
sion tends to disperse localized wave packets. Though this phenomenon can
be compensated by nonlinearity, breathers in nonlinear lattices with phonon
bands generally have a slow exponential spatial decay in the limit of vanishing
amplitude (see e.g. [30,31]). Moreover, due to resonance with phonons, exact
traveling breathers are generally superposed on nondecaying oscillatory tails,
a phenomenon mathematically analyzed in a number of works (see [56,29,49]
and references therein). Only under special choices of the speed (or the system
parameters) can it then be the case that the amplitude of these oscillatory tails
exactly vanishes [44,45].

Due to these noticeably different breather properties in the presence or absence
of phonon band, it is interesting to consider physical systems possessing a
tunable phonon band, allowing to pass from one situation to the other. This
is the case in particular for granular crystals under tunable precompression,
since the latter results in a perturbation of the interaction potential inducing
an additional harmonic component.
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In this section, we incorporate the precompression effect to model (6), for-
mally analyze the existence of discrete breathers through the phenomenon of
modulational instability, and numerically demonstrate that the existence of a
phonon band can drastically modify the outcome of an initial impact.

4.1 Granular chain under precompression, and correspondence to the NLS
equation

We consider the system (6)-(10) with the modified interaction potential

2 2
V) =2 (d=n*+dr - 2, (34)

where d > 0 is a parameter. We have thus for r ~ 0

2 3 A
V(T’) = U1 5 + vy g + vs Z + O(|T|5),
with v, = 3d%, vy = —2d™/% vy = —d~%2 This modified potential pos-

sesses a harmonic component of size d*/? in the neighborhood of the origin, and
it becomes linear for r > d. The first term of (34) corresponds to the classical
Hertzian potential including a precompression effect. For example, this type
of interaction can be achieved in the cantilever system of figure 1 by applying
a force at both ends when the cantilevers are unclamped, which results in a
uniform compression of all the beads by a distance d, and by clamping the
cantilevers at this new equilibrium state. The second and third terms of (34)
do not modify the equations of motion, and just aim at putting the modified
Hertz potential in a standard form with V(0) =0, V'(0) = 0.

System (6)-(10)-(34) consists of a mixed Klein-Gordon - FPU lattice. The
dynamical equations linearized at y, = 0 admit solutions consisting of sinu-
soidal waves (or phonons) y,(t) = Ae'@=“Y 4 c.c., which obey the dispersion
relation

w?(q) = 14 2v;(1 — cos q), (35)

where g € [0, 7] denotes the wavenumber and w the phonon frequency. Due to
precompression, phonon frequencies belong now to a band of finite width (of
size O(d"/?) when d ~ 0).

For this class of systems combining anharmonic local and interaction poten-
tials, the modulational instability (MI) of small amplitude periodic and stand-
ing waves has been studied in a number of references (see e.g. [18,35]). This
phenomenon can be analyzed through the continuum nonlinear Schrodinger
equation, which describes the slow spatio-temporal modulation of small am-
plitude phonons under the effects of nonlinearity and dispersion. Indeed, from
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the general results of [21,22], system (6)-(10)-(34) admits solutions of the form
Yn(t) = € A[*t, e(n — ct)] 9D 4 ce. + O(¥/?) (36)

on time intervals of length O(e?) (e being a small parameter), where A(T,¢)
satisfies the NLS equation

104 = —%w”(q) G2A + h|APA. (37)

In the above expressions, w is given by (35), ¢ = w'(q) is the group velocity,
h = f/w, w” = vjwy/w and we have (see [21], equation (2.12) p. 557)

16v3(sing)?(1 — cosq)? 3 )
- 2 4ug(1 —
b 4v1(1 —cosq)? +3 +2[ vs(1 = cosq)” + 5],

W9 = COSq — —Ul SiIlq 2.
2
w

The so-called focusing case of the NLS equation [48] occurs for w”(q) h < 0,
i.e. under the condition

Y —Buw, > 0. (38)

In that case the spatially homogeneous solutions of (37) given by A(7) =

i 2 . . .
ro e "h707 are exponentially unstable, with maximum growth rate oma.x =
|h| 75

To analyze the occurrence of MI, one can observe that w(q) admits a unique
inflection point in the interval (0,7), at the wavenumber ¢ = ¢. € (0,7/2)
satisfying cosq. = v1 (1 — cosq.)? In the generic case when (3(q.) # 0, it
follows that ® changes sign at ¢ = ¢. (since wy changes sign). Consequently,
MI generically occurs for wavenumbers in some interval lying at one side of ¢..
This interval may extend or not up to one edge of the phonon band, depending
on parameter values. For ¢ = 0 (in-phase mode) the condition ® > 0 reduces
to s < 0, and for ¢ = m (out-of-phase mode) it reduces to 16vs + s > 0 (these
conditions have been also obtained in [18] through a Hill’s type analysis).

Another important property of the focusing case of the NLS equation (37) is
the existence of sech-shaped soliton solutions [48]. By the ansatz (36), these
solutions yield small amplitude solutions of (6)-(10)-(34) taking the form

ei[qn—(w—EQw”/2)t+<p}

cosh [e(n — ct)]

yn(t) = e M + c.c. + O(e¥?) (39)

on time intervals of length O(e~2), with M = (—w"/h)'/2. Such solutions there-
fore correspond to “long-lived” traveling breather excitations of the chain.
The existence of exact (permanent) traveling breather excitations close to
the form (39) is a delicate question. This result has been proved in special
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cases for Klein-Gordon lattices (i.e. chains of linearly coupled nonlinear oscil-
lators) and FPU lattices, see [56,29] and references therein. These traveling
breather solutions have been obtained as small amplitude homoclinic orbits
of an advance-delay differential equation lying on a finite-dimensional center
manifold. The homoclinic orbits converge at infinity towards a periodic orbit,
whose size can be made exponentially small with respect to the amplitude of
the homoclinics, but does not generically vanish. As a result, the traveling
breathers can be seen as coherent structures connecting two identical wave
trains, whose amplitude can be made exponentially small in € (such waves
are called “nanopterons”, following the denomination of [5]) . Of course, these
results do not directly apply to the study of traveling breathers in system
(6)-(10)-(34) including both an anharmonic interaction potential and an on-
site potential. However, in principle only minor adaptations of the analysis of
[29] should be required to prove the same type of results (due to the evenness
of W, which preserves the reversibility symmetry of the FPU system used in
[29]).

From the above theory, one can drawn several differences with respect to the
case without precompression studied in section 3, linked with different features
of the NLS and DpS asymptotic limits. Firstly, the anharmonicity parameter
s enters the cubic coefficient h of the NLS equation, thereby influencing the
focusing or defocusing dynamics of small modulated periodic waves. On the
contrary, the DpS equation (12) does not depend on s, as well as the evolution
(over long finite times) of small initial data in (6)-(7)-(10). In addition, the
profile of (39) becomes loosely localized in the small amplitude limit e — 0.
This is in contrast with the traveling breathers numerically obtained in section
3.3 in the DpS regime, which are well described by the approximation (12)-
(13)-(25), resulting in a constant width in the small amplitude limit. Such
differences suggest that the outcome of an impact may be considerably affected
by the precompression, and strongly differ from the phenomenology described
in section 3.3. This problem will be numerically examined in the next section.

4.2 Excitation of traveling breathers

In the numerical simulations performed in this section, we fix d = 1/2 so that
v ~ 1.06, vo =& —0.53 and v3 ~ —0.17, ¢. = 1.17, and we consider different
values of the anharmonicity parameter s =1, s =0 and s = —1/6.

Before analyzing the excitation of the first site of the precompressed chain
(and comparing the results to the study of section 3.3), we illustrate below
some features of the MI that will help to interpret the results. For all the above
parameter values, there exists a band of unstable phonon modes characterized
by ®(¢) > 0 within the NLS approximation. This band and the graph of ® are
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shown in figure 24. In addition, the graph of |h(q)| indicates the strength of
the MI (since the maximum exponential growth rate is proportional to |h(q)]
at fixed wave amplitude).

®, |h|

b $ gv

»%ﬂ | IR < IR
3

Fig. 24. Graphs of the MI coefficients for different values of s, corresponding to s = 1
(top), s = 0 (middle) and s = —1/6 (bottom). In each panel, the black curve shows
the MI coefficient ®(q) defined by (38) as a function of wavenumber ¢. Modulational
instability occurs in the bands where ® > 0, delimited by red lines. The blue curve
displays the absolute value |h(q)| of the cubic coefficient of the NLS equation (37),
which is proportional (up to a factor depending solely on wave amplitude) to the
maximum instability growth rate of the unstable mode with wavenumber q.

To illustrate the MI phenomenon, we integrate (6)-(10)-(34) numerically for
initial conditions

z,(0)=a sin (¢gn) (1 + b cos (2nmw/N)), (40)
£, (0) =—aw cos (qgn) (1 + b cos (2nm/N))

corresponding to slowly modulated phonons, with ¢« = 0.15, b = 0.01, a
wavenumber ¢ in the band of unstable modes (see fig. 24), and w determined
by (35). We consider a chain of N particles with periodic boundary conditions.
Figure 25 displays the results for s = —1/6, ¢ = 7/4 and N = 200. The initial
perturbation generates a traveling breather over a long transient (at the end
of which a splitting of the pulse occurs). The same phenomenon occurs for
s = 1 and s = 0, albeit the latter case results in slower instabilities and less
localized traveling breathers (results not shown).

According to the above computations, long-lived traveling breathers with pro-
files reminiscent of (39) can be generated from slow modulations of small
amplitude unstable phonons, in qualitative agreement with the focusing dy-
namics of the NLS equation [48]. This raises the question of the excitation of
traveling breathers from other types of initial conditions for which a rigorous
connection with the NLS equation (such as the results of [21,22]) is not yet
available. This problem is examined below for a localized impact. We keep
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Fig. 25. Evolution of particle positions in the system (6)-(10)-(34) with periodic
boundary conditions (N = 200 particles). We consider the case s = —1/6 with
precompression d = 0.5. The initial condition (40) is plotted in the left panel (case
q = w/4). Particle displacements plotted at time ¢t = 6619 (right panel) reveal
the formation of a traveling breather resulting from a modulational instability (the
envelope propagates rightwise).

the same values of parameters d, s and integrate (6)-(10)-(34) numerically (for
free end boundary conditions), starting from the initial condition (26) with
91(0) ~ 1.87. Depending on the value of s, the initial excitation may lead to
different dynamical phenomena, and notable differences with respect to the
case without precompression are always observed. We shall formally interpret
these results in the framework of the NLS approximation, taking into account
different features of the MI depending on s. However, these arguments have
to be considered with caution, since the link between the NLS dynamics and
the one of the original lattice has been only mathematically established for
well-prepared small initial data in [21,22].

The case s = 1 is described in figure 26, which shows the particle velocity
profiles at two different times. The initial perturbation generates a dispersive
wave train of substantial amplitude, the edge of which propagates at a velocity
close to the maximal group velocity w'(q.). A traveling breather reminiscent of
the sech-type envelope solitons (39) appears after the impact. It forms around
t = 290 at the edge of the dispersive wave train, where the linear growth rate
of the MI is maximal (since |h| is maximal at ¢ = ¢. in the band of unsta-
ble modes, see figure 24). As expected, the traveling breather is much less
localized than the ones previously obtained without precompression (compare
figures 26 and 22). The “boomerang effect” that occurs without precompres-
sion disappears, but a slowing-down of the localized wave still occurs when
time increases. As a result, the traveling breather becomes ultimately super-
posed on an oscillatory tail at both sides of the central pulse, which yields a
profile reminiscent of the waves computed in [57] (see also [5,45]). This dynam-
ical behavior is consistent with the “generic” existence of a small non-decaying
oscillatory tail propagating with exact traveling breather solutions in standard
nonlinear Hamiltonian lattices, as discussed in section 4.1.

42



The cases s = —1/6 and s = 0 yield a different situation described in figure
27. The initial localized perturbation generates an important dispersive wave
train, and no traveling breather is excited, at least on the time scales of the
simulation. The differences with the case s = 1 may be formally explained
by some qualitative changes in the features of MI. Indeed, for s = —1/6 the
maximal growth rate of the MI is almost constant among the unstable modes
(in contrast with the case s = 1), hence none of them becomes dominant
during the initial stage of the instability. Moreover, for s = 0 one can notice
that A is much smaller inside the band of unstable modes. Within the NLS
approximation, this implies that the most unstable mode grows around 20
times slower than for s = 1, according to the values of |h(q.)| indicated in figure
24. Consequently, MI may not be able to develop significantly at ¢t ~ 4400
(figure 27). In addition, the range of applicability of the NLS equation is itself
questionable, since quintic terms or additional modes may not be negligible
due to the smallness of the cubic coefficient h. For s = —1/6 and s = 0, the
modulated wave trains following the main disturbance might be in fact better
described by Whitham’s equation, as for the dispersive shocks occurring at
wavebreaking in hyperbolic continuum limits of Hamiltonian lattices [15,25].

For s = —1/6 and s = 0, the difference with the case without precompres-
sion is again striking since neither a traveling breather nor a surface mode are
generated (compare figure 27 with figures 15, 18 and 20). As a conclusion, ac-
cording to our results, the precompression attenuates spatial localization, en-
hances dispersion and modifies the effects of the on-site anharmonicity. These
phenomena originate from the additional linear component embedded within
the Hertzian interactions, and are partly related to the different properties of
the NLS/DpS asymptotic regimes.

Un(t)

T T T -o. T T T T T T T
0 150 200 250 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050

Fig. 26. Snapshot of particle velocities in system (9)-(10)-(34) with anharmonicity
parameter s = 1 and precompression d = 0.5, for the initial condition (26) with
91(0) ~ 1.87. The profile is plotted at two different times ¢ ~ 291 (left panel), and
t ~ 3000 (right panel), showing the formation of a traveling breather surrounded
by a sizeable dispersive wave train.
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Fig. 27. Same as in figure 26, with a snapshot of particle velocities at t ~ 4399 for
s =0 (left panel) and s = —1/6 (right panel).

5 Conclusion

We have analyzed the properties of discrete breathers in FPU lattices and
mixed FPU-Klein-Gordon lattices with Hertzian interactions. While static
breathers don’t exist in the absence of precompression and of onsite potentials,
the addition of the latter creates highly localized breathers, which display a
particularly strong mobility, a phenomenon well-described by the DpS equa-
tion in the small amplitude regime and associated with the spectral properties
(i.e., the pinning mode) of such states. Beyond the DpS limit, we have identi-
fied different phenomena depending on the softening or hardening character of
the local potential, namely the generation of a surface mode after an impact
or the existence of direction-reversing traveling breathers. Importantly also
the stability of both the on-site and inter-site breather states obtained was
critically dependent on the strength (and sign) of the anharmonicity.

We have also introduced a mechanical model consisting of a chain of stiff
cantilevers decorated by spherical beads, which may allow to realize the above
localized excitations. According to our study, an impact at one end of the
cantilever chain should generate a highly-localized traveling breather. In this
regime, contrary to what is the case for a regular cradle under gravity, the
ranges of parameters of the problem (e.g., beads of about lem diameter, loads
of about 1N, and cantilever width of about lem) are deemed relevant for the
observation of such breathers and for the description of the system by the DpS
approximation examined herein.

Obviously, one has to stress that the lattice model (33) is simplified and im-
portant corrections may apply, in particular to describe the anharmonicity
of cantilever bending vibrations, or to take into account possible additional
relevant degrees of freedom. In this context, a finite-element modeling would
be helpful to validate the model and improve its calibration. In addition, it
would be important to take dissipation into account, following e.g. the ap-
proach of [6]. Since many sources of dissipation are present (friction, plasticity
effects, transmission of vibrational energy through the walls), one can won-

44



der if dissipation may overdamp the dynamics and completely destroy the
breathers. However, recent experimental results [3] have demonstated that
static breathers with lifetimes of the order of 10 ms could be generated in
diatomic granular chains. During this time, the moving breather computed in
section 3.3.2.2 would travel over approximately 20 sites (performing roughly
70 internal oscillations), which would allow for an experimental detection,
provided this excitation persists in the presence of dissipation, with mod-
erate changes in velocity and frequency. Although the setting of decorated
cantilevers proposed herein would have the additional source of dissipation
through radiating energy into the ground (through the clamping of the can-
tilevers), it is certainly deemed worthwhile to consider such experimental se-
tups and to examine systematically the resulting dynamics.

A different approach which may allow to generate static breathers is linked
with modulational instability. Indeed, static breathers have been excited by
modulational instabilities in experiments on diatomic granular chains [3], a
phenomenon also numerically illustrated in Newton’s cradle [32]. In this re-
spect, an extensive study of MI in the cradle model (with the help of the
DpS equation) would be of interest. A related aspect concerns the actuation
of the system through the driving of a bead with a particular frequency. In
fact, the experiments of [3] were realized based on such actuation of the chain
at modulationally unstable frequencies rather than the generation of suitable
spatially extended, modulationally unstable states. In that regard, it should be
noted that it is not straightforward to experimentally initialize desired spatial
profiles throughout the lattice in this system.

As we have seen, static breathers may be deformed by weak instabilities re-
sulting in a translational motion and traveling counterparts thereof. However,
in an experimental context, these weak instabilities are likely to be irrelevant
due to dissipation. To fix the ideas, let us assume a breather lifetime of the
order of 10 ms in the presence of dissipation, as in the experiments of [3]. In
the computations of section 3.3.2.2, the breather periods at small amplitude
were (roughly) close to 0.15 ms, therefore unstable Floquet eigenvalues 1 + €
would have an effect over times of order 0.15¢~! ms. Consequently, dissipation
should destroy the breather well before the instability becomes observable as
soon as € < 0.015, and thus the instabilities identified in section 3.2.2 (where
€ < 1073) would be largely dominated by dissipative effects.

On a more theoretical side, an open problem concerns the study of traveling
breathers in the absence of precompression. In the above numerical computa-
tions, approximate traveling breathers were generated by the dynamics after
an impact at one end of the chain. It would be interesting to compute exact
traveling breather solutions using the Newton method, as done in references
[1,57,45] for other types of lattice models. Motivated by the observation of a
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small oscillatory tail following the traveling breather in figure 14, we expect (as
found in the above references) the existence of traveling breathers connecting
families of periodic orbits at infinity. In that case, it would be interesting to
determine if the minimal amplitude of the oscillatory tails may exactly van-
ish, as observed in the saturable DNLS equation for particular wave velocities
[44,45]. From an analytical point of view, small amplitude traveling breathers
bifurcating from the ground state are known to exist in FPU and Klein-Gordon
lattices [29,56]. These waves are superposed on a non-decaying oscillatory tail
which can be made exponentially small with respect to the breather ampli-
tude. As previously mentioned, they have been obtained as trajectories of an
advance-delay differential equation lying on a finite-dimensional center man-
ifold, and homoclinic to a periodic orbit at infinity. Extending this approach
to the present case would be very interesting but quite technical, because one
should consider center manifolds of periodic traveling waves instead of working
near the ground state. This comes from the fact that the dynamical equations
(9) are fully nonlinear, i.e. their linearization around the trivial state yields
uncoupled linear oscillators.

Lastly, the existence (and physical explanation) of direction-reversing travel-
ing breathers remains to be elucidated. Furthermore, it would be relevant to
understand in more detail the nature of interactions of the traveling breathers
with static defects [63,9] or extended waves [53].
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