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In this work, we examine the collision of an atomic dark-bright soliton, in a two-component
Bose-Einstein condensate, with a Gaussian barrier or well. The study has both an experimental
component and a theoretical/computational one. First, we present the results of an experiment,
illustrating the classical particle phenomenology (transmission or reflection) in the case of an equal
barrier or well in both components. Then, motivated by the experimental observations, we perform
systematic simulations considering not only the case of equal heights, but also the considerably more
complex setting, where the potential affects only one of the two components. We systematically
classify the ensuing cases within a two-parameter diagram of barrier amplitudes in the two compo-
nents, and provide intuitive explanations for the resulting observations, as well as of their variations
as the size of the barrier changes.

I. INTRODUCTION

Atomic Bose-Einstein condensates (BECs) [1, 2] provide an ideal platform for the study of nonlinear phenomena at
the mesoscopic scale (see, e.g., the reviews [3–6]). In this context, of particular interest are multi-component BECs,
which – in their simplest version – are composed of two different hyperfine atomic levels of the same atom (e.g., 87Rb
[7, 8]). In such systems, a rich variety of structures can be observed, which can not arise in single-component BECs.
Regarding macroscopic nonlinear excitations of multi-component BECs, a distinctive feature of interest involves
the potential formation of dark-bright (DB) solitons. This type of vector soliton consists of a dark soliton in one
component coupled to a bright soliton in the second component. These solitons in repulsive homogeneous BECs
are usually referred to as “symbiotic” solitons, with this characterization stemming from the fact that the bright
component cannot be supported in a stand-alone fashion (it is only supported as such in attractive BECs [9, 10]; see
also the review [5]), and is only sustained because of the presence of its dark-counterpart, which acts as an external
trapping potential. We highlight here the fact that we refer to homogeneous BECs, as in the presence of external
potentials (such as optical lattices [11]), bright localized structures can be sustained but are critically shaped by the
form of the potential.
Dark-bright solitons have been studied extensively in different settings in a large number of theoretical works (see,

e.g., Refs. [12–21]), while they have also been observed in experiments, both in two-component 87Rb BECs [22–27]
and in nonlinear optics [29–31]. In the BEC context, these experimental studies have chiefly involved the dynamics
of a single DB soliton in a trap [22, 24], the generation of multiple DB solitons in a counterflow experiment [23], the
study of their interactions [25], as well as the creation of SU(2)-rotated DB solitons, in the form of beating dark-dark
solitons [26, 27].
On the other hand, the fundamental problem of the interaction of solitons with localized impurities has been

considered both in nonlinear wave theory [32] and solid state physics [33]. The interaction of either bright or dark
solitons with δ-like impurities has been investigated in the framework of the nonlinear Schrödinger (NLS) equation
(see, e.g., Refs. [34–38]). Relevant studies in the physics of atomic BECs have also appeared some time ago (see, e.g.,
Refs. [39–41]). Among these works [39] considered a dark soliton as perturbed by a defect (both the steady state,
and the associated dynamical problem), while [40] examined the collision of a moving dark soliton with a defect and
captured also the leading order effect of produced radiation. Recent studies that we are aware of have chiefly been
concerned with bright solitons both in the setting of potential wells [42, 43] (examining resonances that can arise
therein), and in that of barriers [44, 45]. Most of the above works have been restricted to the mean-field description
of the NLS equation.
Nevertheless, the potential role of quantum fluctuations in such interactions (especially for smaller atom numbers or

narrower barriers) has been illustrated; see e.g. [45]. The examination of such quantum effects in soliton-barrier [46, 47]
and even soliton-soliton [48] interactions is a subject of increasing interest over the past few years. It has been argued,
in particular, that the scattering of a bright solitary wave in an attractive BEC from a barrier potential leads to the
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formation of a quantum superposition state of two distinct wave packets traveling through real space [46]. The full
quantum mechanical scattering problem for short range potentials and at low energy was considered in [47] and error
bounds on the scattering coefficients were derived. Finally, in [48] it was argued that initially uncorrelated quantum
solitons lead to entanglement, upon their pair-wise interaction.
Finally, the work of [49] has also mostly focused on bright soliton-barrier interactions at the NLS level, yet is the

first one to touch upon two-component dark-bright soliton interactions with a barrier acting on the bright soliton
only. In this context, localized impurities can be created as focused far-detuned laser beams and have already been
used in experiments with dark solitons [50, 51]; we also note very recent experiments with matter-wave bright solitons
of 7Li [52] and 85Rb [53] atoms and localized barriers. However, such soliton-defect interactions are far less well
explored in the case of the multi-component setting (see, e.g., Ref. [20] where the statics of DB solitons was studied
in the presence of δ-like impurities). It is the aim of this work to address this problem and study, in particular, the
scattering of atomic DB solitons at narrow impurities. Nevertheless, it should be noted that here we will restrict our
considerations to the mean-field level considerations. It would be an interesting problem for further study to examine
how quantum mechanical effects modify the phenomenology presented herein.
Our presentation will be structured as follows. In section II, we present the relevant prototypical model setup in

the form of two coupled Gross-Pitaevskii (GP) equations describing the dynamics of a binary BEC with repulsive
interactions; DB solitons for this model are presented as well. We also present results of a prototypical experiment
where the scattering of DB solitons at a barrier – which is present (and equal) in both atomic components – is
studied; this experiment provides the motivation for a more systematic theoretical study which is presented in the
next section. In particular, in sections III, we numerically explore the dynamics of single DB solitons in a harmonic
trap. The simpler scenario that is studied refers to the case where the impurity is equal in the two components
– as in the case of the experiment; we find that a particle-based phenomenology is sufficient to capture the main
characteristics here. On the other hand, we identify a far more significant wealth of possibilities in the setting where
the barrier (or well) is applicable only in one of the two components. We present a systematic study within the plane
of the barrier or well amplitudes for the two components, providing intuitive explanations (on the basis of effective
potentials), wherever possible, for the observed phenomenology. Finally, in section IV, we summarize our findings
and present our conclusions, as well as a number of directions for potential future studies.

II. MODEL AND EXPERIMENTAL MOTIVATION

A. Gross-Pitaevskii equations and dark-bright solitons

We consider a two-component BEC composed of two different hyperfine states of the same alkali isotope. If this
binary condensate is confined in a highly anisotropic trap (with longitudinal and transverse trapping frequencies
ωx ≪ ω⊥), then the mean-field dynamics of the BEC can be described by the following system of two coupled GP
equations [1, 2]:

i~∂tψj =

(

− ~
2

2m
∂2xψj + Vj(x)− µj +

2
∑

k=1

gjk|ψk|2
)

ψj , (1)

where ψj(x, t) (j = 1, 2) are the macroscopic wave functions of the two components normalized to the numbers of atoms

Nj =
∫ +∞

−∞
|ψj |2dx, m is the atomic mass, µj are the chemical potentials, gjk = 2~ω⊥ajk are the effective 1D coupling

constants (ajk are the s-wave scattering lengths), while Vj(x) denote the external trapping potentials for each species.
In our considerations below, we will assume that the component 1 (2) supports a dark (bright) soliton; additionally,
we will assume that both components are confined by the usual harmonic trap, namely VH(x) = (1/2)mω2

xx
2, while –

for each component – an additional localized “impurity” potential, which can be generated by off-resonant Gaussian
laser beams, is also present. Thus, the external potentials Vj(x) for each of the two components are described as:

V1(x) = VH + Ed exp

(

−2x2

ǫ2d

)

, V2(x) = VH + Eb exp

(

−2x2

ǫ2b

)

, (2)

where the parameters Ed, Eb and ǫd, ǫb set, respectively, the amplitudes and widths of the impurities in each compo-
nent. Notice that for a blue- or red-detuned laser beam, the impurity potentials can either repel (Ed,b > 0) or attract
(Ed,b < 0) the atoms of the respective component of the condensate.
We now cast Eqs. (1) into a dimensionless form as follows: measuring the densities |ψj |2, length, time and energy
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in units of 2a11, a⊥ =
√

~/(mω⊥), ω
−1

⊥
and ~ω⊥, respectively, Eqs. (1) are reduced to the form:

i∂tu = −1

2
∂2xu+ V1(x)u+ (|u|2 + g̃12|v|2 − µ1)u, (3)

i∂tv = −1

2
∂2xv + V2(x)v + (g̃12|u|2 + g̃22|v|2 − µ2)v. (4)

In Eqs. (3)-(4), the wave functions u and v correspond to ψ1 and ψ2 respectively, the normalized nonlinearity coeffi-
cients are given by g̃j2 = gj2/g11, while the normalized harmonic trap potential (incorporated in V1(x) and V2(x) as
discussed above) is now given by VH(x) = (1/2)Ω2x2, where Ω = ωx/ω⊥.
Notice that in the GP Eqs. (3)-(4) the number of atoms ND,B of each component is conserved; in fact, ND,B are

given by ND,B = (a⊥/2a11)ÑD,B , where ÑD =
∫

∞

−∞
|u(x)|2 dx and ÑB =

∫

∞

−∞
|v(x)|2 dx are the respective integrals

of motion of the normalized GP Eqs. (3)-(4).
As mentioned above, in the physically relevant setting of 87Rb, the scattering lengths characterizing the intra- and

inter-component atomic collisions are almost equal; thus, to a first approximation, one may assume that g̃12 = g̃22 ≈ 1,
which means that the system of Eqs. (3)-(4) is of the Manakov type [54]; in this case, the system is integrable in
the absence of the external potentials V1,2(x) and admits exact analytical dark-bright soliton solutions. Particularly,
considering the boundary conditions |u|2 → µ1 and |v|2 → 0 as |x| → ∞, Eqs. (3)-(4) possess an exact analytical
one-DB-soliton solution of the following form (see, e.g., Ref. [12]):

uDB(x, t) =
√
µ1{cosφtanhξ + i sinφ}, (5)

vDB(x, t) = ηsechξ exp[ikx+ iθ(t)], (6)

where ξ = D(x − x0(t)), φ is the dark soliton’s phase angle, cosφ and η represent the amplitudes of the dark and
bright solitons, and D and x0(t) are associated with the inverse width and the center position of the DB soliton.
Furthermore, k = Dtanφ = const and θ(t) are the wavenumber and phase of the bright soliton, respectively. The
above parameters of the DB-soliton are connected through the equations: D2 = µ1 cos

2 φ − η2, ẋ0 = Dtanφ, and
θ(t) = (1/2)(D2 − k2 + µ2 − µ1)t, where ẋ0 is the DB soliton velocity.

B. Experimental results

Having introduced our setup, we now proceed by presenting results of an experiment dealing with scattering of
atomic DB solitons at barriers. In fact, the results that will be presented below, motivate the more detailed theoretical
investigation of this paper, but also illustrate the experimental tractability of this direction, and showcase prototypical
results along this vein.
Our experimental results are summarized in Fig. 1. There, it is shown that, depending on the barrier height, DB

solitons are either reflected by or transmitted through a repulsive barrier. The experiment is conducted with a BEC
of 4.5 · 105 atoms of 87Rb confined in an optical dipole trap with trapping frequencies {ωaxial, ωvertical, ωhorizontal} =
2π × {1.4, 120, 174} Hz. The solitons are generated by transferring a small fraction of the atoms from the initial
|F,mF 〉 = |1,−1〉 hyperfine state to the |2,−2〉 state and exploiting a counter-flow induced modulational instability
[23] generated by a magnetic gradient along the axial direction. The number of solitons, as well as their initial
positions, can be controlled by adjusting experimental parameters such as the number of atoms transferred into the
second state and the strength and duration of the magnetic gradient used to induce the counter-flow. For the data
presented in Fig. 1, solitons traveling towards the right are generated in the left part of the BEC, the magnetic
gradient is subsequently turned off, and the solitons continue to move towards the trap center. The oscillations of
individual solitons in a trap have been investigated in detail in [24]. For the present data, we additionally ramp on a
repulsive barrier at the center of the trap. The barrier is generated from a 660 nm laser beam with a narrow waist of
approximately 18 µm in the direction of the BEC axis and has an aspect ratio of 4. For imaging, the two components
of the BEC are vertically separated during a short free expansion time of 7 ms for the upper cloud and 8 ms for the
lower cloud [23, 24]. For barrier depths larger than the chemical potential [cf. Fig. 1(e-h)] we observe confinement
of the dark-bright solitons to the left half of the BEC. This is consistent with having two isolated BECs. For a
barrier depth of approximately half the chemical potential [cf. Fig. 1(a-d)] we observe solitons penetrating through
the barrier; see, e.g., especially the panel (c) in this setting. The dynamics observed here is a subset of the rich
behavior expected for soliton-barrier interactions. These dynamics can be extended to more exotic regimes, e.g., by
the addition of a species selective barrier. The latter will be examined in more detail in our theoretical investigation
below.
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FIG. 1: Experimental images of soliton-barrier interaction. (a-d) Peak barrier potential is 0.56 · µBEC . The in-trap evolution
times after generation of the solitons are a) 250 ms, b) 500 ms, c) 750 ms, d) 1000 ms. (e-h) Similar to (a-d) but for a peak
barrier potential of 1.11 · µBEC and evolution times e) 300 ms, f) 600 ms, g) 700 ms, h) 900 ms. In all cases the chemical
potential of the BEC, µBEC , is approximately 36 nK (about 750 Hz).

III. NUMERICAL INVESTIGATIONS

In our numerical simulations below, we will assume that the two-component BEC under consideration consists
of two different hyperfine states of 87Rb, namely the states |1,−1〉 and |2,−2〉 used in the experiment presented
in the previous section (see also Refs. [22–27]). In this case, the scattering lengths take the values a11 = 100.4a0,
a12 = 98.98a0 and a22 = 98.98a0 (where a0 is the Bohr radius); accordingly, the normalized nonlinearity coefficients
in Eqs. (3)-(4) take equal values: g̃12 = g̃22 ≈ 0.986. Furthermore, we will assume that the trap frequencies are
ω⊥ = 2π × 116 Hz and ωz = 2π × 1.3 Hz, i.e., Ω ≈ 0.0112, and the numbers of the atoms in each component are
ND = 70, 000 and NB = 1, 000 resulting in a chemical potential of approx. 305 Hz for the total atom number. These
values are similar to the respective ones used in experiments [22–27].
Concerning the parameters of the Gaussian impurity potential, the values of Eb,d are taken in the interval [−200, 200]

Hz, and we fix the value ǫd = ǫb = ǫ = 3 µm. Notice that we focus here on relatively narrow impurities, as for those
we have explored the steady state problem [20] and, as will be seen below, they already present a rich phenomenology.
An examination of the effect of the width of the impurity will be deferred to a future study. Our principal aim in what
follows is to study the scattering of solitons at the impurity potential. To do so, we displace the solitons from the trap
center, using the initial position value x0 = −40 µm, which is sufficiently far from x = 0, so that the solitons do not
overlap with the impurity. We then “release” the solitons and observe their subsequent interaction with the Gaussian
barrier, measuring the fraction and observing also the shape of the coherent atomic structures that are transmitted,
reflected, and trapped at the potential. We will study, at first, the case Eb = Ed, as per our experimental results (cf.
subsection A below) and then the case where the impurity acts only on one component, i.e., either Ed = 0, Eb 6= 0
or Ed 6= 0, Eb = 0 (cf. subsection B below).
At this point, it is relevant to present a sketch of a state diagram in the parameter space (Eb, Ed), as depicted

in Fig. 2. The different regimes that appear after the collisions are illustrated by colors and they will be discussed
below. The cases I (Ed = Eb = E), II (Ed = 0, Eb > 0) and III (Ed = 0, Eb < 0) correspond to the principal
cases that we will examine in what follows; the capital letters A and B correspond, respectively, to a small and large
value of the parameters in each region. In particular, we have taken E = 10 Hz (E = 50 Hz) in the IA (IB) case,
Eb = 10 Hz (Eb = 90 Hz) in the IIA (IIB) case, and Eb = −10 Hz (Eb = −90 Hz) for the IIIA (IIIB) case. For each
A and B we will illustrate the contour plots of the densities of both components. Furthermore, in the case where
Ed = Eb = E where as we will see below the “particle-like” picture is most relevant, we will also display an effective
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potential energy landscape encountered by the DB solitons. This amounts to computing the turning point, say x1, of
each of our initializations of the DB soliton at position x0 (whose potential energy VH(x0) in a harmonic oscillator
trap we can evaluate). Then, (x1, VH(x0)) is identified as a point in the effective potential energy surface.

E
d
 

E
b
 

IB 

IA 

IIA IIB IIIA IIIB 

FIG. 2: (Color online) A theoretical state diagram in the parameter space (Eb, Ed). The four different regimes that appear
after the collisions are illustrated by colors / line styles: (Blue / dotted line) Transmission regime. (Red / full line) Reflection
regime. (Green / dash-dotted line) Transmission-reflection regime. (Brown / dashed line) Trapping-transmission-reflection
regime. Points A and B correspond, respectively, to a small and large value of the parameters in each region: I (Ed = Eb = E),
II (Ed = 0, Eb > 0) and III (Ed = 0, Eb < 0).

A. Scattering of DB solitons from identical impurities

We start with the case where both impurities are identical, i.e., Ed = Eb = E, either repulsive (E > 0) or attractive
(E < 0).
In the repulsive case of Ed = Eb = E > 0, the simulations reveal the existence of two different regimes. For

sufficiently small values of the repulsive barrier E, the DB solitons are transmitted (transmission regime, blue color
in region I of Fig. 2). For values of E bigger than a critical value, i.e., E & 20 Hz (for solitons launched from
x0 = 40 µm) the DB solitons are reflected (reflection regime, red color in the same region I of Fig. 2). Thus, in this
case, the solitons behave as classical particles: if they have potential energy (recall that the solitons start with zero
kinetic energy) larger than the height of the barrier then they are transmitted through it, while they are reflected in
the opposite case.
This particle-like behavior can be quantitatively described as follows. First, we consider the increment of the

DB-soliton potential energy caused by the defect, which can be defined as:

∆U = Udef − U0, (7)

with Udef (U0) being the normalized potential energy of the DB soliton at the trap center with(out) the defect:

Udef =

∫

∞

−∞
dxV1(x)|u′(x)|2

∫

∞

−∞
dx |u′(x)|2 +

∫

∞

−∞
dxV2(x)|v′(x)|2

∫

∞

−∞
dx |v′(x)|2 , (8)

U0 =

∫

∞

−∞
dxVH(x)|u0(x)|2

∫

∞

−∞
dx |u0(x)|2

+

∫

∞

−∞
dxVH(x)|v0(x)|2

∫

∞

−∞
dx |v0(x)|2

. (9)
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FIG. 3: (Color online) A theoretical comparison of the the increment of the DB-soliton potential ∆U energy caused by the
defect (solid line) with the maximum of the effective barrier height that the DB-soliton particle encounters at the defect, for
different values of Ed = Eb = E (red circles). The very good agreement (especially for smaller values E) lends support to the
consideration of this case as an example of a classical (solitonic) particle scattering from a barrier.

In the above expressions, {u′(x), v′(x)} and {u0(x), v0(x)} denote, respectively, the DB solitons at the trap center
with and without the defect, as found numerically by means of a fixed point algorithm, using as an initial guess
Eqs. (5)-(6). Notice that the solutions with the prime are found by keeping fixed the chemical potentials µ1,2 of each
component to those of the solution without defect.
Figure 3 shows the dependence of ∆U with respect to Ed = Eb (solid line in the figure) and this value is compared

with the maximum of the effective barrier height that the DB-soliton particle encounters at the defect (see red circles
in the figure). The last value is found by means of numerical simulation, fixing the initial soliton location x0 or,
equivalently, of the potential energy of the soliton, i.e., (1/2)Ω2x20, and varying Ed = Eb in order to determine the
critical value which separates the reflection and transmission regimes for this value of x0. We find good agreement
between the two for smaller values of Ed = Eb; for large values of the defect strength, the perturbative nature of the
calculation of Eqs. (8)-(9) may be responsible for the somewhat decreased accuracy in capturing the effective barrier
height.
The contour plots of the densities of the dark and bright components corresponding to relatively small and large

values of E > 0 (corresponding to IA and IB in Fig. 2) are illustrated in Fig. 4 (columns IA and IB). The top row
shows the initial density profiles of the corresponding dark components. It is important to highlight here (as it will
become also relevant for other cases) that the dark component sustains an increasing density dip as E increases in
positive values, while it will correspondingly feature a density bump in the case of increasing negative such values.
This is a feature of the ground state in the presence of the defect, as the latter repels for E > 0 and attracts for E < 0
the atoms in the neighborhood of x = 0. It is clear also by plotting the effective potentials (in the bottom panel of
the figure) that the DB faces a weak barrier in the former case and its potential energy is sufficient to overcome it.
On the other hand, the barrier is considerably higher in the right panel, inducing the reflection of the solitary wave.
We complete this section by noting that in the case where both impurities are attractive, i.e., Ed = Eb = E < 0,

the DB solitons are always transmitted after the collision, for every value of E, hence there is only a transmission
regime depicted by blue color in Fig. 2.
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B. Scattering of DB solitons from an impurity in one component

While the dynamical evolution of the case where the defect acts on both components was found to be fairly
straightforward, the case where the barrier is imposed selectively on only one of the components was found to be
considerably more complex. We considered both the case where Ed = 0 and Eb 6= 0 and that where Ed 6= 0 and
Eb = 0. The results show that the following two subcases are equivalent:

a) (Ed = 0, Eb > 0) ≡ (Ed < 0, Eb = 0).

b) (Ed = 0, Eb < 0) ≡ (Ed > 0, Eb = 0).

The case where Ed = 0 and Eb < 0 represents the existence of an attractive barrier in the bright component and
absence of impurity in the dark component. The above equivalence can be most easily qualitatively appreciated in
that case b), hence we present it for that setting. In particular, when an impurity attractively affects the atoms in the
bright component, then it favors the “collection” of atoms near the origin. This, in turn, builds a population of atoms
in that neighborhood which, through the term proportional to g12 in the equations of motion, provides a repulsive
barrier for the dark component. Hence, the existence of an attractive well solely in the bright component becomes
tantamount to having a repulsive barrier in the dark component. An analogous argument can be used to showcase
that a repulsive barrier in the bright component, through favoring the absence of atoms in its vicinity, creates an
effective well for the dark component atoms. The above feature is directly evident in the diagram of Fig. 2, hence we
only focus on each of the representatives of the cases a) and b) above.
After the collisions, for Ed = 0, Eb > 0, part of the energy is transmitted and part of it is reflected. We denote

this as a transmission-reflection regime (green color in Fig. 2). For small values of Eb the DB solitons are mainly
transmitted, and when Eb is high enough they are mostly reflected. Equivalent results, when the well depth |Ed|
increases, are obtained for the case where Ed < 0 and Eb = 0, which represents the existence of an attractive well
in the dark component and the absence of impurity in the bright one. For small Eb > 0, this dynamics, as shown in
the left panel of Fig. 5, can be understood as follows. As discussed above, the repulsion of bright atoms produces
an effective attraction of dark atoms, hence inducing an effective potential well, rather than what was anticipated
as a potential barrier. It should be noted here that this counter-intuitive effect was quantified in the case of a δ-
function potential in Ref. [20]. This effect leads to the acceleration of the soliton (with a small back-scatter due to the
inelasticity of collision with the defect) visible in the left panels of the figure. To complete the discussion of Fig. 5, let
us briefly touch upon the right panels of the figure. This concerns the case of Eb < 0 (while Ed = 0, namely case b)
above). The corresponding situation here, when Eb is small presents a repulsive effect for the dark atoms and as such
results in an effective barrier. This prediction is also corroborated by the analytical considerations for the δ-function
case of Ref. [20]. This, in turn, leads to the reflection dynamics observed in the right panels of Fig. 5.
We now turn to the case of large barrier strength in Fig. 6. In this setting, there is a fundamental difference in

comparison to the case of weak barrier presented previously. This consists of the fact that for small Eb, the defining
characteristic in the DB-soliton and defect interaction is the nature of the potential for the dark component (which,
as we saw, was somewhat counter-intuitively the opposite than the one for the bright component). However, for large
Eb, the nature of the potential for the bright component becomes important and hence in this case, large positive Eb

also induces a locally strong repulsive potential for the bright atoms. On the other hand, large negative Eb creates
a large attractive potential for the bright atoms. However, the latter tends to favor the trapping of the atoms of the
bright component together with those of the dark component, leading essentially to the formation of a defect mode,
alongside a partial reflection of the soliton. These characteristics, namely reflection for Eb large and positive and the
possibility of trapping, along with reflection for Eb large and negative, are illustrated in the panels of Fig. 6.
An example of intermediate values of Eb and their associated dynamics can be found in Fig. 7. In these examples,

for positive Eb, the impurity leads to partial transmission and partial reflection, but does not enable the possibility of
trapping at the defect. In this case, the transmitted fraction of the soliton (which is also present in the cases of Figs.
5 and 6) is so energetic and localized that it can be directly observed; the transmitted soliton has a velocity different
from that of the reflected soliton, and consequently, its oscillation frequency differs as well. The possibility of trapping
at the defect is explored for Eb < 0, whereby there is a fraction of atoms which is trapped at the defect, while also
a considerable fraction appears to be reflected; see e.g. the right panel of Fig. 7. We notice that in the case where
there is no impurity affecting the dark component and where there exists an attractive well in the bright one, as the
well depth |Eb| increases, two regimes appear alternatively: a reflection regime and a trapping-transmission-reflection
regime (red and brown colors, respectively, in region III of Fig. 2). Indeed, this alternation may be quite complex
and a characteristic example thereof is presented in Fig. 8, where the fractions of atoms transmitted through the
defect, reflected from it and trapped in the immediate vicinity of the barrier are measured. Those quantities are
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quantitatively described by the transmission, reflection and trapping coefficients. Notice that the time-dependent
coefficients are defined as:

T (t) =

∫

∞

ǫb
|v(x, t)|2dx

∫

∞

−∞
|v(x, t)|2dx, R(t) =

∫

−ǫb

−∞
|v(x, t)|2dx

∫

∞

−∞
|v(x, t)|2dx , B(t) =

∫ ǫb

−ǫb
|v(x, t)|2dx

∫

∞

−∞
|v(x, t)|2dx. (10)

Figure 8 depicts these coefficients at time t′, namely R′, T ′ and B′, with t′ being the time where the bright component
of the DB soliton reaches its maximum excursion after the first interaction with the defect. The figure illustrates
that the full dynamics features more complicated resonant type transmission events, as well as alternating windows
of predominantly reflection or predominantly trapping. These complex scenarios are beyond the scope of the particle
analysis provided herein. We do note, however, the apparent similarity of these results with the ones obtained in the
case of a single component bright soliton which scatters off of a quantum well [42]. In the latter case, the variational
analysis was already fairly cumbersome even for a δ-function potential, while here it is rendered more elaborate by
the presence of two-components and the Gaussian form of the barrier. A more detailed analysis, perhaps in the
simpler δ-function attractive setting based on a two-mode variational ansatz would constitute an interesting problem
for further studies. Nevertheless, we should point out that this behavior is similar to that obtained for the case where
there exists a repulsive barrier in the dark component and there is no impurity affecting the bright component.

IV. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we have presented a survey of the collisions of dark-bright (DB) solitons with defects. Initially
motivated by the potential of experimental studies (a prototypical example of which was shown herein), we considered
the setting of a dark-bright soliton impinging on a defect potential. In the case of a bright soliton hitting a well [42, 43]
or a barrier [44, 45], this theme has been of intense theoretical and even experimental [52, 53] interest recently.
However, far less has been done in the realm of dark-bright solitons.
We have shown that in the case of two equal repulsive barriers acting on both components, the DB solitons

demonstrate a clear classical particle behavior, which involves transmission for weak potentials and reflection for
strong ones. Similarly, predominantly transmission type events were observed for equal attractive potentials acting
in both components.
On the other hand, we illustrated that more complex scenarios can develop in the case where the impurity acts

only on one of the two components. We categorized these cases, illustrating the analogies of a repulsive barrier in
the first component with an attractive one in the second component (and vice-versa). We explained the low barrier
amplitude cases on the basis of somewhat counter-intuitive, cross-component effective potentials and argued that the
large amplitude cases may be significantly different due to the role of the defect in both components. We showcased
the complexity of the latter by means of cases containing transmission and reflection, or trapping, transmission and
reflection together and by monitoring the dependence of the different fractions (of trapping, transmission or reflection),
as a function of the barrier amplitude.
It would certainly be interesting to extend this chiefly numerical (but also experimental) study further. On the

experimental side, it would be extremely interesting, although more challenging, to engineer potentials that are
selective to particular hyperfine states, so that some of the predictions proposed herein could be tested. From a
theoretical perspective, it would be very relevant to attempt to distill a simple setting (e.g. a δ-function potential)
where a theoretical study of the above reported phenomenology could be appreciated in more quantitative terms.
Numerically, it may also be quite significant to appreciate the effect of the width of the barrier, as here we have
concentrated on the sign and magnitude (and inter-component interplay of the) barrier. Natural extensions may also
concern the possibility of scattering in higher-dimensional settings and evaluation of the role of transverse degrees of
freedom therein.
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FIG. 4: (Color online) Numerical results for the case of identical repulsive impurities. Top row: initial density profiles of the
dark components for a small and large value of E > 0. Middle rows: contour plots of the densities of the dark components
|u(x)|2 and of the densities of the bright components |v(x)|2. The left panels correspond to a subcritical case, featuring full
(nearly full) transmission, while the right ones are for a supercritical case with (nearly complete) reflection. Bottom panels:
the effective potential encountered by the solitary wave. The low height of the barrier in the left column enables transmission,
while its increase in the right panel induces the reflection.
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FIG. 5: (Color online) Numerical comparison, for a small value of |Eb|, between the case with repulsive bright impurity and
the case with attractive bright impurity, with Ed = 0. Column IIA: repulsive bright impurity with Eb = 10Hz and Ed = 0.
Column IIIA: attractive bright impurity with Eb = −10Hz and Ed = 0. Top row: the dark components |u(x, t)|2. Bottom row:
the bright components |v(x, t)|2.
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FIG. 6: (Color online) Numerical comparison, for a high value of |Eb|, between the case with repulsive bright impurity and
the case with attractive bright impurity, with Ed = 0. Column IIB: repulsive bright impurity with Eb = 90Hz and Ed = 0.
Column IIIA: attractive bright impurity with Eb = −90Hz and Ed = 0. Top row: the dark components |u(x, t)|2. Bottom row:
the bright components |v(x, t)|2.
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FIG. 7: (Color online) Similar to the previous two figures, but for an intermediate value of |Eb|.
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