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Abstract

In this paper, we consider the existence, stability and dynamical evolution of dark
vortex states in the two-dimensional defocusing discrete nonlinear Schréodinger model,
a model of interest both to atomic physics and to nonlinear optics. Our consid-
erations are chiefly based on initializing such vortex configurations at the anti-
continuum limit of zero coupling between adjacent sites, and continuing them to
finite values of the coupling. Systematic tools are developed for such continua-
tions based on amplitude-phase decompositions and explicit solvability conditions
enforcing the vortex phase structure. Regarding the linear stability of such non-
linear waves, we find that in a way reminiscent of their 1d analogs, i.e., of dis-
crete dark solitons, the discrete defocusing vortices become unstable past a critical
coupling strength and, subsequently feature a cascade of alternating stabilization-
destabilization windows for any finite lattice. Although the results are mainly geared
towards the uniform case, we also consider the effect of harmonic trapping potentials
often present in experimental atomic physics settings.
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1 Introduction

The study of vortices and their existence, stability and dynamical properties
has been a central theme of study in the area of Bose-Einstein condensates
(BECs) [1,2]. In particular, the remarkable experiments illustrating the gen-
eration of vortices [3-5] and of very robust lattices thereof [6-8] have stirred
a tremendous amount of activity in this area in the past few years, that has
by now been summarized in various reviews and books; see for example [9-
14]. Much of this activity has been centered around the robustness of vortex
structures in the context of the mean-field dynamics of the BECs (which are
controllably accurately described by a nonlinear Schrodinger (NLS) equation)
in the presence of many of the potentials that are relevant to the trapping of
atomic BECs including parabolic traps [1,2] and periodic optical lattice ones
[15,16]. Particularly, the latter context of optical lattice potentials is quite
interesting, as it has been suggested that vortices (for example of topological
charge S = 1) will be unstable when centered at a minimum of the lattice po-
tential [17], an instability that it would be interesting to understand in more
detail.

On the other hand, the BECs in the presence of periodic potentials have
been argued to be well-approximated by models of the discrete nonlinear
Schrodinger (DNLS) type (i.e., resembling the finite-difference discretization
of the continuum equation) [18-21]. In that regard, to understand the exis-
tence and stability properties of vortices in the presence of periodic potentials,
it would be interesting to analyze the discrete analog of the relevant NLS equa-
tion. This is also interesting from a different perspective in this BEC context,
namely that if finite-difference schemes are employed to analyze the properties
of the continuum equation, it is useful to be aware of features introduced by
virtue of the discretization.

However, it should be stressed that this is not a problem of restricted im-
portance in the context of quantum fluids; it is also of particular interest in
nonlinear optics where two-dimensional optical waveguide arrays have been
recently systematically constructed e.g. in fused silica in the form of square
lattices [22,23] (and, more recently of even more complex hexagonal lattices
[24]), whereby discrete solitons can be excited. By analogy to their one-
dimensional counterparts of discrete dark solitons, which have been created
in defocusing waveguide arrays with the photovoltaic nonlinearity [25], we ex-
pect that it should be possible to excite discrete dark vortices in defocusing
two-dimensional waveguide arrays. An especially interesting feature of dark
solitons that was observed initially in [27] (see also [28]) is that on-site dis-
crete dark solitons are stable for sufficiently coarse lattices, but they become
destabilized beyond a certain coupling strength among adjacent lattice sites
and remain so until the continuum limit where they are again restabilized (as



the point spectrum eigenvalue that contributes to the instability becomes zero
due to the restoration of the translational invariance in the continuum prob-
lem) [27,28]. Tt is therefore of interest to examine if the instability mechanisms
of discrete defocusing vortices are of this same type or are potentially different
and how the relevant stability picture is modified as a function of the inter-site
coupling strength.

It is this problem of the existence, stability and continuation of the vor-
tex structures as a function of coupling strength that we examine in the
present work. We consider, in particular, a two-dimensional discrete non-linear
Schrodinger equation

AW, m
dt

- |¢n,m|2¢n,m + EAwn,m = 07 (1>

?

where Ay = Yntim + Un1m + Vnmt1 + Ynm—1 — 40, is the discrete
Laplacian. We study the defocusing case when ¢ > 0. In that case, equation (1)
is denoted as discrete Gross-Pitaevskii equation in analogy with its continuum
counterpart [1,2,29].

We look for time-periodic solutions with frequency w. Using the ansatz v, ,, () =
VW dnme” ™t we obtain

CA¢n,m + (]- - |¢n,m|2)¢n,m = 07 (2)

where we have set C' = €/w. The coupling parameter C' > 0 determines
the strength of discreteness effects. The limit C' — 400 corresponds to the
continuum (stationary) Gross-Pitaevskii equation:

7+7+(1— [¢*)¢ = 0. (3)

The case C'— 0 corresponds to the so-called anti-continuum (AC) limit [30].

When equation (2) is considered on an infinite lattice Z?, we look for solutions
satisfying |¢nm| — 1 when (n,m) — oo, for which ¢, ,, vanishes at one
lattice site, e.g. at (n,m) = (0,0). Such solutions are denoted as discrete
vortices, or “dark” vortex solitons. If one trigonometric turn on any path
Max(|n|, |m|) = p around the vortex center changes the argument of ¢, ,,, by
27S (S € Z), then the vortex is said to have a topological charge (or vorticity)
equal to S.

In this paper we numerically investigate the existence and stability of such
solutions on a finite lattice of size N x N, N being large; our analysis is per-
formed as a function of the lattice coupling parameter C' and we illustrate



how to perform relevant continuations both from the continuum, as well as,
more importantly from the AC limit (section 2). We mainly focus on numer-
ically computing vortex solutions with vorticity S = 1 and S = 2 (section
3). In section 4, we also obtain such solutions in the presence of an external
harmonic trap (the latter is typically present in BEC experiments). In section
5, we examine the dynamics of unstable vortices of S = 1 and S = 2, both
in the homogeneous and in the trapped case. Finally, section 6 presents our
conclusions and some future directions of potential interest.

2 Numerical method

We compute vortex solutions of (2) using the Newton method and a contin-
uation with respect to C. The path-following can be initiated either near the
continuum limit (for C' large) or at the anti-continuum limit C' = 0, since
in both cases one is able to construct a suitable initial guess for the Newton
method.

For relatively high C, a suitable initial condition for a vortex with topological
charge S is obtained with a Padé approximation developed for the continuum
limit in [29]. We set ¢ = pnme ™, where

r28 (a1 + agr?
Pnm = J n,m( 1 2 "7m) Tnm = VN2 +m? (4)

?
Lt byr? o, + agrisi?

(ay = 11/32, ay = a1 /12, by = 1/3, see reference [29]),

arctan(m/n) + forn > 1,

3
2

s

2

Qnm = 4 arctan(m/n) + for n < —1,

5 (1 — sign(m)) for n = 0.

Once a vortex is found for a given C', the solution can be continued by increas-
ing or decreasing C'. Although this method was found to be efficient, it remains
limited to single vortex solutions having explicit continuum approximations.
Moreover, when the Newton method is applied to continue these solutions
near C' = 0, the Jacobian matrix becomes ill-conditioned (and non-invertible
for C'=0) and the iteration does not converge.

In what follows we introduce a different method having a wider applicability,
and for which the above mentioned singularity is removed. We consider a finite
N x N lattice with (n,m) € T = {—-M,...,M}* (N = 2M + 1), equipped



with fixed-end boundary conditions given below. We set ¢, = Ry eifn.m
and note R = (Rpm)nms 0 = (0nm)nm- One obtains the equivalent problem

anm (1 - Ri,m) + Cf(Rv 9>n,m =0, (5)

C g(R,0)pm =0, (6)

where f(R,0) = Re [e7® A(Re?)] and g(R,0) = Im [e~® A(Re)] can be

rewritten

f(R, H)n,m = Rn+1,m COs (Qn—l—l,m - en,m) + Rn—l,m COs (en,m - en—l,m) - 4Rn,m
+Rn,m+l COSs (Qn,m—i—l - en,m) + Rn,m—l COS (Qn,m - 0n7m—1);

Q(Ry e)n,m - Rn+1,m Sin <0n+1,m - 0n,m> - Rn—l,m SiIl (Qn,m - en—l,m)
+Rn,m+1 sin <0n,m+1 - en,m) - Rn,m—l sin (gn,m - 0n,m—1)~

Now we divide equation (6) by C' (this eliminates the above-mentioned degen-
eracy at C' = 0) and consider equation (5) coupled to

g(R,0).m = 0. (7)
System (5), (7) is supplemented by the boundary conditions

R, =1 for Max(|n|,|m|) = M, (8)
Opm = 055, for Max(|n|, |m|) = M. 9)

,m

The prescribed value 67, of the angles on the boundary will depend on the
type of vortex solution we look for. In particular, we use the boundary condi-
tions 077, = Sy, for a single vortex with topological charge S centered at
(n,m) = (0,0).

For C' = 0, a single vortex at (n,m) = (0,0) corresponds to fixing Ryo = 0

and R, ,, = 1 everywhere else. Equation (7) yields in that case

sin (@p+1,m — Onm) — sin (Grm — Gn—1.m)
+ sin (0n,m+1 - en,m) — sin (en,m - en,m—l) = 07 (10>
(n,m) € T\ { (0, %1), (£1,0), (£M,m), (n, £M)}



supplemented by the four following relations at (n,m) = (0,41), (+1,0)

sin (01,41 — 0o 1) —sin (6o 41 — 0_1 41) + sin (6oa2 — Oo,+1) =0, (11)
sin (Qig’g — 8:&1,0) -+ SiIl (eil’l — Qil’g) — SiIl (Q:N:LO — GiL_l) = 0 (12)

For a vortex with topological charge S = 1, solutions of (9)-(12) are com-
puted by the Newton method, starting from the initial guess 0, ,, = o, m.
The symmetries of the problem allow one to divide by four the size of the
computational domain. Indeed one can take (n,m) € {0,..., M}? with the
boundary conditions 6y ,, = g m, 0no = an. Solutions on the whole lattice I'
have the symmetries

Opm =T — O [27],  O_pn = —Onm [27]. (13)

These conditions make (10) automatically satisfied at (n,m) = (0,0) (6o,
need not being specified). Afterwards, the corresponding solution of (5), (7)-
(9) can be continued to C' > 0 by the Newton method, yielding a solution
Gnm = Rpme?m of (2) (see section 3). For higher topological charges, the
initial guess qgnm = Rn,meiSG"vm can be used to compute a vortex solution of
(2) by the Newton method. This is done in section 3 also for S = 2. All these
continuations are performed with a 10~® accuracy in the [° norm, although it
has been checked that essentially the same results are obtained with the same
accuracy in other norms such as the /2 norm. The continuation technique used
is a regular parametric continuation, i.e., for each value of C' (starting at the
anti-continuum limit), we converge to the exact numerical solution [up to the
prescribed tolerance], and then we increment the value of C' by a small 6C,
using the converged solution of the previous step as a good initial guess for
the solution of the next one (i.e., of the case with C' 4 0C').

3 Numerical computation of single vortices

In this section we analyze the existence and stability of discrete vortices cen-
tered on a single site, as a function of the coupling strength C' for fixed-end
boundary conditions. The stability of the discrete vortex solitons is studied as-
suming small perturbations in the form of 64, ,, = exp(—it)[pnm exp(—iAt) +
Qn.m €xp(iN*t)], the onset of instability indicated by the emergence of Im(\) #
0; A in this setting denotes the perturbation eigenfrequency. Note that it is
sufficient to consider the case w = 1 for stability computations, because this
case can always be recovered by rescaling time.

The stability analysis is done fully (that is with the full eigenvalue solver
7eig” of Matlab providing all eigenvalues) for the case of configurations of size



41 x 41, which Matlab can still handle. Subsequently, the procedure is repeated
with matrices of size 81 x 81, 121 x 121, 161 x 161 and 201 x 201. For the
latter sizes, it is no longer possible to compute all the eigenvalues at once by
a full matrix diagonalization. So, we exploit the sparsity of the system with
an Arnoldi iterative diagonalization routine [26] (implemented by the Matlab
function "eigs”), and hence compute the smallest magnitude (Rayleigh-Ritz
approximations of the) eigenvalues and corresponding (approximate) eigenvec-
tors of a shifted eigensystem rapidly and efficiently. These eigenvalues are then
those which are closest to the shift value. Hence, the whole spectrum can be
obtained by iterating this procedure for an array of different shifts. However,
since we are mainly interested in following the imaginary eigenvalue respon-
sible for the system instability, we use this eigenvalue from the full spectrum
computation of the solution on the smaller lattice (for a given C) as a single
shift for the computation of the 300 closest eigenvalues in the spectrum of the
solution on the larger lattice. This way we are able to follow the path of the
relevant eigenvalue and those which are closest to it, while saving the compu-
tational cost of computing all of the eigenvalues. The gauge invariance of the
true solution implies the eigenvalue problem is in fact singular. This leads to
a very poorly conditioned matrix and spoils the accuracy of the Rayleigh-Ritz
values. The issue is resolved by always taking the imaginary part of the shift
value to be small and non-zero, hence eliminating the degeneracy arising from
the gauge invariance (since the spectrum is almost all real valued, a real valued
shift may only shift different eigenvalues to the origin, but an imaginary one
resolves the issue of the singularity).

Figure 1 compares the computed angles 0,,,, with respect to the seed angle
Q. for fixed-end boundary conditions and N = 81. The most significant dif-
ferences arise close to the vortex center. This figure also shows the dependence
on N of the difference between the angles 6 for a given domain size N and for
a larger domain of size N 4 10. This is done through [|6),, — 6)"1°|| where
|| - || is the co-norm, and 62, represent the angles at a given lattice size N.
The main contribution of this norm corresponds to the boundary sites. On
the other hand, the decrease of this norm as a function of N originates from

the convergence of the configuration to an asymptotic form.

Figure 2 shows the complementary norm of the S = 1 and S = 2 vortices,
which is defined as [31]:

P = ZZ (|¢00|2 - |¢n,m|2) (14)

n m

with |¢so|? being the background density; in our case, |¢oo|?> = 1. As it can
be observed in the figure, vortices with S = 1 and S = 2 can be continued
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Fig. 1. (Left panel) The spatial profile of the difference between the computed angles
and the seed angles in a 81 x 81 lattice at the AC-limit. (Right panel) Dependence
of |65, — 05 F10| | with respect to the lattice size N. In both cases, the lattice has
fixed end boundary conditions.
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Fig. 2. Dependence of the complementary norm on the coupling strength C' for
S=1and S =2.

for couplings up to O(1) and presumably for all C'%. It should be mentioned
in passing that the method has also been successfully used to perform con-
tinuation in the vicinity of the anti-continuum limit, even for higher charge
vortices such as S = 3. Notice also that all the considered solutions are “black”
solitons, i.e., the vortex center has amplitude Ry = 0.

Figures 3 and 4 show, for S = 1 and S = 2 vortices, respectively, the profile
[Vnm|® = |@nm|* = Ry ,,, the angles 0, ,,, the spectral plane of the stability

eigenfrequencies and a comparison with the angles o, ,,,. In all cases, C' = 0.2
is shown, which corresponds to unstable vortices.

2 In fact, vortices have been continued at least up to C' = 10 without any conver-
gence problems, and their existence in the continuum limit suggests that it should
be, in principle, possible to identify such structures for arbitrarily large values of C.
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Fig. 3. Vortex soliton with S = 1 and C = 0.2. (Top left panel) density Profile;
(top right panel) angular dependence; (bottom left panel) spectral plane of stability
eigenfrequencies [recall that the presence of eigenfrequencies with non-vanishing
imaginary part denotes instability]; (bottom right panel) comparison of the vortex
angles with o, .

The vortices with S = 1 and § = 2 are, respectively, stable for C' < C,,. =~
0.0395 and C' < C,,. =~ 0.0425. This instability, highlighted in the case of the
S =1 vortex in Fig. 6 can be rationalized by analogy with the corresponding
stability calculations in the case of dark solitons [27]. In particular, the relevant
linearization problem can be written in the form:

n,m 2 nm2_1_cvA im n,m
N |Pn,m] , Puan ) )
qz,m _( n,m)* 1- 2‘¢n,m|2 + CA qz,m

However, by analogy to the corresponding 1d problem, the symmetry and
the high spatial localization of the localized eigenvector at low coupling ren-
ders it a good approximation to write for the relevant perturbations that
Appm & —4pn.m (and similarly for ¢), by virtue of which it can be extracted
that the relevant eigenfrequency is A ~ 1 — 4C'". This leading order prediction
(as a function of C') for the internal (“translational”) mode frequency is based
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Fig. 4. Same as Fig. 3 but for § = 2.

on the anti-symmetry of both the real and the imaginary parts of the vortex
configuration around its central site, in analogy with the anti-symmetry of
the on-site dark soliton around its central site in the 1d analog of the problem
[27,28]. This feature (whose continuation to the C' — oo leads to a zero fre-
quency mode due to the translational invariance of the underlying continuum
model) is an example of the “negative energy” modes that both dark solitons
(see e.g., [32] and references therein) and vortices (see e.g. [33]) are well-known
to possess (due to the fact that, although stationary, they are not ground states
of the respective 1d and 2d systems). It should be noted that the above ex-
pansion for the relevant eigenfrequency is analytic for sufficiently small C in
the vicinity of the anti-continuum limit, since for appropriately small values
of C, the relevant eigenvalue is bounded away from the continuous spectrum
given below.

On the other hand, by analogy to the one dimensional calculation, it is straight-
forward to compute the dispersion relation characterizing the eigenfrequen-
cies of the continuous spectrum (using {pnm,¢,,} = {P Q*}expli(k,n +
knm)], deriving a 2 x 2 homogeneous linear system for P and @) and de-
manding that its determinant be zero) as extending through the interval
A € [-V64C2 + 16C, v/64C? + 16C]. Therefore, the collision of the point spec-
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trum (negative energy) eigenvalue with the band edge of the continuous spec-
trum yields a prediction for the critical point of C,, &~ (21/3 —3)/12 ~ 0.0387
in good agreement with the corresponding numerical result above. At C' = C.,
the system experiences a Hamiltonian Hopf bifurcation. In consequence, there
exists an eigenvalue quartet {\, \*, =X, =\*}. When C' increases, a cascade of
Hopf bifurcations takes place due to the interaction of a localized mode with
extended modes, as it was observed in one-dimensional dark solitons [27] (see
also [34], [35] to illustrate the appearance of this phenomenon in Klein—Gordon
lattices). This cascade implies the existence of stability windows between in-
verse Hopf bifurcations and direct Hopf bifurcations.

The analogy of the relevant eigenvalue trajectory to the 1d setting of dark
solitons is more clearly showcased in Fig. 5. The figure shows four panels of the
linearization around a 1d dark soliton (left) [of the 1d analog of the defocusing
DNLS equation [27,36]], and four corresponding panels of the linearization
around a defocusing vortex (right). The top row shows a value of the coupling
between C' = 0 and C.,, [notice that the critical coupling is different in the
1d and 2d cases, hence the different values of C' selected between the two
panels of the same row|. The second row shows the spectral plane past the
first quartet bifurcation. The third row, for a yet higher value of C illustrates
a case example of a coupling within the first restabilization window; finally
the fourth row illustrates a quartet bifurcation within the second instability
window. In each case, the potentially unstable eigenvalue pair (or linearly
unstable eigenvalue quartet) is illustrated by a different symbol (and color on
the online version).

For S = 1 vortices, each one of the bifurcations takes place for decreasing
|Re(N\)| when C' grows, and, in consequence, the bifurcations cease at a given
value of C, as |Re(A)] of the localized mode is smaller than that of the lowest
extended mode frequency [however, in the infinite domain limit, this eventual
restabilization would not take place but for the limit of C' — oo]. This fact is
illustrated in Fig. 6. A similar plot for the case of the S = 2 vortex is shown in
Fig. 7. When the lattice size tends to infinity (N — 00), the linear mode band
extends from zero to infinity and becomes dense; thus, we conjecture that
these restabilization windows should disappear at this limit. In an effort to
numerically suggest this point, we have considered lattices of up to 201 x 201
sites for the S = 1 and S = 2 vortices and have shown the growth rate of the
corresponding instabilities in Fig. 8. The maximum growth rate (i.e. the largest
imaginary part of the stability eigenfrequencies) takes place at C' ~ 0.115 for
S =1and S =2 and being Im(\) ~ 0.0845 (0.0782) for S =1 (S = 2).

11
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Fig. 5. Spectral planes of dark 1-d solitons (left) and S = 1 vortices (right). Poten-
tially unstable (i.e, instability inducing upon collision) eigenvalues pairs and linearly
unstable quartets are designed by a red star. The coupling constants are, from top
to bottom: 0.05, 0.50, 1.00 and 1.10 (left); 0.03, 0.20, 0.33 and 0.36 (right).
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4 Harmonic Trap

In this section, we consider the effect of introducing a harmonic trap. Thus,
Eq. (2) is modified:

CA(bn,m + (1 - ’¢n,m’2 - Vn,m)¢n,m = 07 (16>

with the parabolic potential of the form 3

1
Vnmzi
’ C

0l (17)
Fig. 9 shows a typical example of such a discrete vortex structure in the
presence of an external trapping potential. The method presented in Section 2
is again used and converges unhindered by the presence of the magnetic trap.
Notice that to include the trapping effect of the potential, we only modify
the initial guess proposed in Section 2 through multiplying it by the so-called

Thomas-Fermi profile of \/ max(0,1 — V},,,) [1,2]; the resulting guess converges
even for small values of C' (such as the one used in Fig. 9). These vortices can
be continued up to C' — oo and will converge to the corresponding continuum
trapped vortices (for a recent discussion of such vortices in the presence of
external potentials see e.g. [37]).

The stability of such structures is also examined in Figs. 10 and 11. The
sole type of instability observed is an oscillatory one, with alternating win-
dows of destabilization and restabilization. However, since the harmonic trap
is well-known [1,2] to discretize the spectrum of excitations, these windows
of instability /restabilization are “true” ones (due to collisions of the “nega-
tive energy” mode of the vortex with the point spectrum of the background),
rather than artificial ones (caused by the finite size of the computational do-
main). In fact, in this case, the maximum imaginary part of the eigenvalues
does not depend on the number of grid points used (provided that the do-
main “encompasses” the harmonically trapped vortex). For high enough C,
the charge S = 1 vortex is always found to stabilize [33,37]. It is interesting to
also note that although the fundamental destabilization scenario indicated by
the right panel of Fig. 10 has very strong parallels with its untrapped analog,
the left panel of the figure indicates multiple additional collisions for smaller
values of C. The negative Krein sign of the translational eigenvalue, discussed
previously, suggests that these collisions should also result in oscillatory in-
stabilities, although this is not discernible in the left column of Fig. 10. A

3 The factor 1/C appears when discretizing the continuum equation given that
C = 1/h?, where h the lattice spacing. In particular, we have used r = /22 + 32 =
hvm? +n2 = hrym = rpm/VC.
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Fig. 9. Vortex soliton with S = 1 and C = 0.5 in a harmonic trap with = 0.1.
(Left panel) density Profile; (Right panel) angular dependence.
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Fig. 10. Real part (left panel) and imaginary part (right panel) of the stability
eigenfrequencies for S = 1 as a function of the coupling strength C' and a harmonic
trap with Q = 0.1.

relevant clarification to this apparent paradox is provided by Fig. 11 which
clearly illustrates that the oscillatory instabilities do indeed arise but, in fact,
emerge and disappear (the latter through inverse Hopf bifurcations) over very
tiny parametric intervals of C' (and are, thus, apparently invisible over the
scale of Fig. 10).

5 Dynamics of Unstable Vortices

In this section, we analyze the dynamics of unstable vortices with S = 1 and
S =2, in the presence, as well as in the absence of the parabolic trap.

The dynamics of S = 1 vortices at the coupling with highest growth rate of
the corresponding instability is shown in Fig. 12. It is observed that a spiral-
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it is clear that there is a Hopf bifurcation that destabilizes the vortex and an inverse
Hopf. This pair of bifurcations takes place in a small interval of C' with a length of
approximately 3 x 1076,
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Fig. 12. Snapshots showing the quantity 1 — [t ,,|? for an unstable S = 1 vortex
with C' = 0.23; simulations were performed in a 121 x 121 lattice. The snapshots
were taken each 40 time units starting at ¢t = 0.

like wave, which may be a feature of interest in its own right, appears after
a transient. This wave is accompanied by the appearance of three holes in
the particles surrounding the initial hole (i.e. a jump of the initial vortex to
an inter-site structure). The amplitude of the resulting four holes becomes
essentially uniform (and nonzero), so that the vortex become a “gray” vortex.
Interestingly, this is an apparently stable structure of the dynamics which
preserves the vorticity of the initial configuration.

On the other hand, unstable S = 2 discrete vortices break into two lower
charge (S = 1) structures moving in opposite directions. Besides, there appears
a spiral-like wave emerging from each of the detached vortices (see Fig. 13).
The breakup of the unstable S = 2 discrete vortex structures into their S =1
counterparts is reminiscent of the corresponding observation in the continuum
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Fig. 13. Snapshots showing the quantity 1 — |an,m|2 for an unstable S = 2 vortex
with C' = 0.23; simulations were performed in a 121 x 121 lattice. The snapshots
were taken each 50 time units starting at ¢t = 0.
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Fig. 14. Snapshots showing the quantity 1 — \¢n,m|2 for an unstable S = 1 vortex
in a harmonic trap with C = 0.27 and Q = 0.1; simulations were performed in a
121 x 121 lattice. The snapshots were taken each 60 time units starting at ¢t = 0.

system, which has been confirmed experimentally e.g., in BECs in [38].

Unstable S = 1 vortices in the trap develop into a gradual precession towards
the boundary where they eventually disappear (see Fig. 14); unstable S = 2
vortices in the trap break into two precessing S = 1 vortices that, in turn,
precess and disappear also when reaching the trap boundary (see Fig. 15).

6 Conclusions and Future Directions

In the present paper, we examined the discrete analog of continuum defo-
cusing vortices which are perhaps the prototypical coherent structure in the
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two-dimensional nonlinear Schrodinger equation. We illustrated how to sys-
tematically obtain such structures through an appropriate continuation of the
amplitude and phase profiles from the anti-continuum limit, and also discussed
how to perform such a continuation from the continuum limit (at least for sin-
gle core vortices). Such a continuation as a function of the coupling strength
revealed significant analogies between these defocusing discrete vortices and
their 1d analog of the discrete dark solitons, which are stable from coupling
C = 0 up to a critical coupling and are subsequently unstable for all higher
couplings up to C' — oo (when they become restabilized). Something similar
was observed and quantified in the case of discrete vortices. In addition to
the most fundamental structures of topological charge S = 1, structures of
higher charge such as S = 2 were obtained by similar means. These nonlinear
waveforms were obtained both in the case without and with the parabolic
trap (often relevant to experiments in BEC). Their dynamics, when unstable,
was also observed revealing interesting characteristics such as the formation
of gray soliton-vortices (for S = 1) or the breakup of higher charge (S = 2)
ones.

A natural topic for a more detailed future study arising from the present work
concerns the understanding of multi-vortex bound states and their stability
properties, as well as their detailed continuation as a function of the cou-
pling and eventual disappearance as the coupling becomes sufficiently large.
Another possible direction would be to examine such defocusing vortices in
multi-component models (in analogy e.g., to the bright discrete vortices of
[39]; see also references therein). There it would be of interest to study the
similarities and differences of bound states of the same charge versus ones
of, say, opposite charges. For these more demanding computations (as well as
possibly ones associated with the 3d version of the present model [40]), more

18



intensive numerical computations will be needed which may be aided by virtue
of parallel implementation [41]. Such studies are currently in progress and will
be reported in a future publication.
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