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Abstract

We study the discrete nonlinear Schrödinger lattice model with the onsite nonlin-
earity of the general form, |u|2σu. We systematically verify the conditions for the
existence and stability of discrete solitons in the one-dimensional version of the
model predicted by means of the variational approximation (VA), and demonstrate
the following: monostability of fundamental solitons (FSs) in the case of the weak
nonlinearity, 2σ + 1 < 3.68; bistability, in a finite range of values of the soliton’s
power, for 3.68 < 2σ + 1 < 5, and the presence of a threshold (minimum norm
of the FS), for 2σ + 1 ≥ 5. We also perform systematic numerical simulations to
study higher-order solitons in the same general model, i.e., bound states of the FSs.
While all in-phase bound states are unstable, stability regions are identified for an-
tisymmetric double solitons, and their triple counterparts. These numerical findings
are supplemented by an analytical treatment of the stability problem, which allows
quantitively accurate predictions for the stability features of such multipulses. When
these waveforms are found to be unstable, we show, by means of direct simulations,
that they self-trap into a persistent lattice breather, or relax into a stable FS, or
sometimes decay completely.
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1 Introduction

Discrete nonlinear Schrödinger (DNLS) equations represent a vast class of dy-
namical lattice models with many mathematical and physical applications [1].
The DNLS equation with the onsite cubic nonlinearity models, among others,
an array of nonlinear-optical waveguides [2], that was originally implemented
in an experiment as a set of parallel ribs made of a semiconductor mater-
ial (AlGaAs) and mounted on a common substrate [3] (see also the review
[4]). Quasi-discrete optical waveguide arrays can also be created as virtual
photonic lattices in photorefractive crystals [5], the appropriate model being
the DNLS with the saturable nonlinearity, known as the Vinetskii-Kukhtarev
model, that was introduced more than 30 years ago [6], and has drawn a great
deal of interest recently [7].

It was predicted [8] that the DNLS equation may also serve as a model for
Bose-Einstein condensates (BECs) trapped in a strong optical lattice (a si-
nusoidal potential composed by the interference of laser beams), which was
confirmed by the experiment [9] (see also the review [10]). In addition to the
direct physical realizations in terms of nonlinear optics and BECs, the DNLS
equations appear as universal asymptotic forms of various models based on
chains of coupled oscillators. Accordingly, the solitons known in the DNLS
equation represent intrinsic localized modes investigated in such chains theo-
retically [11] and experimentally [12].

Fundamental states supported by the DNLS equations are discrete solitons.
In the DNLS equation with cubic and saturable nonlinearities, the solitons
have been studied in detail (first of all, in one-dimensional models, but many
results have been also obtained for two- and three-dimensional DNLS lat-
tices) [1]. Equations with more complex nonlinearities are of interest too. In
particular, applications to optics suggest the consideration of solitons in the
DNLS equation with the onsite nonlinearity combining self-focusing cubic and
self-defocusing quintic terms. Recently, localized states in this one-dimensional
discrete model with the competing nonlinearities were studied in detail in Ref.
[13], where it was shown that novel classes of solutions can be introduced by
this competition.

On the other hand, a subject of general interest is also the study of various
species of solitons and their stability in the DNLS equation with arbitrary
onsite power nonlinearity, i.e.,

iu̇n = −ε (un+1 + un−1 − 2un) un − |un|2σun, (1)

where un(t) are the lattice dynamical variables, the overdot stands for the
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time derivative, ε > 0 is the lattice coupling constant, and σ > 0 determines
the nonlinearity power. This model was introduced in Ref. [14] (see also Ref.
[15]), where, in particular, quasi-collapse was studied, in the case of σ ≥ 2
(the critical or supercritical collapse [16] takes place in the continuum limit of
the one-dimensional Eq. (1), i.e., the ordinary NLS equation, with σ = 2 and
σ > 2, respectively). In particular, the case of σ = 2, i.e., the quintic nonlin-
earity in Eq. (1), has also been argued to be of relevance in the case of BECs.
In particular, in the limit of very tight transverse confinement, and for suffi-
ciently low densities, an atomic BEC with repulsive interactions behaves like
a one-dimensional gas of impenetrable bosons, the so-called Tonks-Girardeau
gas [17]. In the framework of mean-field theory, it has been proposed that
such a bosonic gas behaving like a system of free fermions, may be described
by the continuum NLS equation with the defocusing (self-repulsive) quintic
nonlinearity (without the cubic term) [18]. Then, similarly to the case of reg-
ular BECs, if this Tonks-Girardeau gas is trapped in a strong optical-lattice
potential [19], it may be described by the DNLS Eq. (1) with σ = 2 [strictly
speaking, with the opposite sign in front of the nonlinear term; however, the
equation may be cast in the form of Eq. (1) by means of the staggering trans-
formation [1], i.e., un ≡ (−1)ne−4iεtũ∗n].

Quite general predictions for solitons in the DNLS equation (1) were made,
on the basis of the variational approximation (VA), in Ref. [20]:

(i) There is a critical value of the nonlinearity power, σcr ≈ 1.42, such that,
for σ < σcr, exactly one soliton can be found for each value of the norm,
P ≡ ∑+∞

n=−∞ |un|2 (that is, there no threshold for the existence of the solitons,
and no bistability).

(ii) In the range of σcr < σ < 2, three different solitons coexist in a certain
finite interval of values of P , two stable and one unstable (It is worthwhile to
note here that there is no such multistability in the continuum limit of the
DNLS equation, where, in fact, solutions are analytically available for any σ
[21]). For values of the norm below and above this range, one can find a unique
soliton, which is stable. In fact, this feature has been used in [22] to produce
controllable switching (via the use of an internal mode) from one of these two
stable stationary states to the other.

(iii) For σ ≥ 2, there exists a threshold (minimum norm) necessary for the
existence of solitons. For σ > 2, there exist two solitons above the threshold,
one narrow (stable), and one broad (unstable).

As concerns the predictions for the stability, they were made in Ref. [20] on the
basis of the extrapolation of the Vakhitov-Kolokolov (VK) stability criterion
[23], which is well known as a necessary condition for the stability of solitons in
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continuum NLS equations [16]. This generalization is natural for fundamental
solutions, since the DNLS can be cast in the general Hamiltonian framework of
[24], for which the VK criterion has been established as governing the stability
of such solutions. The criterion states that, if a family of stationary soliton
solutions can be found as

un(t) = eiΛtvn, (2)

with real frequency −Λ and real stationary function vn, the soliton family may
be stable in a region where dP/dΛ > 0, and it is definitely unstable otherwise
(the VK criterion is only a necessary one, as it ignores possible oscillatory
instability of the solitons, that would be accounted for by complex instability
eigenvalues, see below).

While the above predictions are quite important, they have never been sub-
jected to consistent numerical verification, as far as we know. This is the first
objective of the present work (the results essentially confirm the conclusions
produced on by the VA and VK criterion, with a difference that a numerically
accurate critical value of the power of the onsite nonlinearity is σcr ≈ 1.34,
instead of the above-mentioned approximation, σcr ≈ 1.42). Following this
line of the analysis, in Section 2, we recapitulate the VA for the fundamental
(single-humped) solitons in Eq. (1), and in Section 3 systematic numerical
results are reported, which verify the predictions of the VA.

Another objective of the work is to theoretically analyze and numerically con-
struct higher-order (multi-humped) states, i.e., bound states of the fundamen-
tal solitons (FS). In the DNLS equation with the cubic nonlinearity, they were
introduced in Ref. [25]. A general principle which predicts their stability was
formulated in Ref. [26]: bound states of the FSs with opposite signs may be
stable, while compounds built of in-phase fundamental solitons may be only
unstable (see also Refs. [27], where multihumped complexes were studied in
chain of coupled oscillators and the work of [28], where such states were ex-
amined in one and two dimensions for the cubic nonlinearity). In Section 4,
we present a theoretical analysis for the stability of such multi-humped states,
while in Section 5 we report numerical results for basic families of the bound
states in the present system. In agreement with the aforementioned principle,
the bound states of two or three in-phase FSs are found to be always unstable
(therefore, they are not considered in detail), while complexes of out-of-phase
two or three FSs may be stable.

In Sections 3 and 5, we also present typical examples of direct simulations
that illustrate the development of instability of fundamental and bound-state
solitons, in cases when they are unstable. We find that there are three poten-
tial outcomes of these “numerical experiments”: the waveforms may transform
themselves into persistent discrete breathers, or relax into stable FSs, or com-
pletely decay into linear waves.
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2 The variational approximation for fundamental solitons

Substituting the general expression (2) for the stationary solitons in Eq. (1),
one arrives at the following equation for the real discrete waveform vn,

Λvn = ε (vn+1 + vn−1 − 2vn) + v2σ+1
n . (3)

Equation (3) can be derived from the Lagrangian

L =
+∞∑

n=−∞

[
ε(vn+1 + vn−1)vn − (Λ + 2ε)v2

n +
1

σ + 1
v2(σ+1)

n

]
. (4)

The VA for fundamental discrete solutions, elaborated in Ref. [20] (see also
Ref. [13]) was based on the simple exponential ansatz ,

vn = Ae−a|n|, (5)

with variational parameters A and a (which, obviously, determine the am-
plitude and inverse size of the soliton). Then, substituting the ansatz in the
Lagrangian, one can perform the summation explicitly, which yields the effec-
tive Lagrangian,

Leff = 2εP sech a− (Λ + 2ε)P +
P σ+1

σ + 1

coth ((σ + 1)a)

cothσ+1 a
. (6)

The norm of the ansatz (5), which appears in Eq. (6), is given by

P ≡
+∞∑

n=−∞
v2

n = A2 coth a. (7)

The Lagrangian (6) gives rise to the variational equations, ∂Leff/∂P = ∂Leff/∂a =
0, which constitute the basis of the VA [29]. They predict relations between
the norm, frequency, and width of the FSs within the framework of the VA,
namely

P σ =
4ε coshσ a sinh2(σ + 1)a

sinhσ−1 a(sinh 2(σ + 1)a− sinh 2a)
, (8)

Λ = 2ε(sech a− 1) + P σ coth(σ + 1)a

cothσ+1 a
(9)

These analytical predictions, implicitly relating P and Λ through their para-
metric dependence on a, will be compared with numerical findings below.

3 Numerical results: fundamental solitons

Using the scaling invariance of Eq. (3), we will present numerical findings for
Λ ≡ 1 (in most cases), using ε and σ as free parameters. We display numerically
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obtained results for FSs in Eq. (1) with four distinct values of the nonlinearity
power, viz., σ = 1, 1.5, 2, 3. As explained in Introduction, σ = 1 and 2,
corresponding to the cubic and quintic nonlinearity, respectively, are relevant
to applications in nonlinear optics and BECs.

Localized real solutions vn to Eq. (3) were found starting from the anti-
continuum limit, ε = 0, where they can be constructed trivially, and continuing
them up to a required value of ε. After that, the stability of the solitons was
analyzed by taking a perturbed solution in the form

un(t) = eiΛt [vn + an exp(−λt) + b∗n(λ∗t)] , (10)

and linearizing Eqs. (1) with respect to small perturbation modes an and bn.
This leads to an eigenvalue problem (for the instability growth rate λ, that
may be complex), based on the following coupled linear equations,

iλan =−ε∆2an + Λan − (σ + 1)v2σ
n an − σv2σ

n bn,

(11)

iλbn = ε∆2bn − Λbn + (σ + 1)v2σ
n bn + σv2σ

n an.

This problem was solved by a standard numerical eigenvalue solver.

First, typical examples of numerically found FSs, as well as double and triple
bound states of in-phase and out-of-phase (sign-changing) types, are displayed
in Fig. 1. The FSs exist at all values of ε for all Λ. In the cubic model, with
σ = 1, they are stable for all ε, which is a well-known fact [1]. However, in the
model with higher nonlinearities, σ = 2 (quintic) and σ = 3, they are stable
only in finite intervals, 0 < ε < 1.079 and 0 < ε < 0.679, respectively. For the
quartic nonlinearity, with σ = 1.5, the FS solutions are stable in two intervals:
a finite one, 0 < ε < 1.482, and a semi-infinite region, ε > 3.437. These
results are summarized in Fig. 2, which clearly demonstrates that shapes of
the FS family, if represented in the form of the P (ε) dependence, are nearly
the same for all the aforementioned values of σ, while their stability properties
are drastically different.

Stability changes are closely related to the above-mentioned VK criterion,
dP/dΛ > 0. Figure 3 shows P as a function of ε for fixed Λ ≡ 1, therefore
the VK criterion cannot be directly applied to it. However, rescaling vn ≡
(2ε)1/2(σ+1) ṽn, i.e., P ≡ (2ε)1/(σ+1) P̃ , one can cast the stationary equation (3)
with Λ = 1 and arbitrary ε in a different form, with ε = 1/2 and Λ = 1/ (2ε),
which yields plots P (Λ) shown in Fig. 3, together with the same dependencies
predicted by the VA as per Eqs. (8) and (9). The comparison with results of
the computation of the stability eigenvalues from Eqs. (11) demonstrates that
the stability change takes place exactly at points dP/dΛ = 0, as expected (per
our arguments above), in full agreement with the VK criterion. The two sign
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Fig. 1. Typical profiles of fundamental solitons and bound states in the DNLS
equation with the quintic nonlinearity, σ = 2. A fundamental pulse is shown in panel
(a) for ε = 1; Triangles represent the profile predicted by the VA. Double pulses:
in-phase ones, structured like (1, 0, 1), for ε = 0.2 (b), and out-of-phase double
pulses, of the type (1, 0,−1), for ε = 0.5 (c). Triple pulses: of types (1, 0, 1, 0, 1) for
ε = 0.2 (d), and (1, 0,−1, 0, 1) for ε = 0.5 (e). In all figures, except for Fig. 3, the
solitons and their families are shown for the intrinsic frequency fixed by the scaling,
Λ ≡ 1.

changes of dP/dΛ also explain the bistability observed (in Fig. 2) at σ = 1.5.

As shown in Ref. [20], the VA predicts that all FSs are stable for σ < σcr ≈
1.42, with a single FS corresponding to each value of P , and that bistability
arises in a finite interval of values of the norm in the FS family, for 1.42 < σ <
2. Further, for σ ≥ 2, there is a threshold (minimum) value of the norm, Pthr,
necessary for the existence of the solitons. For σ > 2, there are two FS families
with P > Pthr, one stable and one unstable. The numerical results confirm all
these conclusions, with a difference that the numerically found value of σcr

is lower than the aforementioned one predicted by the VA, viz., σcr = 1.34
(rather than σcr = 1.42).

Getting back to the normalization with Λ ≡ 1 and varying ε, we notice that
the predictions of the VA can be reformulated as follows. At σ < σcr, the FSs
are stable for all ε. In the case of σcr < σ < 2, the solitons are stable in intervals
0 < ε < ε1(σ) and ε > ε2(σ), being unstable in between, at ε1(σ) < ε < ε2(σ).
Here, ε1(σ) and ε2(σ) represent the stability borders shown in the left and
right panels of Fig. 4. Both the destabilization of the FS at ε = ε1(σ) and
its restabilization at ε = ε2(σ) are accounted for by the sign change in the
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Fig. 2. Families of FS (fundamental-soliton) solutions. Left panels: the FS norm
versus the coupling constant ε. The center and right panels show, respectively, the
real and imaginary parts of the linear stability eigenvalues λ ≡ λr + iλi, see Eq.
(10), versus ε.

VK criterion, hence these bifurcations are related to the exponential (non-
oscillatory) instabilities, which occur via real eigenvalues λ. These eigenvalues,
as can be seen in the right and middle panels of Fig. 2, bifurcate from the
lower edge of the phonon band at λi = Λ at some nonzero value of ε and
subsequently move towards λ = 0. In subcritical cases, they only arrive there
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Fig. 3. The norm of the fundamental-soliton family versus Λ for (a) σ = 1, (b)
σ = 1.5, (c) σ = 2, (d) σ = 3. Full lines display numerical results, while the dashed
curves correspond to the predictions of the variational approximation.

as ε → ∞; for cases with σcr < σ < 2, they cross it twice, leading to the
bistability feature, while for σ ≥ 2, they only cross it once. Note that ε →∞
corresponds to the continuum limit, which explains why the restabilization
occurs only for σ < 2, and is impossible for σ ≥ 2 (formally speaking, this
means ε2(σ = 2) = ∞): the continuum one-dimensional NLS equations with
the nonlinearity corresponding to σ ≥ 2 gives rise to collapse [16], hence the
solitons in this continuum equation are unstable. Figure 4 demonstrates that
the VA predicts both bifurcations, at ε = ε1,2(σ), in a qualitatively correct
form, although it is less accurate quantitatively in the vicinity of the transition
points σ = σcr and σ = 2. One expects that, in the neighborhood of these,
the detailed structure of the soliton may be relevant and hence its simple
exponential representation by the VA may not be sufficient for quantitative
purposes.

To complete the consideration of the fundamental solitons, we have simulated
the evolution of those among them which are predicted to be unstable by the
VK criterion and computation of the stability eigenvalues (see Eqs. (11)). As
shown in the upper part of Fig. 5, the milder instability (i.e., with smaller
growth rate as represented by the largest eigenvalue real part) of the soliton
in the window ε1 < ε < ε2, which is possible in the case of σcr = 1.34 < σ <
2, transforms it into a persistent lattice breather, as mentioned in Ref. [14]
(although the original instability is not oscillatory, see above). On the other
hand, the stronger instability of the soliton in the examined case for ε > ε2,

9



1.5 2 2.5 3
0.5

1

1.5

2

2.5

σ
ε

1.4 1.5 1.6 1.7 1.8 1.9 2

5

10

15

20

25

30

35

σ

ε

Fig. 4. Locations of the two bifurcations that account for the exponential (non-oscil-
latory) destabilization and subsequent restabilization (the left and right panels, re-
spectively) of the fundamental solitons (subject to the normalization Λ ≡ 1) in the
plane of (σ, ε). The (blue) line and (red) dots represent predictions of the variational
approximation and numerical results, respectively. The restabilization correspond-
ing to the right panel does not occur for σ ≥ 2.
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Fig. 5. Typical examples of weakly and strongly unstable fundamental solitons, cor-
responding, respectively, to σ = 1.5, ε = 2 (top) and σ = 2, ε = 1.5 (bottom). The
left panels show the spectral planes of the instability eigenvalues for small pertur-
bations around the soliton. The temporal development of the instabilities is shown
in the central and right panels, by means of density contours and three-dimensional
plots. The weak instability turns the soliton into a persistent breather, while the
strong instability destroys it. In the direct simulations, perturbations are generated
solely by numerical truncation errors.

at σ ≥ 2 at the bottom panel of the figure 5, tends to completely destroy the
soliton.
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4 Analytical results: multisoliton bound states

We now turn to multisoliton bound states, adapting the analytical techniques
of [30] to the present problem. In particular, starting from the Eqs. (11), we
use the decomposition an = zn + iwn, bn = zn− iwn, to rewrite the eigenvalue
problem as

−λwn = L+zn = −ε∆2zn +
(
1− (2σ + 1)v2σ

n

)
zn (12)

λzn = L−wn = −ε∆2wn +
(
1− v2σ

n

)
wn. (13)

Combining these equations one obtains λ2wn = −L+L−wn. Near the anti-
continuum limit of ε = 0, for each of the excited sites (with |vn| = 1), the
action of the L+ simplifies into a multiplicative operation, which allows us to
invert the operator and accordingly obtain the equation for the eigenvalues

λ2 = − (w, L−w)

(w, L−1
+ w)

, (14)

where w is the vector with elements wn. Then, using the fact that limε→0(w, L−1
+ w) =

−(2σ)−1, we obtain the following expression for the eigenvalues

λ2 =
√

2σ (w, L−w) (15)

as the appropriate generalization of Eq. (3.11) of [30]. However, following the
theory of [30], the eigenvalues of L− can be evaluated as εsγ. In the above
expression, s is the distance between the sites of the configuration (e.g., for
nearest-neighbors s = 1, while for next-nearest-neighbors s = 2, for the config-
urations considered herein), while γ’s are the eigenvalues of the L×L matrix
(where L is the number of sites excited in the anti-continuum limit) with
off-diagonal entries: Mn,n+1 = Mn+1,n = − cos(θn+1 − θn) and diagonal en-
tries Mn,n = (cos(θn−1 − θn) + cos(θn+1 − θn)). In the case of L = 2 excited
sites, it is straightforward to obtain that γ = 0 or γ = 2 cos(θ1 − θ2), where
θ1,2 are the respective phases of the sites in the limit of ε = 0. On the other
hand, for L = 3 excited sites, there is a γ = 0 eigenvalue, in addition to two
non-vanishing ones

γ1 = cos(θ2 − θ1) + cos(θ3 − θ2)

±
√

cos2(θ2 − θ1)− cos(θ2 − θ1) cos(θ3 − θ2) + cos2(θ3 − θ2). (16)

Similarly to [30], one can observe that the configurations that will be stable
are the ones where adjacent excited sites are out of phase with each other.
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Fig. 6. The same as in Fig. 5 for a moderately unstable symmetric double pulse
of type (+1,0,+1), with σ = 3 and ε = 1. The instability transforms it into a
fundamental soliton with residual intrinsic oscillations.

Focusing, in particular, on the examples that will be presented in detail in the
numerical section below, we have that for the configuration (+1, 0,−1), the
above calculation predicts that the small (near zero) eigenvalues will be λ = 0
and λ = ±i2

√
σε. On the other hand, for the case of (+1, 0,−1, 0, +1) also

examined below, our theoretical prediction is that the three relevant small
eigenvalue pairs should be λ = 0, λ = ±i

√
2σε and λ = ±i

√
6σε. We now turn

to a comparison of the full numerical results with these analytical predictions.

5 Numerical results: multisoliton bound states

5.1 Two-humped states

Figure 1 shows various types of two- and three-humped stationary solutions,
that may be regarded as in-phase and out-of phase bound states of the FSs.
In accordance with the general prediction of Ref. [26], the in-phase bound
states, of types (+1,0,+1) and (+1,0,+1,0,+1) (panels (b) and (d) in Fig.
1) are unstable for all nonzero values of the lattice coupling, ε > 0. Direct
simulations, displayed in Fig. 6, demonstrate that the unstable two-humped
states may relax, through oscillatory evolution, into a stable FS. Similar results
are demonstrated by direct simulations of the evolution of unstable three-
humped states of type (+1,0+1,0,+1) (not shown here).

On the other hand, antisymmetric bound states of type (+1,0,-1), see Fig.
1(c), may be stable, in consonance with our theoretical predictions above.
Existence and stability conditions for the antisymmetric double solitons are
summarized in Fig. 7. They were found to exist below a maximum value of ε,
which is εmax = 1.086, 1.789, 2.584 and 4.426, for σ = 1, 1.5, 2, and σ = 3,
respectively (the presence of the upper limit for their existence is natural,
as they, obviously, have no counterparts in the continuum limit, which corre-
sponds to ε → ∞). For more details on the nature and bifurcation structure
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of the termination of such branches, the interested reader is directed to the
detailed study of [31]. On the other hand, these branches may become unsta-
ble for ε > ε(1)

cr , where the critical values are ε(1)
cr = 0.431, 0.331, 0.264 and

0.192, for σ = 1, σ = 1.5, σ = 2 and σ = 3, respectively. Beyond this crit-
ical point, the antisymmetric double soliton undergoes destabilization via a
Hamiltonian Hopf bifurcation, originating from the collision of two imaginary
eigenvalues with opposite Krein signature [24,30]. One of these two eigenval-
ues is the small eigenvalue, bifurcating from λ = 0 for ε 6= 0, according to
our theoretical predictions of the previous section. Notice the level of agree-
ment between the theoretical prediction and the numerical results for these
eigenvalues in the right panels of Fig. 7. The coupling strength for which this
eigenvalue ±2ε

√
σi reaches the bottom of the phonon band ±i (0.5, 0.4082,

0.3536 and 0.2887 for σ = 1, 1.5, 2, 3 respectively) yields a fair upper bound
for the relevant critical point, since the collision occurs with an eigenvalue bi-
furcating from the phonon band edge. This scenario is fundamentally different
from the above-described situation for the FSs, which could be destabilized
only by non-oscillatory instabilities, associated with real eigenvalues. For val-
ues of ε > ε(1)

cr , the antisymmetric double solitons may become more unstable
due to a real eigenvalue pair emerging through a mechanism similar to the one
discussed in the case of the FSs, beyond a second critical value, ε(2)

cr = 1.002,
1.283, 1.251, and 0.961 for σ = 1, σ = 1.5, σ = 2 and σ = 3, respectively.

If an antisymmetric double soliton is unstable, direct simulations demonstrate
either spontaneous transformation into a FS, or complete decay. Typical ex-
amples of the instability development are presented in Fig. 8.

5.2 Three-humped states

It was mentioned above that in-phase bound states of three FSs, like the one
displayed in Fig. 1(d), are unstable. On the other hand, sign-changing triple
bound states, of the type (+1,0,-1,0,+1), an example of which is displayed in
Fig. 1(e), may be stable. Similarly to other bound states, solitons belonging
to this species feature an upper existence limit, ε < εmax = 1.066, 1.758, 2.544,
and 4.369 for σ = 1, σ = 1.5, σ = 2 and σ = 3, respectively. Like in the case
of antisymmetric double solitons considered above, the stability region of the
triple states is bounded by the condition ε ≤ ε(1)

cr = 0.375, 0.284, 0.227, and
0.165 for σ = 1, σ = 1.5, σ = 2 and σ = 3, respectively. At ε − ε(1)

cr → 0,
the triple solitons are destabilized through a Hamiltonian Hopf bifurcation.
This occurs between the largest one of the two small pairs of eigenvalues of
this case (theoretically predicted as ±√6σεi and ±√2σεi) and the lower edge
(or an eigenvalue bifurcating from the lower edge) of the phonon band. Once
again, the theoretical prediction for the collision of the largest eigenvalue with
the phonon band edge, being ε = 0.4082, 0.3333, 0.2887 and 0.2357 yields a
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Fig. 7. The same as Fig. 2, but for the family of antisymmetric double solitons of
type (+1,0,-1).

reasonable upper bound for the location of the relevant destabilization point.

Naturally, an additional Hopf bifurcation occurs at ε = ε(2)
cr = 0.548, 0.447,

0.363, and 0.266 for σ = 1, 1.5, 2, and σ = 3, respectively, due to the collision
of the second small pair of eigenvalues with an eigenvalue pair bifurcating
from the phonon band. Finally, in addition to these two Hamiltonian Hopf
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Fig. 8. The same as in Figs. 5 and 6, but for unstable double antisymmetric solitons
of type (+1,0,-1), with σ = 3 and ε = 1 (top) and ε = 1.5 (bottom).

bifurcations, resulting in two quartets of eigenvalues, there is also an expo-
nential instability, associated with the mechanism of destabilization present
in the case of FSs which occurs for ε = ε(3)

cr = 1.066, ε = 1.758, ε = 1.489
and ε = 1.224 for σ = 1, σ = 1.5, σ = 2 and σ = 3, respectively. All of
these findings concerning the existence and stability of the triple solitons are
summarized in Fig. 9.

Typical examples of the evolution of unstable three-humped states are dis-
played in Fig. 10. It is seen that they either relax into stable FS, which may
be accompanied by emission of radiation jets, or they may completely decay.

6 Conclusion

Concluding, we have revisited the discrete-NLS model in one dimension, with
the onsite nonlinearity of arbitrary power. One objective was to check the va-
lidity of the predictions of the VA (variational approximation), reported in Ref.
[20] more than ten years ago, against systematic numerical results. We have
demonstrated that the qualitative predictions of the VA are correct: monosta-
bility of the FSs (fundamental solitons) in the case of the weak nonlinearity
(with power 2σ + 1 < 3.68, which includes the cubic nonlinearity), bistability,
in a certain interval of values of the soliton’s power, for 3.68 < 2σ + 1 < 5,
and the presence of a threshold (minimum value of the norm), necessary for
the existence of the solitons, for 2σ + 1 ≥ 5, i.e., for quintic and stronger
nonlinearities. The only essential correction to the VA results is that the bor-
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Fig. 9. Same as Figs. 2 and 7, but for the family of triple solitons of type
(+1,0,-1,0,+1).

der between the weak and moderate nonlinearity was predicted by the VA
at 2σ + 1 ≈ 3.84, which slightly differs the aforementioned numerically exact
value, 3.68.

The second part of the present work was dealing with bound states of FSs in
the same class of models. Both through analytical considerations and through
numerical results, it was concluded that, as predicted earlier, all in-phase
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Fig. 10. The same as in Figs. 8 and 5, but for unstable three-humped solitons of type
(+1,0,-1,0,+1), with σ = 3 and ε = 0.3 (top), ε = 0.5 (center),and ε = 2 (bottom).

bound states are unstable, while antisymmetric double solitons, and their sign-
changing triple counterparts, have finite stability regions, which were identified
by means of theoretical prediction and numerical computation of the relevant
linear stability eigenvalues. In addition, evolution of unstable solitons of vari-
ous types has been explored with the help of direct simulations. It was found
that they may self-trap into a persistent breather, or relax into a stable FS,
or suffer complete decay.

The new results for the DNLS model with the quintic nonlinearity may be of
relevance to the Tonks-Girardeau gas (the BEC of hard-core bosons) trapped
in a strong optical lattice. For this and other applications, it should be quite in-
teresting to extend the analysis to similar lattice models in higher-dimensions.
Such investigations are currently in progress and will be reported in future
publications.
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93 (2004) 033901; A. Khare, K.Ø. Rasmussen, M. R. Samuelsen, and A. Saxena,
J. Phys. A: Math. Gen. 38 (2005) 807; R. A. Vicencio and M. Johansson, Phys.
Rev. E 73 (2006) 046602; T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis,
and J. Cuevas, Phys. Rev. Lett. 97 (2006) 124101.

[8] A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86 (2001) 2353; G. L. Alfimov,
P. G. Kevrekidis, V. V. Konotop, and M. Salerno, Phys. Rev. E 66 (2002)
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[13] R. Carretero-González, J. D. Talley, C. Chong, and B. A. Malomed, Physica D
216 (2006) 77.

[14] E. W. Laedke, K. H. Spatschek, and S. K. Turitsyn, Phys. Rev. Lett. 73 (1994)
1055.

[15] S. Flach, K. Kladko, and R. S. MacKay, Phys. Rev. Lett. 78 (1997) 1207.
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