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Universidad de Sevilla. Avda. Reina Mercedes, s/n. 41012-Sevilla (Spain)

Abstract

We study the collisions of moving breathers with the same frequency, traveling
with opposite directions within a Klein-Gordon chain of oscillators. Two types of
collisions have been analyzed: symmetric and non-symmetric, head-on collisions.
For low enough frequency the outcome is strongly dependent of the dynamical
states of the two colliding breathers just before the collision. For symmetric colli-
sions, several results can be observed: breather generation, with the formation of a
trapped breather and two new moving breathers; breather reflection; generation of
two new moving breathers; and breather fusion bringing about a trapped breather.
For non-symmetric collisions some possible results are: breather generation, with the
formation of three new moving breathers; breather fusion, originating a new moving
breather; breather trapping with breather reflection; generation of two new mov-
ing breathers; and two new moving breathers traveling as a bound state. Breather
annihilation has never been observed.
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1 Introduction

The study of nonlinear localized excitations in lattices of oscillators, which
receive the name of intrinsic localized modes or discrete breathers [1–4], is an
active research field in nonlinear physics. These vibrational modes are rather
generic in models of Klein-Gordon and FPU lattices [5–8]. They also appear
as solutions of the Discrete Nonlinear Shrödinger (DNLS) equation [9] where
these excitations are usually known as discrete solitons.

Under certain conditions, stationary breathers can be made mobile [10,11], i.e.,
when they experience appropriate perturbations, the breathers travel through
the chain and they are called moving breathers (MBs). There are no exact so-
lutions for MBs, but they can be obtained by means of numerical calculations.
The conditions for the existence of MBs in Klein-Gordon lattices are strongly
dependent on the exact details of both the on-site and the interaction poten-
tials. One of the most thoroughly studied Klein-Gordon models where MBs
appear is the Hamiltonian Klein-Gordon chain with Morse on-site potential
and harmonic coupling potential [12–14]. Variants of this model have been
proposed in the study of the DNA molecule, for example the Peyrard-Bishop
model [15,16].

In a real discrete system, MBs should appear at arbitrary positions, then,
it is natural to be interested in their collisions. The study of collisions of
MBs has been initiated in FPU chains [17]. However, in Klein-Gordon chains,
the studies have been limited to the interaction of moving low-amplitude
breathers with stationary high-amplitude ones [18–20], or to the interaction
between quasi-periodic moving breathers in dissipative lattices [21]. The study
of soliton collisions in non-integrable DNLS models has not been undertaken
until very recently. These models deal with nearly integrable DNLS equa-
tions [22,23], cubic DNLS equations [24] and saturable DNLS equations [25,26].

The aim of this paper is to get some insight into the detailed mechanisms
and possible outcomes of collisions in a Klein-Gordon chain of oscillators
with Morse on-site potential. We have considered only two types of collisions:
a) symmetric collisions, that is, collisions of two identical MBs traveling with
opposite velocities; b) non-symmetric collisions, or head-on collisions of two
MBs with the same frequency but different velocities.

This article is organized as follows. Sec. 2 introduces the model, describes the
means for producing MBs and different types of collisions. Sec. 3, presents the
numerical simulations results corresponding to symmetric and non-symmetric
head-on collisions. Sec. 4 presents some plausible explanations for the different
outcomes. In Sec. 5, we compare the results for collisions of discrete solitons in
DNLS models with the outcomes of our model. The summary and conclusions
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are presented in Sec. 6.

2 Moving breathers and collisions

We consider a one-dimensional Klein-Gordon chain of identical oscillators. In
scaled variables the Hamiltonian is given by:

H =
∑

n

[

1

2
u̇2

n + V (un) +
1

2
ε(un − un+1)

2

]

, (1)

where un represents the displacement of the nth oscillator from the equilibrium
position, ε is the coupling parameter and V (un) is the Morse on-site potential:

V (un) =
1

2
(exp(−un) − 1)2 . (2)

Time-reversible, stationary breathers can be obtained using methods based on
the anti-continuous limit[27]. At t = 0, u̇n = 0, ∀n, and the displacements of
a breather centered at n0 are denoted by {uSB,n}. A moving breather {ut,n}
can be obtained with the following initial displacements and velocities:

u0
MB,n = uSB,n cos(α(n − n0))

u̇0
MB,n =±uSB,n sin(α(n − n0)) . (3)

The plus-sign corresponds to a breather moving towards the positive direc-
tion and the minus one, the opposite. This procedure taken from the DNLS
context [24,25] works as well as the marginal-mode method [10,11] and gives
good mobility for a large range of ε. The parameter α is the difference of phase
between two neighboring oscillators an we will refer to it as the wave number.
The translational velocity and the translational kinetic energy of the MB in-
crease with α. We use Eqs. (3) as initial conditions to integrate the dynamical
equations using a symplectic algorithm [28]. The number of oscillators N is
between 100 and 200 with periodic boundary conditions.

The study begins generating two MBs with the same frequency, located ini-
tially far apart, traveling in opposite directions. We have considered two differ-
ent types of collisions, symmetric and non-symmetric collisions. For symmetric
collisions, both MBs have initially the same displacements and opposite ve-
locities given by Eqs. (3) with the same wave number α.
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There are two types of symmetric collisions: a) on-site collisions (OS), if ini-
tially the centers of the breathers are separated by an odd number of particles,
and b) inter-site collisions (IS), if that number is even [24,25].

3 Collision simulations

In this section, we present the results of the numerical simulations for sym-
metric and non-symmetric collisions. The breather frequency ωb is below the
phonon band because the on-site potential is soft. The lowest frequency of the
phonon band is equal to the linear frequency of each isolated oscillator and
is given by ω0 = V ′′(0)1/2. For breathers with small amplitude the system is
close to the linear limit, and their frequency is close to ω0. Therefore, |ω0−ωb|
is a measure of how far the system is from the linear regime. Hence, it is nat-
ural to think that the collision scenario should be strongly dependent of the
common frequency of the two MBs. For that reason, we have considered two
different breather frequencies, ωb = 0.8 and ωb = 0.95, that represent different
degrees of nonlinearity. We describe below the different scenarios that appear
considering the two types of collisions and the two frequencies.

Before considering collisions between MBs, it is necessary to have an estimate
of their lifetime. A MB has not a single frequency but a continuous band
around the frequency of the stationary breather. As this band contains phonon
frequencies, phonons are excited and the breather loses energy. However, we
have checked that in our system this energy is lost at a small rate and MBs
propagate during several hundreds of periods without apparent decay (see
Fig. 1). In our simulations, the time before the collision is something between
20 and 80 periods, therefore, we can consider that the colliding breathers are
almost intact.

3.1 Symmetric collisions

We have performed an extensive study of collisions considering different values
of the coupling parameter ε and MBs with different values of the wave number
α. The values of ε have been taken in the interval [0.13,0.35] with step size 0.01.
For each value of ε the values of α have been taken in the interval [0.030,0.200]
with step size 0.002.

Generally, our simulations show that the outcome is strongly sensitive to the
dynamical states of the MBs just before the collision.
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Fig. 1. Displacements versus time in a lattice with 150 oscillators. Wave number
α = 0.1; coupling parameter ε = 0.32 and breather frequency ωb = 0.8

.

3.1.1 Symmetric collisions of breathers with frequency ωb = 0.8

With this frequency and coupling parameter ε = 0.32, there are no significant
differences between the outcomes of OS and IS collisions. The results can be
summarized as follows:

(1) Breather generation with trapping:
The collision produces three new breathers, a trapped one located at

the collision region, and two new symmetric MBs, as Fig. 2(a) shows for
α = 0.048. The trapped breather contains most of the initial energy. This
behavior has been described in the pioneering work cited in Ref.[10].

Varying the parameter α, it is possible a noticeable attenuation of the
amplitude of the trapped breather, which anticipates an entirely new
outcome. Fig. 2(b) corresponds to α = 0.18. In this case the emerging
MBs contain most of the initial energy.

(2) Breather reflection:
With a slightly different value of α, it is possible a collision which re-
sults in two new symmetric MBs, with almost the same velocity that the
colliding breathers’. This is shown in Fig. 2(c) for α = 0.19.

The total energy transported by the colliding MBs is distributed after the col-
lision: some part corresponds to the energy of the trapped breather, another
part to the emerging MBs, and a small fraction of the energy is transferred
to the lattice in the form of phonon radiation. In order to illustrate this phe-
nomenon, we have studied the evolution of the ”central energy”, defined in
our study as the energy of eleven particles around the collision region. This
number of particles has been selected because it corresponds to the typical size
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Fig. 2. Three examples of symmetric collisions with coupling parameter ε = 0.32
and frequency ωb = 0.8. Displacements versus time for three different values of
the wave number α: (a) α = 0.048; (b) α = 0.18; (c) α = 0.19. Note that these
behaviours occur in an apparently random way when α increases, although in these
figures they seem to take place progressively.
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Fig. 3. Time evolution of the central energy corresponding to the collisions (a), (b)
and (c) of Fig. 2, respectively.

of a discrete breather with the parameters used. Fig. 3 shows the evolution of
the central energy for the three cases considered in Fig. 2.

Before the collision the central energy is zero; after the initiation of the col-
lision it increases quickly, up to a value very close to the sum of the incident
MBs energies; the subsequent decrease of the central energy is caused by the
appearance of two emerging MBs and by phonon radiation.

The Fourier spectra of the breathers involved in the collisions of Fig. 2(a)
are shown in Fig. 4. The trapped breather has a frequency (ωtrap ∼ 0.77),
which is lower than the colliding breathers’, but its amplitude is larger. The

6

PLA-D-07-00688
09/11/07



0 0.8 1.6 2.4 3.2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

ω
0 0.8 1.6 2.4 3.2 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

ω
0 0.8 1.6 2.4 3.2 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)

ω

Fig. 4. Fourier spectra of the breathers involved in the collisions shown in Fig. 2(a).
a) Incident breathers; b) trapped breather; c) emerging breathers.
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Fig. 5. (Left) Distribution of points representing the relative trapped energy ver-
sus wave number α, α ∈ [0.030, 0.200] with step size 0.002. Coupling parameter
ε = 0.32; breather frequency ωb = 0.8. (Right) Zoom around a value corresponding
to breather reflection.

emerging MBs have higher frequency (ωe ∼ 0.90) and smaller amplitude than
the colliding breathers’. We have also obtained the Fourier spectra for the
breathers shown in Fig. 2(b) and (c). For the former, the trapped and emerging
breathers have frequencies higher than the incident ones’ (ωtrap = 0.90 and
ωe = 0.86, respectively), but smaller amplitudes. For the latter, the frequency
of the reflected breathers is the same as the incident ones’ indicating the
quasi-elastic character of the scattering.

For each set of values (ε, α), we can calculate the relative trapped energy in
the collision, defined as he ratio between the energy of the trapped breather
and the sum of the energies of the two incident MBs. Taking ε = 0.32 and
α ∈ [0.030, 0.200] with step size 0.002, we have obtained the relative trapped
energies of these collisions which are represented by the distribution of points
shown in Fig. 5 (left).
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Fig. 6. Dots: dependence of the mean value of the relative trapped energies versus ε.
Upper x-marks: dependence of the 98th percentile of the relative trapped energies
versus ε. Lower x-marks: dependence of the 2nd percentile of the relative trapped
energies versus ε.

Note that almost all points are distributed inside a band apparently at ran-
dom. This means that a small change of α can affects the energy of the trapped
breather. Occasionally, for large enough values of α, there are points outside
the band which correspond to a relative trapped energy close to zero, i.e.,
for those values of α, the breathers are reflected. The behavior of the relative
trapped energy around one of these points can be better appreciated if we
choose a smaller step size for α. For example, if we take α within the interval
[0.1360,0.1400] with step size 0.0002, we find that for α = 0.1370 there is trap-
ping, and for α = 0.1372 the breathers are reflected. Fig. 5 (right) shows the
behavior of the relative trapped energy around one of these values. There is an
abrupt diminution of the relative trapped energy, that is, breathers reflection
appears as an abrupt process for some exacts values of α.

Varying only the coupling parameter ε, we observe that the distributions of
points are similar although the mean values of the relative trapped energies
and the dispersion of points change. For each ε taken in the interval [0.13,0.35]
with step size 0.01, we have obtained the corresponding distribution of points
and we have calculated the mean value, the 98th and the 2nd percentile of
the relative trapped energies. Fig. 6 shows the dependence of these quantities
versus ε.
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Fig. 7. Two examples of symmetric OS collisions with coupling parameter ε = 0.32
and breather frequency ωb = 0.95. Displacements versus time for two different values
of the wave number α. (Left) α = 0.045. (Right) α = 0.062.

3.1.2 Symmetric collisions of breathers with frequency ωb = 0.95

For breather frequencies around this value, which is close to the frequency of
an isolated oscillator in the linear regime, there are some important differences
with respect to the previous case and there are only two possible outcomes.

(1) Trapping: For small enough incoming translational velocities, the outcome
is a bound state of two trapped breathers whose distance oscillates with
a decaying amplitude, i.e., the two trapped breathers have multiple re-
bounds, losing energy through phonon radiation and eventually decaying
to a single stationary trapped breather.

(2) Reflection: There exists a critical value, αc, of the wave number α, such
that if α > αc the breathers are always reflected.

Fig. 7 shows these two outcomes for OS collisions with ε = 0.32 and ωb = 0.95.
The frequency of the trapped and reflected breathers of this figure are ω = 0.92
and ω = 0.95, respectively. The scenario for IS collisions is similar.

The critical value αc depends on ε, and the simulations show that for low
coupling, the values obtained with OS collisions are larger than for IS col-
lisions. Nevertheless, they approach as ε increases and they are practically
coincident for ε > 0.22. Fig. 8 shows the dependence of αc versus ε for IS and
OS collisions.

3.2 Non-symmetric collisions

The symmetry is broken if the incoming breathers have different translational
kinetic energies. Clearly, in this case it is meaningless to distinguish between
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Fig. 8. Representation of the critical wave number αc versus the coupling parameter
ε for symmetric collisions of breathers with frequency ωb = 0.95. Circles correspond
to OS collisions and x-marks to IS collisions

OS and IS collisions due to the different breather velocities. The simulations
show that there are many different outcomes, so we briefly describe some of
them. Hereafter, the two MBs are denoted as MB1 and MB2, and their wave
numbers are represented by α1 and α2, respectively.

(1) Collisions of breathers with frequency ωb = 0.8
(a) Small coupling:

There are many different outcomes. The simulations selected to
present this case correspond to ǫ = 0.15, α1 = 0.042, and α2 ∈
[0.031, 0.2] with step size 0.001.
(i) For α2 < α1, i.e., MB1 moves faster than MB2, we have observed

two main behaviours: 1) only a slow MB emerges traveling in
the direction of MB2; 2) a breather is trapped at the collision
region with or without the appearance of two outgoing MBs.

(ii) For α2 > α1, i.e., MB2 moves faster than MB1, we have ob-
served three main behaviours: 1) two MBs of different ampli-
tudes emerge with different velocities and opposite directions,
or with the same direction of MB2 (in this case, the phonons
can help to the formation of a bound state, as shown in Fig. 9–
left); 2) a single trapped breather and a single MB of small
amplitude traveling in the direction of either MB1 or MB2 (see
Fig 9–right); 3) a slow MB in the direction of MB1, and two
emerging MBs with smaller amplitudes.

(b) Large coupling:
For large coupling the behaviours are rather different. Taking ε =

0.32, we have found either two MBs traveling in opposite directions
or a MB with two MBs of small amplitude traveling in opposite
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Fig. 9. Two examples of non-symmetric collisions with ε = 0.15, ωb = 0.8, and
α1 = 0.042 with different outcomes. (Left) Two emerging MBs with the same direc-
tion, for α2 = 0.061. (Right) A reflected breather and the generation of a trapped
breather, with α2 = 0.131.
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Fig. 10. (Left) A non-symmetric collision with the generation of three new MBs
of different amplitudes, with ε = 0.32, ωb = 0.8, α1 = 0.18, and α2 = 0.181.
(Right) Merging of two colliding MBs into a single MB, with ωb = 0.95, ε = 0.14,
α1 = 0.048, and α2 = 0.046.

directions (see Fig. 10–left). We have not found any of the other
results observed with low coupling.

(2) Collisions of breathers with frequency ωb ∼ 0.95
If the breather frequency approaches to the bottom of the phonon band,

i.e., the system is close to the linear regime, the asymmetric collisions al-
most always produce two reflected MBs. Nevertheless, at low coupling
and small enough breathers velocities, the two MBs can merge originat-
ing a new MB. This occurs when the two MBs have almost the same
velocities. Fig. 10–right illustrates a collision with ωb = 0.95, ǫ = 0.14,
α1 = 0.048 and α2 = 0.046.
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4 Breather stability and trapping

There are some possible explanations for the trapping mechanism based in the
stability properties of stationary breathers.

Consider a symmetric collision resulting in breather generation, as shown in
Fig. 2 (a). The internal and kinetic energies of the breathers involved and the
energy emitted through phonon radiation are related by

2Uin + 2Kin = Utrap + 2Uout + 2Kout + Uph, (4)

where Uin and Kin represent the internal and kinetic energies of each one of the
incident breathers; Uout and Kout represent the internal and kinetic energies of
each one of the emerging breathers; Utrap and Uph represent, the internal energy
of the trapped breather and the energy emitted through phonon radiation
during the collision, respectively.

The on-site potential of our Klein-Gordon model is soft and, for this type of
potential, an increase of the breather frequency corresponds to a decrease of
the internal energy of the breather. The energy of the stationary breather ver-
sus ωb, with ǫ = 0.32, is shown in Fig. 11–(left). The frequency of a trapped
breather is always different from the frequency of the incoming breathers, as
the Fourier spectra shows. The generation of a trapped breather requires an
amount of energy Utrap, approximately equal to the energy of a stationary
breather with the same frequency. Then, if the trapped breather has a fre-
quency lower than the frequency of the incoming breathers, Utrap > Uin, and
viceversa.

The sum of the internal and kinetic energies of a MB depends on α, ǫ and ωb.
Fig. 11–(right) shows the dependence of this sum with respect to α for MBs
with ǫ = 0.32 and ωb = 0.8 (top), or ωb = 0.95 (bottom).

Considering the collision shown in Fig. 2 (a), the frequencies of the trapped and
emerging breathers are ωtrap = 0.77 and ωe = 0.90, respectively. The following
approximate results hold 2Uin + 2Kin = 2.6, 2Uout + 2Kout = 1, Utrap = 1.5
and Uph = 0.1, which means that about 3.8% of the incident energy is lost as
phonon radiation. However, for the collision shown in Fig. 7–left about 30%
of the energy is lost as phonon radiation.

As we have shown, when two MBs collide, the excited region emits phonon
radiation and the oscillators have a small frequency shift. For symmetric colli-
sions, this shift depends on α, ǫ and ωb. If a stationary breather with this new
frequency is stable, a trapped breather appears and the remaining energy is
emitted as two new MBs traveling with opposite directions (see Fig. 2 (a) , (b))
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Fig. 11. (Left) Dependence of the energy of a stationary breather with respect to
ωb with ǫ = 0.32. The maximum value of the energy is Ẽ = 1.5798 and corresponds
to ωb =

√
0.25 + ǫ = 0.7550 (resonance of 2ωb with the upper edge of the phonon

band). (Right) Sum of the internal and kinetic energies versus α for breathers with
ǫ = 0.32 and ωb = 0.8 (top), or ωb = 0.95 (bottom).

or as additional phonon radiation (see the multiple rebounds in Fig. 7–left).
However, if for the new frequency the stationary breather is unstable, there is
no trapping at all and two new MBs appear traveling with opposite directions
(see Fig. 2(c) and Fig. 7-right).

The stability of a breather can be studied by means of its Floquet eigenvalues.
Considering a breather solution {un(t)} with period T , if ξ(t) and π(t) rep-
resent a perturbation of the positions and velocities with respect to {un(t)},
the Floquet matrix F is defined as







ξ(T )

π(T )





 = F







ξ(0)

π(0)





 . (5)

The Floquet matrix can be obtained by numerically integrating the perturba-
tion equations:

ξ̈n(t) + V ′′(un(t)) · ξn(t) + ε(2 ξn(t) − ξn+1(t) − ξn−1(t)) = 0 . (6)

The 2N eigenvalues of F , {λi}, are called the Floquet multipliers. They can
be expressed as λi = exp(iθi), where the complex numbers {θi} are called the
Floquet arguments.

The perturbation equations are real and symplectic, which implies [6] that if
λi is a multiplier, the complex conjugate λ∗

i , the inverse 1/λi and 1/λ∗

i are also
multipliers. A perturbation parallel to u̇n is also solution to the perturbation
equations and it is called the phase mode because it represents a change in
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the phase. As it is periodic, its multiplier has modulus 1 and, therefore, there
is always a double 1 among the Floquet multipliers.

A breather is stable if every multiplier satisfy |λi| ≤ 1, but if, for some i,
|λi| < 1, then |1/λi| > 1. Therefore the stability condition is that every
eigenvalue has modulus 1 (i.e., it belongs to the unit circle), or, equivalently,
every Floquet argument is a real number.

If {un(t)} corresponds to a stable breather with frequency ωb, all the multi-
pliers belong to the unit circle. If the frequency changes, the multipliers move
along the circle, except the double 1 corresponding to the phase mode. The
breather becomes unstable when the multipliers leave the circle and a stability
bifurcation takes place. There are only three different bifurcation types:

a) Harmonic bifurcation: two multipliers coincide at 1 and leave the unit circle
as real positive numbers, one smaller and the other larger than 1.

b) Subharmonic bifurcation: two multipliers coincide at -1 and leave the unit
circle as real negative numbers, one smaller and the other larger than -1.

c) Oscillatory bifurcation: two complex eigenvalues collide and leave the unit
circle as complex numbers (and their complex conjugates).

A further constraint for the appearance of a bifurcation is that the Krein
signatures of the multipliers that are going to leave the unit circle must have
different signs [6]. The Krein signature κ(λi) of a complex multiplier λi with
eigenvector [{ξi

n}, {πi
n}] is defined as:

κ(λi) = sign

(

∑

n

i [ξi
n(t)πi∗

n (t) − ξi∗
n (t)πi

n(t)]

)

, (7)

which does not change with time due to the symplectiness of Eqs. (6). The
Krein signature κ(λi) of a real multiplier is zero.

If un = 0, ∀n, the solutions of Eqs. (6) are the phonons given by ξ±q
n =

exp[±i (ωph(q) t − q n)] with frequencies ωph(q) = [ω2
0 + 4 ε sin2(q/2)]1/2 and

wave numbers q = 2π m/N , m = 0, . . . , N − 1. The values of these solu-
tions and their derivatives at t = 0, i.e., [{ξ±n (0)}, {ξ̇±n (0)}] are eigenvec-
tors of the Floquet matrix, with multipliers λ(±q) = exp(±iωph(q) T ) =
exp(±i2πωph(q)/ωb), arguments θ(±q) = ±2πωph(q)/ωb (mod 2π), and Krein
signatures κ(±q) = ±1. We will call them, for short, the phonon multipliers

and phonon arguments.

If {un} corresponds to a breather solution, most of the Floquet multipliers will
be almost equal to the phonon ones, and more so, the larger the system. They
will form two phonon bands within the unit circle, one with Floquet arguments
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between 2πω0/ωb and 2π[ω2
0 + 4 ε sin2(q/2)]1/2/ωb with Krein signature +1,

and the corresponding complex conjugate band with Krein signature −1. For
example, for ε = 0.19 and ωb = 0.8, the phonon band ”+” (with positive Krein
signature) extends from 90◦ to 237◦, the phonon band ”-” extends from −90◦

to −237◦. That is, the two phonon bands overlap and there are arguments with
different Krein signature very close one to each other. Note that we have used
in our simulations around 100 or 200 oscillators, therefore, there are nearly
100 or 200 Floquet arguments in each phonon band.

If ωb changes, the phonons Floquet arguments move along the circle and many
with different Krein signatures will cross, bringing about the possibility of in-
stabilities. If we calculate numerically the Floquet arguments as a function of
ωb, we can observe that usually they leave the unit circle (i.e. the breather
becomes unstable) and come back again inside it. There are very many fre-
quency islands of instability and stability. Hence the extreme sensitivity of
the outcome of the collision to the initial conditions. Moreover, not only the
stability of the candidate to trapped breather changes but also the eigenvector
corresponding to that instability and, as a consequence, the particular result of
the non–trapping collision. At present we can not predict the small frequency
shifts resulting of a symmetric collision, and therefore, its outcome.

5 Comparison with discrete soliton collisions in the DNLS equation

The scenarios for breather collisions in Klein-Gordon lattices can be compared
with the scenarios for soliton collisions in non-integrable DNLS models. For
these models, the known results deal with nearly integrable discretizations of
the NLS equation [22,23], cubic DNLS equations [24] and saturable DNLS
equations [25,26].

To start with, we consider the frequency ωb = 0.95. For frequencies close to 1,
breathers in Klein-Gordon lattices approximate to envelope discrete solitons
of the DNLS equation (see e.g. [19,29,30]). Then, for the comparison we have
selected the cubic DNLS equation [24], where a semi-analytical variational
approximation correctly predicts the main features of the collisions.

For the cubic DNLS equation there exists a transmission and a merging regime
for both OS and IS collisions (similar to our reflection and trapping regimes),
and there is also a critical value for the wave number α that separates both
regimes. Nevertheless, in the DNLS case there is a significant difference be-
tween the critical values for OS and IS collisions, which is explained by the
existence of a high Peierls-Nabarro (PN) potential induced by the lattice.
One of the most noteworthy phenomenon that appear for IS collisions is the
possibility of bouncing after multiple collisions. For both types of collisions,
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Fig. 12. (Left) Representation of the PN barrier versus the coupling parameter ε

with breather frequency ωb = 0.95. (Right) Two zooms of the left figure.

symmetry breaking is possible, its strongest manifestation being a merger of
a pair of symmetric solitons into a single moving soliton.

The scenario in the Klein-Gordon chain is quite simple: we have neither found
symmetry–breaking effects, nor bouncing after multiple collisions, and, con-
trary to the DNLS case, there is no qualitative differences between the OS
and IS collisions. An explanation for this similitude can be found studying
the PN barrier in our model. In Klein-Gordon lattices, the PN barrier has
been defined as the difference between the energies of a two-site breather and
a one-site breather, both with the same action [31]. Fig. 12–(left) shows the
dependence of the PN barrier with respect to ε for ωb = 0.95, note that the
PN barrier is very small ((∼ 10−7), which is the reason of the similitude be-
tween OS and IS collisions. There is a local minimum of the PN barrier in the
interval ε ∈ (0.20, 0.21), as Fig. 12–(right) shows.

Finally, we consider the frequency ωb = 0.8. For the DNLS equations, there is
no formation of bound states, there are only breather generation and breather
reflection, and there is not a critical value of the wave number α separating
these regimes. However, the DNLS equation with saturable nonlinearity [25,26]
provides some similitudes, as there are reflection and generation regimes sep-
arated by a critical value of α. But in this DNLS case breather generation
occurs only when α is larger than the critical value. The generation of bound
states is also possible.

6 Conclusions

In this work, we have analyzed collisions of MBs in a Klein-Gordon model of
oscillators. We have studied both symmetric and nonsymmetric head-on col-
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lisions between breathers of the same frequency. We have considered different
values of the coupling parameter, different velocities and different frequencies
of the colliding MBs.

For symmetric collisions, we have found several scenarios: breather genera-
tion, with the formation of a trapped breather and two new moving breathers;
breather reflection; generation of two new moving breathers; and breather
fusion originating a trapped breather. For non-symmetric collisions the ob-
served results are: breather generation, with the formation of three new mov-
ing breathers; breather fusion, originating a new moving breather; breather
trapping with breather reflection; generation of two new moving breathers;
and two new moving breathers traveling as a bound state. We have never
observed breather annihilation.

For low enough frequency the outcome is strongly dependent of the velocities of
the incident breathers and of their dynamical states when the collision begins.
Very small changes of the velocities can determine an entire new outcome.
This sensitivity disappears for frequencies close to the frequency of an isolated
oscillator in the linear regime.

Some additional simulations are underway, these are: head-on collisions of two
breathers with different frequencies and equal or different velocities; collisions
of MBs with a stationary breather with equal or different frequencies; and
collisions of two MBs traveling in the same direction with equal or different
frequencies.
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