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diffusion equation 

∂u

∂t
−4u = f(u) + h(t), in Ω× (τ,+∞),

u = 0, on ∂Ω× (τ,+∞),
u(x, τ) = uτ (x), x ∈ Ω,

(1)

is proved in this paper, when the domain Ω is not necessarily bounded but satisfying the
Poincaré inequality, and h ∈ L2

loc(R;H−1 (Ω)). The main concept used in the proof is the
asymptotic compactness of the process generated by the problem.
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1. Introduction and setting of the problem

Let Ω ⊂ RN be an open set, not necessarily
bounded and suppose that Ω satisfies the Poincaré
inequality, i.e., there exists a constant λ1 > 0 such
that∫

Ω
|u(x)|2 dx ≤ λ−1

1

∫
Ω
|∇u(x)|2 dx, ∀u ∈ H1

0 (Ω) .

(2)
Let us consider the following problem for a non-

autonomous reaction-diffusion equation with zero

Dirichlet boundary condition in Ω,
∂u

∂t
−4u = f(u) + h(t), in Ω× (τ,+∞),

u = 0, on ∂Ω× (τ,+∞),
u(x, τ) = uτ (x), x ∈ Ω,

(3)

where τ ∈ R, uτ ∈ L2 (Ω), h ∈ L2
loc(R;H−1 (Ω))

and f ∈ C(R) satisfies that there exist constants
α1 > 0, α2 > 0, l ≥ 0, and p > 2 such that

−α1 |s|p ≤ f(s)s ≤ −α2 |s|p , (4)

(f(s)− f(r))(s− r) ≤ l(s− r)2 ∀r, s ∈ R. (5)

1
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Using (4), it follows that

|f(s)| ≤ α1 |s|p−1 ∀s ∈ R. (6)

The aim of this paper is to show the existence
of a pullback attractor in the phase space L2(Ω)
for the problem (3) in the case of open do-
mains not necessarily bounded but satisfying
the Poincaré inequality. This, and the fact that
the non-autonomous h belongs to the space
L2

loc(R;H−1 (Ω)), are the main novelties of our
problem.
The lack of compactness of the injection
H1

0 (Ω) ⊂ L2(Ω) (in the case of unbounded
domains) implies that the standard tech-
niques previously used, particularly the one
involving the so-called flatenning property (see
[Kloeden & Langa, 2007], [Li & Zhong, 2007],
[Song & Wu, 2007], [Wang & Zhong, 2008],
amongst others), which have been successfully
used when Ω is bounded and h ∈ L2

loc(R;L2(Ω)),
do not work in our case.

Instead, we will use the asymptotic compact-
ness already used in the case of non-autonomous
2D-Navier-Stokes (see [Caraballo et al., 2006] and
[Caraballo et al., 2006b]), and which was previ-
ously used in [Rosa, 1998] for the autonomous case.
We would like to emphasize that this technique
seems to be the only one which allows to prove the
main result of this paper (namely Theorem 4.4) con-
cerning the existence of pullback attractor for our
problem.

It is also worth mentioning that our problem
has received much attention over the last years in
the case of a bounded domain or for a less general
term h, as we will recall now.
In [Caraballo et al., 2003] it is proved the existence
of pullback attractor in the space L2(Ω) (and that
it possesses finite Hausdorff dimension) when the
domain is bounded and h is unbounded but with
polynomial growth, i.e

‖h(t)‖L2(Ω) ≤ k1|t|α + k2

where k1, k2 and α are nonnegative constants.
When Ω is bounded and h ∈ L2

loc(R;L2(Ω)) and is
translation bounded, i.e.

sup
m∈R

∫ m+1

m
‖h(s)‖L2(Ω) ds < ∞, (7)

the existence of a pullback attractor in the space
H1

0 (Ω) is proved in [Song & Wu, 2007], while in
[Li & Zhong, 2007] the translation bounded condi-
tion (7) is weakened to

‖h(s)‖2
L2(Ω) ≤ Meα|s|,

where 0 ≤ α ≤ λ1, and λ1 denotes the first eigen-
value of the Laplacian.
In [Wang & Zhong, 2008], the existence of pullback
attractor in H1

0 (Ω) is shown for a bounded domain
and for a h ∈ L2

loc(R;L2 (Ω)) such that∫ t

−∞
eσs
(
‖h(s)‖2

L2(Ω) + ‖h′(s)‖2
L2(Ω)

)
ds < +∞

for all t ∈ R and certain σ ≥ 0.
For a bounded domain Ω, and a translation
bounded function h ∈ L2

loc(R;L2 (Ω)), the existence
of a uniform attractor in Lp(Ω) is demonstrated in
[Song & Zhong, 2008].
Finally, the reader can find similar results
for several variants of our model in the
references [Wang et al., 2007], [Prizzi, 2003],
[Morillas & Valero, 2005], [Sun & Zhong, 2005],
among others.

We will provide in this paper a sufficient condi-
tion ensuring the existence of pullback attractor in
L2(Ω) when the domain is not necessarily bounded
and h ∈ L2

loc(R;H−1 (Ω)). A case that has not been
considered in the literature yet, as far as we know.

2. Existence and uniqueness of solution

We state in this section a result on the existence
and uniqueness of solution of problem (3). Instead
of working directly with our equation, we will es-
tablish a general result which, in particular, can be
applied to handle our problem.

2.1. An abstract result

Let H be a separable Hilbert space with scalar
product (·, ·) and norm |·|. Let Vi, i = 1, ...,m,
be m ≥ 1 reflexive and separable Banach spaces

such that
m⋃

i=1

Vi ⊂ H,
m⋂

i=1

Vi is dense in H, and Vi,

i = 1, ...,m is included in H with continuous injec-
tion.
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By ‖·‖i we denote the norm in Vi, by ‖·‖∗i the
norm in V ′

i , i = 1, ...,m and, by V the space

V =
m⋂

i=1

Vi,

with the norm

‖v‖ =
m∑

i=1

‖v‖i , ∀v ∈ V.

It is easy to see that V is a separable Banach space.
We will use 〈·, ·〉 to denote the duality product

between V ′
i and Vi, for each i = 1, ...,m.

We identify H with its dual H ′ using the Riesz
Theorem, but if Vi is a Hilbert space, we do not
identify Vi with V ′

i . Let u ∈ H, we identify u with
Tu ∈ ∩m

i=1V
′
i such that

〈Tu, v〉 = (u, v) , ∀v ∈ Vi, ∀i = 1, ...,m.

Let τ ∈ R be an initial time, and let Ai : (τ,∞) ×
Vi → V ′

i , i = 1, ...,m, be m operators, in general
nonlinear, such that

A1) For each v ∈ Vi, the function t ∈
(τ,∞) 7−→ Ai(t, v) ∈ V ′

i is Lebesgue measurable.
A2) Each operator Ai is hemicontinuous, i.e,

for all t ∈ (τ,∞) and u, v, w ∈ Vi, the function
θ ∈ R 7−→ 〈Ai(t, u + θv), w〉 ∈ R is continuous.

Suppose that there exist 2 ≤ pi < +∞, i =
1, ...,m, and there exist constants c > 0, α > 0 and
λ ≥ 0, and a nonnegative function C(t) ∈ L1 (τ, T ),
for all T > τ , such that for each i = 1, ...,m,

A3) (Boundedness)

‖Ai(t, v)‖∗i
≤ c(1 + ‖v‖pi−1

i ),

for all t ∈ (τ,∞), v ∈ Vi.
A4) (Monotonicity)

〈Ai(t, v)−Ai(t, w), v − w〉+ λ |v − w|2 ≥ 0,

for all t ∈ (τ,∞) and for all v, w ∈ Vi.
A5) (Coercivity)
For each i there exists a seminorm [·]i in Vi,

such that there exists λi ≥ 0 for which [v]i + λi |v|
is another norm in Vi. Moreover, [v]i + λi |v| and
‖·‖i are equivalent, and

〈Ai(t, v), v〉+ λ |v|2 + C(t) ≥ α [v]pi
i ,

for all t ∈ (τ,∞) and for all v ∈ Vi.

Consider m functions

hi(t) ∈ Lp′i(τ, T ;V ′
i ), ∀T > τ, i = 1, ...,m, (8)

and the initial condition

uτ ∈ H. (9)

If we set

A(t, v) =
m∑

i=1

Ai(t, v), h(t) =
m∑

i=1

hi(t),

we can consider the following problem
u ∈

m⋂
i=1

Lpi(τ, T ;Vi) ∀T > τ,

u′(t) + A(t, u(t)) = h(t), in D′(τ,∞;V ′),
u(τ) = uτ .

(10)
The proof of the following result is similar to that
of Theorem 1.4, Chapter 2 in [Lions, 1969].

Theorem 2.1. Assume A1)-A5), (8) and (9).
Then, there exists a unique solution u of (10), such
that

u ∈ C ([τ,∞);H) , u′ ∈
m∑

i=1

Lp′i(τ, T ;V ′
i ), (11)

for all T > τ.

2.2. Existence and uniqueness of solution
of problem (3)

We use Theorem 2.1 to show the existence and
uniqueness of solution of (3).

Consider m = 2, H = L2(Ω), V1 = H1
0 (Ω) and

V2 = Lp(Ω) ∩ L2(Ω) with p > 2, and denote V ′
1 =

H−1(Ω), V ′
2 = Lp′(Ω) + L2 (Ω).

Recall that |·| denotes the norm in H, by ‖·‖1 =
|∇·| we will denote the norm in V1, and by ‖·‖2 =
‖·‖Lp(Ω) + |·| the norm in V2.

If we set
A1(t, u) = −∆u,

A2(t, u) = −f(u),

and
h1(t) = h(t), h2(t) = 0,

then, it is not difficult to apply Theorem 2.1 with
p1 = 2 and p2 = p, and we obtain
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Theorem 2.2. Assume that f ∈ C(R) satisfies (4)
and (5), and h ∈ L2

loc(R;H−1 (Ω)). Then, for all
τ ∈ R, uτ ∈ L2 (Ω), there exists a unique solution
u(t) = u(t; τ, uτ ) of (3) such that

u ∈ L2(τ, T ;H1
0 (Ω)) ∩ Lp(τ, T ;Lp (Ω)) ∀T > τ,

d

dt
(u(t), v)− 〈∆u(t), v〉 = 〈f(u(t)), v〉

+ 〈h(t), v〉, in D′(τ,∞), ∀ v ∈ H1
0 (Ω) ∩ Lp (Ω) ,

u(τ) = uτ .

Moreover,

u ∈ C([τ,∞);L2 (Ω)),

and u satisfies the energy equation,

1
2

d

dt
|u(t)|2 + |∇u(t)|2 = 〈f(u(t)), u(t)〉

+〈h(t), u(t)〉 in D′(τ,∞). (12)

3. Preliminaries on the theory of pullback
attractors

Now, we will recall the main points from the theory
of pullback attractors which will be needed in order
to prove our objective (see [Caraballo et al., 2006]
and [Caraballo et al., 2006b] for more details).

Let us consider a process (also called a two-
parameter semigroup) U on a metric space X, i.e., a
family {U(t, τ); −∞ < τ ≤ t < +∞} of continuous
mappings U(t, τ) : X → X, such that U(τ, τ)x = x,
and

U(t, τ) = U(t, r)U(r, τ) for all τ ≤ r ≤ t. (13)

Suppose D is a nonempty class of parameterized
sets D̂ = {D(t); t ∈ R} ⊂ P(X), where P(X)
denotes the family of all nonempty subsets of X.

Definition 3.1. The process U(·, ·) is said to be
pullback D-asymptotically compact if for any t ∈
R, any D̂ ∈ D, any sequence τn → −∞, and any
sequence xn ∈ D(τn), the sequence {U(t, τn)xn} is
relatively compact (i.e. pre-compact) in X.

Definition 3.2. It is said that B̂ ∈ D is pullback
D-absorbing for the process U(·, ·) if for any t ∈ R
and any D̂ ∈ D, there exists a τ0(t, D̂) ≤ t such
that

U(t, τ)D(τ) ⊂ B(t) for all τ ≤ τ0(t, D̂).

Definition 3.3. The family Â = {A(t); t ∈ R} ⊂
P(X) is said to be a pullback D-attractor for U(·, ·)
if

1. A(t) is compact for all t ∈ R,

2. Â is pullback D-attracting, i.e.,

lim
τ→−∞

dist(U(t, τ)D(τ), A(t)) = 0,

for all D̂ ∈ D, and all t ∈ R,

3. Â is invariant, i.e.,

U(t, τ)A(τ) = A(t), for −∞ < τ ≤ t < +∞.

We have the following result.

Theorem 3.4. Suppose that the process U(·, ·) is
pullback D-asymptotically compact and that B̂ ∈ D
is a family of pullback D-absorbing sets for U(·, ·).

Then, the family Â = {A(t); t ∈ R} ⊂ P(X)
defined by A(t) = Λ(B̂, t), t ∈ R, where for each
D̂ ∈ D

Λ(D̂, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)D(τ)

 ,

is a pullback D-attractor for U(·, ·) which satisfies
in addition that A(t) =

⋃
D̂∈D Λ(D̂, t), for t ∈ R.

Furthemore, Â is minimal in the sense that if
Ĉ = {C(t); t ∈ R} ⊂ P(X) is a family of closed
sets such that limτ→−∞ dist(U(t, τ)B(τ), C(t)) = 0,
then A(t) ⊂ C(t).

4. Existence of the pullback attractor

Now, we can prove our main aim in this paper.
First, we need a continuity result which is estab-
lished in the next subsection.

4.1. Weak Continuity

Let f ∈ C(R) be a function, and suppose that f
satisfies (4) and (5), and h ∈ L2

loc(R;H−1 (Ω)).
Thanks to Theorem 2.2, we can define a process

{U(t, τ), τ ≤ t} in L2 (Ω), as

U(t, τ)uτ = u(t; τ, uτ ) ∀uτ ∈ L2 (Ω) , ∀τ ≤ t. (14)

From the uniqueness of solution to problem (3), it
follows that (14) defines a process in L2 (Ω). In
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addition, it can be proved that the process defined
by (14) is continuous in L2 (Ω).

Moreover, U is weakly continuous, and more
exactly the following result holds true. We will
denote by “⇀” the weak convergence in the cor-
responding indicated space, while “→” will denote
the strong convergence, as usual.

Proposition 4.1. Let {uτn} ⊂ L2 (Ω) be a se-
quence converging weakly in L2 (Ω) to an element
uτ ∈ L2 (Ω). Then, for all T > τ , it follows

U (t, τ) uτn ⇀ U (t, τ) uτ in L2 (Ω) ∀t ≥ τ , (15)

U (·, τ) uτn ⇀ U (·, τ) uτ in L2(τ, T ;H1
0 (Ω)), (16)

U (·, τ) uτn ⇀ U (·, τ) uτ in Lp(τ, T ;Lp (Ω)), (17)

f (U (·, τ) uτn) ⇀ f (U (·, τ) uτ ) in Lp′(τ, T ;Lp′ (Ω)).
(18)

If Ω is a bounded set, then

U (·, τ) uτn −→ U (·, τ) uτ in L2(τ, T ;L2 (Ω)). (19)

Proof. From the assumptions, we deduce that there
exists a positive constant C such that

|uτn | ≤ C ∀n ≥ 1. (20)

Fix τ ∈ R, and set

un(t) = U (t, τ) uτn , u(t) = U (t, τ) uτ . (21)

Using (4), it follows

d

dt
|un(t)|2 + 2 |∇un(t)|2 ≤ −2α2 ‖un(t)‖p

Lp(Ω)

+2 〈h(t), un〉 .

Integrating between τ and t, we obtain

|un(t)|2 + 2
∫ t

τ
|∇un(s)|2 ds

+ 2α2

∫ t

τ
‖un(s)‖p

Lp(Ω) ds

≤ |uτn |
2 + 2

∫ t

τ
〈h(s), un〉 ds ∀ t ≥ τ. (22)

On the other hand,∫ t

τ
〈h(s), un〉 ds ≤

∫ t

τ
‖h‖H−1(Ω) |∇un| ds

≤ 1
2

∫ T

τ
‖h‖2

H−1(Ω) ds

+
1
2

∫ t

τ
|∇un|2 ds,

which, jointly with (20) and (22) imply

|un(t)|2 +
∫ t

τ
|∇un(s)|2 ds + 2α2

∫ t

τ
‖un(s)‖p

Lp(Ω) ds

≤ C2 +
∫ t

τ
‖h‖2

H−1(Ω) ds ∀ t > τ.

We deduce that {un} is bounded in

L2(τ, T ;H1
0 (Ω))∩Lp(τ, T ;Lp (Ω))∩C([τ, T ];L2 (Ω)),

(23)
for all T > τ .

Fix T > τ. In particular, {un(T )} is bounded
in L2 (Ω). On the other hand, from (6) we have

‖f(un(t))‖p′

Lp′ (Ω)
≤ αp′

1 ‖un(t)‖p
Lp(Ω) ,

whence f(un) is bounded in Lp′(τ, T ;Lp′ (Ω)).
Then, there exists a subsequence {uµ} ⊂ {un}

such that

uµ
∗
⇀ v weak-star in L∞(τ, T ;L2 (Ω)),

uµ ⇀ v in Lp(τ, T ;Lp (Ω)), (24)

uµ(T ) ⇀ ξ in L2 (Ω) , (25)

uµ ⇀ v in L2(τ, T ;H1
0 (Ω)), (26)

and
f(uµ) ⇀ χ in Lp′(τ, T ;Lp′ (Ω)). (27)

Now (26) imply that

∆uµ ⇀ ∆v in L2(τ, T ;H−1 (Ω)).

From (26), (27), and thanks to the equation

u′µ(t) = ∆uµ(t) + f(uµ(t)) + h(t), (28)

it is a standard matter to prove that we can pick
an element in the equivalence class of v satisfying

v(t) = uτ +
∫ t

τ
(∆v(s) + χ(s) + h(s))ds, (29)

for all t ∈ [τ, T ].
We are now in position to show that ξ = v(T )

and χ(t) = f(v(t)).
Let w ∈ H1

0 (Ω) ∩ Lp (Ω). Integrating (28) be-
tween τ and T , we obtain

(uµ(T ), w) =
(
uτµ , w

)
+
∫ T

τ
〈∆uµ(s) + f(uµ(s)) + h(s), w〉 ds,
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and thus

(ξ, w) = (uτ , w) +
∫ T

τ
〈∆v(s) + χ(s) + h(s), w〉 ds,

when µ −→ +∞. By density and using (29), it
follows

v(T ) = ξ. (30)

To prove that χ(t) = f(v(t)), we argue similarly to
[Rosa, 1998]. Integrating the equality

d

ds
(uµ(s), w) = − (∇uµ(s),∇w)

+ 〈f(uµ(s)), w〉+ 〈h(s), w〉 ,

between t and t + a, with a ∈ (0, T − τ), t ∈
(τ, T − a) , and using the Hölder inequality, we ob-
tain

(uµ(t + a)− uµ(t), w)

≤
∫ t+a

t
|∇uµ(s)| |∇w| ds

+
∫ t+a

t
‖f(uµ(s)‖Lp′ (Ω) ‖w‖Lp(Ω) ds

+
∫ t+a

t
‖h(s)‖H−1(Ω) |∇w| ds

≤ |∇w| a1/2 ‖uµ‖L2(τ,T ;H1
0 (Ω))

+ ‖w‖Lp(Ω) a1/p ‖f(uµ)‖Lp′ (τ,T ;Lp′(Ω))

+ |∇w| a1/2 ‖h‖L2(τ,T ;H−1(Ω)) ,

and thanks to (23), we deduce that there exists a
constant C(1) such that

(uµ(t + a)− uµ(t), w)

≤ C(1)(a1/2 + a1/p)(|∇w|+ ‖w‖Lp(Ω)).

If we take in the last inequality w = uµ(t + a) −
uµ(t) ∈ H1

0 (Ω) ∩ Lp (Ω) a.e. t ∈ (τ, T − a), we
obtain

|uµ(t + a)− uµ(t)|2

≤ C(1)(a1/2 + a1/p) |∇uµ(t + a)−∇uµ(t)|
+ C(1)(a1/2 + a1/p) ‖uµ(t + a)− uµ(t)‖Lp(Ω) ,

a.e. t ∈ (τ, T − a).

Integrating between τ and T − a,∫ T−a

τ
|uµ(t + a)− uµ(t)|2 dt

≤ C(1)(a1/2 + a1/p)
∫ T−a

τ
|∇uµ(t + a)| dt

+ C(1)(a1/2 + a1/p)
∫ T−a

τ
|∇uµ(t)| dt

+ C(1)(a1/2 + a1/p)
∫ T−a

τ
‖uµ(t + a)‖Lp(Ω) dt

+ C(1)(a1/2 + a1/p)
∫ T−a

τ
‖uµ(t)‖Lp(Ω) dt,

it follows∫ T−a

τ
|uµ(t + a)− uµ(t)|2 dt

≤ 2C(1)(a1/2 + a1/p)
∫ T

τ
|∇uµ(s)| ds

+ 2C(1)(a1/2 + a1/p)
∫ T

τ
‖uµ(s)‖Lp(Ω) ds,

and using the Hölder inequality, we obtain∫ T−a

τ
|uµ(t + a)− uµ(t)|2 dt

≤ 2C(1)(a1/2 + a1/p)(T − τ)1/2 ‖uµ‖L2(τ,T ;H1
0 (Ω))

+ 2C(1)(a1/2 + a1/p)(T − τ)1/p′ ‖uµ‖Lp(τ,T ;Lp(Ω)) .

Thanks to (23) we deduce that there exists a con-
stant C̃T such that∫ T−a

τ
|uµ(t + a)− uµ(t)|2 dt ≤ C̃T (a1/2 + a1/p),

for all µ, and all a ∈ (0, T − τ) , and thus

lim
a→0

(
sup

µ

∫ T−a

τ
|uµ(t + a)− uµ(t)|2 dt

)
= 0. (31)

Now, for all m ∈ Z, m ≥ 1, we denote

Ωm = Ω ∩
{
x ∈ RN : |x|RN < m

}
,

where |·|RN denotes the Euclidean norm in RN .
Let φ ∈ C1 ([0,+∞)) be a function such that

0 ≤ φ(s) ≤ 1, φ(s) = 1 ∀s ∈ [0, 1], and φ(s) =
0 ∀s ≥ 2.
For each µ and m ≥ 1, we define

vµ,m(x, t) = φ

(
|x|2RN

m2

)
uµ(x, t) .
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From (23), for all m ≥ 1, we obtain that
{vµ,m}µ≥1 is bounded in L2(τ, T ;H1

0 (Ω2m)) ∩
Lp(τ, T ;Lp (Ω2m)) ∩ L∞(τ, T ;L2 (Ω2m)).
In particular,

lim
a→0

sup
µ

(∫ τ+a

τ
|vµ,m(t)|2L2(Ω2m) dt +

+
∫ T

T−a
|vµ,m(t)|2L2(Ω2m) dt

)
= 0. (32)

On the other hand, from (31) we deduce that for
all m ≥ 1,

lim
a→0

sup
µ

∫ T−a

τ
|vµ,m(t + a)− vµ,m(t)|2L2(Ω2m) dt = 0.

(33)
Moreover, as Ω2m is a bounded set, then H1

0 (Ω2m)
is included in L2 (Ω2m) with compact injection.

Then, by the compactness Theorem 13.3 of
[Temam, 1983] with X = L2 (Ω2m), Y = H1

0 (Ω2m),
r = 2 and G = {vµ,m}µ≥1, we obtain that{vµ,m}µ≥1

is relatively compact in L2
(
τ, T ;L2 (Ω2m)

)
, and

thus, taking into account that vµ,m(x, t) = uµ(x, t)
for all x ∈ Ωm, we deduce that, in particular, for
all m ≥ 1{

uµ|Ωm

}
µ≥1

is pre-compact in L2
(
τ, T ;L2 (Ωm)

)
.

(34)
It is not difficult to conclude from (34), (26) and
(2), via a diagonal procedure, the existence of a
subsequence {uµ

µ}µ≥1 ⊂ {uµ}µ≥1 such that

uµ
µ → v a.e. in Ωm×(τ, T ) as µ −→∞ ∀m ≥ 1.

Then, as f is continuous,

f(uµ
µ) → f(v) a.e. in Ωm × (τ, T ) ,

and as {f(uµ
µ)} is bounded in Lp′(Ωm × (τ, T )), by

Lemma 1.3, Chapter 1 in [Lions, 1969], we obtain

f(uµ
µ) ⇀ f(v) weakly in Lp′

(
τ, T ;Lp′ (Ωm)

)
.

From (27)

f(uµ) ⇀ χ|Ωm×(τ,T ) weakly in Lp′
(
τ, T ;Lp′ (Ωm)

)
.

By the uniqueness of the weak limit, we have

χ = f(v) a.e. in Ωm × (τ, T ) ∀m ≥ 1,

and thus, taking into account that
∞⋃

m=1

Ωm = Ω, we

obtain
χ = f(v) a.e. in Ω× (τ, T ) . (35)

From (29) and (35), and by the uniqueness of so-
lutions we have v(t) = u(t) for all t ∈ [τ, T ]. And
then, if we consider (30) in (26) and (35) in (27),
we have

uµ ⇀ u in L2(τ, T ;H1
0 (Ω)),

uµ ⇀ u in Lp(τ, T ;Lp (Ω)),

uµ(T ) ⇀ u(T ) in L2 (Ω) ,

f(uµ) ⇀ f(u) in Lp′(τ, T ;Lp′ (Ω)).

Then, by a contradiction argument we deduce

un ⇀ u in L2(τ, T ;H1
0 (Ω)),

un ⇀ u in Lp(τ, T ;Lp (Ω)),

un(T ) ⇀ u(T ) in L2 (Ω) ,

f(un) ⇀ f(u) in Lp′(τ, T ;Lp′ (Ω)),

and, as T > τ has been taken arbitrarily, the first
part of the proof is finished.

Now, if Ω is bounded, we deduce from (34) that{
uµ|Ω

}
µ≥1

is pre-compact in L2
(
τ, T ;L2 (Ω)

)
. (36)

Finally, (19) follows from (36).

Remark 4.2. From the proof, it is clear that for any
m ≥ 1,

U(·, τ)uτn → U(·, τ)uτ in L2(τ, T ;L2(Ωm)).

Moreover, it is possible to prove that

U(t, τ)uτn → U(t, τ)uτ in L2(Ωm),

for all t > τ.

Remark 4.3. Notice that all the results obtained in
the previous analysis hold true for a general non-
empty open subset Ω ⊂ RN .
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4.2. The existence of the global pullback at-
tractor

Let Rλ1 be the set of all functions r : R → (0,+∞)
such that

lim
t→−∞

eλ1tr2(t) = 0,

and denote by Dλ1 the class of all families
D̂={D(t) : t ∈ R} ⊂ P(L2 (Ω) ) such that D(t) ⊂
B(0, r

D̂
(t)), for some r

D̂
∈ Rλ1 , where B(0, r

D̂
(t))

denotes the closed ball in L2 (Ω) centered at zero
with radius r

D̂
(t).

Now, we can prove the following result.

Theorem 4.4. Suppose that Ω satisfies (2), and
suppose that f ∈ C(R) satisfies (4) and (5) with
l = 0. Let h ∈ L2

loc(R;H−1 (Ω)) such that∫ t

−∞
eλ1s ‖h(s)‖2

H−1(Ω) ds < +∞ ∀t ∈ R.

Then, there exists a unique global pullback Dλ1-
attractor for the process U , which belongs to Dλ1,
and is defined by (14).

Proof. Let τ ∈ R, and uτ ∈ L2 (Ω) be fixed, and
denote

u(t) = u(t; τ, uτ ) = U(t, τ)uτ ∀t ≥ τ .

Taking into account (4) and the energy equality,

d

dt

(
eλ1t |u(t)|2

)
+ 2eλ1t |∇u(t)|2

= λ1e
λ1t |u(t)|2 + 2eλ1t 〈f(u(t)), u(t)〉

+ 2eλ1t 〈h(t), u(t)〉 (37)

≤ λ1e
λ1t |u(t)|2

+ eλ1t |∇u(t)|2 + eλ1t ‖h(t)‖2
H−1(Ω) ,

and thus, from (2), we obtain

d

dt

(
eλ1t |u(t)|2

)
≤ eλ1t ‖h(t)‖2

H−1(Ω) .

Integrating between τ and t, it follows

eλ1t |u(t)|2 ≤
∫ t

τ
eλ1s ‖h(s)‖2

H−1(Ω) ds + eλ1τ |uτ |2

≤
∫ t

−∞
eλ1s ‖h(s)‖2

H−1(Ω) ds + eλ1τ |uτ |2 .

Let D̂ ∈ Dλ1 be given. Then

|U(t, τ)uτ |2 ≤ e−λ1t

∫ t

−∞
eλ1s ‖h(s)‖2

H−1(Ω) ds

+eλ1(τ−t)r2
D(τ), (38)

for all uτ ∈ D(τ) and for all t ≥ τ .
Denote by Rλ1(t) the nonnegative number given for
each t ∈ R by

R2
λ1

(t) = e−λ1t

∫ t

−∞
eλ1s ‖h(s)‖2

H−1(Ω) ds + 1. (39)

Observe that

lim
t→−∞

eλ1tR2
λ1

(t) = 0,

and, consequently,

Rλ1 ∈ Rλ1 .

Now, consider the family B̂λ1 of closed balls in
L2 (Ω)

B̂λ1 = {Bλ1(t) : t ∈ R} ,

defined by

Bλ1(t) =
{
v ∈ L2 (Ω) : |v| ≤ Rλ1(t)

}
.

It is straightforward to check that

B̂λ1 ∈ Dλ1 ,

and moreover, by (38), the family B̂λ1 is pullback
Dλ1-absorbing for the process U .
According to Theorem 3.4, to finish the proof of the
theorem we only have to prove that U is pullback
Dλ1-asymptotically compact.
Let us fix D̂ ∈ Dλ1 , a sequence τn → −∞, a se-
quence uτn ∈ D(τn), and t ∈ R. We have to prove
that from the sequence {U(t, τn)uτn} we can extract
a subsequence that converges in L2 (Ω).
As the family B̂λ1 is pullback Dλ1-absorbing, for
each integer k ≥ 0, there exists a τD(k) ≤ t − k
such that

U(t− k, τ)D(τ) ⊂ Bλ1(t− k) ∀τ ≤ τD(k). (40)

Again, by a diagonal procedure, it is not difficult
to conclude from (40), that there exist a subse-
quence

{(
τn′ , uτn′

)}
⊂ {(τn, uτn)}, and a sequence

{wk; k ≥ 0} ⊂ L2 (Ω) such that for all k ≥ 0, and
wk ∈ Bλ1(t− k),

U(t− k, τn′)uτn′ ⇀ wk in L2 (Ω) . (41)
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Observe that, by Proposition 4.1.

w0 = weak − lim
n′→∞

U(t, τn′)uτn′

= weak − lim
n′→∞

U(t, t− k)U(t− k, τn′)uτn′

= U(t, t− k)
(

weak − lim
n′→∞

U(t− k, τn′)uτn′

)
.

i.e.,
U(t, t− k)wk = w0 ∀k ≥ 0. (42)

Then, by the lower semi-continuity of the norm,
using (41) we obtain

|w0| ≤ lim inf
n′→∞

∣∣U(t, τn′)uτn′

∣∣ . (43)

If we now prove that also

lim sup
n′→∞

∣∣U(t, τn′)uτn′

∣∣ ≤ |w0| , (44)

then we will have

lim
n′→∞

∣∣U(t, τn′)uτn′

∣∣ = |w0| .

And this, together with the weak convergence,
will imply the strong convergence in L2 (Ω) of
U(t, τn′)uτn′ to w0.
In order to prove (44), consider

[u] := |∇u|2 − λ1

2
|u|2 − 〈f(u), u〉 . (45)

From (37), and integrating between τ and t,

eλ1t |u(t)|2 − eλ1τ |uτ |2 = −2
∫ t

τ
eλ1s [u(s)] ds

+2
∫ t

τ
eλ1s 〈h(s), u(s)〉 ds,

i.e.,

|U(t, τ)uτ |2 = eλ1(τ−t) |uτ |2 (46)

+ 2
∫ t

τ
eλ1(s−t) (〈h(s), U(s, τ)uτ 〉 − [U(s, τ)uτ ]) ds.

From (46) it is immediate that for all k ≥ 0 and all
τn′ ≤ t− k,∣∣U(t, τn′)uτn′

∣∣2
=
∣∣U(t, t− k)U(t− k, τn′)uτn′

∣∣2 (47)

=
∣∣U(t− k, τn′)uτn′

∣∣2 e−λ1k

+ 2
∫ t

t−k
eλ1(s−t)

〈
h(s), U(s, t− k)U(t− k, τn′)uτn′

〉
ds

− 2
∫ t

t−k
eλ1(s−t)

[
U(s, t− k)U(t− k, τn′)uτn′

]
ds.

As, thanks to (40),

U(t− k,τn′)uτn′ ∈ Bλ1(t− k) ∀τn′ ≤ τD(k), k ≥ 0,

we have

lim sup
n′→∞

(∣∣U(t− k, τn′)uτn′

∣∣2 e−λ1k
)

≤ R2
λ1

(t− k)e−λ1k ∀ k ≥ 0. (48)

On the other hand, from (41) and Proposition 4.1
we deduce that

U(·, t− k)U(t− k, τn′)uτn′ ⇀ U(·, t− k)wk (49)

in L2(t− k, t;H1
0 (Ω)).

Taking into account that, in particular,

eλ1(s−t)h(s) ∈ L2(t− k, t;H−1 (Ω)),

we obtain from (49),

lim
n′→∞

∫ t

t−k
eλ1(s−t)

〈
h(s), U(s, t− k)U(t− k, τn′)uτn′

〉
ds

=
∫ t

t−k
eλ1(s−t) 〈h(s), U(s, t− k)wk〉 ds. (50)

Now we will prove that∫ t

t−k
eλ1(s−t) [U(s, t− k)wk] ds (51)

≤ lim inf
n′→∞

∫ t

t−k
eλ1(s−t)

[
U(s, t− k)U(t− k, τn′)uτn′

]
ds.

Denote
Jk(v) = J

(1)
k (v) + J

(2)
k (v),

where

J
(1)
k (v) =

∫ t

t−k
eλ1(s−t)

(
|∇v(s)|2 − λ1

2
|v(s)|2

)
ds,

and

J
(2)
k (v) = −

∫ t

t−k
eλ1(s−t) 〈f(v), v〉 ds,

for all v ∈ L2(t− k, t;H1
0 (Ω))∩Lp(t− k, t;Lp (Ω)).

Then, we want to prove

Jk(U(·, t− k)wk)
≤ lim inf

n′→∞
Jk(U(·, t− k)U(t− k, τn′)uτn′ ),
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what will be done if we prove that

J
(i)
k (U(·, t− k)wk)

≤ lim inf
n′→∞

J
(i)
k (U(·, t− k)U(t− k, τn′)uτn′ ) i = 1, 2.

As, thanks to (2), |∇v|2 − λ1

2
|v|2 defines a norm

in H1
0 (Ω), which is equivalent to the usual one, we

also obtain from (41) and using Proposition 4.1

lim inf
n′→∞

(J (1)
k (U(·, t− k)U(t− k, τn′)uτn′ )

≥ J
(1)
k (U(·, t− k)wk). (52)

Now denote

Ak,n′(s) := U(s, t− k)U(t− k, τn′)uτn′ ,

and
Bk(s) := U(s, t− k)wk.

We easily obtain

lim inf
n′→∞

(J (2)
k (Ak,n′(·))

= lim inf
n′→∞

{∫ t

t−k
eλ1(s−t)×

× 〈f(Bk(s))− f(Ak,n′(s)), Ak,n′(s)−Bk(s)〉ds

−
∫ t

t−k
eλ1(s−t)〈f(Bk(s)), Ak,n′(s)〉ds

+
∫ t

t−k
eλ1(s−t)〈f(Bk(s)), Bk(s)〉ds

−
∫ t

t−k
eλ1(s−t)〈f(Ak,n′(s)), Bk(s)〉ds

}
.

Using (5) with l = 0, it follows

lim inf
n′→∞

(
J

(2)
k (Ak,n′(·))

)
(53)

≥ lim inf
n′→∞

(
−
∫ t

t−k
eλ1(s−t)〈f(Bk(s)), Ak,n′(s)〉ds

)
+
∫ t

t−k
eλ1(s−t)〈f(Bk(s)), Bk(s)〉ds

+ lim inf
n′→∞

(
−
∫ t

t−k
eλ1(s−t)〈f(Ak,n′(s)), Bk(s)〉ds

)
.

From (49), we have

lim inf
n′→∞

(J (2)
k (Ak,n′(·))) (54)

≥ lim inf
n′→∞

(
−
∫ t

t−k
eλ1(s−t)〈f(Ak,n′(s)), Bk(s)〉ds

)
.

From (41) and Proposition 4.1 we obtain

f(Ak,n′(·)) ⇀ f(Bk(·)) in Lp′
(
t− k, t;Lp′ (Ω)

)
as n′ →∞. Then,

lim
n′→∞

∫ t

t−k
eλ1(s−t)〈f(Ak,n′(s)), Bk(s)〉ds

=
∫ t

t−k
eλ1(s−t)〈f(Bk(s)), Bk(s)〉ds,

which, jointly with (54), yield that

lim
n′→∞

inf
(
J

(2)
k (U(·, t− k)U(t− k, τn′)uτn′ )

)
≥ J

(2)
k (U(·, t− k)wk).

Therefore (51) is easily obtained from the last in-
equality and (52).
Then, (47), (48), (50) and (51) imply

lim
n′→∞

sup
∣∣U(t, τn′)uτn′

∣∣2 (55)

≤ R2
λ1

(t− k)e−λ1k

+ 2
∫ t

t−k
eλ1(s−t) 〈h(s), U(s, t− k)wk〉 ds

− 2
∫ t

t−k
eλ1(s−t) [U(s, t− k)wk] ds,

for all k ≥ 1. Now, from (42) and (46),

|w0|2 = |U(t, t− k)wk|2 = e−λ1k |wk|2 (56)

+ 2
∫ t

t−k
eλ1(s−t) (〈h(s), U(s, t− k)wk〉

− [U(s, t− k)wk]) ds.

From (55) and (56), we have

lim
n′→∞

sup
∣∣U(t, τn′)uτn′

∣∣2
≤ R2

λ1
(t− k)e−λ1k + |w0|2 − e−λ1k |wk|2

≤ R2
λ1

(t− k)e−λ1k + |w0|2 ,

for all k ≥ 1. Taking into account (39), we easily
obtain

R2
λ1

(t− k)e−λ1k → 0 when k →∞,

and
lim

n′→∞
sup

∣∣U(t, τn′)uτn′

∣∣2 ≤ |w0|2 .
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Remark 4.5. Observe that the universe Dλ1 con-
tains the families of fixed bounded sets (i.e. for any
bounded C ⊂ L2(Ω) it follows that Ĉ = {C(t) ≡
C, t ∈ R} ∈ Dλ1). Thus, Theorem 4.4 implies that,
the global pullback Dλ1-attractor Â (whose exis-
tence is guaranteed by this theorem) is formed by
a family of compact subsets of L2(Ω) which pull-
back attracts the bounded subsets of L2(Ω), what
implies the existence of the pullback attractor Â0 in
the sense of Crauel et al. [Crauel et al., 1995] (re-
call that Â0 is a family of compact sets, invariant
and pullback attracting the bounded subsets of X),
and is given by

A0(t) =
⋃

C⊂X
C bounded

Λ(C, t).

Furthermore, by the minimality of Â0 it follows that

A0(t) ⊂ A(t) for any t ∈ R.

In fact, it can be proved (see
[Maŕın-Rubio & Real, 2008]) that if there ex-
ists a value T ∈ R such that

sup
t≤T

Rλ1(t) < +∞, (57)

where Rλ1 is the function defined in (39), then

A0(t) = A(t) ∀t ≤ T.

A sufficient condition for (57) is that h ∈
L∞(−∞, T ;H−1(Ω)).

Remark 4.6. Theorem 4.4 also holds if, instead of
assuming that l = 0, we impose that the function
sf(s) is concave.

Remark 4.7. If Ω is a bounded set, thanks to (19)
we easily obtain Theorem 4.4 for all l ≥ 0. Moreover
we can replace (4) by

−α1 |s|p − β ≤ f(s)s ≤ −α2 |s|p + β,

with β ≥ 0.
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