
Multiagent System Product Lines: Challenges and Benefits

Joaquin Pẽna
University of Seville

Spain
joaquinp@us.es

Michael G. Hinchey
NASA Goddard Space Flight Center

USA
Michael.G.Hinchey@nasa.gov

Antonio Ruiz-Cort́es
University of Seville

Spain
aruiz@us.es

1 Introduction

On the one hand, the field of Software Product Lines
(SPL), as described elsewhere in this special issue, covers
all the software development lifecycle necessary to develop
a family of products where the derivation of concrete prod-
ucts is made systematically and rapidly [10]. On the other
hand, Agent-Oriented Software Engineering (AOSE) is a
new software engineering paradigm that arose to apply best
practice in the development of complex Multi-Agent Sys-
tems (MAS) by focusing on the use of agents, and organiza-
tions (communities) of agents as the main abstractions [7].

Following a rather false start, agent technology has be-
gun to come into its own. With the advent of biologically-
inspired, pervasive, and autonomic computing, the advan-
tages of, and necessity of, agent-based technologies and
MASs has become obvious. Unfortunately, current AOSE
methodologies are dedicated to developing single MASs.
Clearly, many MASs will make use of significantly the
same techniques, adaptations, and approaches. The field is
thus ripe for exploiting the benefits of SPL: reduced costs,
improved time-to-market, etc., and enhancing agent tech-
nology in such a way that it is more industrially applicable.

We believe that there is much that can be achieved by
combining the two approaches: applying the SPL philoso-
phy for building a MAS will afford all of the advantages of
SPLs and make MAS development more practical. Thus,
the contribution of this work is twofold: stress the feasibil-
ity and benefits of what we callMulti-Agent Systems Prod-
uct Lines (MAS-PL); and show readers the main research
challenges in the development of MAS-PLs.

2 Feasibility of MAS-PL and benefits

The software process proposed in AOSE presents many
similarities with the process followed in SPL for the first
activities of thedomain engineering, which is in charge of
providing the reusable core assets that are exploited dur-
ing the derivation of products, done at theapplication en-
gineering [10]. Following the nomenclature used in [10],

the activities, usually performed iteratively and in parallel,
of domain engineering that present correlation with AOSE
are:

Domain Requirements Engineering.Both approaches
use models based on similar concepts: features in
the case of SPLs, and system-goals in the case of
AOSE [3, 4]. Both represent requirements observable
by the end user. Both approaches use hierarchical dia-
grams where features/goals are decomposed into finer
grain ones. However, SPL emphasizes the analysis of
the scope of the SPL, i.e. the products inside it, and
the analysis of common and variable features across
the SPL, which is not carried out by AOSE. In [5, 9],
a first step toward adapting system-goals to MAS-PL
and documenting variability is shown.

Domain Design. Both approaches develop architecture-
independent models that attempt to analyze how fea-
tures and its variability can be materialized. In AOSE,
role models are used with this purpose [12], and
some approaches in SPL also propose the same ap-
proach [6, 11]. However, agent-focused models show
additional information that is not needed in SPL-role
models, such as the goals of the agents, or whether they
are used to abstract IA techniques, while not showing
how these role models can be reused for different prod-
ucts.

Domain Realization. Both approaches focus on designing
a detailed architecture. In the case of SPL, a common
architecture for all products and a set of reusable as-
sets. In the case of AOSE, a single architecture that
fulfills all of the system-goals of the MAS. Some ap-
proaches in both fields base the construction of the
architecture on role model composition [6, 11]. In
[9], authors presented the first steps toward building
the core architecture of a MAS-PL based on auto-
matic analysis of system-goals models adapted to fea-
ture models using [2].



This, along with the shown first research papers devel-
oped under this field, shows that the benefits of enabling
MAS-PL are reachable. The main benefit is straight for-
ward: AOSE can benefits of all SPL advantages helping
it to reach the industrial world. However, as we show in
the next section, there exist also a number of research chal-
lenges that must constitute the research agenda needed to
allow MAS-PL to become a reality.

3 Future Challenges

SPL for distributed systems. Distributed systems have
not been a hot topic in the SPL field. However, MASs
are distributed systems that will need new adapted
techniques to be covered. Although certainly it will
affect to the whole development cycle, one of the first
steps we foresee is the need for investing in the use
of interaction-based models, such as role models. The
research undertaken over this topic may extend the ap-
plicability of SPL not only to MASs, but also to other
kind of distributed systems such as web services[1].

AOSE deficiencies.As shown before, AOSE does not
cover some of the activities of SPL. These are mainly
concentrated oncommonality analysis, and its impli-
cations at whole SPL approach. Another hot topic can
be found in theproduct management activity that is
performed in parallel with domain and application en-
gineering. It is in charge of managing the economic
aspects of a SPL. Given that the products and the mar-
kets for MASs are quite different from the ones typ-
ically used in SPL, a deal of effort must be put on
studying these aspects. Finally, as AOSE is devoted
to develop single products, application engineering is
not present in AOSE. Researchers should also invest
efforts on studying this activity.

Management of evolving systems.Agent-based evolving
systems results on large software systems that adapt
and learns form changes in the environment. The de-
velopment of these systems results in a complex task
where systems usually become unmanageable from an
engineering point of view. SPL can help this task by
viewing an evolving system as a SPL where a differ-
ent state in the system is viewed as a separate product
[8]. This decomposes the system into well identified
chunks and a well defined context where each product
will appear, what helps to deal with the inherent com-
plexity of MASs.

Self-* properties of agents We believe that agent technol-
ogy may bring also advantages to SPL. Given research
efforts invested in providing agents with the capabil-
ities to communicate with each other at the semantic

level, or to provide capabilities of self-organization,
self-optimization, self-healing, etc., the maintenance
and evolution of the core architecture may be simpli-
fied. Additionally, the integration costs of new features
for a certain product, or even the entire SPL, may be
decreased.

4 Conclusions

MAS-PL, drawing benefits from both SPL and AOSE,
will help in the industrial exploitation of agent technology,
saving both effort and cost. We have identified several chal-
lenges, such as adapting current AOSE engineering tech-
niques to the SPL philosophy, which in many cases requires
the development of new activities/models from scratch.
However, a symbiosis between both AOSE and SPL arises
when AOSE also provides benefits to SPL, mainly through
encouraging and improving research on SPL of complex
distributed systems. As can be seen, MAS-PLs represent
a great, and worthwhile, challenge that will certainly attract
the interest of many practitioners and researchers.

References

[1] D. Benavides, A. R. Cortés, M. A. Serrano, and C. M. de Oca.
A first approach to build product lines of multi-organizational
web based systems (mows). In T. Böhme, V. Larios-Rosillo,
H. Unger, and H. Unger, editors,IICS, volume 3473 ofLec-
ture Notes in Computer Science, pages 91–98. Springer, 2004.

[2] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated
reasoning on feature models.LNCS, Advanced Information
Systems Engineering: 17th International Conference, CAiSE
2005, 3520:491–503, 2005.

[3] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. My-
lopoulos. Tropos: an agent-oriented software development
methodology.Journal of Autonomous agents and Multiagent
Systems, 8(3), 2004.

[4] K. Czarnecki and U. Eisenecker.Generative Programming:
Methods, Tools, and Applications. Addison–Wesley, 2000.

[5] J. Dehlinger and R. Lutz. A product-line approach to pro-
mote asset reuse in multi-agent systems. InSELMAS, volume
3914 ofLecture Notes in Computer Science, pages 161–178.
Springer, 2005.

[6] A. Jansen, R. Smedinga, J. Gurp, and J. Bosch. First class
feature abstractions for product derivation.IEE Proceedings
- Software, 151(4):187–198, 2004.

[7] N. Jennings. An agent-based approach for building complex
software systems.Communications of the ACM, 44(4):35–41,
2001.

[8] J. Pẽna, M. G. Hinchey, and A. Ruiz-Cortés. Managing the
evolution of an enterprise architecture using a mas-product-
line approach. InInternational Workshop on Worshop on Sys-
tem/Software Architectures 2006, Nevada,USA, June, 2006.
CSREA Press.

2



[9] J. Pẽna, M. G. Hinchey, and A. Ruiz-Cortés. Building the core
architecture of a multiagent system product line: With an ex-
ample from a future nasa mission. In7th International Work-
shop on Agent Oriented Software Engineering 2006, page to
be published, Hakodate, Japan, May, 2006. LNCS.

[10] K. Pohl, G. B̈ockle, and F. van der Linden.Software Product
Line Engineering : Foundations, Principles and Techniques.
Springer, September 2005.

[11] Y. Smaragdakis and D. Batory. Mixin layers: an
object–oriented implementation technique for refinements
and collaboration-based designs.ACM Trans. Softw. Eng.
Methodol., 11(2):215–255, 2002.

[12] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Develop-
ing multiagent systems: The gaia methodology.ACM Trans.
Softw. Eng. Methodol., 12(3):317–370, 2003.

3


