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ABSTRACT 

 

 

 

This Thesis is dedicated to the presentation, study and application of Bounded 
Component Analysis (BCA), a latent component analysis technique which can 
be applied in different manners to solve a wide spectrum of complex-valued 
signal processing problems. 

An introduction to the theory of complex calculus is presented, where the 
concepts of cost functions, Wirtinger derivatives, and gradients are illustrated in 
order to show the methodology to solve optimization problems where there are 
complex-valued signals and systems involved. Also, we conduct an overview of 
the recent advances in the field of augmented statistics and widely linear 
modeling. 

The theory of BCA is deeply reviewed. It is based upon geometrical properties 
of the sequences in the complex domain, which connects two infrequently 
related fields such as convex geometry and time series analysis. A criterion 
based upon the convex perimeter functional is derived for both blind and semi-
blind scenarios. This eventually allows the extraction of one or more sources 
from an unknown mixture, as long as they satisfy the main hypothesis of BCA. 
Furthermore, the sources can be dependent, thus separating them in scenarios 
where Principal Component Analysis (PCA) and Independent Component 
Analysis (ICA) fail. 
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We also present the convergence study of a BCA extraction method based upon 
the gradient descent algorithm, with the proposal of several values for the step 
size, each one with its own advantages and drawbacks. On one hand, we 
propose fast step sizes based upon the local analysis of the shape of the cost 
function, although they do not guarantee the stability of the iterations. On the 
other hand, we recommend a step size that guarantees the global monotone 
convergence of the iterations to local minima, derived from a comprehensive 
study of the geometry of the update equations. 

In addition, the study of under-determined and noisy mixtures is addressed. 
We show how the application of the supervised version of BCA to these 
scenarios can be used as a pre-processing step for a further refined classification 
in communications systems. This two stage recovery methodology allows us to 
successfully separate bounded sources where other well-known criteria like 
Minimum Mean Square Error (MMSE) fails. 
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RESUMEN 

 

Esta Tesis Doctoral está dedicada al estudio de la teoría y de las aplicaciones del 
Análisis de Componentes Acotadas (BCA), una técnica de análisis de 
componentes latentes cuya aplicación es resolver un buen número de problemas 
que surgen al tratar con señales de variable compleja. 

Al principio de la Tesis Doctoral, se introducen algunos conceptos importantes 
relacionados con el cálculo con variable compleja, tales como funciones de coste, 
derivadas de Wirtinger y gradientes. Gracias a ello, se presentan algunas 
aplicaciones de cómo se pueden resolver problemas clásicos de tratamiento de 
señal con variable compleja. Además, hacemos un repaso a los últimos avances 
en el campo de la estadística aumentada y el modelado widely linear. 

Se revisa en profundidad la teoría que sustenta BCA. Básicamente, está basada 
en las propiedades geométricas de las secuencias cuando se representan en el 
plano complejo, lo cual conecta dos campos de la matemática inusualmente 
relacionados, tales como la geometría convexa y el análisis de series temporales. 
Tras esta revisión a fondo, se presentan criterios basados en el perímetro 
convexo de un vector, para el caso ciego y también para el caso semi-ciego. Así, 
podemos extraer una o más fuentes de una mezcla lineal, siempre que estas 
cumplan las hipótesis básicas de BCA. Es más, las fuentes pueden ser 
dependientes, consiguiendo una separación correcta en escenarios donde el 
Análisis de Componentes Principales (PCA) o el Análisis de Componentes 
Independientes (ICA) fallan. 
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Además, presentamos el estudio de convergencia de un método de extracción 
de fuentes basado en BCA, e implementado mediante un algoritmo de descenso 
por gradiente. Es por esto que podemos presentar toda una serie de valores para 
el paso adaptativo, cada uno de ellos con sus propias ventajas e inconvenientes. 
Por una parte, proponemos algunos pasos rápidos basados en el análisis del 
comportamiento local de la función de coste, pero que no garantizan la 
estabilidad de las iteraciones. Por otro lado, recomendamos un paso que 
garantiza la convergencia global monótona de las iteraciones a un mínimo local, 
aunque no es tan rápido como os anteriores. Este análisis está basado en un 
estudio detallado de la geometría de la ecuación de actualización. 

Finalmente, se aborda el problema de extracción supervisada de fuentes en 
mezclas sub-determinadas, en presencia de ruido. Mostramos cómo el modelo 
semi-ciego de BCA puede utilizarse como un paso previo a un método de 
clasificación no-lineal, con el objetivo de recuperar señales acotadas cuando no 
tenemos suficientes grados de libertad en el sistema. Esto es algo que otros 
métodos bien conocidos como el Mínimo Error Cuadrático Medio (MMSE) no 
son capaces de resolver. 
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1 INTRODUCTION 

 

 

 

 

 

 

 

his Thesis presents in an unified manner the theory and applications of a 
novel latent component analysis technique. It goes along with multiple 
examples of scenarios where both classical and new problems in complex-

valued signal processing are solved. 

The extraction of one or more latent sources from a set of observations as a 
result of a linear mixture is a problem that, due to its simplicity on the 
description, has found many applications in diverse topics. These applications 
feed some of the most growing research fields in the science and technology, 
such as communications systems with multiple antennas, speech, image and 
signal processing, and biomedical engineering with multiple sensors. 

T

 

We live in a society exquisitely dependent on science and 
technology, in which hardly anyone knows anything about 

science and technology.  

- C. Sagan - 
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1.1 Motivation 
Numerous works has been published over the last decades, providing feasible 
solutions to the problem of Blind Signal Separation (BSS) and Extraction (BSE), 
like those based on the decorrelation of sources in Principal Component 
Analysis (PCA) (Jolliffe, 2002), on their statistical independence and non-
Gaussianity in Independent Component Analysis (ICA) (Hyvärinen, 2001), or 
on their non-negativity in Non-negative Matrix Factorization (NMF) (Cichocki, 
2009). 

Among the wide spectrum of existing ICA methods for the blind recovery of the 
sources, some of them do rely also on geometric properties of the sources, like 
their finite cardinality (Gamboa, 1997), their statistical range (Pham, 2000), the 
measure of their support set (Erdogan, 2006), the shape of the constellation 
(Mansour, 2002), or their known alphabet (Zarzoso, 2006). 

However, there are also supervised or semi-blind methods that use a small 
amount of samples from a desired source, using it as a reference in addition to 
the structural properties of the components of the mixture. Well-known 
solutions derived from this approach are the Minimum Mean Square Error 
(MMSE) (Adali, 2010) or the Zero Forcing (ZF) methods (Johnson Jr, 1995). 

These blind, semi-blind and supervised criteria that solve the decomposition of 
the observations into components, are usually mathematically expressed by 
means of a cost function or a contrast function. Those functions proportionate a 
metric for the different one-dimensional projections of the observations, based 
upon some known hypothesis about the components and upon the invertibility 
of the mixture. 

The most reviewed instantaneous mixtures are those that have more 
observations than sources (over-determined systems), or at least the same quantity 
(determined systems). The columns of the mixing matrix form a complete or 
over-complete basis for the space, which in a noiseless situation eventually 
results in the perfect extraction of a source. More recently, the study of under-
determined systems, both in the blind and the supervised case, has been also 
addressed, like in (Comon, 2004), (Theis, 2004) or (Donoho, 2006), among others. 

Nevertheless, the majority of the works in the field of signal separation are 
focused on the real-valued case. During the past decades, the study of real cost 
function of complex variables has experimented a growth, with key contributions 
gathered in books like (Schreier, 2010) and (Mandic, 2007). The use of complex-
valued signals and mixtures allows us to model the richer behaviors that are 
found on real life applications. However, the extension of signal processing 
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concepts to the field of complex random processes is not as straightforward as 
one could a priori think. 

1.2 Aims and Scope 
With the realization of this Thesis, we aim to contribute to the improvement of 
the source extraction, separation and decomposition methods, by means of the 
study of a novel technique, which combine time series analysis and convex 
geometry. The developed methods must be adaptive to real applications, aiming 
to exploit the a priori known information about the problem. 

The main contributions are concreted on the following lines of research: 

 A deep review of the Bounded Component Analysis (BCA) of linear 
mixtures, a framework developed in (Cruces, 2010), which estimates 
the latent components of the observations by means of the property of 
compactness of the finite support of the mixed signals. We will see that 
one can dispense with the mutual statistical independence hypothesis 
of the transmitted signals. 

 The blind decomposition of a set of observations into bounded latent 
components (Cruces, 2010), with the proposal of an iterative gradient 
descent algorithm entirely based on the minimization of the convex 
perimeter of the estimate and the deflation of the extracted component 
from the original set of observations (Aguilera, 2012). 

 The conditions for the separability of the sources in a blind scenario are 
very important to guarantee a successful extraction, separation or 
decomposition. Also, we conduct a comprehensive study of the shape 
of the cost function, which is free of erroneous minima under some 
given hypotheses. We aim to propose recommendations for the step size 
depending on the desired behavior of the algorithm , such as the rapid 
convergence (Aguilera, 2012) or the guarantee of the stability in a given 
sense (Aguilera, 2013). 

 The application of new methods to solve supervised or semi-blind 
problems, like in (Aguilera-Bonet, 2012) and (Cruces, 2011), where there 
is a small sequence of pilot symbols that can be transmitted to train the 
receiver of a communication system. This has a direct application on 
the channel compensation of multi-antenna or multi-user wireless 
systems; where the particularities of the physical medium produces 
interference on the signal form the desired user. 

 The solution to noisy under-determined linear mixtures, where the 
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number of sources is smaller than the number of observations, which 
limits the exact recovery of the desired source. The proposed solution to 
these problems can be seen as a two-block system that uses BCA as a 
pre-processing stage for a non-linear refinement of the estimation. 

 The study of the widely linear models to describe the more complicated 
nature of the mixtures and the sources in real applications, as well as 
the novel tools that augmented statistics provide to complex-valued 
signal processing. 

Secondary tasks should be completed before achieving the described goals. First 
of all, the complex calculus with non-holomorphic variables must be presented. 
Several examples and the methodology used to derive the gradients of the cost 
functions is clarified in the solution of practical problems presented in complex-
valued signal processing. Some of these well-known solutions are the reference 
to beat with our proposed algorithms in this Thesis. 

Among our priorities, we intend to present in a unified manner the theory and 
the applications of Bounded Component Analysis to the solution of complex-
valued signal processing problems, like signal extraction, separation and latent 
component decomposition. 

1.3 Thesis Overview 
The above aims of this Thesis will be developed through seven chapters, 
starting with this introduction in which the motivation and the objectives are 
discussed. 

In Chapter 2, we set the fundamentals of the differential calculus with complex-
variables. We review concepts like holomorphic functions, Wirtinger calculus, 
and gradient optimization in the complex domain. In addition, the last trends in 
complex-valued signal processing are presented: the use of widely linear 
models and augmented statistics. 

In Chapter 3, we review some of the most successful although simple 
applications: the complex Wiener Filter, the Complex Least Mean Squares 
(CLMS) algorithm, and blind techniques like PCA and a simple kurtosis-based 
ICA. This chapter set the basis for the methodology when dealing with real-
valued functions of complex variable. During the rest of the Thesis, we compare 
the differences and similitudes of our proposed solutions with these well-
known signal processing methods. Also, we review briefly some direct 
applications from the theory of non-circular random processes. 

In Chapter 4, the theory of Bounded Component Analysis is presented, with 
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emphasis on the comprehension of the hypothesis, the conditions for the 
separability of the sources and the introduction of an appropriate cost function 
like the convex perimeter. We also present some applications of the firsts 
algorithms derived from BCA: blind source extraction, separation and 
component decomposition, with their correspondent computer simulations. 

In Chapter 5, the convergence analysis of BCA extraction algorithm is presented. 
Within this study, several step sizes for the optimization algorithm were 
derived, each one with its own benefits and drawbacks. We propose a 
convenient step size that guarantees the global monotonous convergence of the 
algorithm in a given sense, and provide some computer simulations to 
corroborate the theoretical results. 

In Chapter 6, a semi-blind model for BCA is presented. This time, we propose a 
small training sequence to adapt the extraction vector to recover the desired 
source. We introduce the training error sequence, whose convex perimeter is 
minimized in the pursuit of a solution. The model is completed with the 
addition of noise, which forces us to the modification of the optimization 
criterion. Computer simulations show that the proposed solution beats in 
performance other classical solutions (when the mixture is under-determined). 

Chapter 7 gives a final overview of the whole Thesis, and provides some ideas 
for further research. Some of these ideas are currently under development. 
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2 COMPLEX CALCULUS 

 

 

 

 

 

 

 

he use of complex numbers and complex variables in signal theory is not 
a new topic. Classical papers that address this issue are, for example, 
(Widrow, 1985) and (Mooers, 1973). However, during the last decade, a 

new interest on the field of complex numbers has been observed, motivated by 
new applications such as biomedical signal processing (Javidi, 2010), 
communications (Schreier, 2003), and array processing (Delmas, 2004). 

This chapter is mainly based upon the introduction (Kreutz–Delgado, 2006), and 
the books (Mandic, 2009), (Schreier, 2010), and (Hjørungnes, 2011). 

2.1 Introduction 
In this chapter, the main purpose is to provide the reader a comprehensive 
overview of the tools that researchers have developed to treat with the more 

T

 

The complex analytic function turns out to be much more 
special, enjoying many beautiful properties not shared by the 

run-of-the-mill function from ordinary real calculus. 

- F. Flanigan - 
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sophisticated behaviors of complex signals. One could initially think that the 
signal processing in the complex domain reduces to the systematic use of the 
conjugate operator on products, but we will soon realize that the structure 
underlying in the field of complex functions is richer than in the field of real 
functions. 

The chapter is organized as follows. In Section 2.2 we present some basic 
definitions for complex functions and variables. In Section 2.3, we justify a 
classification of the functions of complex-variable, and we present the theory for 
finding the derivatives of such functions. In Section 2.4, we present some 
concepts that are good to know when minimizing or maximizing real functions 
of complex variables like, e.g., where are the stationary points, which is the 
direction of maximum rate of change, etc. In Section 2.5, we present the 
approach called augmented statistics, a recent point of view for the processing 
of complex-valued signals that exploits further information. Section 2.6  
summarizes the conclusions to this chapter. 

2.2 Complex Functions and Variables 
In this section we present the notation of complex variables and functions, and 
some of their basic operators and properties. 

The complex argument of a function can be a scalar z , a vector nz  , or a 
matrix n mZ  . We will focus on the scalar case to present some key concepts 
in the theory of complex-valued functions and variables. If we call x  and y  to 
the real and imaginary parts of z , respectively, then 

      { } { },z x y z z   (2.1) 

where   represents the imaginary unit so 2 1  . Operators {·}  and {·}  will 
return, the real and imaginary parts of their argument, respectively. The absolute 
value of a complex number z  is z  and is computed as 

 2 2| | .z zz x y    (2.2) 

The conjugate operator *(·)  changes the sign of the imaginary part of its 
argument, 

       { } { }.z x y z z    (2.3) 

Although this operation may look very simple, it is highly useful when dealing 
with complex calculus. For example, we can express real and imaginary parts as 
a linear combination of a complex variable and its conjugate, 
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 1{ } ( ),
2

x z z z     (2.4) 

 1{ } ( ).
2

y z z z   


 (2.5) 

We introduce now the concept of complex functions. A complex-valued function 
is a mapping from a given domain D  into the complex scalar ( f  ), vector 
 nf  , or matrix ( n mF  ) domain. For them, one can define the same 
concepts seen before (real and imaginary parts, absolute value, and conjugate). 
Hereinafter, we will focus on the scalar case. 

2.3 Derivatives of Complex Functions 
The main problem when working with complex variables is the lack of 
ordering. We cannot say that a given complex number is greater or lower than 
another. 

Many applications on engineering require the optimization of the so called cost 
functions, objective functions, or loss functions. These are functions that, when 
maximized or minimized, lead to specific solutions of a certain criterion. 
Practical cost functions must be, by definition, real-valued. This is due to the fact 
that we are interested in ordered values, so we can wander on the surface of the 
function to maximize or minimize its real value. Examples of scalar and real-
valued functions widely used in engineering are the temperature or the electric 
potential. 

2.3.1 Holomorphic functions 

When dealing with complex variables, the notion of derivative is not as direct 
and intuitive as in the real variable case. Usually, traditional courses on complex 
variable calculus start with the concept of holomorphic function. 

Definition (Holomorphic function): Let D    be the domain of the scalar function 
:f D   . Then, ( )f z  is an holomorphic function in the domain D  if the limit 

 
0

( ) ( )
( ) lim

z

f z z f z
f z

z 

  
 


 (2.6) 

exists for all z D . 
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Cauchy-Riemann conditions 

For a function to be holomorphic, the previous limit (2.6) must be independent 
of the direction which f  approaches zero in the complex plane. This, although 
can be seen as a minor issue, is indeed a very strong condition imposed on the 
function  f z . 

Example 2.1 Suppose that our function   :f z    is the square of the Euclidean 
distance, defined as 

   2
f z z zz  . (2.7) 

We want to compute the limit (2.6)  to obtain the complex derivative of  f z . However, 
we see that this limit takes different values depending on the approximation path to the 
point z . Substituting into the limit, 

 
  

     

2 2

0 0

0

0

( ) ( )
( ) lim lim

lim

lim .

z z

z

z

z z zf z z f z
f z

z z

z z z z zz

z

z z z z z z

z

   

  

 

  

 

    
  

 

    




     




 (2.8) 

We can see that it does not exist, because it depends on the path of approximation to the 
point where it is evaluated. For example, let us take the two simplest cases of 
approximation over the coordinate axes, with 0z x y      : 

 Case 1: 0y  , while 0 :x   

 
     

   

2

0

0

( ) lim

lim 2 .
x

x

x z z x x
f z

x
z z x z z z



 

 

 

    
 


     

 (2.9) 

 Case 2: 0x  , while 0 :y   

 
     

      

2

0

0

( ) lim

lim 2 .

y

y

y z z y y
f z

y

z z y z z z



 

 

 

    
 



       

 

 

 (2.10) 
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And it is evident that    2 2z z    , so the derivative  'f z  does not exists. 

We conclude that some functions are non-holomorphic, because the limit (2.6) 
does not always exist. The following theorem establishes sufficient and 
necessary conditions for the function to be holomorphic. 

Theorem 2.1 (Cauchy-Riemann conditions) 

Let ( ) ( , ) ( , )f z u x y v x y    be a complex function of complex variable. For ( )f z  
to be holomorphic, the real and imaginary parts of f  and z  must satisfy the 
Cauchy-Riemann conditions: 

 .u v
x y
 


 

 (2.11) 

 .v u
x y
 

 
 

 (2.12) 

Proof: (Necessarity) For a function to be holomorphic, it must satisfy (2.6)  
independently of the path of approximation to the point z  when 

0z x y      . If we expand (2.6) in real and imaginary parts of z , 
and of f : 

 
0
0

( , ) ( , ) ( , ) ( , )
( ) li .m

x
y

u x x y y v x x y y u x y v x y
f z

x y 
 

             
   

 


 (2.13) 

Let us consider now the two simplest cases for the approach of 0x   
and 0y  , that correspond to the coordinate axes: 

 Case 1: 0y  , while 0 :x   

 

0

0

( , ) ( , ) ( , ) ( , )
( ) lim

( , ) ( , ) ( , ) ( , )
lim

( , ) ( , )
.

x

x

u x x y v x x y u x y v x y
f z

x
u x x y u x y v x x y v x y

x x
u x y v x y

x x

 

 

       
    

      
   

 









 





 (2.14) 

 Case 2: 0x  , while 0 :y   
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0

0

( , ) ( , ) ( , ) ( , )
( ) lim

( , ) ( , ) ( , ) ( , )lim

( , ) ( , )
.

y

y

u x y y v x y y u x y v x y
f z

y
u x y y u x y v x y y v x y

y y
v x y u x y

y y

 

 

       
   

 
     

  
  

 
 

 

 



 



 (2.15) 

To ensure uniqueness of the limit (2.13), equation (2.14) must be equal to 
equation (2.15). Identifying real and imaginary parts, we get the Cauchy-
Riemann conditions. 

∎ 

Structure of holomorphic functions 

Let us take a look on the properties of holomorphic functions. Although the 
notation that it is used in complex calculus is very similar to the one used in real 
calculus, an holomorphic function ( )f z  has a certain structure that makes itself 
somewhat special. Specifically, the following results are equivalent: 

 The derivative ( )f z  exists and is continuous. 

 The function ( )f z  is holomorphic (that is, analytic1 in z ). 

 The function ( )f z  satisfies the Cauchy-Riemann conditions. 

 All the derivatives of the function ( )f z  exist, and ( )f z  admits 
convergent power series expansion. 

 Real ( , )u x y  and imaginary ( , )v x y  parts of the function ( )f z  are 
harmonic functions, that is, they satisfy Laplace equations: 

 
2 2

2 2

( , ) ( , ) 0,u x y u x y
x y

 
 

 
 (2.16) 

 
2 2

2 2

( , ) ( , ) 0.v x y v x y
x y

 
 

 
 (2.17) 

                                                        
1 A function is analytic in a domain if it admits convergent power series expansion in such domain. 
That implies that the function has derivatives of all orders. For a complex function of complex 
variable, the term analytic has been recently substituted by the term holomorphic, although both are 
synonyms and we could interchange them. Specifically, we can say that a function of real variable 
that admits real power series expansions is analytic (real analytic), while a function of complex 
variable that admits complex power series expansion is holomorphic (complex analytic). 
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It is clear that, when a function is holomorphic, we are imposing a big structure 
and strong properties on it. A holomorphic function can also be known as 
complex differentiable, complex analytic or regular. 

Although many important complex functions are holomorphic and thus 
complex differentiable, unavoidably we are going to find lots of functions that 
are not. 

Example 2.2 Some common functions that are not holomorphic: 

 The function ( )f z z , that represent the complex conjugate of z , does not 
satisfy the Cauchy-Riemann conditions. 

 Functions ( ) ( ) / 2z z z    and ( ) ( ) / 2z z z    . Neither of them do 
satisfy it. 

 The function 2 2 2( ) | |f z z zz x y    is not holomorphic. 

Let us realize that all the functions presented in the example are non-holomorphic, and 
they can be expressed as a function of the independent variable z  and its complex 
conjugate z . This is a simple test to identify whether a function is holomorphic or not. 

It seems that there are not many functions in the signal processing field that 
satisfies the conditions to be holomorphic and complex differentiable. The 
following theorem explains why. 

Theorem 2.2 (The real-valued holomorphic function) 

Let D    be a domain in the complex plane, and let ( ) :f z D    be a real 
holomorphic function. Then, ( )f z  must be the constant function, for all z . 

Proof: If ( )f z  takes only real values, necessarily ( , ) ( ) 0v x y z   . Then, if 
( )f z  is holomorphic, it must satisfy the Cauchy-Riemann equations, 

 0,u v
x y
 

 
 

 (2.18) 

 0.v u
x y
 

  
 

 (2.19) 

So the real part ( , )u x y  must be constant throughout the z  plane, that is, 

 ( ) ., .f z const z   (2.20) 

∎ 
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This is a classical result that reduces the set of real holomorphic functions to 
only the constant function. In practice, cost functions (as we stated at the start of 
Section 2.3) are real but necessarily non-constant, so they are not holomorphic 
functions, and their study cannot be done by using classical tools for complex 
variables. 

Let us remark this fact: if we look for an optimization procedure to find the 
optimal point of a real, non-constant cost function, we find that the function is 
not holomorphic. Thus, its derivative respect the independent complex variable 
z  does not exists in the conventional sense. 

For all these reasons, it is necessary an alternate formulation for the calculus of 
derivatives of real functions with complex variables and, in general, non-
holomorphic functions. 

2.3.2 Non-holomorphic functions: ℂℝ calculus 

We want to find the derivative of a non-holomorphic, real-valued function 
f   with respect to a complex variable that can be a scalar z , a vector z  or a 

matrix Z . To simplify the notation, we will start on the scalar case. Initially, one 
could adopt either of the two following points of view. 

 The first one consists on rewriting f  depending on the real x  and 
imaginary y  parts of the complex variable z . Once this is done, we can find 
the derivatives of the function, reordered with respect to those two 
independent real variables. We can indeed treat f  as a real function with 
real variables x  and y : 

 2( ) ( , ) :f z f x y   . (2.21) 

Using this trick, we see that the existence of /f x   and /f y   is sufficient 
for f  to be differentiable. The key idea is to exploit the structure of the 
vector space 2  underlying in   when computing the derivatives. 

 The second option, much more stylish and with advantages with respect the 
first one, consists on treating the variables z  and *z  independently. We are 
not saying that a complex variable z  and its complex conjugate *z  are 
independent, but that their cross-derivatives are zero. Sometimes, the notation 

*( , )f z z  is forced to remark this fact. This notation was proposed for the first 
time in (Brandwood, 1983). 

Those new derivatives, /f z   and /f z  , are very useful when dealing 
with non-holomorphic functions. We call them the real derivative (derivative in 
 ) and the real conjugate derivative (derivative in * ). That is to highlight the 
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difference from the complex derivative (derivative in  ), that as we have seen 
in Section 2.3.1, only works on holomorphic functions. 

To be consistent, this new approach should reduce to the classic complex 
derivative presented in (2.6). This introduces the so-called Wirtinger calculus or 
  calculus (Kreutz–Delgado, 2006). 

Wirtinger derivatives 

The pair of variables *( , )z z  defines a dual representation of the same plane that 
the pair of real variables ( , )x y . 

In general, we can define the pair of partial real derivatives for a function of 
complex variable ( )f z  as the following. 

Definition (Wirtinger derivatives): Let ( )f z  be a scalar function of complex variable z . 
Then, we can define the following formal2 partial derivatives: 

 

   derivative of 
*

*
*

.

( , )
( ., )

z const

f z z
f z z

z





  

 

 *  derivative of 
*

*
*

.

( , )
( , ) .

z const

f z z
f z z

z





  

 

Those derivatives are related with the real and imaginary parts derivatives in 
the following way. 

Theorem 2.3 (Relation between Wirtinger and real derivatives) 

Let ( )f z  be a scalar function of complex variable z . Then, its   and   
derivatives can be expressed as: 

 
*

*

.

( , ) 1
2

z const

f z z f f
z x y



   
  

   
  (2.22) 

 
*

*
.

( , ) 1
2

z const

f z z f f
x yz



   
  

   
  (2.23) 

                                                        
2 Note that these derivatives are purely formal definitions. Actually, we cannot vary z  without 
altering 

*z , and vice versa. However, z  and *z  are independent in the sense that 
/ / 0z z z z       , as we see in Example 2.3. 
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Proof: Let us express the differential of the function of two real variables 
( , )f x y : 

 ( , )
f f

df x y dx dy
x y
 

 
 

. (2.24) 

As ( , ) ( , ) ( , )f x y u x y v x y   , we can expand using the chain rule of 
derivation: 

 ( , ) u v u vdf x y dx dx dy dy
x x y y
   

   
   

  . (2.25) 

Now, using (2.4) and (2.5) we make the following changes of variable over 
the differentials of the real  *( ) / 2dx dz dz   and imaginary parts 
 *( ) / 2dy dz dz   . After reordering, we obtain 

 *1 1
2 2

u v v u u v v udf dz dz
x y x y x y x y

             
                             

  . (2.26) 

Thus, the differential of f  becomes: 

 *1 1
2 2

f f f f
df dz dz

x y x y
      

      
      

  . (2.27) 

Finally, we only have to expand the differential of f  but depending on the 
complex conjugate variables z  and *z , 

 * *
*

( , )
f f

df z z dz dz
z z
 

 
 

. (2.28) 

Identifying terms between (2.28) and (2.27), we obtain finally the desired 
expressions (2.22) and (2.23). 

∎ 

These two expressions relate the   and   derivatives with the derivatives 
with respect to the real and imaginary parts of the complex variables. This 
duality gives name to the   calculus. 

Example 2.3 Assuming that z  and *z  are independent, the following relations are 
straightforward: 
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 

0 0

( ) ( )1 1 1,
2 2

x y x y y yz x x
z x y x x y y

         
                

 
    (2.29) 

 
 

0 0

( ) ( )1 1 1,
2 2

x y x y y yz x x
x y x x y yz





         
                

 
    (2.30) 

 
 

0 0

( ) ( )1 1 0,
2 2

x y x y y yz x x
x y x x y yz

         
                

 
    (2.31) 

 
 

0 0

( ) ( )1 1 0.
2 2

x y x y y yz x x
z x y x x y y

          
                

 
    (2.32) 

The Cauchy-Riemann condition revisited 

Using the Wirtinger derivatives, we can reformulate the Cauchy-Riemann 
equations into a single condition. That illustrates the elegance of   Calculus. 

Theorem 2.4 (The Cauchy-Riemann condition) 

Let ( )f z  be a scalar function of complex variable z . Then, f  is holomorphic 
(complex analytic in z ) if, and only if, it does not depends on the conjugate 
variable *z . That is: 

 0.
f
z





 (2.33) 

Proof: Simply applying Cauchy-Riemann equations (2.11) and (2.12) on 
condition (2.23), we can see that 

 *

1 1 0.
2 2

f f f u v v u
x y x y x yz

            
                         

   (2.34) 

∎ 

One can see this from another point of view. It is well known (Kreyszig, 1988) 
that a holomorphic function always admits a power series expansion like 
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 0
0

( ) ( )n
n

n
f z a z z





  , (2.35) 

where 0,na z  . If any holomorphic function can be expressed in such way, it 
is clear that those functions does not depend on z . 

Corollary of Theorem 2.4 

The   derivative of a function, /f z  , is identical to the complex classical 
derivative ( )f z  as defined in (2.6), when ( , )f z z  does not depends on z . This 
happens when f is holomorphic: 

 ( ) is holomorphic 0 ( )
f f

f z f z
zz

 
   


 (2.36) 

Proof: Substitute (2.33) into (2.28). 

∎ 

Rules of complex derivation 

Here are some nice properties of Wirtinger derivatives. 

 ,
f f

zz





  
    

 (2.37) 

 ,
f f
z z

   
    

 (2.38) 

 *
*

 (Differential Rule),
f f

df dz dz
z z
 

 
 

 (2.39) 

 
 * *

*

( , )
 (Chain Rule),

h g z z g gh h
z g z zg

   
 

   
 (2.40) 

 
 * *

* * * *

( , )
 (Chain Rule),

h g z z g gh h
gz z g z

   
 
   

 (2.41) 

 
*

* .( )
f f

f z
zz


  

      
 (2.42) 

All of these properties extend naturally to the multivariate case, substituting the 
scalars by vectors and derivatives by gradients. The next subsection extends the 
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previous results to the multivariate case. 

Multivariate ℂℝ calculus 

Before moving forward, some definitions from complex matrix algebra are 
needed. 

Definition (Symmetric matrix): A symmetric matrix A  is a square matrix that satisfies 

 T A A , (2.43) 

where (·)T  denotes the transpose operator. 

Definition (Hermitian matrix): A Hermitian matrix (or self-adjoint matrix) A  is a square 
matrix that satisfies 

 H A A , (2.44) 

where (·)H  denotes the Hermitian operator (complex conjugate transpose). 
They are the complex extension of a symmetric matrix. Symmetric and 
Hermitian matrices admit a simplified factorization that we will see later in this 
chapter. 

Definition (Orthogonal matrix): An orthogonal matrix A  is a square matrix that satisfies 

 1T T  A A A A I , (2.45) 

where I  is the identity matrix.  

Definition (Unitary matrix): A unitary matrix A  is a square matrix that satisfies 

 1H H  A A A A I . (2.46) 

Unitary matrices preserve inner products, i.e., , ,H c b c b Ac Ab . They also 
do not change the norm3 of a vector, c Ab b  . Orthogonal and unitary 
matrices are usually related to rotations and reflections in the vector space n  
or n , respectively. 

We focus now on the multivariate case with real-valued scalar functions of 
complex multivariate variables. Indeed, the model for the cost function is: 

 ( ) : nf z   , (2.47) 

                                                        
3 The norm of  a vector g  is an scalar measure. The most known family is the set of p -norms, 
defined as 

1

pnp
iip

g


 g . If there is no sub-index, by default it will be the 2-norm (also called 
Euclidean norm). We will use them extensively in future chapters. 
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where 

 
i

n

n

z

z

 
   
  

z   . (2.48) 

Definition (gradient and conjugate cogradient): Let f  be a real-valued function whose 
independent variable is a complex vector z , as defined in (2.47). Then, the 
gradient (  gradient) and conjugate cogradient ( *  gradient) are defined as in 
(Kreutz–Delgado, 2006): 

 ( ) n

i i

f
f

z
 

   
 

z z  , (2.49) 

 ( ) n

i i

ff
z 

 
   

  
z

z  . (2.50) 

The relations of these operators with respect to the gradients of the real and 
imaginary parts are extensions of the Wirtinger derivatives (2.22) and (2.23): 

  1
2

    z x y , (2.51) 

  *

1
2

    x yz
 . (2.52) 

Example 2.4 The gradient and conjugate cogradient of the real-valued function 
*

1 2
* *

1 2( , ) Hf z z z zz z z z   , are: 

 1

2

z
f

z






 
   

  
z z , (2.53) 

 1

2

.
z

f
z

 
   

 
z

z  (2.54) 

It is straightforward to see that Cauchy-Riemann equations, holomorphic 
conditions, rules of complex derivation, and the rest of the concepts presented in 
the previous sections, are naturally extended to the multivariate case. For 
example, the Cauchy-Riemann condition for f  to be holomorphic is: 

 nf  
z

0  . (2.55) 
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Hereinafter, we will work with real-valued scalar cost functions of complex 
multivariate variables. These cost functions are defined so that they have 
extreme points that correspond to local solutions of a certain criterion. 

2.4 Optimization with Complex Variables 
In this section we start to apply the concepts defined above. Unless otherwise is 
stated, we will deal with scalar real-valued functions defined as: 

 ( ) : nf z   . (2.56) 

2.4.1 Stationary points 

The function f  can have an arbitrary shape, but as a function of a complex 
vector, it can be seen as a group of mountains in a multidimensional space. This 
landscape has valleys and peaks, corresponding to local maxima and minima of 
the real-valued function. These points are called extreme points or stationary 
points, and they share a nice property: the   and *  gradients of the cost 
function vanish at them. 

Theorem 2.5 (Extreme points) 

Let f  be a real-valued function as defined in (2.56). Then, the following two 
conditions are, each one, necessary and sufficient in order to optimize f  with 
respect to a complex vector z . At the extreme point  ez z , it holds: 

 ( )f


 
e

z z z
z 0 , (2.57) 

 * ( )f


 
e

z z z
z 0 . (2.58) 

Proof: This result is just a multidimensional extension to the well-known 
result for scalar complex variables, where the extreme points of a function 
f  defined as ( ) :f z   , are found when: 

 ( )
0

ez z

f z
z







, (2.59) 

 *

( )
0

ez z

f z
z 





. (2.60) 

∎ 
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Any algorithm that optimizes the cost function f  should reach one of these 
extreme points, where the criterion represented by the function is maximized, 
minimized, or reaches an inflexion point. 

While we change the vector z , we are changing the real value of the cost 
function f . For each z , the value of f  is determined. But, the reverse does not 
always hold, so f  is not an injective function, in general. 

This means that we can move freely the vector in any direction, as we were 
walking on the mountains, and watch for the effects on the objective function 
(that would be the height over the multidimensional surface). 

An interesting question is: which direction is the one that achieves the 
maximum rate of change? If we are on the slopes of a valley, that direction leads 
us directly to the local minimum. 

2.4.2 The direction of maximum rate of change 

To answer that question, we look at how a small change on the vector variable is 
translated to the value of the cost function. The main result of this section is 
stated in the following theorem:  

Theorem 2.6 (Direction of maximum rate of change) 

Let ( ) : nf z    be a real-valued function of complex multivariate variable. 
Then, the direction of maximum rate of change is given by 

 ( ).f
z

z  (2.61) 

And thus, moving z  in the same direction of (2.61), we are maximizing the cost 
function f . On the other hand, moving in the opposite direction ( )fz z , we 
are minimizing the cost function f . 

Proof: Using the differential rule (2.39) for vectors, we obtain: 

    ( ) ( )
TT

df f d f d
    z z

z z z z  . (2.62) 

Identifying the expression (2.4) of the real part of a complex variable: 

   2 ( ) .
T

df f dz z z    (2.63) 

Using the multivariate equivalent of property (2.42) for real-valued 
functions, (2.63) becomes: 
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   2 ( ) 2 ( ), .
H

df f d f d     
z z

z z z z  (2.64) 

This expression is proportional to the scalar product of two complex-
valued vectors, ( )f

z
z  and dz . From basic geometry (Arfken, 1985), we 

know that the scalar product ( ·,·  ) is maximized when the two vectors 
has the same direction, and minimized when they have opposite 
directions. In general, we are interested on minimizing the cost functions, 
because they usually represent an undesirable quality or an error of the 
system. 

∎ 

Another interesting situation occurs when vectors ( )f
z

z  and dz  are 
orthogonal. The scalar product of two orthogonal vector is null. We can 
interpret this fact as if the rate of change df  vanishes, so the cost function does 
not change. 

It is interesting to see that, obviously, the isobars of the cost functions are defined 
by this situation. In fact, the locus of points orthogonal to the vector ( )f

z
z  

locally define the points where the cost function f  takes the same value. 

Note that the same reasoning cannot be done for the gradient ( )fz z . Looking 
at (2.63), it is easy to see that it does not represent an scalar product, so it does 
not gives any insight about the geometry of the gradient of the cost function. 

Example 2.5 Let :f      be the squared Euclidean distance to the origin, given by 

   2* *,f z z z zz  . (2.65) 

We can only display on the complex plane the level curves of a scalar real function of 
complex scalar variable. Thus, the resulting plot is shown in the Figure 2.1. 

The formal   and *  derivatives of this function are, assuming that z  and z  are 
independent, 

 *f
z

z





, (2.66) 

 f
z

z





. (2.67) 

These two derivatives are also shown in Figure 2.1. They are represented by an arrow 
marking the direction of change of both derivatives. In this case, note that they are 
mutually orthogonal, but this is not a general property. 
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Figure 2.1 - This is a contour plot of the function defined in (2.65), and used in Example 
2.5. Blue circumferences correspond to lower values of the cost function, where red 
circumferences correspond to high values. 

It is easy to see that the direction of maximum rate of change corresponds to /f z  , 
and its orthogonal is the direction of no change. By chance, the value of /f z   is this 
orthogonal direction, but that does not happens in most of the cases. The value of 

 f
z





 (2.68) 

represents the direction of maximum descent, and the direction orthogonal to it 
represents the direction where the cost function f  locally does not changes its value. 

2.4.3 Function minimization via a steepest descent algorithm 

Imagine that we have the objective of minimizing the cost function 
  : nf z   . We must find the optimal vector z  that achieves the global 

minimum of f , 

   arg minopt f
z

z z . (2.69) 

Suppose now that we develop an iterative algorithm, where at each iteration we 
compute a new refined vector  1kz , using the previous version of the vector 

 kz . Ideally, the function f  evaluated at the new point should be smaller than 
the previous one, because that would indicate that we are minimizing the 
objective function, 
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      1 .k kf fz z   (2.70) 

To update the desired vector, we need additional information. That information 
can be the direction of steepest descent  kd , so adding a scaled version of it 
would lead from  kz  to  1kz , iteration by iteration, 

        1k k k k  z z d . (2.71) 

The scale is controlled by the non-negative real parameter  k  , that 
receives the name of step size. It is responsible of the speed of convergence of the 
algorithm, and may cause it to fail if it is sufficiently large. On the other hand, if 
it is sufficiently small and the algorithm is not well initialized, it can cause to get 
stuck into a local minimum or a saddle point (provided that these exist in the 
cost function). 

We will go deeper into this behavior in Chapter 5, but an intuitive discussion of 
this topic is shown in Figure 2.2. The left one shows a slow but direct path to the 
solution (the central point), that corresponds to a small step size. The right one 
shows a fast but chaotic convergence, related to a large step size. A balance 
between both extremes is usually the most reliable step size. 

As seen in Theorem 2.6, the direction of the steepest descent is given by the 
opposite of the conjugate cogradient, 

     k kf 
z

d z . (2.72) 

So, we have that the update equation for a steepest descent algorithm is 

         1 .k k k kf 

   
z

z z z  (2.73) 

Algorithms like this one have some advantages. On one hand, a closed-form 
solution for optz  may not exist, but if we can find the conjugate cogradient (2.61), 
we can run the steepest descent algorithm to reach the optimal point. On the 
other hand, those algorithms are also adaptive in non-stationary situations, 
where the statistical properties of the vectors involved changes over time. 

The main drawback is that it is necessary to select carefully the step size  k  to 

have good chances of success. Fortunately, there are both empirical and 
theoretical rules to select this parameter (see (Diniz, 1997)). In Chapter 5 we 
return to this interesting topic. 
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Figure 2.2 - This is a contour plot of the cost function   2*,f z z z , using two types of 
the step size ( )kµ . 

2.5 Augmented Complex Descriptions 
In this section, we will give an overview of a richer approach to develop tools 
for complex-valued signal processing. This new point of view aims to exploit 
more information about the signal than the classical approaches. Most of this 
section is based upon the research compilation (Schreier, 2010). 

2.5.1 Properness and circularity 

All the signals involved here are random processes, that is, the value of each 
sample is a random variable. In the past, it has often been assumed implicitly that 
complex random signals are simpler than they really are. We start working with 
complex scalar random variables, but the extension to vectors is 
straightforward. 

Definition (Proper complex random variable): Given a complex random variable z , 
we say that z  is proper if it is uncorrelated with its complex conjugate, that is, 

      0,E z z E zz


    (2.74) 

where E   is the statistical expectation operator. The concept of properness 

was first proposed in (Neeser, 1993). A deeper insight establishes that 
properness can be seen as a second-order implication of a more restrictive 
constraint. 
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Figure 2.3 - Scatter plots for (left) circular, (center) proper but non-circular, and (right) 
improper, and thus non-circular, data. 

There are situations where not only the second order cross-moment between z  
and z  is zero, but the whole probability distribution is invariant under 
rotations in the complex plane. These complex random signals are said to be 
circular. 

Definition (Circular complex random variable): Given a complex random variable z   , 
with probability density function (p.d.f.),  p z , we say that z  is circular if  p z  is 
invariant to rotations in  , that is, 
     , 0,2 .jp z p ze        (2.75) 

This latter definition imposes a very strong structure over the desired complex 
random variable. Indeed, that means that all the cross-moments between z  and  
z  are null, not only the one corresponding to the second order. 

Note that the following implication holds, but the contrary is not always true: 

 circular proper.z z  (2.76) 

For this reason, properness is also called second order circularity. In Figure 2.3, 
three examples of complex random variables are shown. The first one (left) can 
be drawn from a circular Gaussian complex random variable, and it is a typical 
scatter plot of a radar application. It can be seen that the probability density 
function is invariant to rotations on the complex plane. The variable is, in 
addition, proper. 

The second scatter plot (center) shows a Quadrature Phase-Shift Keying (QPSK) 
signal imbued in Additive White Gaussian Noise (AWGN), which is the typical 
signal found in the input of a decisor in a receiver chain. Its p.d.f. is clearly 
dependent on rotations, so the variable is non-circular. However, if we compute 
the correlation (2.74), it is zero, so the variable is still proper. 

The third one (right) is a typical scatter plot than can be found in advanced 
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signal processing applications from real world. This time, the correlation 
between the complex variable and its conjugate, is not zero. It is an improper, 
and thus non-circular, complex random variable. This latter statement can be 
corroborated by inspecting the scatter plot: the p.d.f. is clearly dependent on 
rotations. 

Until now, we have not worried about the properness or circularity of the 
signals that we use, but this information would reveal to be very useful when 
designing signal processing algorithms. 

2.5.2 Connection between real and complex descriptions 

Let   be the sample space of a random experiment, and let : n z   be the 
complex random vector defined as 

  z x y , (2.77) 

where nx   and ny   are the real and imaginary parts of z , respectively. 
From this expression, we define two additional representations of the same 
vector z . 

Definition (Real composite random vector): If we stack the real part over the imaginary 
part, we get the real composite random vector 2: n

Cz  , defined as 

 
 
 C

z x
z

yz

   
    

    
. (2.78) 

This expression translates the complex random vector to the real domain, 
maintaining all the information but doubling the dimension of the array. The 
second additional representation is even more interesting. 

Definition (Augmented complex random vector): If we stack the complex vector z  over 
the complex conjugate vector z , we obtain the augmented complex random 
vector 2: n

 z  , 

 .

 
  
 

z
z

z
 (2.79) 

The space of all complex augmented vectors is denoted by 2n
  to distinguish 

from 2n , where the first and the second half of the vector are not related. 

Note that augmented vectors have redundant information, but their structure 
reveals to be very elegant and useful to work with. 
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The augmented complex random vector z  is related to the real composite 
vector Rz  as 

 1
2

H
C Cz Tz z T z   , (2.80) 

where 

 2 2n nT  
   

I I
I I





 (2.81) 

is a unitary (up to a factor of 2) real-to-complex transformation, 

 2 .H HTT T T I   (2.82) 

Widely linear transformations 

In this section, we aim to introduce widely linear transformations, which are linear 
transformations in the complex domain that has a specific structure. It is well 
known that a complex matrix m nH   can define a complex linear transformation 
like 

 m   f u v Hz  . (2.83) 

If a real composite linear transformation 2 2m nM   is applied to the composite 
real vector Cz , we obtain another composite real vector 2: m

Cf  , 

 11 12

21 22
C C

M Mu x
f Mz

M Mv y
    

      
    

, (2.84) 

where the blocks are m n
ij

M  . 

The augmented complex version of Cf  is 

 C C*

f u
f Tf T TMz

f v
   

      
   

. (2.85) 

And now, by using (2.82) and identifying, 

  1
2

H
Cf TMT Tz Hz 

  
 

. (2.86) 

The matrix H  relates linearly two augmented complex representations. It has 
important properties that must be highlighted. 
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Definition (Augmented matrix): A matrix H  is an augmented matrix if it satisfies a 
particular block pattern, 

 1 2

2 1
 

 
  
 

H H
H

H H
, (2.87) 

where the blocks are related to the blocks ijM  as 

  1 11 22 21 12
1
2
     H M M M M , (2.88) 

and 

  2 11 22 21 12
1
2
     H M M M M . (2.89) 

The matrix 

 2 21
2

H m nH TMT  


 
  
 

 (2.90) 

is the augmented description of a widely linear (or linear-conjugate-linear) 
transformation 

 1 2
 f H z H z , (2.91) 

that degenerates to a complex linear transformation 1f H z  when 2 H 0 . This 
imposes a particular structure on the real matrix M . 

A complex linear transformation 1f H z  (not widely linear) has a real 
composite linear representation like 

 11 12

12 11
C C

M Mu x
f Mz

M Mv y
    

          
. (2.92) 

This relation is the result of forcing (2.89) to be zero. 

Note that complex linear transformations on 2n , like (2.84), are linear only on 
n  if they satisfy a certain structure, stated in (2.92). Otherwise, the equivalent 

operation on n  is widely linear. The Figure 2.4 summarizes the discussion 
exposed in this section. 

2.5.3 Second-order augmented statistics 

Let us consider the real composite random vector Cz . Its mean vector is 
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Figure 2.4 – This block diagram summarizes the discussion presented in Section 2.5.2. 
Also, we provide the relations between different representations and the equations where 
they are defined. 

   2 2
C

m n
CE u

z
v

z 





 
   

 
 (2.93) 

and its covariance matrix is 

    
C C C

T

C C TE  
        

   

u uv
z z z

uv v

R R
R z z

R R
, (2.94) 

where uR , vR  and uvR  are the covariance and cross-covariance matrices of their 
respective real random vectors. Let us look at the augmented representation. 
The augmented mean vector is 

   2 2m nE z
z

z

z Tz 








 
    

 
, (2.95) 
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and the augmented covariance matrix is 

      ,
H

E E


   


 
 

                

z
z z z z z

z

z
R z z z z

z
. (2.96) 

Note that this augmented covariance matrix results to be Hermitian 

 



.Hzz

z z
z z

R R
R R

R R
 

 
  
  

 (2.97) 

The upper left block of (2.97) is the usual covariance matrix 

     H HE     z z z zR z z R , (2.98) 

and the lower right block is the symmetric pseudo-covariance matrix (also known 
as the complementary covariance matrix, or the conjugate covariance matrix), 

      .
T T n nEz z z zR z z R          (2.99) 

Note that the covariance matrix has real elements in its diagonal that can be 
interpreted as the power of the components, but this is not true in general for the 
pseudo-covariance matrix. 

Hereinafter, we will suppose that the random vectors have zero mean. As we 
see in (2.97), both the covariance and the pseudo-covariance matrices are 
required for a complete description of the second-order statistics of z . 

This is not the usual practice in classical complex-valued statistics, because for 
proper processes, only the covariance matrix is necessary to describe the whole 
second-order statistics. Thus, for non-proper processes we are missing valuable 
information if we ignore the pseudo-covariance matrix, as we will see further in 
this section. 

The special case where the structure of z  itself forces the pseudo-covariance 
matrix to be null is summarized in the following theorem. 

Theorem 2.7 (Properness condition) 

Let n  z x y   be a complex random vector. Then, if its pseudo-covariance 
matrix vanishes, z  is proper. Otherwise, z  is called improper as we saw in 
Section 2.5.1, and 
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  zR 0 . (2.100) 

This happens when the covariance matrix of the real and imaginary parts are, 
respectively,  

 x yR R , (2.101) 

 T xy xyR R . (2.102) 

The second-order statistics are fully described by the covariance matrix, 

 2 2 2 2 T   z x xy y xyR R R R R  , (2.103) 

so the augmented covariance zR  matrix is block-diagonal. 

Proof: Substituting the definition (2.77) in (2.99), 

 

          
        
        

   .

T

TT

TT

TT

E

E E

E E

z x y x y

x x y y

y x x y

zx y xy xy

R x y x y

x x y y

y x x y

R R R R R

   

   

   

        
 

     

     

    

 

 



 (2.104) 

And looking at the structure, one can check that  zR 0  if, and only if, 
x yR R  and T xy xyR R . These are the conditions (2.101) and (2.102). 

Simultaneously, we can expand the covariance matrix using the definition 
(2.98), 

 

         
        
        

  .

H

TT

TT

T H

E

E E

E E

z x y x y

x x y y

y x x y

x y xy xy z

R x y x y

x x y y

y x x y

R R R R R

   

   

   

        
 

     

     

    

 

 



 (2.105) 

Substituting conditions for properness (2.101) and (2.102), we obtain the 
expression (2.103). When this happens, the augmented covariance matrix 
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(2.97) is block diagonal, 

 

 
  
 

z
z

z

R 0
R

0 R
, (2.106) 

and has redundant information. 

Note that x  and y  are real-valued random vectors, so the Hermitian and 
the transpose operators in definitions of xR  and yR  are interchangeable. 

∎ 

We address now a key problem in complex-valued signal processing. How to 
extend definitions from the real to the complex case? 

To aim for the robustness of the theory, concepts and definitions should be 
equivalent for real and complex domains. Consider the definition of 
uncorrelatedness for real-valued random vectors, 

 
1 21 2, uncorrelatedn  z zz z R 0  (2.107) 

Note that, if 1z  and 2z  have zero mean, we can read (2.107) as orthogonality 
1 2z z  in the Hilbert space of second-order real random variables. 

Using the equivalency principle stated above, we cannot avoid the value of the 
pseudo-covariance. It must be zero too, to force strong uncorrelatedness in the 
complex domain. So, the equivalent condition of (2.107) for complex-valued 
random vectors is not only that the covariance matrix vanishes, but that the 
augmented covariance matrix does too, 

 
1 21 2, uncorrelatedn  z zz z R 0 . (2.108) 

If 1z  and 2z  have zero mean, there is double orthogonality in the Hilbert space 
of second-order complex random variables, that is, 1 2z z  and 1 2

z z  
simultaneously. 

2.6 Conclusions 
In this chapter, we have reviewed the main mathematical tools for working in 
the complex domain. As we have seen, there are some behaviors and structures 
in the complex domain that do not follow the natural extension from the field of 
real numbers. There have been some key points that we would like to highlight 
here: 

 We started by reviewing the properties of complex-valued functions 
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and variables. The rules for derivations with complex variable are not 
as straightforward as in the real case. 

 Functions of interest in engineering are usually real-valued functions 
called cost functions, that are not holomorphic and must be treated by 
using the  - Calculus (or Wirtinger Calculus). The complex variable 
and its complex conjugate counterpart can be treated as independent 
variables, making easy to deal with them. 

 In the surface of a cost function, the direction of maximum rate of 
change is given by the conjugate cogradient of the cost function, instead 
of the gradient. The locus where the function does not changes its value 
is locally orthogonal to this conjugate cogradient. 

 Recently, the study of complex-valued signal processing has explored 
another point of view called augmented statistics. The main idea is that 
the second order approaches are lacking important information, and 
must be completed by taking into account possible correlations 
between conjugate parts. The new approach leads to the so-called 
widely linear models. 

Most of these ideas have started to receive the interest of the signal processing 
community in the past decade. The results reviewed in this chapter are the base 
to active lines of research, like the one proposed in this Thesis. We use several of 
the previous concepts on the development of the tools presented in next 
chapters. 
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3 COMPLEX-VALUED SIGNAL 
PROCESSING 

 

 

 

 

 

 

 

omplex variables, vectors and random processes arise naturally to solve 
high challenging topics in different fields of the science like signal 
processing, communications and biomedical engineering.  Some of these 

selected applications are extensively treated in the textbooks (Adali, 2010), 
(Mandic, 2009), (Hyvärinen, 2001) and (Schreier, 2010), which are also the basis 
for this chapter. 

C

 

Production is not the application of tools to materials, but 
logic to work. 

- Peter F. Drucker - 
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3.1 Introduction 
In this chapter, we review both classical and novel applications in the field of 
signal processing when dealing with complex-valued signals. Once we have 
presented the fundamentals of complex variables, holomorphic functions, and 
complex derivatives, now we show how these tools can help when analyzing or 
designing signal processing systems. 

The chapter is organized as follows. In Section 3.2, we review the complex 
version of a well-known supervised criterion that we reference along the entire 
Thesis. The adaptive algorithm to solve this criterion is provided in Section 3.3. 
Section 3.4 review the main ideas behind signal separation and extraction, and 
presents successful techniques to solve these problems. In Section 3.5 and 
Section 3.6, we show what happens when we apply the new tools from widely 
linear models and augmented statistics to these problems. Finally, Section 3.7 
summarizes the conclusions. 

3.2 The Minimum Mean Square Error Criterion 
We introduce the complex version of the Minimum Mean Square Error (MMSE) 
criterion in the context of the linear estimation of a signal by passing another 
given signal through a filter. This criterion aims to minimize the estimation 
mismatch by means of the penalization of the errors in a quadratic form. 

In supervised applications like this one, there is a small amount of information 
available about the desired signals, whose use will be only to train the system at 
an initial stage. 

Suppose that a linear filter approximates (estimates) a desired sequence  d k  
through a linear combination of the input sequence  x k . The estimate of the 
desired sequence is the output sequence 

      
1

1
m

H
j

j
y k w x k j k



    w x , (3.1) 

where 

  

 
 

 

1

1

m

x k
x k

k

x k m

 
 

   
 
   

x 


 (3.2) 
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Figure 3.1 - Block system of the sequence estimation problem. In the figure, ( )d k is the 
desired sequence that we want to estimate. ( )x k  is the input sequence that we will use, by 
passing it by a linear system w , resulting in the estimated sequence ( )y k . The error 
between the estimate and the desired sequences is the estimation error ( )e k , and it is used 
to design the coefficients of the filter. 

is a vector whose elements are delayed copies of the input sequence, and 

 

0

1

1

m

m

w
w

w 

 
 
   
 
  

w 


 (3.3) 

is the linear filter. The Figure 3.1 shows a block diagram of this basic system. 

The input sequence  x k  is intended to be Wide Sense Stationary (WSS), which 
intuitively means that its first and second order statistical properties do not 
change over time (Priestley, 1981). 

We also have an estimation error  e k  that is the difference between the desired 
and the output sequence: 

      e k d k y k   . (3.4) 

To achieve an accurate estimation, we need to minimize the estimation error. A 
common criterion, widely used due to its easy mathematical treatment and its 
intuitive interpretation, is to minimize the mean square of the estimation error. 

Definition (The Mean Square Error (MSE)): given a complex error sequence  e k , the 
cost function associated to the Mean Square Error (MSE) is 

        2

MSEJ E e k E e k e k   . (3.5) 
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Note that, as we stated in Section 2.3, the cost function is a real-valued function 
of complex variable. Thus, it can be maximized or minimized, depending on our 
interest. As we have just said, in this case we are interested on minimizing the 
MSE. 

Fortunately, we have already seen this kind of quadratic functions previously in 
Example 2.1 and Example 2.5, when we presented the fundamentals of complex 
derivatives. 

Definition (The Minimum Mean Square Error (MMSE) criterion): By minimizing the MSE 
cost function (3.5) with respect to w , we obtain the solution to the Minimum 
Mean Square Error (MMSE) criterion: 

   arg minMMSE MSEJ
w

w w . (3.6) 

The solution of this unconstrained optimization problem is a well-known result 
on the signal processing literature, and it is presented in the following theorem. 

Theorem 3.1 (Complex Wiener-Hopf solution of the MMSE criterion) 

Given a linear filter w  that estimates a desired sequence  d k  using a linear 
combination of input samples  x k , the solution to the MMSE criterion is: 

 1
MMSE d

 x xw R r , (3.7) 

where 

     H m mE k k  xR x x   (3.8) 

is the non-singular input covariance matrix, and 

      m
d E d k k xr x   (3.9) 

is the cross-covariance between the input and the desired sequence. The input 
 kx  is defined as in (3.2). Note that the diagonal elements of xR  are real, but 

this does not need to be true for the off-diagonal elements. 

Proof: We take the gradient with respect to the conjugate vector w , but 
keeping w  constant, just as we stated in the previous chapter. Indeed, at 
the optimal point MMSEw w , the condition (2.58) is fulfilled: 

  
MMSE

MSEJ


 
w w w

w 0 . (3.10) 
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By computing the gradient with (3.4): 

 
             

           .

MSEJ E e k e k E e k e k

E d k y k d k y k

  



 

 

  



 

  

w w w

w

w
 (3.11) 

By using the definition of  y t  from (3.1), 

              H T
MSEJ E d k k d k k 

    
w w

w w x w x . (3.12) 

By expanding the product, 

 
             

           
* * *

* * .

T
MSE

H T H

J E d k d k E d k k

E k k E d k k

 

 

 

 

  

 

w w w

w w

w w x

w x w x w x
 (3.13) 

The gradients of all the terms which does not depend on w , vanish: 

             T
MSEJ E k k E d k k

  
w

w x w x x  (3.14) 

As we said in Section 2.4.1, this conjugate cogradient vanishes at the 
optimal point MMSEw w , so we only have to solve  * MSEJ 

w
w 0  to 

obtain a well-known equation: 

            .H
MMSEE k k E d k kx x w x  (3.15) 

Solving for MMSEw , we get (3.7). 

∎ 

To know how large is the value of the minimum of the cost function minJ , we 
have to substitute the optimal filter MMSEw  in (3.5) and expand the expression, 

   2 1
min

H
MSE MMSE d d dJ J     x x xw r R r , (3.16) 

where     2
d E d k d k   is the power of the desired sequence. 

In addition, the cost function (3.5) can be rewritten in quadratic form, 

      min

H

MSE MMSE MMSEJ J   xw w w R w w  (3.17) 

an hence, it has a global minimum. See (Widrow, 1985) for a detailed derivation 
of these two expressions. 
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Figure 3.2 - This figure shows a two dimensional plane that represents the  kx   
subspace. The solid line lying on the plane represents ( )y k , the best possible 
approximation of the desired sequence ( )d k  as a linear combination of  kx   with the 
weights w . The difference between the desired and the output sequences is the error 

( ),e k  which is orthogonal to the plane  kx  at the optimal solution. 

3.2.1 Geometrical interpretation of the MMSE criterion 

We know that the condition for the optimal point is that the conjugate 
cogradient of the cost function vanishes. If we cancel (3.14) and reorder, 

              0TE k k d k E k e k     x w x x , (3.18) 

leading to the so-called orthogonality condition, 

      0.E e k k x  (3.19) 

This condition has a nice physical interpretation: the output error of the filter 
and the input sequence subspace are orthogonal in the Hilbert space when the 
filter has converged to the optimal solution. When this happens, the estimated 
sequence  y k  is the nearest possible (in Euclidean distance) to the desired 
sequence, laying in the input subspace  kx . 

The error sequence is the difference of both sequences  y k  and  d k , and it is 
orthogonal to the input signal subspace. The Figure 3.2 resumes the previous 
discussion. 

This optimization problem has a closed-form solution: an expression that gives us 
the optimal filter by direct computation. Note that, in practice, inversion of the 
covariance (3.8) can be very computationally expensive. Nevertheless, if the 
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sequences change their statistical properties over time, they are non-stationary 
and the solution (3.7) is suboptimal. 

Suppose now that we are processing in real time the estimation  y k  from the 
desired sequence  d k  and the input  x k . As we have seen, their properties 
are changing over time, so it would be a great idea if we synthetize the filter w  
in an adaptive manner. Even the invertibility of xR  is not guaranteed in this 
situation. 

In the next section, we use instantaneous information of the sequences and 
develop an adaptive algorithm. 

3.3 The Complex Least Mean Squares Algorithm 
We continue studying the optimization of the MMSE criterion, but now in an 
adaptive and more efficient way. As we have seen in Section 2.4.3, the way to do 
that is to compute the conjugate cogradient and move towards its opposite 
direction to update the vector w  in the next iteration, 

         *

1 .k k k k
LMSJ   

w
w w w  (3.20) 

Note that, in this case, the cost function LMSJ  is not the same as the MSE 
described in (3.5). The cost function for the Complex Least Mean Squares (CLMS) 
algorithm just drops the statistical expectation operator E   from the cost 
function. This means that, to advance to the next iteration 1k  , we will only 
need information from the current iteration k . The cost function results: 

         22
.H

LMS kJ e d k k  w xw  (3.21) 

This is the reason why this kind of algorithm is sometimes called stochastic 
gradient descent algorithm. The cost function (3.21) is a random variable and the 
result after each iteration is somehow unpredictable. It can be viewed as a rough 
estimation of the deterministic quantity (3.5) by a single instantaneous sample. 

We just need now to compute the conjugate cogradient to obtain the update 
equation, 

            LMS e k e k e k eJ k  
    

w w w
w . (3.22) 

And that is because w  and w  are supposed to be independent. As the 
conjugate cogradient of  e k  is just  kx , the equation (3.22) results 
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Figure 3.3 - This is a 3D plot of the cost function ( )LMSJ w ,  versus the plane conformed 
by the coefficients of the filter w . 

      * LMS e k kJ   
w

w x . (3.23) 

By substituting in the update equation (3.20), we obtain the rule for the filter 
update of the CLMS algorithm, 

          1k k k e k k   w w x . (3.24) 

This expression was first derived in (Widrow, 1975), and it has been widely 
used in practical applications, with many variants  like Normalized Least Mean 
Squares (NLS) or Recursive Least Squares (RLS) that improve its performance or 
reliability (see (Hayes, 1996 p. 541) or (Górriz, 2010)). 

3.3.1 Convergence of the CLMS algorithm 

It is important to analyze the convergence of the algorithms. As the only 
parameter that we can control is the step size  k , usually the analysis is 
completed with a condition for the convergence. If it is very small, the 
convergence could be slow. If it is greater than a certain condition, it may move 
chaotically around the solution, without reaching it. 
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An intuitive plot of the cost function  LMSJ w  is shown in Figure 3.3. The 
lowest point of the basin is where the cost function achieves the optimal point 
for the filter coefficients. As we have seen, it matches the solution for the MMSE 
criterion. 

It can be seen why this type of algorithms is called stochastic: the value of the 
function fluctuates, as it goes down, and eventually it stays fluctuating close the 
optimal point. Hopefully, the chaotic movement can be reduced by selecting the 
proper value for the step size  k . 

At the optimal point, the gradient (3.23) vanishes, i.e., 

     0e k k x , (3.25) 

and the filter approximates to its fixed point, called the Wiener-Hopf solution 
(Mandic, 2007): 

   lim .k
MMSEx

w w  (3.26) 

The condition (3.25) can be averaged over all the realizations of the random 
processes, leading to the orthogonality condition derived in (3.18). 

It is of great interest, however, to analyze the evolution of the coefficients of the 
filter in time. We will derive a first order study of the convergence in the mean, to 
verify whether  k

MMSEw w , when k  . 

Definition (Convergence in the mean): We say that a sequence  y k  converges in the 
mean towards  d k , if the mean of both sequences exist and 

        lim lim 0
k k

E e k E d k y k
 

   . (3.27) 

Theorem 3.2 (Convergence of the CLMS algorithm) 

Given a CLMS algorithm that designs a filter mw   to estimate a desired 
sequence  d k  from an input sequence  x k , we can ensure that it converges 
in the mean to the optimal solution MMSEw  if the step size  k  satisfies the 
condition 

  

  2

2k

mE x k
  . (3.28) 

Proof: For convenience, the analysis will be based upon a variation of the 
form (3.1), given by 
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    Hy k k x w , (3.29) 

which leads to the conjugate cogradient 

      LMS kJ k e  
w

w x . (3.30) 

However, this is only because of the mathematical tractability. Suppose 
that the desired sequence  d k  can be expressed as 

      H
MMSEd k k q k x w , (3.31) 

where  q k  is a complex Additive White Gaussian Noise, with zero mean 
and variance 2

q . This structure reflects a part of the desired sequence that 
the model can explain (  H

MMSEkx w ), and another part that the model 
cannot explain (  q k ). Substituting (3.29) and (3.31) in (3.4), the error 
sequence is 

          kH H
MMSEe k k q k k  x w x w , (3.32) 

and the update (3.20) results,  

 
         

             

1

.

k k k H
MMSE

k k kH

k k

k k k q k



 

  

 

w w x x w

x x w x
 (3.33) 

If we now define the vector of errors in the coefficients of the filter, 
   k k

MMSE  w w w  and subtract MMSEw  from both sides of (3.33), 

                  1k k k k kHk k k q k      w w x x w x . (3.34) 

By taking statistical expectation on both sides, 

                     1k k k kHE I E k k E E k q k     w x x w x . (3.35) 

By assuming independence, we can identify the covariance of the input 
(3.8) and vanish the last cross-covariance term, 

         1 .k k kE I E   xw R w  (3.36) 

Since  kx  is WSS, the covariance matrix xR  is Hermitian and positive 
semidefinite4. Thus, it can be decomposed by using the Eigenvalue 

                                                        
4 This means that xR  satisfies 0H xa R a , for all .ma   
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Decomposition (EVD) into a diagonal matrix Λ  and a unitary transformation 
,Q  such as 

 HxR QΛQ , (3.37) 

where 

 
1

1 2

0 0
0 0 , 0
0 0

m

m


  



 
      
  

Λ    (3.38) 

is a diagonal matrix comprising the real and positive eigenvalues i  of xR , 
sorted in descending order, and Q  is a unitary matrix that contains the m  
corresponding eigenvectors. See (Golub, 1996) for a broad treatment of this 
and others algebra topics. 

We can rewrite (3.36) as 

 
        

     
1

.

k k kH

k kH

E I E

I E





   

  

w QΛQ w

Q Λ Q w
 (3.39) 

The rotation by the matrix Q  allows us to express the modes of convergence 
exclusively in terms of the corresponding eigenvalues of xR . If we define 

    k kH  Qw Q w , (3.40) 

then 

         1 .k k kE I E   Q Qw Λ w  (3.41) 

Every element of  k Qw  evolves independently, because the multiplication 
of  kw  by the unitary matrix Q  decouples the evolution of its 
coefficients. If one wants to converge in the mean, one must ensure that the 
expected value becomes smaller with each iteration, 

      1k kE E  Q Qw w . (3.42) 

By looking at (3.41), the condition (3.42) for each mode of convergence is 
satisfied when 

  1 1k
i   . (3.43) 
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The largest eigenvalue,  1 max ,MAX ii
     controls if the fastest mode 

converges or not, so the condition for the convergence in the mean 
becomes: 

   2k

MAX




 . (3.44) 

The largest eigenvalue is always smaller than the trace5 of the covariance 
matrix, so  

  MAX Tr  xR . (3.45) 

And by the definition (3.8), we know that the trace of a covariance matrix 
can be computed directly from the input signal, 

     2
Tr mE x kxR . (3.46) 

∎ 

Another type of second order convergence study can be derived. Once the 
algorithm starts to converge in the mean, the filter coefficients begin to fluctuate 
around the optimal values. This is due to the stochastic behavior of the 
algorithm. The convergence in the mean square establishes conditions to avoid this 
problem, and a detailed derivation can be found on (Mandic, 2009). 

3.4 Blind Source Separation and Blind Source Extraction in 
the Complex Domain 

Once we have seen some supervised applications, it is time to deal with blind 
ones, that is, scenarios where we do not have access to the training data nor the 
mixture. In these cases, we have to exploit some structural or statistical 
properties of the signals involved in order to achieve our goal. Blind Source 
Separation (BSS) has been one of the most active topics in the signal processing 
literature in the past years. For a unified treatment of this research field, see 
(Chichocki, 2002), (Comon, 2010), (Cardoso, 1998) and (Hyvärinen, 2001). 

Consider a scenario where a number of n  signals are emitted by some physical 
sources. Assume that there are m  sensors that receive these signals after a linear 
transformation, defined by the matrix m nA  . The sources are confined into 

                                                        
5 The trace of a matrix is defined as the sum of the diagonal elements, and that coincides with the sum 
of the eigenvalues:   ii ii i

Tr r   R  
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the complex vector of random processes   nk s  , and the observations are 
confined into   nk x   . So, the noiseless linear mixing model results, 

     .k kx As  (3.47) 

For the sake of simplicity, we will assume initially that the number of sources 
equals the number of observations (n m ). In a BSS problem, we want to 
recover the original sources  ks  only from the observations  kx , without the 
knowledge of the mixing matrix A . The only information that we may have 
available is some statistical or geometrical properties of the sources. 

Usually, the signal separation is done by designing a separation matrix n mB   
that recovers an estimation of the original sources  ˆ nk s  , when applied to 
the observations  kx , 

      ˆ .H Hk k k s B x B As  (3.48) 

Of course, if we suppose that A  is invertible and we know all of its coefficients, 
ija , the solution of the separation problem is the inverse of the mixing matrix: 

 1 .H
opt

B A  (3.49) 

But as we have said, in a blind problem we do not know the value of ija . The 
other solution is to estimate directly the coefficients ijb  of the separation matrix, 
and most of the proposed methods (see (Chichocki, 2002)) are based upon this 
idea. 

The problem of recovering only one of the sources is called Blind Source 
Extraction (BSE). Usually, it is easier to extract a source than to separate the 
whole set. A BSS problem can be solved by extracting the sources sequentially, 
one by one, and doing a deflation after each extraction (Delfosse, 1995). 
Alternatively, it can be solved by a joint separation, recovering all the sources 
simultaneously like in the Joint Approximate Diagonalization of Eigenmatrices 
(JADE) algorithm (Cardoso, 1997). 

As we only observe  kx  and we want to recover  ks , there are virtually 
infinite solutions. We need to assume some property of the sources to constraint 
the possible solutions. These properties go from very loose to very tight, like the 
statistical independence (Comon, 1994), the uncorrelatedness (Jolliffe, 2002), the 
sparsity (Li, 2003) or the non-negativity (Cichocki, 2009).  We overview two 
popular approaches that solve this BSS problem. 
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3.4.1 Principal Component Analysis, decorrelation and whitening 

The method called Principal Component Analysis (PCA) is based upon an idea 
that has been known long ago (Hotelling, 1935). The main assumption on the 
sources is that there is no cross-correlation between them, that is, 

     
2 ,

, , 1, ,
0 ,

i
ij i j

i jr E s k s k i j n
i j


   


  (3.50) 

where 2
i  is the variance of the i th  source. We have supposed that all the 

signals involved have zero mean. If this is not the case, it is advisable to subtract 
the mean from all the sequences, 

       k k E k x x x . (3.51) 

This method is closely related to the Karhunen-Loève transform or the Hotelling 
transform. The purpose is to find a set of variables  ks  with less redundancy 
than the observations  kx . The measure of redundancy will be the cross-
correlation. 

The main advantage of PCA is that it is based only on second-order statistics. 
The main drawback is that usually, the uncorrelatedness assumption is a very 
poor model of the physics underlying the mixture model, so the mixture is not 
fully determined (there are 2n  unknowns and  1 / 2n n  equations in the 
problem). Nevertheless, PCA is widely used in practical applications as a first 
step to more refined procedures (Hyvärinen, 2001), (Tome, 2004), (Zarzoso, 
2012). 

We show here the process of whitening, which consists on a decorrelation (or 
PCA) followed by a scaling (Hyvärinen, 2001). Suppose that all the sources have 
unit variance, so the covariance matrix of the sources must be the identity 
matrix, 

      .H n nE k ksR s s I      (3.52) 

The key behind the decorrelation procedure is the following. We know that the 
observations  kx  are the result of a linear combination of the sources like in 
(3.47), so they will be more correlated than the original signals. That is, the 
correlation matrix xR  will have nonzero elements outside the main diagonal. 

Imagine now that we can derive a set of whitened sequences  kz , after 
multiplying the observations  kx  by a separation matrix n mW  , 
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     .k kz Wx  (3.53) 

These set of sequences will have a covariance matrix zR  very similar to the 
identity matrix. Our goal is to design the matrix W  to minimize the cross-
correlation between elements of  kz , 

     H n nE k kzR z z I     . (3.54) 

The output sequences must be a good estimate of the original sources, 
   ˆk kz s , given the maximum decorrelation criterion. The value of the 

separation matrix W  is given by the following theorem. 

Theorem 3.3 (Whitening) 

Given the linear mixing model (3.47) and the separation (3.48), the desired 
separation matrix n nW   is given by 

 1/2 ,HW Σ Q  (3.55) 

where n nΣ   is the matrix containing the eigenvalues of xR in its diagonal, 
and n nQ   is the unitary matrix whose columns are the corresponding 
eigenvectors of xR . That is, xR  admits an eigenvalue decomposition 

 .H
xR QΣQ  (3.56) 

The resulting sequences  kz  given by (3.53) are mutually uncorrelated and 
with unit variance (white). 

Proof: We start by substituting (3.53) in the correlation matrix of  kz , 

          H H H HE k k E k kz xR z z W x x W WR W   . (3.57) 

Using the eigenvalue decomposition of xR , 

   1/ 2 1/ 2H H H H
zR WQΣQ W WQΣ Σ Q W  , (3.58) 

where 1/2Σ  is a diagonal matrix whose elements are the square roots of the 
elements in the diagonal of Σ . By substituting (3.55) in (3.58), and by 
noting that Q  is unitary and Σ  is a diagonal matrix with real, positive 
elements, 

      1/2 1/ 2 1/ 2 1/ 2 1/ 2 1/2 1/2 1/ 2H H
zR Σ Q QΣ Σ Q QΣ Σ Σ Σ Σ I      . (3.59) 
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So we have verified that  kz  has been whitened6. 

∎ 

The matrix Q  is responsible of the decorrelation, and the matrix 1/2Σ  is 
responsible for the scaling the sequences, so the output has unit power, 

      2 1, 1, , .i i iE z k z k i n     (3.60) 

Note that, if we obviate the matrix 1/2Σ , we get a uncorrelated set of sequences 
but without unit power, called principal components (Abdi, 2010). 

Theorem 3.3 is a powerful result that has been widely used in statistics, 
communications, image and audio processing and many other applications. 
However, it is only based on second-order statistics and lacks to separate signals 
with more intricate relations. Anyway, this useful tool is used as a preprocessing 
step in several applications to prepare the sequences for an algorithm. 

3.4.2 Independent Component Analysis 

The next step of BSS is to consider that the desired sources are not only 
uncorrelated. In addition, we will impose the stronger assumption of mutual 
independence (Gray, 2010). This means that not only the second order cross-
moments vanishes, but the joint probability density function of each two sources 
satisfies 

             , , , 1, ,i j i jp z k p z k p z k z k i j n i j   , (3.61) 

where     ,i jp z k z k  is the joint probability density function of  iz k  and 
 jz k . Independence is a very strong condition, and implies uncorrelatedness. 

The opposite is not true, unless the variables involved are jointly Gaussian (see 
(Melnick, 1982)). 

If one tries to separate a set of sources that are independent, by using a 
correlation criterion like in PCA, it fails. However, PCA or whitening usually 
are the halfway to ICA, because at least they decorrelate the sequences and 
prepares them for further processing. Nevertheless, we need more than 
decorrelation to achieve our goal. 

The Central Limit Theorem is a classical result in probability (see (Rice, 1995) for 
an introduction), which states that the distribution of a sum of independent 

                                                        
6 Note that this solution is by no means the only unique whitening matrix. It is easy to see that any 
matrix WU , with U  unitary, is also a whitening matrix. 
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random sequences tends toward a Gaussian distribution, under very loose 
conditions. Intuitively, this means that the linear combination of independent 
sources usually has a distribution that is closer to Gaussian that any of the 
original sources. As they lose independence due to the combining, they gain 
Gaussianity. 

The simplest approach is to use a cost function that measures non-Gaussianity 
in some practical way. There are several works that proposes new contrasts for 
this problem (see (Novey, 2008) or (Novey, 2006) for examples), and we present 
here one of the more intuitive. 

The kurtosis is a fourth-order statistical moment, and can be defined in many 
ways. We use a simple definition from (Therrien, 1992), that for a proper zero 
mean complex white random process  y k  results 

         24 2
2kurt y k E y k E y k . (3.62) 

Assume that the sources have unit power, so   2 2 1yE y k    and the 
kurtosis results 

            24
2 2.kurt y k E y k E y k y k     (3.63) 

Intuitively, kurtosis measures long tails or peakedness in the shape of the 
probability density functions. A high positive kurtosis means that the 
distribution is very peaky, like a Laplacian. These distributions are called 
supergaussians. 

A very negative kurtosis means that the distribution has small tails, like a 
uniform. These distributions are called subgaussians. In the Figure 3.4, two 
examples of these kinds of distributions are shown. The uniform distribution 
(red), as well as other bounded ones, is subgaussian and has negative kurtosis. 
On the other hand, the Laplacian distribution (green), as well as other peaky 
ones, is supergaussian and has positive kurtosis. 

The Gaussian distribution has zero kurtosis, and thus the absolute value of the 
kurtosis is a good measure of non-Gaussianity. 

     ICAJ kurt y kb , (3.64) 

where 
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Figure 3.4 – Supergaussian and subgaussian distributions. A Gaussian distribution is 
plotted for comparison. 

      1
ˆHy k k s k b z  (3.65) 

is the extraction model for the first (without loss of generality) source, and b  is 
the extraction vector. Note that this time the observations are whitened observations 
 kz , taken from the result of a whitening procedure. The Figure 3.5 shows a 

diagram of the complete system. 

We just need to compute the conjugate cogradient of (3.64) to develop a steepest 
descent algorithm, like in Section 2.4.3. The Theorem 3.4 shows the resulting 
expression for the update equation. 

Theorem 3.4 (ICA by maximization of the non-Gaussianity) 

Given the model defined in (3.65), the update equation for a steepest descent 
algorithm that solves the ICA extraction problem by maximizing the non-
Gaussianity, is 

                  21 2k k k sign kurt y k E y k y k k  b b z . (3.66) 

After convergence, an algorithm with this update will extract successfully the 
source with the highest absolute kurtosis. 

Proof: The conjugate cogradient of (3.64) is 

            .ICAJ sign kurt y k kurt y k   
b b

b  (3.67) 

Note that, by using (3.65), we have the following derivatives, 
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Figure 3.5 - Diagram of the linear mixing and extraction method for Independent 
Component Analysis. It is important to whiten the observations so the cost function is 
more tractable. Also, this improves the convergence and the robustness of the algorithms 
derived. 
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 (3.68) 

So, the conjugate cogradient of the kurtosis (3.63) is 

 

        
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 (3.69) 

And the update in the steepest descent algorithm results in 

                  21 2k k k sign kurt y k E y k y k k  b b z . (3.70) 

∎ 

This is only for the extraction of one source. If we want to separate the whole set, 
we can extend the algorithm to build a separation matrix i n   B b b , 
whose columns are the extraction vectors. This is done by using a Gram-
Schmidt procedure (Herstein, 1964) after the building of each ib , 

  
1

1
, .

i
H i

i i i r r i
r i





  
b

b b b b b b
b

 (3.71) 
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And this sequential process of extraction and projection can be used to separate 
signals blindly, with independence of the method used (see (Durán-Díaz, 2011) 
for a discussion). Note that, even if the separation is successful, there are two 
ambiguities remaining on the solution: 

 We cannot determine the scale of the independent components. This is 
because the mixing matrix are as unknown as the sources, so a 
coefficient i  in a source  is k  can be cancelled by its counterpart 
1 / i  in the columns of the mixing matrix ia . This is why the output is 
forced to have unit variance and the extraction vector is normalized. 

 We cannot determine the order of the independent components. The 
components are extracted in an order defined by the absolute kurtosis, 
and due to the commutative property of addition, we cannot know 
which one was the order of the original sources. 

Fortunately, these problems have been solved for most of the practical scenarios. 
Usually, they are circumvented by making certain assumptions, or by further 
post-processing on the output sequences like in (Sarmiento, 2012), (Zarzoso, 
2010), or (Durán-Díaz, 2012). 

By looking at the results of this section, one might think that, to pass from the 
real to the complex world, one only has to use the conjugate operator    in 
some of the variables involved. That is because, until now, we have assumed a 
certain structure on the statistical distribution that is valid only in some 
situations. We are talking about circularity. 

However, when the statistical structure of the variables is not so simple, the 
results derived from this naive simplification causes algorithms with poor 
performance. Fortunately, during the last decade there have been very 
successful advances on the modeling of the more intricate relations between the 
conjugate parts of a complex variable. 

3.5 Widely Linear Wiener Filtering 
In this section, we move on to the case of widely linear models, aiming to exploit 
the additional second-order information contained in the pseudo-covariance 
matrix. We derive the Widely Linear Wiener solution to the MMSE criterion by 
using the information contained in both the sequence and the conjugate 
sequence. This problem was first addressed in (Picinbono, 1995). 

Imagine a problem like the one presented in Section 3.2, where we want to 
estimate a desired sequence  d k  with the result of passing an input sequence 
 x k  and its conjugate  x k

 
through two complex linear filters, called h  and 
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h, and adding their outputs. We obtain 

           
1

1 1
m HH

jj
j

y k h x k j h x k j k k
  



        h x h x , (3.72) 

where  kx  and  kx  store delayed copies of the corresponding sequences, 
like in (3.2). 

We aim to minimize again the error in the MSE sense, that is 

   2
arg minWLMSE E e k   

 h
h ,  (3.73) 

   2
arg minWLMSE E e k   

 h
h



 , (3.74) 

with      e k d k y k  . 

The new cost function is called the Widely Linear Mean Square Error (WLMSE). 
See (Pedzisz, 2007) for a discussion on the linearity of the moments used in this 
criterion. 

The solutions of (3.73) and (3.74) are given by deriving a similar reasoning that 
in Theorem 3.1. 

Theorem 3.5 (Widely Linear Solution to the MMSE criterion) 

Given a widely linear filter, represented by the pair ,h h , that estimates a desired 
sequence  d k  using a linear combination of input samples  x k , the solution 
to the MMSE criterion is: 

    
1

1 1 ,d d

 
           

   x x x x x x x xh R R R R r R R r     (3.75) 

    11 1 ,d d


       x x x x x x x xh R R R R r R R r     (3.76) 

where 

      ,HE k kxR x x  (3.77) 

      ,TE k kxR x x  (3.78) 

are the covariance and the pseudo-covariance of the input, and 

      ,d E k d kxr x  (3.79) 
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      ,d E k d kxr x  (3.80) 

are the cross-covariance and the cross-pseudo-covariance between the input and 
the desired sequence. 

Proof: We proceed as in the proof of the Wiener solution for the MMSE 
criterion. Computing the gradient of the cost function, we obtain: 

               * *

2
.E e k E d k y k d k y k   

h h
 (3.81) 

Using the definition of  y t  from (3.72), and ignoring all the terms that do 
not depends on h , 

              
     

2

.

H H T

H T

E e k E k d k E k k

E k k

 



     

 
h h h

h

h x h x h x

h x h x
 (3.82) 

Computing the gradients, 

                 2
.H TE e k E k d k E k k E k k

   
h

x x x h x x h  (3.83) 

By identifying terms in the definitions (3.77)-(3.80), and by vanishing the 
gradient, 

 d  x x xr R h R h . (3.84) 

If we apply the same procedure but for h , we obtain 

             
    

2

.

H

T

E e k E k d k E k k

E k k


  



   


h

x x x h

x x h



 (3.85) 

So, the second equation for the widely linear model is 

 d
   x x xr R h R h . (3.86) 

By solving the linear system of matrix equations formed by (3.84) and 
(3.86), we obtain the MMSE solution for the widely linear filter as seen in 
(3.75) and (3.76). 

∎ 
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By using a widely linear filter, we are exploiting additional information. It is 
well known that using the covariance, we are losing the rich information in the 
phase of the second order statistics. By adding the pseudo-covariance, we 
recover that information and use it to design a more accurate filter. 

Note that we can reformulate the widely linear filter equation (3.72) by using an 
augmented representation like in Section 2.5.3. In fact, 

    Hy k k h x , (3.87) 

where 

 2 ,m 
  
  

h
h

h
  (3.88) 

and 

    
 

2mk
k

k

 
  
  

x
x

x
  (3.89) 

are the augmented representations of the filter and the input, respectively. Note 
that h  is a relaxation of the notation, because it does not has the structure of an 
augmented vector. Anyway, the augmented representation provides an elegant 
framework to work with the richer statistics of improper random vectors. 

Corollary to Theorem 3.5 

When the pseudo-covariance matrix xR  and the cross-pseudo-covariance 
vector dxr  vanish, the filter h  of the WLMSE solution reduces to the Wiener 
solution w  for the MMSE criterion. 

 1 ,d
 x xh R r  (3.90) 

 .h 0  (3.91) 

The filter h , which works on the conjugate part of  kx , vanishes. This 
phenomenon occurs when the signals are jointly circular. 

Proof: To show this, simply substitute xR 0  and d xr 0  on the solutions 
to the WLMSE problem, (3.75) and (3.76). 

∎ 

We have seen that, when the signals are improper, the solution derived from the 
minimization of the WLMSE criterion is slightly different from the one derived 
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from the MMSE criterion. ¿How can we measure this difference? 

The most logical quantity is the mismatch between the mean square errors using 
both estimators. The mean square error of the linear solution is given by (3.16), 

   22 2 1 .H
MSE d d de E e k     x x xr R r  (3.92) 

And now, the mean square error of the widely linear solution is given by 

  2 2 .H H
WLMSE d xd de     xh r h r   (3.93) 

The advantage of the widely linear MSE over the linear MSE is characterized by the 
quantity 2 2 2

WLMSE MSEe e e   , and can be expressed as 

      12 1 1 1H

d d d de


           x x x x x x x x x x x xr R R r R R R R r R R r     . (3.94) 

Note that 2 0e  , because   1  x x x xR R R R   is positive definite as stated in 
(Picinbono, 1996). This means that the advantage vanishes only when 

  1 .d d
  x x x xr R R r  (3.95) 

That is when h 0 , and we are again in the linear model. See (Pedzisz, 2007) 
for a further discussion on the advantages of widely linear filter. 

Example 3.1 Let us see an application where the widely linear modeling takes advantage 
of the additional information confined in the pseudo-covariance. In particular, the 
objective will be to separate two sources from a linear mixture    k kx As , using a 
supervised criterion like the minimum MSE. 

In this experiment7, we used a set of two sources coming from two speakers, and two 
observations from a synthetic linear mixture in the presence of noise. Obviating details of 
the algorithm, we performed a local second-order analysis on the speech to conform the 
covariance and pseudo-covariance matrices. 

It is well known that the speech is a non-stationary signal. This means that its statistical 
properties changes over time, so usually engineers work in the frequency domain by 
transforming speech signals by means of the Short Time Fourier Transform (STFT), 
obtaining complex-valued sequences. 

                                                        
7 This experiment was developed during the short stay of the proponent at the Imperial College 
London with the research group of Prof. Danilo Mandic, at the Electronic and Electrical Engineering 
Department. The study showed an original application of widely linear estimation. 
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non-circular noise circular noise

 

Figure 3.6 - This figure shows the comparison between the estimation square error of the 
Wiener (blue) and the Widely Linear Wiener (green) solutions to the speech separation 
problem, in the presence of additive noise. 

In (Picinbono, 1994), it was demonstrated that STFT coefficients of stationary processes 
are complex circular. Following that reasoning, (Benesty, 2010) proposed that the STFT 
coefficients of non-stationary signals were, in general, complex non-circular. 

Thus, we can exploit the rich improper structure of the sources and the noise to design a 
widely linear extraction vector that performs better that the linear approach. The model 
used is the widely linear extension of the separation model (3.48), 

      ˆ H Hk k k s B x B x . (3.96) 

Figure 3.6 compares the error of the linear and the widely linear estimation, 
corroborating what (3.94) declares. As stated before, it is always positive, meaning that 
the error in the widely linear case is always lower than in the linear case. The abscise axis 
shows the ratio between the standard deviations of the imaginary and the real part of the 
noise. Thus, the left part of the plot corresponds to a non-circular noise, while the right 
part shows a scenario with circular noise. 

Figure 3.7 shows the comparison of the estimation results of a sample frame of some 
milliseconds of speech. It can be seen that the widely linear estimate is closer to the 
original source than the linear one. The blue line is the temporal stamp of one sub-band 
of the original source. The green line is the estimation, using both approximations. The 
difference between the desired and the estimated sequence is the red line, namely the 
estimation error. 
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Figure 3.7 - This figure shows the estimation of one source, using a linear extraction vector 
(lower right plot) and a widely linear one (lower left plot). The upper left plot is the 
spectrogram of the source. The upper right plot is the time information for some 
milliseconds, contained in one sub-band of the reference signal. The two lower plots show 
the amplitude versus time graphic of the local signal separation made by using a widely 
linear and a linear Wiener extraction vector. 

 As we have seen, the use of additional information confined in the pseudo-
covariance matrix provides important improvements on the algorithms. 
Following this idea, in the last few years several methods have been developed 
to beat the performance of classical complex-valued signal processing 
algorithms in problems like prediction (Javidi, 2008), BSS (Javidi, 2010), and 
NMF (Looney, 2011), among others. 

3.6 The Strong Uncorrelating Transform (SUT) 
Following this new point of view, now it is turn to reexamine the blind signal 
processing section where we present the idea of whitening. It is clear from 
Theorem 3.3 that the whitening process forces the output to have uncorrelated 
components, with unit power. 

If we apply the whitening matrix W  to general complex observations  kx , the 
resulting whitened observations  kz  have a diagonal covariance matrix. 
However, what happens with the pseudo-covariance matrix? 

Decorrelation does not force any structure on zR , so the augmented covariance 
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matrix zR  has, in general, non-zero elements outside the main diagonal. 

The definition of uncorrelated variables in the complex domain needs to be 
revised. A complex random vector has strongly uncorrelated components if, and 
only if, its covariance matrix and pseudo-covariance matrix are diagonal. The 
following theorem from (Koivunen, 2006) states the existence of a matrix that 
returns uncorrelated components. 

Theorem 3.6 (Strong Uncorrelation) 

Any complex vector of random processes   nk x   can be transformed by 
using a nonsingular square matrix ,n nC   such that the resulting vector of 
random processes    k = kz Cx  has the following second-order properties: 

 zR I , (3.97) 

and 

  1 , , ndiag  zR  , (3.98) 

where 1 n    are the circularity8 coefficients. 

Proof: Applying the definition of the second-order matrices, 

 
         
     ,

H H H

H H H

E k k E k k

E k k

 

 

z

x

R z z Cx x C

C x x C CR C
 (3.99) 

and 

 
         
     .

T T T

T T T

E k k E k k

E k k

 

 

z

x

R z z Cx x C

C x x C CR C




 (3.100) 

As zR  is Hermitian and positive definite, and zR  is symmetric, there exists 
a matrix C  such that H xCR C I , and T

xCR C  is a diagonal matrix with 
non-negative entries (see (Horn, 1985 p. 251) for a proof). Note that the 
diagonal entries can be ordered by simply permuting the rows of C . 

∎ 

The random vectors processes  kz  satisfying Theorem 3.6 are called strongly 

                                                        
8 The term circularity in circularity coefficients is not accurate because they only characterize second-
order circularity, or properness. The name properness coefficients would have been more precise. 
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uncorrelated. Any strongly uncorrelated random vector is white, because of 
(3.97), but the reverse is not true. In general, the matrix C  is not unique, but the 
circularity coefficients are. See (Koivunen, 2006) for a proof that justifies the 
following procedure to find this matrix. 

Definition (Strong Uncorrelating Transform): The matrix C  in Theorem 3.6  is called the 
Strong Uncorrelating Transform (SUT). It can be constructed by using the 
following method: 

1. Find the matrix 1/2 xD R , that is, the inverse of the matrix square root9 
of xR . 

2. Any symmetric matrix DxR  has a special form of Singular Value 
Decomposition (SVD), known as Takagi’s factorization (see (Horn, 1985)), 
given by 

     T T TE k k DxR D x x D UΛU , (3.101) 

where U  is unitary and Λ  is a diagonal matrix with real entries, 
sorted in increasing order. Note that DxR  is the pseudo-covariance 
matrix of the vector random process Dx . 

3. The SUT is given by 1/2H  xC U R . 

An efficient computation of the Takagi Factorization can be found in (Xu, 2005). 
For practical purposes, a fast MATLAB implementation ready to use is available 
for download at (Qiao, 2007). 

Definition (Circularity spectrum): The vector nλ   which contains the circularity 
coefficients , 1, ,i i n    from the diagonal of Λ , is called circularity spectrum. 

Note that a vector random process is proper if, and only if, all its circularity 
coefficients i  are zero. 

This procedure called Strong Uncorrelating Transform is the equivalent to 
whitening, but it diagonalizes not only the covariance matrix, but the pseudo-
covariance matrix too. It can be used to decorrelate non-circular sequences, 
where the standard procedure fails. 

3.7 Conclusions 
In this chapter, we wanted to give an overview of some successful methods 

                                                        
9 The matrix square root 1/2A  of a matrix A , is the square matrix that satisfies   1/2 1/2 A A A . It 
can be computed from the Eigenvalue Decomposition 1A VDV , as 1/2 1/2 1A VD V . 
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presented in the complex-valued signal processing literature. By using the 
concepts presented and described in Chapter 2, we studied the following 
problems: 

 The complex version of the MMSE criterion is solved by the 
corresponding Wiener filter, a supervised method successfully used in 
engineering. We presented also the stochastic descent algorithm called 
Complex Least Mean Square, whose convergence was studied. 

 We introduced the field of Blind Signal Separation and Extraction, 
where one has not any training sequence and has to recover the original 
sources by exploiting their statistics. The problems of PCA and ICA 
were briefly presented with some of their corresponding solutions. 

 When the signals involved are improper, it is a good idea to use the 
additional information contained in the pseudo-covariance. The 
framework of augmented statistics and the widely linear models have 
shown to improve the performance of the classical techniques when the 
signals are non-circular. Therefore, we presented the Widely Linear 
solution to the MMSE criterion and the Strong Uncorrelating 
Transform, which plays the role of decorrelation with improper signals. 

These methods have shown its benefits in numerous scenarios during the last 
two decades. Fortunately, the methodology and the algorithms proposed to find 
the solutions, establishes a framework for developing novel signal processing 
tools for problems that are characterized in the complex domain. 
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4 BOUNDED COMPONENT 
ANALYSIS 

 

 

 

 

 

 

 

he estimation of signals that has been linearly mixed is a problem with 
many applications in several fields of the science and the technology 
(Chichocki, 2002). As we have presented in the Chapter 3, there are both 

blind and supervised criteria that solve the problem of source extraction and 
separation. These criteria are usually mathematically expressed in the form of 
the optimization of cost functions, depending on geometrical or statistical 
parameters of the problem. 

T

 

Every man takes the limits of his own field of vision for the 
limits of the world. 

- Arthur Schopenhauer - 
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4.1 Introduction 
In this chapter, we present a blind and geometric technique for the linear 
decomposition of the observations, known as Bounded Component Analysis 
(BCA). It is based on the hypothesis of the compactness and Cartesian 
decomposition of the convex support of the component signals. In difference 
with ICA algorithms, BCA does not need the independence assumption to 
work, so it can extract successfully sources that are somehow dependent. 

The contribution of this chapter can be circumscribed within the group of works 
in the field of signal processing and communications that exploit some of the 
geometric properties (Theis, 2003) of the sources in the design of cost functions. 
Some examples of these properties are the statistical range used in (Pham, 2000) 
and (Cruces, 2004), the square shape of the convex boundary in (Erdogan, 2006), 
the constant modulus in (Van der Veen, 1996), the cardinality in (Gamboa, 
1997), and the knowledge of the alphabet of the constellation in (Comon, 2004) 
and (Talwar, 1996). 

In this case, we find that the normalized convex perimeter of the estimation output 
is a suitable cost function for the successful extraction of the sources. That is, one 
can blindly estimate one of the sources by confining a certain combination of the 
observations into a convex set of minimum perimeter. 

Most of the results and the structure of this chapter are based upon the paper 
(Cruces, 2010) and (Aguilera, 2012). Some sections have been extended with 
details and others have been reduced to give more coherence to the exposition 
and to clarify the key results. 

The chapter is organized as follows. In Section 4.2, the signal model and some 
notation from the theory of convex bodies are presented. We will use this 
notation when deriving several important results of this chapter. In Section 4.3, 
the main assumptions of BCA are presented. They will be used later in Section 
4.4 to guarantee the identifiability of the mixture and the separability of the 
sources. 

Section 4.5 defines the convex perimeter functional, and shows some of its 
relevant properties. This convex perimeter is used in Section 4.6 to present the 
minimization criterion in BCA. The cost function derived is shown to be free of 
local minima for the extraction problem. In Section 4.7, several topics regarding 
the practical optimization of the cost function are presented, as the gradient 
used in an extraction algorithm or the computational complexity. Section 4.8 
and Section 4.9 present some simple applications for the blind extraction, 
separation and decomposition from a given set of observations. Finally, Section 
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4.10 discusses the conclusions to this chapter. 

4.2 Signal Model and Notation 
Let us consider the classical linear mixture model for complex processes, in a 
noiseless situation, 

    k kx As , (4.1) 

where 

  
 
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1
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s    (4.2) 

is a random vector drawn from a stationary complex process of source signals 
with joint probability density function         ,kf k k s s s , and 
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 

 

1
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x k
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x k

 
 

  
 
  

x    (4.3) 

is the vector of observations. Hereinafter, due to the fact that the processes 
involved are stationary, we drop the temporal index k to simplify the notation. 

The matrix m nA  represents the linear mixture. In this chapter, m n  is 
supposed, which denotes that the mixture is determined or over-determined. This 
means that A  is a full column-rank matrix of complex elements, and that the 
number of observations is greater or equal than the number of sources. In the 
Chapter 6, we deal with the under-determined case, where m n . 

We use the symbol   to refer to the modulus of a complex variable. When the 
argument is a vector, it acts component-wise. On the other hand, when the 
argument is a set, the same notation will be used to refer to its cardinality. This 
distinction will always be clear from the context. 

4.2.1 Blind Signal Separation and Extraction 

As we defined in the previous chapter, the problem of recovering one source 
blindly from the observations is called BSE, and the problem of recovering all 
the sources is called BSS. We briefly outline the system model and the notation 
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used in those circumstances. 

Blind Source Extraction 

To estimate a source from the mixture, we compute the inner product of the 
observations x  with a non-zero extraction vector mb  , 

 H Hy   b x g s  , (4.4) 

where the vector H n g A b   collects the coefficients of the residual mixture10 
of the sources, at the output. This vector can be decomposed into phase and 
magnitude parts,  θg g Λ , where the operators act component-wise. 
Explicitly, 
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g

g

 
 

  
 
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g  , (4.5) 

collects the magnitudes, and 
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 (4.6) 

is the matrix which collects the contribution of the phases 1 , , n  . 

Two important questions arise here: 

 Which one of the n  sources is extracted? 

The answer to this question will depend on the optimization criterion used, so 
we address this problem later in the chapter. Without additional constraints or 
information about the initialization of the algorithm, in blind problems we do 
not have control of the chosen source. On the other hand, in supervised 
problems the source is chosen by the reference. The second question is: 

 Which is the value of the residual mixture g  when the source is 
extracted successfully? 

Ideally, when the chosen i-th source is extracted, the vector that relates the 

                                                        
10 This vector g is also called residual mixture vector, or global transfer vector, because it represents the 
transfer function between the input and the output of the whole system. 



 Theory and Applications of BCA in Complex-Valued Signal Processing 

 

93

sources and the output should have zeros on all its elements, except the i-th one. 
Mathematically, 

  , with 1, ,i
ie i n g e  , (4.7) 

where 
2

0  g  is the 2-norm of g , and i  is the phase of the i-th coefficient. 
This is only possible when the system is determined or over-determined, 
because in other scenarios we do not have enough degrees of freedom to cancel 
all the residual coefficients but one. 

Blind Source Separation 

Let us imagine now that we aim to recover all the sources contained in the 
vector s  from the mixture. As we have said in Chapter 3, there are two 
approximations to this problem: to recover them jointly, or to recover them 
sequentially by an extraction (like in BSE) followed by a deflation. 

The vector y  is an estimate ŝ  of the vector of sources, 

 H H n  y B x G s  , (4.8) 

where 

  1
ˆ, ,

H
m n

n
     B b b A   (4.9) 

is the Hermitian of the Moore-Penrose pseudo-inverse    (Golub, 1996) of Â  (an 
estimate of A ), and H n n G A B   is the residual transfer matrix, whose        
(i,j)-element accounts for the conjugate of the transfer from the i-th source is  to 
the j-th output jy . 

As in the BSE scenario, in a perfect extraction the residual transfer matrix G  
should be diagonal, up to permutations and phase/scaling mismatches. 

4.2.2 Theory of convex bodies 

In the complex domain, certain operations are easier to understand and to 
develop if we explore the theory of convex bodies. For a formal treatment of this 
topic, see (Schneider, 1993). 

Let us consider the following mapping between the field of complex numbers 
  and the space of two-dimensional real vectors 2 , 

 



4 – Bounded Component Analysis  

 

 

94 

 

Figure 4.1 - This plot shows a support set Sz  defined by all the (red and black) points. The 
set of red points describes the convex hull Sz . 

   2{ }
{ } { }

{ }
z

z x y z z z
z

 
           

  . (4.10) 

This mapping preserves addition and multiplication by a real number. 
Similarly, the next mapping between the field of complex numbers   and the 
subfield of real matrices 2 2 , 

   2 2{ } { }
{ } { }

{ } { }
z z

z x y z z z
z z

  
            

  , (4.11) 

represents multiplication and conjugation of complex variables. If we assume 
that both mappings (4.10) and (4.11) act component-wise on vectors, the 
extraction output y  can be written as, 

 
   

    2

{ }
{ }

{ } { } { }
.

{ } { } { }

H
H

H

T

y
 

     
  

     
            

b xb x
b x

b b x
b x

b b x


 (4.12) 

The output can also be expressed using the global transfer vector, like in (4.4), as 

         .H Ty     g s g s  (4.13) 

Next, we define some key concepts from the theory of convex bodies, which will 
be very useful for the rest of the chapter. 

Definition (Support): The support of a random vector z , denoted by Sz , is the set of 
points of the Euclidean space 2n  for which the probability density function is 
nonzero. That is, 
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Figure 4.2 - Graphical illustration of the Minkowski sum of two one dimensional sets and 
one planar set. For completeness, the boundary of the Minkowski sum of the first two one 
dimensional sets is also represented in dashed line in the final result. 

      2 : 0nS f    z zz z . (4.14) 

Definition (Convex support): The convex support of a random vector z  is the convex 
hull of its support. That is, the smallest convex set that contains Sz . It is denoted 
by 

  .S conv Sz z  (4.15) 

The vector z  can be seen as a virtual random vector whose support is the 
convex body Sz . Hereinafter, we use the notation Sz  instead of Sz , but it is 
important to remark that we refer always to convex supports. The Figure 4.1 
illustrates the previous concepts. 

The main operations to deal with convex sets come from the Minkowski algebra 
(see (Farouki, 2001) for a comprehensive introduction). Consider two random 
vectors b  and c , with convex supports Sb  and Sc , respectively. 

Definition (Minkowski sum): The Minkowski sum of Sb  and Sc , is the set 

         : ,S S S S        b c b cb c b c , (4.16) 

which contains all the possible sums of the elements of Sb  with the elements of 
Sc . See Figure 4.2 for an example. 

Definition (Minkowski scalar product): For a non-negative real number k  , the 
Minkowski scalar product kSc  is a dilatation by k  of the original set, 

     :kS k S   c cc c . (4.17) 
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Figure 4.3 - Graphical illustration of the Minkowski direct sum of a planar set and a one 
dimensional set. The sets lie in complementary linear subspaces, and the result lies in a 
space of higher dimension. 

This scalar product is used later in some proofs. A set growing or shrinking can 
be mathematical represented as a Minkowski scalar product. 

Definition (Minkowski direct sum): When the arguments involved in the Minkowski 
sum (4.16) lie in complementary linear subspaces with finite dimension, the 
operation is known as Minkowski direct sum, and is represented by S Sb c . Note 
that it is important to have the sets lying in complementary subspaces. In Figure 
4.3, an example of this kind of sum is shown. 

Definition (Directly indecomposable set): A set Sa  which cannot be written as a direct 
sum S S S a b c , unless for  dim 0S b  or  dim 0S c , is known as directly 
indecomposable. 

The following condition expresses the support of the sum of random vectors as 
a Minkowski sum of supports. 

Theorem 4.1 (Minkowski sum of supports) 

A sufficient condition for 

 S S S  b c b c , (4.18) 

is given by the following Cartesian product decomposition of the support of the 
random vector ,  b c  

 ,S S S  
 b cb c , (4.19) 

where ,  b c  is the concatenation of the two random vectors b  and c . 

Proof: Using the definition (4.14), 
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     
    
      

,

,

: 0

: ,

: , .

S f

S

S

 

  

  

     

      

      

b c b c

b c

b c

b c b c

b c b c

b c b c

 (4.20) 

By using the Cartesian product decomposition (4.19), 

     , , ,S S S S S  
      b c b cb c b c  (4.21) 

so 

         : , .S S S S S         b c b c b cb c b c  (4.22) 

∎ 

For some given support sets Sb  and Sc , Theorem 4.1 establishes the condition 
that guarantees that ,S  b c  

attains the maximum possible volume, relative to the 
smallest subspace in which this set lies. Of course, condition (4.19) is satisfied 
when the random vectors are mutually independent. However, the converse is 
not true, so the random vectors can be mutually dependent and the condition 
holds true. 

4.3 Main Assumptions of Bounded Component Analysis 
As the mutual independence condition in ICA, or the joint decorrelation of the 
sources in PCA, to perform a latent component analysis it is necessary to 
establish some assumptions. 

For the Bounded Component Analysis of the observations, we need to assume 
the following properties for the sources and the mixture: 

1. Compactness and non-degeneracy of the sources: we assume that all sources 
are non-degenerate random variables of compact support. This means 
that the support of its probability density function is not only a single 
point, and that its support is finite. 

2. Cartesian decomposition of the convex support of the sources: the minimum 
convex support of the random vector of sources s , can be decomposed 
as the Cartesian product (4.19) of the individual convex support of the 
sources, 

 
1 ns sS S S  s  . (4.23) 
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Figure 4.4 - This is a 3-dimensional representation of a convex set. Suppose that all the blue 
space is filled with points. The extreme points are shown in red. The number of extreme 
points on a convex set is relatively small, when compared with the total number of points 
on the set. 

3. Lossless mixing: the mixing system is characterized by a full column-
rank mixing matrix m nA  , with m n . 

Property 3 guarantees that the mixing system is invertible, thus allowing the 
perfect recovery of the sources. Properties 1 and 2 replace the hypothesis of the 
mutual independence of the sources in ICA, which is no longer necessary. 
Although it can be seen as a very strict constraint, this is not the case. That is 
because Property 2 relies only on the extreme points of the convex set. 

Definition (Extreme points): Extreme points of a convex set Ss , denoted by  ext Ss , 
are those points of the set which cannot be expressed as a convex combination 

   0 11p p p     , (4.24) 

where 0p , 1p  are two different arbitrary points of Ss , with 0 1  . In Figure 
4.4, the extreme points of a 3-dimensional convex set are shown. 

A convex and compact set is the closed convex hull of its extreme points (see 
(Rockafellar, 1970 p. 167) for a proof). Thus, once the compactness of the support 
set of the sources in Property 1 is assumed, Property 2 is equivalent to the 
following Cartesian decomposition of the set of extreme points, 

      
1

ext ext ext
ns sS S S  s  . (4.25) 

The hardness of this hypothesis depends on the cardinality of (4.25), that is, 
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    
1

ext ext
i

n

s
i

S S


s . (4.26) 

which, for identically distributed sources, increases polynomially with the 
number of extreme points  ext Ss , and exponentially with the number of 
sources n . For example, the typical scenario in communications is characterized 
by few extreme points, and few sources of interference, so the hypothesis can be 
regarded as weak. 

The following theorem states the existence of a direct decomposition of the 
convex hull of the observations x , in a complex linear mixture model. 

Theorem 4.2 (Direct decomposition of the convex hull of the observations) 

Suppose the following linear model for the observations, 

 
1

n

i i
i

s


 x As a , (4.27) 

where ia  is the i -th column of the mixture matrix A . When the previous 
assumptions 1-3 hold true, there exist a decomposition of the convex support of 
the observations, Sx , as a Minkowski direct sum of n  convex summands. That 
is, 

 
1 1 n ns sS S S  x a a . (4.28) 

Proof: Form (4.23) in Property 2, we can see that the convex support of the 
vector 

 
1 1

n n

s

s

 
 
 
  

a

a
 , (4.29) 

which is obtained by stacking all the component vectors of the 
observations in one column, decomposes as a Cartesian product of the 
convex supports of the component vectors. Mathematically, this is a 
concatenation like the one used in (4.19), so 

 

 
1 1

1 1 , ,
.TT T n n

n n
s ss s

S S S
 
 

  a aa a
  (4.30) 
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Figure 4.5 - This figure illustrates, for a 2 2  invertible mixture of two sources, the 
decompositions of the support of the observations as a Minkowski direct sum of two sets: 

1 1sSa  and 
2 2sSa . Since m = 2, the convex support of the observations is a set embedded in 

the four-dimensional real space. Hence, we have used a projection to represent it in only 
three dimensions. This projection was chosen so as to preserve invariant 

2 2sSa  while 
reducing the planar 

1 1sSa  set to a single dimension, as it is shown in the figure. 

And thus, we are in the conditions of Theorem 4.1. After applying it, we 
obtain 

 
1 1

1

.n
n n

i i
i

s s
s

S S S S


   


x a a
a

  (4.31) 

Finally, by assumption 3, the linear independence of all the column vectors 
, ,i na a  of the mixing matrix makes the Minkowski sum ( ) equal to the 

Minkowski direct sum  ( ) in equation (4.28). 

∎ 

This theorem is key to develop our proposed Bounded Component Analysis of 
the observations. It states how to decompose the convex support of the 
observations into bounded components. In Figure 4.5, an example of this 
decomposition of the observations into components is shown. 

4.4 Identifiability, Separability, and Indeterminacies 
In this section we aim to answer an important question which arises in signal 
separation. For a sufficiently long sequence of observations x , does our model 
uniquely determine the columns of the mixing system ia  and the sources s ? 

This problem has been extensively studied in the last years. For example, when 
the sources shares a known and finite alphabet, identifiability results based on 
algebraic and geometric arguments can be derived, as shown in (Talwar, 1996) 
or (Comon, 2004). 
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In ICA, when the mixing system is full-column rank, and there are no two 
Gaussian sources in the mixture with the same circularity coefficient, the 
extension of the Darmois-Skitovitch theorem (Koivunen, 2006) guarantees the 
identifiability of the mixing system A . These conditions guarantee the 
separability of the sources too, up to a permutation, scaling and a phase term. 

In BCA, we must determine whether the decomposition of Sx , presented in 
Theorem 4.2, is unique or not. For a set of 'n  linearly independent vectors 

'', , 'i na a , we aim to find a geometric decomposition of the observations vector 

 
'

1
' '

n

i i
i

s


x a , (4.32) 

different from (4.27), such that 

 
1 1' ' ' 'n ns sS S S  x a a . (4.33) 

The following theorem provides the answer to this question. 

Theorem 4.3 (Essential uniqueness of the decomposition) 

The decomposition of Sx , given in Theorem 4.2, is essentially unique, up to 
possible permutation of the direct summands. 

We refer the reader to Appendix A in (Cruces, 2010) for a proof. It is based on 
the essential uniqueness of the direct decomposition of convex bodies in terms 
of directly decomposable bodies (see (Schneider, 1993)).  

According to Theorem 4.3, there exists a permutation   of 1, ,n  such that 
' 'i i i is sS S  a a , for 1, ,i n  . By identifying each one of these sets, we are 

uniquely determining a column of the mixing system up to permutation, 
scaling, and phase ambiguities (see equation (4.7)). These are the same kind of 
indeterminacies of the ICA model. 

The separability of the sources is guaranteed due to the full column-rank 
assumption (Property 3 of BCA), up to the same well-known indeterminacies.  

When extracting one source, the extraction vector Hb  is proportional to one of 
the rows of the Moore-Penrose pseudo-inverse of A , denoted as A . 
Mathematically, these vectors b belongs to the set Eb , with 

  # : 0 , 0,2 , 1, ,i
i iE e i n      b a  , (4.34) 

where #
ia  is the i-th column of  H

A , i.e., 
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  # H

i i
a A e . (4.35) 

The scaling indeterminacy can be removed by assuming that the sources have 
unit variance, so hereinafter we make this hypothesis. 

At this point, we need a metric to quantify whether the sources are bounded or 
not. The next section presents a scalar functional with some nice algebraic 
properties. 

4.5 The Convex Perimeter of the Output 
This section defines the convex perimeter of the output of a linear system. We 
present also some of its relevant properties, which are crucial to design an 
algorithm that rewards whether the signals are bounded. 

From equation (4.4), the output y  estimates one of the sources and is the 
coordinate of the orthogonal projection of the observations onto the span of the 
extraction vector b. Due to Theorem 4.1, the support of the output yS  can be 
decomposed as 

 
1

1 1
n j ii i i

i i
i

n n

y ig s e sg s i i
S S S g S  




 

  


  . (4.36) 

Definition (Convex perimeter): The convex perimeter of a random variable is the 
perimeter of the convex hull of the support set of the random variable. 

Let  2 ·V  denote the Lebesgue measure (Croft, 1991 p. 4) in 2  (the area), and 
let BS  be the ball of unit radius. The convex perimeter of y  is defined as the 
growth rate of the area functional of the outer parallel body of yS , at an 
arbitrary small distance  : 

        2 2

0
lim y B y

y

V S S V S
L y S











 
    . (4.37) 

This definition is graphically illustrated in Figure 4.6. As the ring between the 
outer and the inner convex set gets thinner, the difference between the areas, 
divided by the distance between them, becomes the perimeter. 

The following properties are very useful to deal with this real scalar value. 
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Figure 4.6 - The definition of the convex perimeter (4.37) is illustrated here. The value   is 
the distance between the outer and the inner set. The outer set is auxiliary and only exists 
to help in the definition of  yS . 

Theorem 4.4 (Properties of the convex perimeter) 

The convex perimeter is a functional   , and it has the following properties: 

1) Continuity. 

2) Minkowski additivity. 

      1 2 1 2S S S S      (4.38) 

3) Positive homogeneity of degree one. 

    1 1 ,S S        (4.39) 

4) Invariance under rigid motions (translations/rotations) of its argument. 

Proof: Consider two convex domains 1S  and 2S . The area of the convex 
domain 1 1 2 2 ,S S S    with 1 2, 0   , can be expressed as a quadratic 
polynomial in 1 2,  , given by 

    
1 2

2

2 1 1 2 2 1 2 1 2
,

,i i i i
i i

V S S V S S      (4.40) 

The real coefficient  1 2,V S S  is called the mixed volume of 1 2,S S , and it is a 
fundamental concept in the theory of convex bodies (see (Weil, 1975)). 
Also, it satisfies the following properties: 

a)    2 ,V S V S S , for all convex set S . 
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b) The mixed volume is additive in each variable, that is 

      1 1 2 1 2 1 2 1 1 2', , ', , , ',V S S S V S S V S S S S S    . (4.41) 

c) The mixed volume is symmetric in all variables. 

When we apply these properties a) - c) in the definition of the perimeter 
(4.37), it results twice the mixed volume of yS  and the ball of unit radius 

,BS  
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

 (4.42) 

Now, if we have two convex sets 1S  and 2S , then the perimeter of their 
sum is given by property b), 
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 
 (4.43) 

And that proves Property 2 in Theorem 4.4. 

To prove Property 3, suppose that    is a positive real constant. Using 
again the definition of the mixed volume (4.40), and noting that the area 
satisfies    2

2 2y yV S V S  , the convex perimeter of the scaled set is 
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

 (4.44) 

Moreover, if we use the definition of the mixed volume (4.40) to expand 
the area of the sum of S  and the ball of unit radius, 
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  

 (4.45) 

we can write the perimeter in terms of area measures, 

        2 2 2y y B y yBS V S S V S V S    . (4.46) 

Finally, as the area functional  2V   of a convex body is continuous and 
invariant to rigid motions, the perimeter functional inherits these 
properties from (4.46), resulting in properties 1 and 4 in Theorem 4.4 and 
finishing this proof. 

∎ 

The next result uses the previous properties of the convex perimeter to 
understand it as an inner product of two vectors. Let us assume that the 
perimeter acts component-wise on random vectors, i.e., 

  
 

 

1
n

S

n

L s
L

L s

 
 

   
 
  

s L   . (4.47) 

Theorem 4.5 (Inner product interpretation) 

The convex perimeter of the output  L y  provides an implicit evaluation of the 
inner product between the vectors g  and SL . That is, 

    
1

,
n

S i i
i

L y g L s


 g L , (4.48) 

where 

 
 

 

1
n

S

n

L s

L s

 
 

  
 
  

L   . (4.49) 

Proof: If we attend at the decomposition (4.36) of the convex set yS , we can 
apply, in this order, Property 2 (additivity) and Property 3 (homogeneity) 
of Theorem 4.4, 
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 



 

 (4.50) 

And now, applying Property 4 (invariance to rotations), 

      
1 1

i

n n

i s i i
i i

L y g S g L s
 

   , (4.51) 

resulting on the inner product of g  and SL . 

∎ 

Once we have exposed the properties of the convex perimeter, we are able to 
present the optimization criterion in which BCA is based. 

4.6 The Criterion of Minimum Normalized Convex Perimeter 
At this point, we are ready to introduce the criterion of minimum normalized 
convex perimeter of the output. Consider the function   : D bb  , where 

   \mD  b b 0  (4.52) 

is the set of all vectors in m  but the origin. This cost function takes only 
positive values, and is defined by 

      HLL y
  

b x
b

b b
. (4.53) 

That is, our cost function is the convex perimeter of the output, normalized by 
the 2-norm of the extraction vector. The criterion of minimum normalized convex 
perimeter aims to minimize, using a stochastic descent algorithm, the cost 
function (4.53), 

     
arg min arg min

H

opt

L


     
  

b b

b x
b b

b
. (4.54) 

The normalization is useful to force the extraction vector to be non-zero. If we 
do not normalize by b , a minimization algorithm could select the optimal  
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Figure 4.7 - This is a representation of the value of the cost function (4.53) versus the m=2 
coefficients of the residual transfer vector.  The left figure shows a 3D viewpoint, while the 
right figure shows a cenital viewpoint. For simplicity, all the values involved are real. Red 
zones correspond to high values, and blue zones correspond to low values. 

solution as b 0 , because indeed it results in an output with zero perimeter 
0y  . Figure 4.7 shows the shape of the cost function. Note that there are 

several subspaces corresponding to solutions of the criterion (the dark blue 
zones). As we will see in the next section, each one of the solutions corresponds 
to the extraction of a source, up to scaling and phase ambiguities. Also, it can be 
seen that there is a singularity at the origin. 

Let us look further into the properties of the cost function (4.53). 

4.6.1 Properties of the normalized convex perimeter 

The properties of homogeneity and rigid motion invariance of the perimeter 
functional (3 and 4 in Theorem 4.4), imply that the cost function is invariant 
under complex multiplications of the argument, 

      , \ 0 .c c   b b   (4.55) 

Consider the family of subsets  ,P b θ  of the domain of extraction vectors Db  
(see (4.52)), for which the residual mixing vectors have constant 1-norm11 of 
value  and constant phase  1

T
n θ  . That is, 

     1
, : .

H
P A   b θ b g g  (4.56) 

                                                        
11 The 1-norm of a vector is a real-valued scalar defined as 1 1

n
ii

g


 g  . Note that it is 
important to put the sub-index “1” in the definition of the norm 1 . 



4 – Bounded Component Analysis  

 

 

108 

 

Figure 4.8 - View of one of the polytopes  ,P b θ  within the convex cone  Cb θ . The 
vertices of the polytope play a key role in the analysis of the solutions of the cost function. 

Each of these subsets is compact, convex, and can be represented as a finite 
intersection of half-spaces. Therefore, it is also a polytope. The infinite union of 
these polytopes, for a constant θ and all the possible values of 0  , defines 
the convex cone (see the complete reference (Boyd, 2009)) of extraction vectors 

    
0

, .C P



 

b bθ θ  (4.57) 

The figure Figure 4.8 shows this convex cone as an intersection of polytopes. 
The following theorem is the first step to analyze the geometry and the solutions 
of the cost function. 

Theorem 4.6 (Quasiconcavity) 

Within each convex cone  Cb θ , the function   b  is strictly quasiconcave. That 
is, for any  0 1, C bb b θ  and  0,1 , we have that 

        0 1 0 11 min ,      b b b b  (4.58) 

Proof: Due to the convexity of the convex cone  Cb θ , for any 
 0 1, C bb b θ  and 0,1     , we have that 

    0 11 C      bb b b θ . (4.59) 

Let us denote by 0 1,g g  and g  the residual mixing vectors which, under 
the transformation Hg A b , correspond to 0 1,b b  and b , respectively. 
Using (4.51) the convex perimeter  HL b x  can be expanded as 
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Figure 4.9 – This figure shows conceptually the value of the cost function   b  on the 
polytope  ,P b θ , and in part of the frontier of the convex cone  Cb θ . 

      
1

n
H

ii
i

L g L s 


b x . (4.60) 

Applying the relation (4.59) to (4.60), but using g instead of b, 

 
          
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0 1

1

0 1

1

1

n
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ii i
i

H H

L g g L s

L L

  

 


  

  

b x

b x b x
 (4.61) 

On the other hand, if we apply the triangular inequality (see, for instance, 
(Apostol, 1967 p. 42)) to the convexity condition (4.59), it results in 

    0 11 , 0,1      b b b . (4.62) 

If we divide (4.61) by (4.62), we obtain the cost function 

          
 

0 1

0 1

1

1

H H HL L L




 


 

 
 

 x

b x b x b x
b

b b b
. (4.63) 

Finally, we apply the useful inequality 

 min , , with , , ,a b a b a b c d
c d c d

 
  

  
 . (4.64) 

Thus, the relation (4.63) results in 
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           0 1
0 1

0 1

min , min ,
H HL L

  
    
  

b x b x
b b b

b b
. (4.65) 

So the quasiconcavity of the cost function is shown.  

∎ 

The Theorem 4.6 is illustrated in Figure 4.9. The quasiconcavity property helps 
us to show that the set of extraction vectors, which are the valid solutions of the 
problem, contains all the minima of the contrast function. 

The next theorem states that the cost function has no spurious extreme points, in 
absence of noise. This is a very desirable property, because it ensures that a 
gradient descent algorithm, with the proper step size and initialization point, 
may reach any optimal solution. 

 Theorem 4.7 (Global cost function) 

The normalized convex perimeter of the output,   b , is a scale and phase 
invariant contrast function, whose local and global minima always correspond 
to valid solutions of the extraction problem. 

Proof: As we have seen in Theorem 4.6, for each of the convex cones (4.57), 
the cost function proposed in (4.53) is quasiconcave. 

From the convexity of the polytope  ,P b θ , any convex combination 
  0 11    b b b  of two different arbitrary points  0 1, ,P  bb b θ , 

with  0,1 , also belongs to  ,P b θ . 

However, b  cannot be a minimum of the function relative to  ,P b θ , 
because the continuity of the function and Theorem 4.6 guarantees the 
existence of a descent direction. 

Therefore, the minima should necessarily belong to the extreme points of 
the set. However, the extreme points of the compact and convex polytope 

 ,P b θ  are its vertices. As we can see in the Figure 4.8, these vertices are 
located in the direction of the columns of the matrix A , 

        1 # #
1ext , vert , , , n

nP P e e     b bθ θ a a  . (4.66) 

If we apply this argument to each of the possible polytopes  ,P b θ , and 
unite them all into the whole domain of the function, 
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  
, 0

,D P



  

b b
θ

θ , (4.67) 

we obtain the set that contains all the minima b of the cost function (4.53), 

 
    

 
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: 0 , 0,2 , 1, , .i
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
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   
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 

   

b b b
θ

θ

a 




 (4.68) 

This set is exactly the same as in (4.34), that is, the whole set of vectors b 
that extract one of the sources. Thus, all the minima of the function, either 
local or global, constitute a valid solution to the extraction problem. 

∎ 

This property of absence of wrong solutions is also shared by a few extraction 
criteria based on high-order statistics or geometry. At this point, we aim to 
answer an interesting question: what happens when some of the sources are 
real-valued? Is the minimum normalized convex perimeter criterion consistent? 

4.6.2 Consistency of the real case 

The criterion of minimum normalized convex perimeter, 

 
 

arg min
H

opt

L    
  

b

b x
b

b
, (4.69) 

can work with arbitrary complex-valued sources, as long as they satisfy the 
BCA assumptions 1-3 established in Section 4.3. Hence, this includes as special 
cases, those where some or all the sources are real valued. In these scenarios, it is 
important to remark that the convex perimeter of a real random variable is twice 
their statistical range12, 

 
    2 max min

arg min , .opt

y y
y

    
  

b
b

b
  (4.70) 

There exists the extreme case where the mixture matrix and all the sources are 
real. In this case, the criterion proposed in (4.69) particularizes to the 
minimization of the normalized statistical range of the output, as presented in 

                                                        
12 The statistical range of a real random variable is the maximum of the distance between any two 
points of the support of its probability density function. 



4 – Bounded Component Analysis  

 

 

112 

the works (Pham, 2000), (Cruces, 2004), and (Vrins, 2005). To avoid numerical 
problems, in practical implementations one may add a very small imaginary 
part to the sources. 

4.7 Optimization of the Cost Function 
In this section, we present some of the most important issues that need to be 
solved if we want to construct a useful algorithm that works well, fast and 
reliable. 

The whitening procedure is a common practice before doing an extraction or 
separation from a set of observations. However, the proposed criterion of 
minimum normalized convex perimeter does not need this assumption, as 
happens in other approaches. 

In practice, that preprocessing step is recommended because it helps to achieve 
the convergence of the methods to a successful solution. Also, in the next 
chapter, whitening the observations helps us to analyze the convergence 
behavior of a BCA extraction algorithm. 

4.7.1 Whitening as a pre-processing step 

Whitening, as we have seen in Section 3.4.1, consists on finding a matrix 
n mW   such as 

 z Wx , (4.71) 

where z  is a whitened complex random vector whose correlation matrix is the 
identity. That means that the variables within are uncorrelated and with unit 
variance. See Theorem 3.3 for more information. 

However, if it is necessary, the matrix W  can be modified to reduce the 
dimension of the observation set, supposed that some of the signals are 
somehow dependent. 

The regular mixing matrix, V , combines the effects of whitening and mixing, 

 n n V WA  . (4.72) 

The whitened observations z  are directly related to the sources by the linear 
mixing model 

 n z Vs  . (4.73) 

Note how V  acts now as the unitary mixing matrix. There exists an extraction 
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Figure 4.10 - Block diagram of the mixing, whitening, and extraction systems. 

 vector u  that gives the output 

 H H Hy    u z u Vs g s  , (4.74) 

where the residual mixing vector is related to the extraction vector like 
.Hg V u  The vector u  plays the role of the extraction vector b in the simplest 

case where they are not whitened. 

In Figure 4.10, the system including the whitening matrix is shown to clarify the 
notation presented in this subsection. We now propose a simple, although 
adequate, gradient descent method to optimize the cost function (4.53). 

4.7.2 Differentiability of the cost function 

As we have seen in Figure 4.7, the cost function has points where it is non-
differentiable in the sense of that the directional gradients do not match. These 
points belong to a set of hyperplanes, which split the domain Db  and pass 
through the minima of the cost function. Therefore, it will force us to discard 
other classical minimization techniques. 

The domain of the extraction vector was given in (4.52). However, it can be 
partitioned into two complementary sets according to the differentiability of the 
cost function, 

 d ndD D D u u u . (4.75) 

 There is a set of extraction vectors for which the cost function is 
differentiable: 

 
1

: 0
n

d
i

i
D D g



 
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 

u uu , (4.76) 

where the magnitudes and the phases are defined in (4.5) and (4.6), 
respectively. Indeed, this set contains all the vectors in the interior of the 
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convex cone  Cu θ . 

 There is also a complementary set where the cost function is non-
differentiable, and whose vectors belong to the boundary   ,C u θ θ : 

 
1

: 0
n

nd
i

i

D D g


 
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 

u uu . (4.77) 

Although the set ndDu  contains the minima of the cost function, in practice, this 
set has zero volume. Therefore, we can assume that the cost function is fully 
differentiable at all the extraction vectors that we can find in practice. 

4.7.3 A gradient descent algorithm 

To minimize the cost function   u , we propose the typical update equation of 
a  gradient descent algorithm, 

  .   
u

u u u  (4.78) 

Note how the cost function depends on u  and on the whitened observations z , 
so they play the same role as b and x , respectively. 

Using the rules of complex derivation, 

         2
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u u
. (4.79) 

It is known that the gradient of a 2-norm is 
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, (4.80) 

so the gradient of the contrast depends on the gradient of the convex perimeter,  
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 (4.81) 
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4.7.4 Practical computation of the convex perimeter 

One important issue when moving from the theory to the implementation stage 
is the practical estimation of some values. As some of the quantities are 
complex-valued random vectors, we only have available some samples drawn 
from stochastic processes. Therefore, it is important to estimate them as accurate 
as we can. 

In our particular case, we need to estimate the convex perimeter  L y , from the 
support of the sample density yS  of the realizations. For this reason, BCA fits 
better in those applications where the extreme points of the convex support 
have a significant chance to occur. That is because the sample convex perimeter 
depends only on those extreme points laying on the bound of the set. 

Suppose that the length of the sequences of samples is denoted by .T  Let us 
denote the available sequence of whitened observations by     1 , , Tz z , so 
the output sequence is 

       , 1, , .Hy k k k T u z   (4.82) 

The first step is to compute the convex hull of the output,  conv y , from the 
samples of the output sequence. In computation geometry, numerous 
algorithms have been proposed for computing the convex hull of the elements 
of a sequence   y k  of T  points (see, for instance, (Preparata, 1977)). 

These algorithms usually return an array of indices 0 1 V     . This 
array is circular, in the sense that the first and the last indices are the same, 

0 V  . This array determines the position of the vertices of the convex hull of 
the output, in clockwise order: 

       0conv , , Vy y y   . (4.83) 

The edges between consecutive vertices of the convex hull of the output are 

    1i i iy y y      , (4.84) 

where 1, ,i V   is the index that moves along all the vertices of the convex 
hull of the output. It can be seen that the convex perimeter of this set is the 
summation of the lengths of all these edges, 

  
1

.
V

i
i

L y y


    (4.85) 

Example 4.1 illustrates the previous concepts for a simple set of samples. 
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Figure 4.11 - A set of samples from the output sequence y, with T=14. Observe how there 
are only V=5 vertices in the convex hull. 

Example 4.1 Let us observe Figure 4.11, where we have a set of samples in the complex 
plane, drawn from an output sequence    , 1, ,14.y k k    If we compute its convex 
hull, it returns the indices of the extreme points of the set, 

   0conv , , 3,5,4,8,9,3 .Vy           (4.86) 

Thus, the edges between consecutive vertices of the output are 

 

       
       
       
       
       

1 1 0

2 2 1

3 3 2

4 4 3

5 5 4

5 3 ,
4 5 ,
8 4 ,
9 8 ,
3 9 .

y y y y y
y y y y y
y y y y y
y y y y y
y y y y y

 
 
 
 
 

    
    
    
    
    

 (4.87) 

And finally, the convex perimeter is given by 

   1 2 3 4 5L y y y y y y           . (4.88) 
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4.7.5 The gradient of the normalized convex perimeter 

The normalized convex perimeter of the output is obtained by sequentially 
accumulating the modulus of consecutive differences, and dividing by the 2-
norm of the extraction vector, 

  
1

1 V

i
i

y

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u

. (4.89) 

We use the gradient of the contrast (4.89) in the minimization algorithm. 

Theorem 4.8 (Gradient of the normalized convex perimeter) 

Given the cost function of the normalized convex perimeter (4.89), the gradient 
needed for the update of the gradient descent algorithm (4.78) is computed as 
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. (4.90) 

The segments iy  and iz  are computed from (4.84) and    1i i i    z z z , 
respectively. Note how the only convex hull needed is  conv y . 

Proof: Starting at (4.81) and by substituting (4.89), 
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 (4.91) 

The gradient of the convex perimeter in the first term of (4.91) can be 
derived by applying Wirtinger calculus on the moduli iy , 

 
   

       

1/ 2

0

.
ii

i i i

i i y i iy

y y y
y y y y

 

  





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u u

u u
 (4.92) 

The first term is zero, because the segments (4.84) applied to the model 
(4.82) gives 

 ,H
i iy  u z  (4.93) 
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 .T
i iy   u z  (4.94) 

Therefore, using (4.93) the gradient of the modulus results 
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z  (4.95) 

And finally, substituting the gradient (4.95) in (4.91), 
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 (4.96) 

∎ 

One can see that the gradient only depends on the extraction vector u , and on 
the segments iy  and iz . At each iteration, all these quantities are easily 
computed on an iterative algorithm. 

4.8 Blind Source Extraction and Separation by using BCA 
This section presents the most direct application of BCA: the recovery of one or 
more sources from an unknown linear mixture. The models were given in 
Section 4.2.1, at the beginning of this Chapter. 

4.8.1 A BCA algorithm for the Blind Source Extraction 

In Table 4.1, the pseudo-code of a function which implements the extraction 
algorithm is presented. Note how the extraction vector is normalized at the end 
of each iteration. That is because any implementation will run with finite 
precision, so the division by the 2-norm helps the stability of the iterations. 

It is important to remark that the segments iz  do not need the computation of 
the convex hull of any of the whitened observations contained in the vector .z  
Looking into its definition, it can be seen that they only depend on certain 
samples of the vector z . These selected samples are the ones that yield to the 
samples on the convex hull of the output,     0 , , .Vy y 
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Inputs z : whitened observations 

Repeat until 
convergence 

Hy  u z : estimate of the source 

Computation 
of the 

gradient 

 0 , , =convV y     

Repeat for 
1, ,i V   

   1i i i    z z z
 

   1i i iy y y      

  2
1

1
2

V
i i

i
i i

y y
y






              
u

u
u z

u u
 

 : adaptive step size 

    
u

u u u : update 

/u u u : normalization 

1k k  : increase the iteration index 

Outputs 
u : extraction vector 

Hy  u z : final estimate of the source 

Table 4.1: Pseudo-code of a BCA extraction algorithm. 

For completeness, a MatLab implementation of the BCA extraction algorithm is 
also available in (Cruces, 2008). 

Computer simulations 

We consider an instantaneous mixture with 3n   sources and 3m   
observations. The mixing coefficients are drawn independently from a Gaussian 
random process, thus characterizing a flat Rayleigh fading channel. Suppose 
that the model does not change during at least 200T   samples. The source 
signals are QPSK constellations with unit power, and the SNR is set to 30 dB. 

The Figure 4.12 shows the state of the extraction algorithm at two different 
iterations. It can be seen that the global transfer vector tends towards 

0 0 1
T

   , which corresponds to a successful extraction of the 3rd source. This 
can also be corroborated by identifying the shape of the constellation at the 
output. 
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Figure 4.12 - This figure shows, on the left column, the output of the extraction algorithm 
 y k . The red circles are the samples in the complex plane that belongs to the convex hull, 

and the edges  iy  are represented by a dashed line. On the right column, the absolute 
value of the global transfer vector g  is shown. The upper row shows the state of the 
extraction at the 4-th iteration, and the lower row shows the state at the 40-th iteration. 

4.8.2 Computational complexity 

Assume that the number of samples available T  is much greater than the 
number of sensors m , which is greater or equal than the number of sources n . 

 T m n  . (4.97) 

Under this assumption, the computational complexity of the whitening (4.71) 
depends on 

  2O m T , for the computation of the correlation matrix. 

  3O m , for the eigenvalue decomposition. 

  O nmT , for the final matrix products. 
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So (4.97) implies that the overall computational cost of whitening is  2O m T . 

For the computation of a planar convex hull of a finite set of T  samples, the 
complexity rises to   logO T T  in the worst case13 (Graham, 1972). However, if 
one takes into account the number of vertices V  of  conv y , there are better 
practical algorithms. 

These algorithms, whose complexity depends on both T  and V , are called 
output-sensitive. For the worst case in this family of algorithms (Chan, 1996), the 
computational complexity is   logO T V . 

The number of vertices V  is usually much smaller that T . Two approximations 
can be done here, depending on the value of the SNR (Signal to Noise Ratio): 

 At high SNRs, V can be approached by the sum of cardinalities of the 
sets of vertices of the convex cover of each one of the sources. 

   
1

ext conv
n

high i
i

V V s


  . (4.98) 

 At low SNRs, V  is biased towards 

 8lowV V   , (4.99) 

which is a tight upper-bound on the expected number of vertices of the 
convex hull of the output when it is dominated by the contribution of a 
complex Gaussian noise. 

Therefore, the expected complexity per iteration of the BCA extraction 
algorithm can be roughly approached by 

 At high SNRs,   log highO T V . 

 At low SNRs,    log max ,high lowO T V V . 

Nevertheless, the computational complexity of the BCA extraction algorithm is 
limited by the calculation of the convex hull of the output sequence. 

4.8.3 Blind Source Separation 

The next step is to implement a BSS method, based on the previous BSE 
algorithm. It is relatively easy to extend the algorithm to the separation of all the 
bounded sources. This application is presented in (Aguilera, 2012). After the  

                                                        
13 This is the same order of complexity of the sorting of a list with T elements. 
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Figure 4.13 – First experiment. Example of the blind separation of sources by using a BCA 
extraction and deflation algorithm. The first column shows the original sources: a QPSK, a 
16-QAM and a 32-QAM constellations. The second column shows the observations 
obtained after the mixing. Finally, the third column shows the extraction of the three 
original sources after a sequential extraction and deflation procedure. 

extraction of the first component of the mixture, one has to deflate the 
contribution of the estimated source from the observations, so as to obtain a new 
mixture of 1n  sources. 

Then, as described in (Cruces, 2004) or (Delfosse, 1995), the extraction and 
deflation processes alternate until the desired number of sources are recovered. 
Although the source processes are spatially uncorrelated, their finite sample 
versions are usually slightly correlated due to the limited number of 
observations. 

Thus, it is usually recommended a second round of updates of the source 
extraction vectors which relaxes their exact orthogonality, improving in this 
way, the final performance of the separation algorithm. 
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Figure 4.14 – Second experiment. Example of the blind separation of dependent sources by 
using a BCA extraction and deflation algorithm. The first column shows the three QPSK 
original sources. The second column shows the noisy observations obtained after the 
mixing. The third column shows the extraction of the original sources after a sequential 
extraction and deflation procedure. 

Computer simulations 

We run three experiments to illustrate how the BSS methodology provides 
accurate estimations of the original sources. 

 In the first experiment, we use three sources whose shapes are 
constellations used in the Quadrature Amplitude Modulation (QAM) 
communications scheme. We use the same parameters of the previous 
BSE experiment, but this time we use 200 iterations and a sample length 
of 1000T   symbols. This is due to the more complex structure of the 
desired signals. Also, there is no additive noise in this experiment. 
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Figure 4.15 – Third experiment. This figure shows the result of executing the BSS methods 
based on BCA, ThinICA, JADE, and FastICA to a noisy mixture of dependent sources. 
(upper row) Comparison of the Amari Index (AI) versus the SNR. (lower row) Each one of 
the points corresponds to the absolute value of the coefficients of the global transfer vector 
G , for each one of the compared methods, for a SNR=50 dB situation. The permutation 

and the scale is corrected to show the successful extraction when the matrix is close to the 
identity. 

In Figure 4.13, the result of this experiment is shown. Note how the 
three sources are successfully extracted, up to permutations and 
ambiguities in the phase of the constellation. The lack of noise in this 
experiment helps the convergence and the successful separation of the 
whole set of sources. 

 In the second experiment, three QPSK dependent sources (with 
correlation coefficient of 0’6) are mixed with the same mixture matrix 
that in the previous examples. However, this time a AWGN noise is 
added to the observations, so the recovery may not be perfect. The SNR 
is 20 dB, the sample length is 500T   symbols, and the number of 
iterations can be reduced to 50. 
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The Figure 4.14 shows the result of this separation. The three sources 
are extracted even if they are dependent, but this time their 
constellations are contaminated by the noise. Again, we have the same 
ambiguities on the order and on the phase of the signals recovered. 

 In the third experiment, we mix three QPSK sources and obtain three 
noisy observations (SNR goes from 0 to 50 dB). This time, we compare 
the performance of the proposed method with other BSS techniques 
like ThinICA (Cruces, 2004), JADE (Cardoso, 1997) or FastICA (see 
(Hyvärinen, 1997) and its complex version (Bingham, 2000)). The 
number of samples is set to 1500T   samples, and dependent sources 
(with a correlation coefficient of 0’5) are considered. 

The result of this comparison is shown in Figure 4.15, for the absolute 
value of the global transfer matrix G . The Amari Index (AI) (Amari, 
1996) is used to measure the quality of the separation, defined for a 
square matrix as, 

  
 

2

1
2 2

1 :

1 1
max

n

jin
i

j j

G
AI

n




 
 
  
 
 


G

g
, (4.100) 

where : , 1,...,j j ng , is the j-th row of the matrix G . The Amari Index 
is zero in a situation of perfect separation. 

It can be seen that, when the sources are dependent, the main 
hypothesis for ICA is violated and the source separation is not possible 
for ThinICA, JADE, and FastICA. Nevertheless, the proposed BCA 
algorithm is the only one able to recover the original signals in medium-
high SNR scenarios, as long as they satisfy the conditions seen in 
Section 4.3. 

4.9 Latent Component Decomposition by using BCA 
During this entire chapter, we have explained the theory of Bounded 
Component Analysis by using the application of blind source extraction. 
However, as we will see in Chapter 6, there is also the possibility to apply the 
tools presented to solve another type of problems. In this section, we briefly 
review an application related to the topic of BSS and BSE, but with a different 
model. 
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4.9.1 Linear model 

Suppose that we want to decompose a given observations vector (see (Cruces, 
2010)) into a set of n  bounded latent components  i kx , 

    
1

n
m

i
i

k k


 x x  . (4.101) 

Note that this model can be directly converted into a noiseless linear mixture 
model like (4.1)  by setting the structure: 

     , 1,i i ik s k i n x a  . (4.102) 

The linear independent vectors m
i a   determine the linear subspaces of the 

components, and the random process  is k  are hidden factors (sources) that 
account for the statistical structure and the geometry of the components.  

The main assumptions for the decomposition are the same that in Section 4.3: 

 The non-degeneracy of the component vectors,  i kx  with bounded 
supports  i

m
kS x  . 

 The decomposition of the convex support of the observations  kSx  as a 
Minkowski direct sum of the convex supports of the component 
signals, 

      1 nk k kS S S  x x x . (4.103) 

Note that this second assumption automatically enforces a limitation in the 
number of component signals n , which should be always equal or smaller than 
the number of observations,  n m . 

The identifiability, uniqueness and indeterminacies detailed in Section 4.4 also 
hold for this model, by using the relation (4.102). Thus, the bounded component 
decomposition is unique up to permutations in the order of the components. 

Without loss of generality, hereinafter, we assume that the component vectors 
 i kx  are further indecomposable, in the sense that each convex support  i kSx , 

cannot be further decomposed as a Minkowski direct sum of any other complex 
sets with nonzero dimension. This is not a restriction, since one can always 
replace any decomposable set  i kSx  in the right-hand side of (4.103), as a direct 
sum of indecomposable components. 
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Inputs x : observations 

For each 
source i 

z Wx : whiten the observations 
H

i iy  u z : estimate of the source by using BCA (Table 4.1) 

Identify the 
corresponding 
mixing vector 

Repeat for 
j=1,…,m 

 
  arg min

j
i j j ij

L x y


        
a  

Identify the i-th 
latent component i i iyx a  

Eliminate the 
contribution

 
i x x x
 

1n n  : dimensional reduction 

1i i  : go to the next source 

Outputs 1 , , na a : mixing vectors 

,i nx x : the set of bounded components 

Table 4.2: Pseudo-code of a bounded component decomposition algorithm. 

4.9.2 The sequential recovery of the components 

In Table 4.2, we present an algorithm for the sequential recovery of the 
components of the observations. The main steps of this recovery consist on 
exploiting the BCA assumptions for developing a blind method for the 
identification of a bounded source and of its corresponding mixing vector. 

The i-th source can be identified by applying the extraction vector iu  to the 
observations, 

      ˆ , 1, , .H
i i iy k k s k i n  u z   (4.104) 

This output is an estimate of the source corresponding to the local minimum at 
the bottom of the basin where the algorithm is initialized. The next step is to 
estimate the column ia , needed to obtain the latent component (4.102). 
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Figure 4.16 – First experiment of the Latent Component Decomposition. This figure shows 
the result of a bounded component decomposition applied to a set of three observations, 
marked by blue dots. The bounded components are marked by green dots, while the residual 
unbounded component is marked by red dots. 

For the identification of the mixing vector, we propose the following estimate14: 

    arg min , 1, ,
j

i jj
L r k j m



        
a  , (4.105) 

where      j j j ir k x k y k   is the remainder which is obtained when the 
current estimated component is subtracted from the observations. 

These elements are chosen in such a way that they minimize the convex 
perimeter of the coordinates of the residual of the approximation. Of course, the 
optimization problems (4.105) can also be minimized via a gradient descent 
algorithm. 

                                                        
14 This vector can also be estimated by using a MMSE approach. That is, 2/

i ii y y xa r , where 
iyxr  is 

the temporal cross-correlation between the observations and the recovered source. 
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Figure 4.17 – Second experiment of the Latent Component Decomposition. This figure 
shows the result of a bounded component decomposition applied to a set of five 
observations, marked by blue dots. The bounded components are marked by green dots, 
while the residual unbounded component is marked by red dots. 

4.9.3 Computer simulations 

As in the previous section, computer simulations were done to show the 
performance of the method presented. We derive three experiments to help the 
reader to understand the sequential recovery of the components. 

 In the first experiment, we aim to decompose 3m   observations into 
2n   bounded components plus a noise component  kq , with 

SNR=20 dB. This residual term accounts for the part of the observations 
that cannot be explained by bounded parts. It can be done with only  
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Figure 4.18 – Third experiment of the Latent Component Decomposition. The blue dots 
represent the three observations, while the green dots represent the bounded components 
decomposed sequentially by the algorithm presented in Table 4.2. At the top of the figure, 
the sources corresponding to the output of (4.104) are marked in red. The extraction 
vectors 1 2 3, ,a a a  are responsible for the conformation of the bounded components. 

100 iterations for each source extraction and for the estimation of the 
coefficients given by (4.105). The sample length was set to 200T   
symbols. 

In the Figure 4.16 we illustrate the decomposition resulted from this 
experiment. The two components recovered have bounded support, 
while the unbounded component may have samples arbitrarily large. 

 The second experiment is similar to the first one, but with higher 
dimensions. This time, we set 5m   and  4n  . Due to the higher 
dimensionality of the problem, we need 200 iterations and a length of 

400T   symbols. 
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Figure 4.17 shows the four bounded components that decomposes the 
observations. Note how even in high dimensionality scenarios, the 
sequential extraction and deflation algorithm is able to converge.  

 The third and last experiment on this chapter aims to explain the tools 
used in the deflation algorithm to extract sequentially each of the 
components. This time, we work in a noiseless scenario, where the 
three observations come again from the field of communications: a 
QPSK, a 16-QAM, and a 32-QAM constellation. Due to the complex 
geometry of these sources, a sample length of 2000T   symbols is 
used. 200 iterations are needed for the extraction of each source and for 
the identification of the components defined by (4.105). 

In the Figure 4.18, an illustration of the overall method is shown. The 
first source is extracted by using the original BCA algorithm. After that, 
the mixing vector 1a  is estimated by minimizing the contribution of the 
resulting bounded component to the observations, as explained in 
(4.105). The bounded component resulted from this process is then 
subtracted from the observations. 

This process is repeated for all the sources, decreasing the dimension of 
the source set after each extraction and decomposition. Note how the 
method is equivalent to the sequential BSS extraction presented in 
Section 4.8.3, but in this case we are not interested in the sources and 
only use them as an intermediate step. 

4.10 Conclusions 
In this chapter, we have presented the theory of Bounded Component Analysis, 
a framework for source separation and extraction where the main assumption is 
the bounded nature of the support of the sources. 

It is based upon the Minkowski-Brunn theory of convex bodies, and mixes tools 
from convex geometry and time series analysis into a unified framework. Some 
of the most important results for this chapter are: 

 For bounded sources, the main assumptions in BCA are weak and 
easily satisfied in practical situation. They are the compactness and 
non-degeneracy of the sources, the Cartesian decomposition of the 
convex support of the sources and the full column-rank of the mixing 
matrix. 

 The support of the observations can be decomposed as a Minkowski 
direct sum of convex summands, each one representing the support of 
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one source multiplied by one column of the mixing matrix. 

 The decomposition of the support of the observations is unique, up to 
permutation of the direct summands. There are also scaling and phase 
indeterminacies on the sources, as in other blind source separation 
algorithms. 

 The criterion of minimum normalized convex perimeter establishes that 
the minimization of the perimeter of the output, divided by the norm of 
the extraction vector, always leads to valid solutions of the source 
extraction problem. 

 However, the number of samples required to accurately estimate the 
convex perimeter may be prohibitive if the sources do not have clear 
boundaries. 

We presented also some of the main steps for the practical optimization of the 
cost function. After presenting how to whiten the observations, the gradient of 
the contrast was derived, based upon the rules of Wirtinger calculus. A pseudo-
code with a practical implementation of the BCA extraction algorithm was 
included, with all the intermediate computations needed to build up the 
gradient. Finally, a discussion on the computational complexity of such 
algorithm concludes that the most demanding task is the calculation of the 
convex hull of the output sequence. 

In addition, a blind source separation method and latent component 
decomposition method are outlined. They are based on the sequential recovery 
of the sources and the components, by estimating the mixing vectors and 
minimizing their contribution to the observation set. It was shown that the 
recovery of the sources is possible even if they are somehow dependent. 

It is important to understand that this chapter has been built assuming a 
scenario where the objective is to blindly recover one or more sources from an 
unknown mixture. That was because one needs to focus on a concrete 
application to deep into the properties, behaviors and solutions of the theory. 
However, the BCA framework can be easily extended to supervised problems, 
as we will see in Chapter 6. 
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5 CONVERGENCE STUDY OF A 
BCA EXTRACTION ALGORITHM 

 

 

 

 

 

 

 

he global convergence of an optimization algorithm deals with the ability 
of reaching one of the minima of the cost function, with independence of 
the initialization point where it starts. It is a very desirable feature in 

problems where there are not erroneous solutions. We aim to make this analysis 
as general as possible, covering the possibility of having sources in the mixture 
from different constellations and different perimeters. 

In a noiseless situation, our convergence analysis provides recommendations for 
setting the step size of the algorithm so as guarantee the global monotonous 
convergence to the source that is closest to the initialization of the algorithm (in a 
given sense) while keeping, at the same time, a fast local convergence rate in the 
neighborhood of this solution. 

T

 

It is not the mountain we conquer, but ourselves. 

- Sir Edmund Hillary - 
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5.1 Introduction 
In this chapter, we address the study of the global monotonous convergence of 
the extraction algorithm proposed in Chapter 4. This property does not rely only 
in the absence of erroneous minima in the criterion (see Theorem 4.7), but also 
on the global stability of the learning rules. 

The global monotonous convergence is a very desirable feature, however, in 
general it does not hold for most of the existing component analysis algorithms, 
up to some notable exception like (Shalvi, 1994 pp. 121-180), (Papadias, 2000) 
and (Erdogan, 2007), among others. 

The chapter is organized as follows. We start by reviewing the cost function and 
describing its shape in Section 5.2. In Section 5.3, we derive fast step sizes based 
on the first and second order local analysis of the cost function, although they 
do not guarantee the global convergence of the BCA extraction algorithm. 

The study of the global monotonous convergence is derived in Section 5.4, after 
a deep analysis of the geometry of the update. The result is the proposal of some 
convenient bounds for the step size and their practical estimators, whose 
behavior is illustrated by means of computer simulations in Section 5.5. Finally, 
Section 5.6 summarizes the conclusions to this chapter. 

5.2 The Special Shape of the Cost Function 
In this chapter, k  denotes the iteration index. We will use loosely the word 
gradient, which sometimes may denote the conjugate cogradient. Its meaning 
will be always clear from the context. 

The design of appropriate step sizes starts with the analysis of the shape of the 
cost function. The proposed cost function for the BCA extraction algorithm is 
the normalized convex perimeter of the output, 

      HLL y
  

u z
u

u u
, (5.1) 

where nu   is the extraction vector and nz   is the vector of whitened 
observations. 

This cost function cannot be easily visualized in the 3D space because of the 
higher dimensionality of its domain. In Figure 5.1, the shape of the cost function 
for a real-valued scenario with 2n   is shown. The radial lines of the contour 
plot illustrate the scaling invariance of the cost function. For illustrative  
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Figure 5.1 – Surface and contour plot of the cost function when considering a mixture 
[1,1; 1,1]A    of two sources with respective perimeters: 1 and 0’8. 

purposes, the boundary of the graph corresponds to an extraction vector of 
constant norm. 

The graph also reveals the subspaces where the function is non-differentiable. 
Each one of these subspaces corresponds to the extraction of one source, with 
indeterminacy on the value of its magnitude and phase. In addition, it can be 
seen that the point of initialization is critical for the determination of the local 
minima attained. 

One can describe its essential features imagining its opposite   u  as a 
mountain landscape with edges converging toward the peaks of the mountains, 
which are the solutions to the problem. 

From this representative view of the function, one can understand why we do 
not recommend setting the step size  k  with any classical quasi-optima line-
search procedure. These kinds of searches would drive the algorithm in a few 
steps toward the vicinity of the set of non-differentiable points ndDu  (see Section 
4.7.2), which represents the edge of the mountains. Once there, the subsequent 
quasi-optimal gradient descent updates would be progressively smaller, 
eventually stopping the convergence. 

For this reason, ad-hoc standard optimization methods for differentiable 
functions usually fail to minimize it. Therefore, specialized methods are 
required for this task, based on adaptive step sizes. 
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5.3 Step Sizes Based On the Shape of the Cost Function 
Part of this Secton was presented in (Aguilera, 2012). To set the step size, we 
analyze the local influence of  k  in the value of the cost function. The update 
equation of the descent algorithm was presented in Section 4.7.3,  

        1 ,k k k 
   

u
u u u  (5.2) 

where 

      2

1 .
2

L y L y 

 
    
 
 

u u

uu
u u

 (5.3) 

Note that the perimeter of the output  L y  and its gradient  L y
u

 can both 
be accurately estimated from the knowledge of the extraction vector u  and of a 
sufficient large number of observations z . 

Provided that dD uu , within a neighborhood of the current point, the local 
behavior of the cost function is given by the Taylor approximation (see 
Appendix A2.1.3 on (Schreier, 2010)) 

 
            

           
1 1

1 11 ... ,
2

k k k k

Hk k k kH

  



 

 

  

   

u

uu

u u u u u

u u u u u
 (5.4) 

where 

 

 
  
 

u
u

u
 (5.5) 

is the augmented representation of the extraction vector, 

    
 

2n




 
   

  

u
u

u

u
u

u
  (5.6) 

is the augmented gradient of the cost function, and 

   2 2 ,n n 
 

 
  
  

u u
uu

u u

H HH u
H H


  (5.7) 

is the augmented Hessian, whose elements are the Hessians, 
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   T n n 
   u u u

H u  , (5.8) 

   T n n  
   u u u

H u  . (5.9) 

From the expression (5.4), we can derive different step sizes based upon the first 
or second-order approximation of the Taylor expansion. 

5.3.1 The Newton-Raphson step size 

The Newton-Raphson (NR) step size is presented in the following Theorem. 

Theorem 5.1 (The Newton-Raphson Step Size) 

The Newton-Raphson step size for the gradient descent algorithm is given by 

  
 

  
2

2

k
k

NR
k








u

u
, (5.10) 

where 

      min
k k   u  (5.11) 

is a nonnegative parameter that indicates how close is the algorithm to the 
convergence. 

Proof: The proof of this Theorem comes from the first-order local 
approximation of (5.4), 

             1 1k k k k     uu u u u u . (5.12) 

Let us assume that  ku  belongs to the domain of the convergence of a local 
solution  u , whose contrast function value is   min   u . Then, the 
rate of convergence of the gradient algorithm can be improved by finding 
the step size  k  that implements the Newton-Raphson method to find the 
zeros of the function   1

min
k  u  . 

By substituting the augmented version of the update equation, i.e., 

        1 ,k k k 
    

u
u u u  (5.13) 

and by setting   1
min

k  u  in the linear expansion (5.12), 



5 - Convergence Analysis of a BCA Extraction Algorithm  

 

 

138 

( )ku ( 1)ku

( 1)( )k u

( )( )k u

  slope k u u

 

Figure 5.2 - This is a representation of the first-order local approximation used in (5.12) to 
derive the Newton-Raphson step size. 

 
        
      

min
2

2 .

k k

k k

    

  





   

  

u u

u

u u u

u u
 (5.14) 

Solving for  k  yields the following NR step-size, 

  

  
  

min

2 .
2

k

k
NR

k

 








u

u

u
 (5.15) 

∎ 

If a priori we have knowledge of the value of min , like in the case when there is 
no noise and the sources are identically distributed, the exact value of  k  can 
be computed and substituted to determine the NR step size (5.11). Otherwise, 
we propose to choose a coarse initial guess  ˆ k , with progressive annealing to 
zero with the run of the iterations. 

This should be done in such a way that the extraction vector could initially 
perform a fast descent in the contrast function, crossing back and forth the non-
differentiable hyperplanes, until it is able to center at one of the local solutions. 
Once there, the annealing of the parameter will make the extraction vector to 
converge, bouncing around the solution with a progressively smaller deviation. 

In the Figure 5.2, a geometrical interpretation of this step size is shown. The 
gradient  

u
u  yields to a fast descent based upon a linear approximation of 

the slope of the cost function. 
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5.3.2 A step size that uses the second-order information 

We can derive an even faster (in the sense of the number of iterations) step size 
using the same Taylor expansion of the cost function, but now up to the second 
order by introducing the Hessian. We omit the iteration index k in some terms to 
simplify the expressions. 

Theorem 5.2 (A step size based upon second-order Information) 

The step size for the gradient descent algorithm based upon second-order 
information is given by 

        

   

2 4

2

2
H k

k
H

    


  

   

 

      


 

uuu u u u

uuu u

H

H
, (5.16) 

Where uuH  is the augmented Hessian matrix of the cost function, defined by 
(5.7)-(5.9), and 

      min
k k   u  (5.17) 

is a nonnegative parameter which indicates how close is the algorithm to the 
convergence. 

Proof: We follow the same procedure used in Theorem 5.1, but this time 
using a second-order approximation of (5.4), 

 
            

           
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  



 

 

  
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u

uu

u u u u u

u u u u u
 (5.18) 

By setting   1
min

k  u
 

in the left side of (5.18), and the update 
equation (5.13) on the right side, we obtain a quadratic equation, 

 
      

          
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   

   


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  

  

u

uuu u

u u

u u u
 (5.19) 

Whose terms can be ordered in the following way 

           
2 2

min
1 0.
2

H
k k         

 
       

 
uu uu u

H  (5.20) 
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Solving the quadratic equation and taking the lower value of the pair of 
solutions, we obtain the expression (5.16). 

∎ 

The Hessians defined in (5.8) and (5.9) need to be computed from the well-
known gradient studied in Theorem 4.8. We exploit the structure introduced in 
(4.79), and the notation     /

     
u

u , presented in Chapter 2. 

 
       1 /1

TT

nL y L y
L y

   

             
           

u

u u u uu u
 . (5.21) 

To obtain practical expressions for the Hessians, we use the following gradients: 
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In addition, the following Hessians are necessary: 
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With all these terms, we can build the Hessians by applying the operators 
  /  u  and   /   u  to the transpose gradient of the cost function (5.21), 
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(5.35) 

All these quantities can be computed within each iteration, and applied to the 
step size to obtain a fast descent towards the local minimum. 

In the Figure 5.3, the value of the quantity    min
k u  in a computer 

simulation is shown for the two step sizes proposed in Theorem 5.1. Attending 
to the number of iterations needed, the Newton-Raphson step size is a fast 
option for the descent of the cost function, but in general it is not as fast as the 
step size that uses the second order information. 
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20 sources: Newton-Raphson step size
6 sources: Newton-Raphson step size
6 sources: Parabolic step size
20 sources: Parabolic step size

 

Figure 5.3 – This figure shows, in logarithmic scale, the comparison of the value of the 
distance to the convergence    min

k u , when the Newton-Raphson step size (blue) 
and the step size that uses the second-order information (green) are used. We study two 
different cases: having 6 sources (dotted) and having 20 sources (solid). This plot was made 
assuming a noiseless situation, but the main effect of adding a random noise is the 
existence of a ground floor on the convergence curves15. 

The mixing matrix has coefficients drawn from a Gaussian random process, and 
the number of iterations was set to 100. The length of the data was 1000T   for 
the 6n m   case, and 5000T   for the 20n m   case. It can be seen that the 
gap between the convergences of both step sizes lowers when the amount of the 
sources mixed is small. Indeed, for 5n  , the gain almost disappears. 

It is important to remark that the computational complexity of the step size that 
uses the second-order information is greater than the linear approach, so the 
Newton-Raphson step size is usually the preferred option in low dimensionality 
problems. 

The two step sizes proposed in this section are fast in practice, and can help to 

                                                        
15 In a noiseless situation, the value attained when the algorithm converges should be ideally zero. 
However, a value around  is attained due to the machine precision. 1510
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the method to converge in a few iterations. However, they do not guarantee the 
stability or the monotonous descent of the cost function within the iterations of 
the algorithm. This is a problem that we aim to address in the rest of the chapter. 

5.4 A Step Size that Guarantees the Stability 
In this Section, we want to propose a step size that guarantees the stability of the 
gradient descent algorithm. That is, our objective is to force conditions on the 
value of the step size, which may help to the algorithm to reach one of its local 
minima. The theory and the results obtained can be found in (Aguilera, 2013). 

Let us define the convex perimeters of the sources as 

   , 1, ,i iL L s i n   . (5.36) 

The contrast function is invariant with respect to permutations in the order of 
the sources. Without loss of generality and for simplicity in the notation, we 
assume that the first source will be the one that the algorithm is locally 
extracting. Therefore, in the following we suppose min 1L   (see the minimum 
reachable by (4.51)), which corresponds to the perimeter of the extracted source. 

In spite that the algorithm with the Newton-Raphson or the step size that uses 
the second-order information has a fast local convergence, the global 
monotonous convergence to the extraction of one of the sources is not 
guaranteed. Additionally, as we will see later, this step size does not ensure that 
we extract the source that is closer in a certain sense to the algorithm 
initialization, which eventually difficults the determination of the correct  min  
to use in (5.10) or (5.16). 

5.4.1 The underlying structure of the iteration 

In this section, we analyze the structure of the gradient of the criterion in (5.1), 
because it is a key element in the determination of the convergence of the 
proposed algorithm. Let us group the convex perimeters of the sources in the 
vector 

 
1

n
S

n

L

L

 
   
  

L   , (5.37) 

and the moduli of the coefficients of the residual mixture vector 
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1

n

n

g

g

 
 

  
 
 

g   . (5.38) 

The following Theorem introduces the complex variable extension of the Euler 
homogeneous function Theorem for real variables (see (Apostol, 1967)). 

Theorem 5.3 (Euler homogeneous function for real functions of complex variable) 

For a real and homogeneous function   : nf u    of degree r , i.e., when 

     , ,rf f     u u   (5.39) 

it holds that 

    ,2rf f 
u

u u u . (5.40) 

Proof: Let us define the complex vector ' u u . Then, 

 
 
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  

 





 

  




 





  
  
   

   
   

  

 

   

u
 (5.41) 

If 1  , then 

      
1 1

, ,i

n

i i

n

i
i i

u u
f
u u

f
rf f f



 




 
     

   u u
u u u u u , (5.42) 

which is twice   ,f
u

u u . 

∎ 

This is useful, for example, for the expression of the convex perimeter of the 
output as a scalar product: 

        , 0 ,2L y L y L y L y        
u

u . (5.43) 

A particularization of Theorem 5.3 leads to the following interesting result. 
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Theorem 5.4 (Orthogonality of the update equation) 

Given the update equation (5.2), the extraction vector is orthogonal to its update 
at each iteration, 

      1, 0k k k  u u u . (5.44) 

And the same relation is also true for the global transfer vector, 

      1, 0k k k  g g g . (5.45) 

Proof: The cost function   k u  is scaling invariant (or homogeneous of 
degree 0r  ), as stated in Section 4.6.1: 

      k k  u u  ,   .    (5.46) 

Thus, Euler homogeneous function Theorem (5.40) for 0r  , states that the 
extraction vector is orthogonal to the gradient, and thus, to the update: 

        2 , 0k k kr   
u

u u u . (5.47) 

As    k kg Vu , the orthogonality is also true for the global transfer vector.  

∎ 

With these results, we are able to present the main result of this section in the 
following Theorem. It provides a geometrical interpretation of the update. 

Theorem 5.5 (Geometrical interpretation of the update) 

The iteration of the gradient descent BCA algorithm proposed in (5.2) can be 
rewritten, in terms of the moduli of the residual mixing coefficients, as 

    
 

 

   

 

1
2 .

2

Hkk

k k
Sk k

k

 
 

   
 
 

g g
g g I L

g g
 (5.48) 

So the convergence of the iteration is only determined by three vectors of 
parameters: the initial residual mixture vector  0g , the sequence of step sizes 
 ( ) : 0, ,k k    , and the perimeters of the sources aggregated in SL . 

Proof: By using (5.43), the gradient of the cost function derived in (5.3) can 
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be expressed as 

        
2 2

1 .
H H L y

L y L y


  

             
   
   

u
u u u

uu uu
u I

u uu u
 (5.49) 

This implies that the gradient of the contrast function is proportional to the 
orthogonal projection of the gradient of the perimeter onto the 
complementary subspace of the subspace spanned by the extraction vector. 

The extraction vector u  can be seen as a function of the residual mixing 
vector g . As the unitary mixing matrix satisfy H H V V VV I , we have 

u g  and, 

 H H H H H  g u V u g V . (5.50) 

With the help of the chain rule, we obtain 

 H n 
  



  

   
          

g u

u V
g g u

 , (5.51) 

and also 

         mL y L y
L y L y 



  

  
          

u g

g V
u u g

 . (5.52) 

By pre-multiplying the iteration (5.2) by HV , we obtain 

        1k k k 
   

g
g g u , (5.53) 

where 
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 

g

g u

g

u u V
u V u V I

gg

g g
I

gg

 (5.54) 

Note that this update (5.53) is expressed only in term of the residual mixing 
vector, which makes much easier the convergence analysis. 
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In order to be able to continue with the analysis of 

      
    

 

 
 

1
2

Hk k

k k k

kk

L y




 
 

   
  
 

g
g g

g g I
gg

, (5.55) 

we need to determine the hidden structure of  L yg . As was shown in 
the previous Chapter, under the BCA hypothesis, the convex perimeter of 

Hy  g s  can be decomposed as a linear combination of the perimeter of the 
sources 

      1/ 2

1 1
,

n n

S S i i i i i
i i

H
L y g L g g L

 

    Lgg L . (5.56) 

This decomposition of the perimeter of the output is necessary for 
revealing the structure of its gradient with respect to the extraction vector. 
By recalling that 

 1 , 0
22

ii gi
i

ii

g g
e g

gg





   


 , (5.57) 

we obtain the gradient of the perimeter of the output, 

   1
2

i i n
S S

i i

g L
L y

g  

    
              

g

g
L ΛL

g
 , (5.58) 

in terms of the vector of perimeters SL  and the diagonal matrix unitary 
matrix   1H Λ Λ  ,which is formed by the complex signs of the elements 
of the residual mixing vector, 

 

1 0 0

0  n
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
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 

  
 
 

Λ


   





. (5.59) 

By decomposing the vector g  in phase and modulus contributions as 
,Λ g  and by substituting (5.58) in (5.55), we can rewrite the iteration (5.55) 

as 
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 (5.60) 

Then, the proof of this Theorem is finished by taking modulus at both sides 
of this equation, and observing that its left-hand-side also decomposes as 

      1 11kk k  g gΛ . (5.61) 

∎ 

Theorem 5.5 also provides a clear geometrical interpretation of this gradient 
descent iteration that is illustrated in Figure 5.4. The modulus of the residual 
mixture vector  kg  is updated by subtracting to its value a term proportional 
to the orthogonal projection of the vector SL  onto the subspace orthogonal to 

 kg . In the figure, the following orthogonal projector is used: 

  

    
  2k

H
k k

k
P  

g

g g
I

g
. (5.62) 

Thus, the iteration always enforces at these moduli to move apart from the 
vector of perimeters SL . As the vector  kg  is constrained to the positive 
orthant, the iteration pushes its value toward the extraction solutions, which are 
the minima of the contrast function. 

On one hand, when the argument inside the modulus of the right-hand-side of 
the iteration (5.48) is positive, the update of  kg  is orthogonal to its current 
value. On the other hand, when this argument is negative, the orthogonality 
property is lost because the result after the orthogonal update is the reflected by 
the modulus operator. 
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2g
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1g

2L

1L

 kg  1kg

 1k SP 



g
L

 k SP

g
L

 2k SP 



g
L

 2kg

 3kg

 

Figure 5.4 – This figure serves to illustrate the underlying geometrical interpretation of the 
BCA descent iteration, which has been addressed in Theorem 5.5. As we are in the two-
dimensional plane, we presume a mixture of two sources (n = 2) with perimeters 1L  and 

2L . In the figure, the notation  kP

g
 has been used to abbreviate the orthogonal projector. 

5.4.2 A convenient parameterization 

Before being able to start with the convergence study, we need first to find a 
convenient parameterization that decouples, as much as possible, the cross-
dependence on the elements of the vector of parameters at two consecutive 
iterations of the algorithm given by (5.48). This is achieved by the 
transformation of the parameters that is presented below. 

Definition (Non-negative normalized coefficients): Consider the parameterization 

 
1

n

n





 
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  

β    (5.63) 

of the residual mixing vector g . Its coefficients are determined by the one-to-one 
transformation: 
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  
 

, 1, ,
k

ik
i

i

g
i n

L
  

g
 . (5.64) 

Under this parameterization, the BCA iteration (5.48) simplifies to the following 
Theorem. 

Theorem 5.6 (The iteration parameterized) 

The update equation (5.48) can be written in terms of the non-negative 
normalized coefficients: 

        1  k k k k n    β β 1  , (5.65) 

where 1  is a column vector of n  ones, the scalar term  k  is defined by 
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g g  (5.66) 

and  k  is the normalized step size, given by 

  
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g
u  (5.67) 

Proof: The  k
i  coefficients can be rearranged in the column vector  kβ : 

      

 

1diag k
Sk

k




L g

β
g

. (5.68) 

From (5.56), we express the cost function as  

     
 

  
 

.

H
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g L
u
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 (5.69) 

On the other hand, by substituting (5.69) into the last row of (5.60), we can 
observe three terms: 
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        
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By substituting        diagk k k
Sg L β g  into (5.70),  
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 (5.71) 

The modulus of the expression above can be compacted element-wise as 
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which leads to the following relation between  k
i  and  1k

i
  when is 

substituted into the definition (5.64) for the  1k  -th iteration: 
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Finally, if we take out common factor    1

2 k


g  in the numerator, the 
expression (5.73) simplifies to 
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g
 (5.74) 

which is the same result of the Theorem, given by (5.65)-(5.67). 

∎ 

This Theorem tells us that between two consecutive iterations, the beta 
parameters undergo a common subtraction of  k , a modulus operation, and a 
common scaling by  k . 
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In this way, the update (5.65) reveals that there is a specific dependence of each 
coefficient  k

i  on the value of the same coefficient at the next iteration  1k
i

  
and a common shared interaction with the remaining elements  k

i , with j i , 
through the scalars  k  and  k . 

The global monotonous convergence condition 

We introduce a permutation   of the set of indexes  1, ,n  that rearranges 
them in descending orden. At k -th iteration, the  

 k
i  coefficients are sorted 

such as: 

  
 

 
 

 
 

1 2 .k k k
n       (5.75) 

After each update (5.65), the new coefficients do not satisfy the previous 
ordering, but the corresponding permutation   rearranges them again in 
descending order 

  
 

 
 

 
 1 1 1

1 2 .k k k
n         (5.76) 

This is illustrated in the following example. 

Example 5.1 Suppose 4n   sources. On a given iteration k, the coefficients  
 k

i  are 
sorted always as 

  
 

 
 

 
 

1 2
k k k

n      , (5.77) 

which, e.g., corresponds to 

 
       
2 3 1 4

2 3 1 4

,
k k k kg g g g

L L L L
  

g g g g
 (5.78) 

so        1 1 1 1
3 42 1

k k k k          and    2 3 1 4k  . 

At the next iteration 1k  , the coefficients  
1 , 1,...,4kg i   changes such that 

 
       1 1 1 1
2 1 3 4

2 1 3 4

.
k k k kg g g g

L L L L

   

  
g g g g

 (5.79) 

The ordering of the  
 1k

i
  coefficients is always  

 
 
 

 
 

 
 1 1 1 1

1 2 43
k k k k

           . 

By comparing (5.78) and (5.79), one can see that the second and third coefficients are 
permuted at the execution of this iteration, 
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        1 1 1 1
1 42 3

k k k k         , (5.80) 

so to the reordering at this update is    1 2 1 3 4k   . 

The following definition establishes the criterion for monotonous convergence 
in terms of the parameterization. 

Definition (The global monotonous convergence condition): In order to guarantee a 
monotonous descent of all the quotients    1/i   , the following condition 
must be satisfied, 

    1
2 ,  for 2k k

ic c i   , (5.81) 

where the convergence quotients ic  has been introduced to ease the notation: 

  
 
 

 
 

1/i
k k k

ic   . (5.82) 

That is, at each iteration, the second peak 2c  of the quotients spectrum is greater 
than the remaining quotients , 2ic i  , at the next iteration. As the coefficients 
can permute their positions through the iterations, this guarantees that the 
second peak decreases continuously. 

5.4.3 Stable bounds for the step size 

In this section, we derive three upper bounds for the step size so as to guarantee 
different desired behaviors of the descent algorithm. In Figure 5.5, we illustrate 
the reasoning made for the derivation of the step sizes. For the sake of 
simplicity, 3n   is supposed and  1 2 3  , so we have big chances of 
extracting the first source. To analyze the worst case, 3  is zero at the current 
iteration ( 3   may grow rapidly if the step size is too large). 

The letters without mark correspond to the points 2 1( , )  , and the letters with 
mark (‘) correspond to the points 3 1( , )  . It is important to remark that after 
the update of the i  coefficients, there is a rearrangement (that is not shown in 
the figure) to sort them in descending value. 

We analyze six different situations of the points 1( , )i  , depending on the 
value of the step size: 

 The initial state of the system is given by the points O and O’. 

 When the step size is small, the state of the system move to the position 
located between the points shown by O and O’, and the points shown 
by P and P’. The coefficient  2  does not change (  2 2  ). 
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Figure 5.5 – Geometrical interpretation of the movement of the points 1( , )i  , for 2,3i  , 
depending on the value of the step size. The blue arrows show the movement of the coefficients 
during two consecutive iterations. The black circles O, P, S, and B corresponds to 2 1( , )  , while 
the black squares O', P', S', and B' corresponds to 3 1( , )  , at any given iteration. The green 
dotted line shows the limit for the global monotonous convergence (in the sense of the descent of 

 
2

kc ), which the moving points cannot exceed to satisfy the condition (5.81). The red dotted line 
shows the limit for the prevention of a leakage of the iteration to another basin of the cost function. 

 Eventually, the step size grows and they both reach the point P = P’, 
where the coefficients satisfy 2 3  . The step size derived, P , is an 
upper bound to prevent the change of  2 . 

 Hereinafter, the coefficient  2  may change  to  2 3   if the step 
size gets larger. When this happens, the iteration is still monotonous 
convergent until the points S and S’ are reached. This latter state is 
given by the intersection of the green dotted line (determined by the 
initial black circle) and the blue arrows. At this situation, we can derive 
the bound for the step size S , which guarantees the stability of the 
algorithm. 

 If the step size grows from this value, we cannot guarantee the 
monotonous descent of the quotient 2c , which is our condition for the 
stability of the algorithm. This situation is shown by any position 
between the points S and S’, and the points B and B’, where the 
condition (5.81) is violated. 
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 Finally, if the step size gets sufficiently large, the points B and B’ are 
reached. This latter state is given by the intersection of the red dotted 
line (given by the locus of points where (2) (1)   ) and the blue 
arrows. There is a risk of change of the  1  coefficient which 
potentially changes the basin of the cost function where the iteration is 
located. The step size B , derived from this condition, is an upper 
bound to prevent the leakage of the algorithm from the initial basin of the cost 
function. 

The following subsections detail the derivation of these three upper bounds, 
using the normalized step size  . 

A step size that prevents the change of the ࣊(૛) coefficient: ࡼࣆ 

The following Theorem establishes this initial upper bound for the step size, 
which can be seen in Figure 5.5 for its normalized version P . 

Theorem 5.7 (A step size that prevents the change of the ࣊(૛) coefficient) 

Given the extraction vector  ku , the value of the cost function   k u , and the 
coefficient  

 
2

k
 , any step size    

P
k k   prevents the change of the  2  

coefficient, where 

  
 

 
 

  

2

2

2

2P

k

k

k
k











u

u
. (5.83) 

Proof: Let us suppose the worst case, where 

  
  0k

i  , for 3i  . (5.84) 

This means that, when the iteration (5.65) executes, the coefficients 
 
  , 3k

i i   are going to rise up due to the absolute value, and so are in risk 
of becoming greater than  

 
2

k
  (there is a change of the  2  coefficient). 

We can impose a condition on  k , so (5.81) is satisfied: 

    
 

 
 

 
   

 
   

 
   

 
   

 
 

 
 

 
1

1 2 2
21

1 11 1

, for 2.
kk kk k k

ik ki
i k k k kk k

c c i
  

  

    

    






 
     

 
 (5.85) 
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The absence of the modulus operator in the denominator of the second 
equality is due to the fact that  

   
1

kk
  , which imposes an initial upper 

bound for the normalized step size. However, by noting (5.84), the middle 
inequality imposes an stricter condition on  k : 

  
     

 
   

2
k k kk k

i         , for 3i  . (5.86) 

Finally, the last inequality is due to the fact that we are subtracting the 
same quantity  k  to both numerator and denominator. 

If the condition (5.86) is satisfied, the coefficient  2  does not change 
between two consecutive iterations. By noting that    k ku g  and by 
substituting (5.67) in (5.86), one can translate this condition from  k  to 

 k , 

 

      
 
        

    
 
 2

2 2 22

2 2 2
2

k
k k kk k k

k k k
  


    

 
   


u u

u u
. (5.87) 

Finally, by solving for  k , we get the initial upper bound for the step size 
presented in this Theorem. 

∎ 

This step size prevents the change of the  2  coefficient, through iterations. It 
is an upper bound that guarantees the global monotonous convergence. 
However, it is slow when compared to Newton-Raphson or step size that uses 
the second order information, so another fast and stable upper bound can be 
proposed. 

A step size that guarantees the monotonous convergence: ࡿࣆ 

There is still a margin for  k  to satisfy the monotonous convergence condition 
(5.81). Thus, a larger upper bound for the step size can be established. The next 
Theorem presents another upper bound for  k , which can be seen in Figure 
5.5 for its normalized version S . 

Theorem 5.8 (A step size that guarantees the monotonous convergence) 

Given the extraction vector  ku , the value of the cost function   k u , and the 
coefficients  

 
1

k
  and  

 
2

k
 , any step size    

S
k k   guarantees the stability of 

the algorithm (in the sense of the monotonous descent of  
2

kc ), where 
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  
 

 
 

 
 

  

2

2 1

2

1 1

k

k

k
k

S

k
 




 


 

u

u
. (5.88) 

Proof: Although the condition (5.86) is not satisfied now, we can derive an 
alternative condition for  k , so (5.81) holds: 

    
 

 
 

 
   

 
   

 

 
   

 
 

 
 

 
1

2

1 1

1

1
1 1

2 , for 2.
k kk kk

k k
i k k k

i

k
i

k k
c c i

 

   

  

     







     

 
 (5.89) 

The second equality is due to the same fact that we exposed in (5.85). The 
middle inequality comes from applying (5.84) to the absolute value. The 
last inequality forces a condition on  k  so as to (5.81) is strictly satisfied: 

 
 

 
   

 
 

 
 

 
 
   

 

 
 

 2 2
2

1 1 1

k kk
k

k
k

k
k

k k
 



  


  

  



   


 (5.90) 

In this case, condition (5.86) is not necessarily satisfied, so  2  may 
change. However, this is not a risk for the convergence, as long as (5.81) is 
still satisfied. Therefore, the quotient  

2
kc  has a monotonous descent 

through the iterations. 

By noting that    k ku g  and by substituting (5.67) in (5.86), one can 
translate this condition from  k  to  k , 

  
 

 
 

 

 
  

 
     

 

 
 

    
 
 2

2
2 1 2

2 2

1

2
1 /

1 .
2

k k k
k k k k k

kk

k
k

  
 



  
   






 
  
 







 u u
g

u

 (5.91) 

Finally, by solving for  k , we get the upper bound for the step size 
presented in this Theorem. 

∎ 

The value  k
S , which is greater than  k

P , is the maximum value for the step 
size which guarantees that the global monotonous convergence condition is 
true. 
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A step size that prevents the leakage from the current basin of the cost 
function: ࡮ࣆ 

The next bound for the step size is located in the region where we cannot 
guarantee the monotonous convergence of the algorithm. However, it is 
important to know whether the update equation can lead the extraction vector 
to a point of the surface of the cost function that is outside of the basin where it 
was initialized. 

If so, a convenient initialization may not guarantee the convergence to a certain 
solution, because it is possible for the iteration to escape from the desired basin. 
This can be seen in Figure 5.1, where the cost function has two basins, each one 
corresponding to the extraction of one of the two sources. The next Theorem 
presents another upper bound for  k , which can be seen in Figure 5.5 for its 
normalized version B . 

Theorem 5.9 (A step size that prevents the leakage from the initial basin of the cost 
function) 

Given the extraction vector  ku , the value of the cost function   k u , and the 
coefficient  

 
1

k
 , any step size    

B
k k   prevents the leakage of the algorithm 

from the basin where it is located, where 

  
 

 
 

  

2

1

2

2
B

k

k

k
k











u

u
. (5.92) 

Proof: The step sizes    
S

k k   do not guarantee the monotonous 
convergence of the algorithm (in the sense of the descent of  

2
kc ). 

However, a condition for the preservation of the actual basin is given by 
ensuring that 

    
 

 
 

 
   

 
   

 

 
   

 
 

 
 

1

1 1 1

1
1

1
1

1 , for 2.
k kk kk

k
i k k

i

k k
i

k k
c i

 

   

  

     







     

 
 (5.93) 

The process is the same that we followed in the proof of Theorem 5.8. Only 
the last inequality differs, and forces a condition on  k  so as to  1 1k

ic    is 
strictly satisfied: 
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 

 
   

 
 

   
1

1

1
k

k k

k k

k




  
 

   


 (5.94) 

By noting that    k ku g  and by substituting (5.67) in (5.94), one can 
translate again this condition from  k  to  k , 

 
 
 

 

 
  

 
 

      

1 1

2

222 2 2
k

k k k k
k k k

 

  
  

 
     
 
 

g
u u u . (5.95) 

Finally, by solving for  k , we get the main result of this Theorem. 

∎ 

The value      
B S
k k k

P     is the maximum value for the step size that 
guarantees that the algorithm does not escapes from the basin where it is. 

5.4.4 Practical estimators: the proposed step size 

As we have said, the step sizes    
S

k k   do not guarantee the stability of the 
algorithm, so one cannot use them in practice. Nevertheless, the upper bounds 

( )
S

k  and ( )
P

k  presented in the previous discussion may be used, but they 
depend on unknown values. In this subsection, we provide practical estimators 
for them, so they can be computed and used in adaptive algorithms. 

Evaluating the norms of the gradients 

We can combine the decomposition of the gradient of the perimeter (5.58) with 
the fact that the matrix V  in (5.52) belongs to the unitary group, to express the 
norm of the vector of perimeters as 

    2 2 S L y L y   
ug

L . (5.96) 

On one hand, the perimeter  L y  can also be expressed in terms of the inner 
product (5.43), so the cost is 

      2 , L yL y



  u

u
u

u u
. (5.97) 

On the other hand, the norm of the gradient of the cost function is defined by 
the inner product  
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      2
, .       

u u u
u u u  (5.98) 

By substituting (5.3) in (5.98), 

 

         

   

2

2 2

2

, ,
2 2

2 , .
2

L y L y

L y

  



 





 
  




u u
u

u

u uu u u
u u u u

u u
u u

 (5.99) 

The first two terms are norms, and the third one can be simplified by using the 
relation (5.97), so 

          
2 2 2

2

2 4 3

2 ,

4 2

L y L y
 

 



 
   u u

u

uu u
u u

u u u
 (5.100) 

Finally, by using the equivalence (5.96) in the first term of the right side, 

        2 222
2

2 4 24 4 2
S  

   
u

u u uL
u

u u u
, (5.101) 

which is equivalent to 

     22
2

24
S 




 
u

L u
u

u
. (5.102) 

This relation will be used later to relate two interesting step sizes. 

Bounds for the non-negative normalized coefficients 

In the following Theorems, some useful bounds for the  
 k

i  parameters are 
presented. We use the “hat” notation ( )

( )
ˆ k

i  because these bounds can also act as 
practical estimators, so they can be computed at each iteration from the 
available data. 

Theorem 5.10 (Upper and lower bounds for the ࣊ࢼ(૚)  coefficient) 

The non-negative normalized coefficient  
 

1
k

  is upper and lower bounded: 
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with 
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Where  k
NR  is the Newton-Raphson step size from Theorem 5.1. 

Proof: On one hand, the upper bound can be obtained from the definition 
(5.64). Since  

( ) ( )
1

k kg  g , we have 

 
 
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1

1
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
 . (5.106) 

On the other hand, the lower bound for  
 

1
k

 , namely  
 

1 ,
ˆ k

MIN , is not as 
tight as the previous one. By using (5.56) into the cost function (5.1), 
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By noting that  
 

 
 

1
k
i

k
   , for 2i  , we have 

     
( )

1

2
.k k

S u L  (5.108) 

Therefore, by using the relation (5.102), the lower bound for  
 

1
k

  is given 
by 
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If we multiply both numerator and denominator of (5.109) by 
    1
k L u , 
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We can identify in this expression the Newton-Raphson step size from 
(5.10), yielding to the lower bound presented in the Theorem above. 

∎ 

Theorem 5.11 (A lower bound for the ࣊ࢼ(૛) coefficient) 

The non-negative normalized coefficient  
 

2
k

  is lower bounded: 
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with 
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Where  k
NR  is the Newton-Raphson step size from Theorem 5.1. 

Proof:  The derivation of the lower bound for is shown here. By using the 
bound (5.106) in (5.107), and noting that    

( ) ( )
2

k k
i   , for 3i  , we have 
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Therefore, by substituting 2
SL  with the help of the relation (5.102), the 

lower bound for  
( )

2
k

 , namely  
( )

,2
ˆ k

MIN , results: 
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By using the special binomial product 

     
           2
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k k kL L L       u u u , (5.115) 

we obtain 
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From this expression, one can identify again the Newton-Raphson step size 
(5.10)  to obtain the lower bound for  

( )
2

k
 . 

∎ 

These upper and lower bounds for the non-negative normalized coefficients can 
be used to derive practical step sizes that satisfy the Theorems of Section 5.4.3. 

A practical estimator for the ࡼࣆ step size 

By substituting (5.112) in the value  
( )

2
k

  of condition (5.83), a practical estimator 
for  k

P  is obtained, that always satisfies the Theorem 5.7: 
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Note that all the quantities involved are known at each iteration of the 
algorithm. 

A practical estimator for the ࡿࣆ step size 

By substituting the lower bounds (5.105) and (5.112), respectively, into the 
values  

( )
1

k
  and  

( )
2

k
  of condition (5.88), a practical estimator for ( )k

S  is 
obtained, that always satisfies the Theorem 5.8: 
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that can be rewritten as 
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where  k
NR  is the Newton-Raphson step size, and  

0
k  is 
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The step size (5.118) is always below the maximum step size that satisfy 
condition (5.81), so it guarantees the global monotonous convergence without 
sacrificing the speed of the algorithm. That makes  ˆ k

S  our recommended step 
size for the BCA extraction algorithm. 

Note from (5.119) that ( ) ( )ˆ k
S

k
NR   and    

0ˆS
k k  . When the algorithm starts, the 

proposed step size ( )ˆS
k  has a value similar to  

0
k . However, when the 

iterations are executed and the algorithm begins to converge, it tends towards 
the value of the Newton-Raphson step size, which may be unstable at the first 
iterations. 

5.5 Computer simulations 
We made some computer simulations, in order to illustrate the results presented 
in previous sections. 

 In the first experiment, a set of 3n   complex QPSK signals (bounded 
sources) were considered. The length of each source was 1000T  . 
These signals were mixed in a memory-less MIMO system yielding to 

3m   observations. The entries of the mixing matrix were randomly 
generated from a Gaussian distribution. The observations were pre-
whitened before running 50 iterations of the BCA extraction algorithm 
described in Chapter 4. 

In Figure 5.6, the value of the relative remaining cost 
  ( )

min min/k  u  during the execution of the algorithm is shown. 
All the step sizes used in these simulations were computed by its 
estimators, presented in the previous section. 

By using the Newton-Raphson step size, we obtain the red curve. As 
can be seen in the figure, the convergence is very fast but this value 
does not guarantee a global monotonous convergence, so it is not a 
recommended option. Indeed, we have selected an example where this 
step size converges to a solution far from the basin where it was  
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Figure 5.6 – First experiment. We show the remaining value of the normalized cost 
function, for four different step sizes. The NR step size does not converge in this example. 
The blue line corresponds to  ˆ k

S , the red line to the Newton-Raphson step size, and the 
green line to  ˆ k

P . The black dashed line corresponds to a fixed step size of value 0.01.  

initialized. The step size proposed in (5.118) yields to the blue curve. 
The corresponding algorithm is not as fast as the previous one, but it 
does guarantee the global monotonous convergence, so it is the 
recommended option. 

The execution of the algorithm using the step size (5.117) yields to the 
green curve. Although this value also guarantees the global 
convergence, the iteration is slow when compared to the maximum step 
size. Finally, a fixed step size of value 0.01F   is presented for 
comparison. It can be seen that the corresponding algorithm is very 
slow and also does not guarantee the convergence to a local solution. 

 The second experiment is conducted with 2n m   for the ease of the 
graphical representation. The Figure 5.7 shows the movement of the 1g  
and 2g  coefficients on the two dimensional plane, depending on where 
the algorithm is initialized. As in the example illustrated in  Figure 5.4, 
the perimeter of the source 2 is greater than the perimeter of the source 
1, and there is a change of the direction of convergence that 
corresponds to a saddle point of the cost function. 
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Figure 5.7 – Second experiment. The blue arrows show the behavior of the 1g  and 2g  
coefficients on the two dimensional plane, during several executions of the first iterations of 
the Bounded Component Analysis extraction algorithm. (left) A fixed step size 0.01F   
is used. (center) The Newton-Raphson step size  is used. (right) The step size  k

S   is used. 
The straight red lines correspond to the points of initialization where the movement is so 
strong to guarantee the convergence. The green dashed line corresponds to the direction of 
the vector SL , and divides the plane in two regions of convergence. 

Three types of step sizes were compared. In the left figure, a fixed value 
of 0.01F   is used, which results in non-stable points near the origin 
(the step size cannot adapt to the thin place where it is descending). The 
center figure corresponds to the execution of the algorithm with the 
Newton-Raphson step size. Points far from a local minimum have a 
large value for  k

NR , so the monotonous convergence is not guaranteed. 
Finally, the right figure shows the plane when the proposed step size 
(5.118) is used. All of the points of the plane converges (in the sense 
given by (5.81)) to an axis, thus extracting the corresponding source. 
This corroborates the behavior observed in the Figure 5.4.  

 The third experiment consists on the extraction of a bounded 
communication signal (BPSK, QPSK or 32-QAM) from a mixture of 

10n m   observations and sources. The Figure 5.8 studies the values 
of the three  k

i  coefficients (for the ease of the interpretation, they 
have not been ordered). 
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Figure 5.8 – Third experiment. This figure shows the behavior of the ( )k
i  coefficients 

during the 100 iterations of the BCA extraction algorithm. (upper) Comparison between 
the ( ) ( ) ( )

1 2 3, ,k k k    coefficients when using the proposed step size (solid lines), and when 
using the Newton-Raphson step size (dotted lines). (lower left) The movement of the ten 

( )k
i  coefficients when using the proposed step size. (lower right) The movement of the ten 
( )k
i  coefficients when using the Newton-Raphson step size. 

In the upper figure, it can be seen that the Newton-Raphson step size is 
faster than the proposed solution. However, as it is shown in the lower 
figures, the proposed step size prevents the change of the  1  
coefficient (the red line that grows and stabilizes at a non-zero value), 
thus ensuring that the extracted source is the one that is located at the 
bottom of the basin where the algorithm was initialized. 
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Figure 5.9 – Third experiment. This figure shows the convergence of the Newton-Raphson 
step size (right) and the proposed step size (left). 

In addition, in the Figure 5.9, the upper and lower bounds for the step 
sizes are shown. The lower bounds ( )

,
ˆ k

i MIN  can be used as estimators for 
the ( )k

i  parameters, and the resulting practical step size    ˆS S
k k   

guarantees the monotonous convergence of the algorithm. 

5.6 Conclusions 
This Chapter addresses the study of the global monotonous convergence of the 
BCA extraction algorithm. We started by studying the non-differentiable points 
and the special shape of the optimization surface. From here, we focus on the 
analysis of the update equation and on the selection of appropriate step sizes. 
The main results of this study are summarized below: 

 We derive first and second order local approximations to the shape of 
the cost function, which yields to the fast (although potentially 
unstable) options known as the Newton-Raphson step size and the step 
size that uses the second order information. 

 After the analysis of the geometry of the update equation, we set three 
conditions in the pursuit of specific behaviors of the iterations. These 
conditions lead to three upper bounds for the value of the step size, but 
they depend on unknown values so they cannot be used in practice. 
One of these bounds guarantees the global monotonous convergence of 
the algorithm, in the sense of the descent of a certain coefficient. 

 Practical step sizes must be proposed if one aims to use the results of 
the convergence analysis in practical algorithms. By using realistic 
bounds, we derive these practical step sizes, whose structure reveals 



 Theory and Applications of BCA in Complex-Valued Signal Processing 

 

169

dependence with the well-known Newton-Raphson step size. 

Three computer experiments shows how the parameters presented during 
the study of convergence behaves in practical applications. The proposed 
step size is satisfactorily fast and also guarantees the monotonous 
convergence to a local minimum, wherever it is initialized. 
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6 BOUNDED COMPONENT 
ANALYSIS OF THE TRAINING 

ERROR 

 

 

 

 

 

 

 

n this chapter, we aim to derive an alternate framework for the Bounded 
Component Analysis extraction algorithm. In addition to the blind model, 
there is also a supervised model for the problem of source extraction, which 

introduces subtle differences and similitudes with the unsupervised criteria 
presented in previous chapters. 

I

 

I never teach my pupils; I only attempt to provide the 
conditions in which they can learn. 

- A. Einstein - 
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6.1 Introduction 
This chapter reviews our results for the problem of supervised signal extraction 
from linear mixtures of bounded sources, mainly based on the works (Cruces, 
2011) and (Aguilera-Bonet, 2012). We assume a short training sequence (only for 
the source that we want to extract) and an under-determined noisy mixture. 

We introduce a cost function based on the convex perimeter of the training error 
between the estimate of the desired source and the training sequence. We also 
show that one can achieve a good estimate of the desired signal by minimizing 
the previous cost function. 

The problem can be motivated by the interference cancellation in wireless 
communications systems. The desired signal is the information that comes from 
the antenna of a single user, and the remaining sources are treated as 
interference from other users. Those signals consist on a sequence of complex-
valued symbols that are drawn from a random process whose probability 
density function is represented by a constellation. Due to the multiple accesses 
to the medium, these systems tend to operate in interference limited scenarios 
and the mixture usually becomes under-determined. 

The receiver consists on an array of m  antennas, and in real scenarios the 
number of them can be lower than the number of transmitters n , turning the 
problem into under-determined. There are some existing techniques that can 
work for this kind of problems like the MMSE, Zero Forcing (ZF) or sphere 
decoding (see (Damen, 2003) and (Shahbazpanahi, 2006)), but they require the 
exact knowledge of the mixture matrix or of the training sequence for all the 
sources, information which we assume unavailable. 

The chapter is organized as follows. In Section 6.2, the mixture model and the 
concept of training error are presented. Section 6.3 introduces under-determined 
mixtures, which yields to imperfect extractions due to the lack of degrees of 
freedom. In Section 6.4, the BCA framework is extended to supervised 
problems, which yields to the algorithm studied in Section 6.5. 

The main differences and similitudes of the proposed criterion with the MMSE 
criterion are highlighted in Section 6.6. Some of these characteristics are based 
upon the geometry of the norms involved in each option, which are studied in 
Section 6.7. In Section 6.8, we add a constraint on the optimization problem to 
solve the issues related to the presence of noise. Finally, Section 6.9 presents 
some computer simulations to show the performance of the proposed method, 
and Section 6.10 condenses the conclusions to this chapter. 
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6.2 Signal Model 
In this section, we establish the model used for the supervised or semi-blind 
version of the Bounded Component Analysis extraction algorithm. This means 
that we use a small training sequence to solve the extraction problem. When this 
is done and if the model does not change, we can use the same solution to 
extract unknown signals. 

The semi-blind criterion proposed here shares many similarities with the blind 
version of BCA presented in the previous chapter, but their differences force us 
to introduce the new model. 

As in the blind case, consider a sequence of observations, drawn from a 
stationary random vector process, 

  
 

 

1
m

m

x k
k

x k
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  
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x   . (6.1) 

We assume that this vector of observations admits the following linear model, 

      k k k x As q , (6.2) 

where 
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represents a vector of n  bounded sources, m nA    is the mixing matrix and 
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is a bounded16 noise vector. 

The linear signal extraction problem consists on determining the extraction  

                                                        
16 For the sake of simplicity, we assumed in the theoretical derivations of the proposed approach that 
the noise is bounded. However, in practice one can relax in part this assumption because for most of 
the practical distributions, the empirical support of a finite set of samples is almost always bounded. 
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Figure 6.1 – This block diagram shows the signals and the systems presented in the training 
stage of a supervised signal extraction algorithm. 

vector that leads to the best linear estimate, in some given sense, of the signal of 
interest, 

     Hy k k b x . (6.5) 

As in the blind scenario, mb   is the extraction vector. Introducing the 
residual mixture vector, H n g A b  , we can express the output as a linear 
combination of sources and noise, 

      H Hy k k k g s b q . (6.6) 

Hereinafter we assume, without loss of generality, that this signal of interest is 
the first one, so     1ˆy k s k . This estimate is computed from the observations, 
the model and all our prior knowledge of the signal of interest, which in our 
case includes a short training sequence,    1 10 ,s s T . When the length T  is 
small compared to the entire length of the sequences, the method is called semi-
supervised o semi-blind. 

The main difference between this supervised method and the blind method 
comes here. The next concept is essential to derive the criterion needed in the 
supervised version of the BCA extraction method. 

Definition (Training error): The estimation error (or training error) is defined as the 
difference between the desired signal and the estimated signal, 

                1 1 1ˆ H He k d k y k s k s k s k k kg s b q      . (6.7) 

In Figure 6.1, an overview of the model used in this chapter is shown. The 
extraction vector b  is synthetized by using the training error. This can be 
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analyzed by components, 

              1 1 2 2 1 11 n n m me k g s k g s k g s k b s k b q k             . (6.8) 

Or by grouping in vector form, 

            
1 1

( )
m

H H
ji

i

n

j
j

iy k k k qk ks b1 1δ g s b δq g 

 

       , (6.9) 

where    1,0, ,0 T
1δ  is the unit vector. From (6.9), one can observe two 

contributions to the error, one coming from the residual interference due to the 
departure of the residual mixture vector g  from the ideal vector 1δ , and 
another coming from the additive noise component in the linear estimate. 

6.3 Under-determined Mixtures 
As we use a small training sequence, we have some advantages over the blind 
criterion. However, we can complicate the model to exploit the extra 
information provided by the pilot symbols in that training sequence. 

The first addition to the model was the inclusion of noise, represented by the 
vector of random processes  kq . The effect of the noise can amplify or cancel 
the value of the extraction vector, so it must be treated carefully. 

In addition to the presence of noise, this time we work with an under-
determined mixture. We assume therefore more sources than sensors (n m ), 
so the columns of the matrix A  constitute an over-complete basis of m , and 
thus the mixture is non-invertible. Therefore, the perfect recovery of  1s k  is not 
possible, in general, and one can only expect a recovery  y k  that contains a 
certain amount of additive noise and interference from the other sources. 

Among the existing approaches aimed to solve under-determined problems, 
there are blind techniques like (Comon, 2004) or (Zarzoso, 2006) that restore the 
separability of the sources by exploiting their discrete nature and the knowledge 
of their alphabet. The solution of the problem can be regularized if one assumes, 
additionally, the prior knowledge of a training sequence like we do in this 
chapter. This assumption is currently plausible in most of the digital 
communications standards. 

However, supervised identification techniques like standard least squares 
(Shahbazpanahi, 2006 p. 3583) or Zero Forcing (Johnson Jr, 1995), still require 
training sequences for all the sources and they are not usually suitable in under-
determined scenarios. Also, sphere decoding techniques can be used to solve 
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under-determined problems, but they require the knowledge of the channel 
state information (Damen, 2003 p. 2397). On the contrary, our proposal aims to 
exploit the bounded latent structure of the observations together with some 
partial knowledge of the desired source, only in the form of one training 
sequence. 

Note that any under-determined mixture with m  observations and n m  
sources can be transformed into a determined mixture, by simply assuming that 
the contribution at the observations of the n m  uninteresting sources forms 
part of the additive noise. We do not prefer this latter notation because it hides 
part of the statistical known structure of the noise. 

The following sections extend BCA for noisy under-determined mixtures and 
semi-supervised problems, with the aim to reveal the bounded component 
structure of the training error. 

6.4 Bounded Component Analysis of the Training Error 
Let us unify the notation of the bounded components of the estimation error. By 
examining (6.9), the following vectors can be defined. 

Definition (Extended vector of coefficients): The extended vector of coefficients groups the 
coefficients corresponding to the residual mixture, and those corresponding to 
the noise term, 

 n m1δ g
g

b
 

      
. (6.10) 

Definition (Extended vector of sources): The extended vector of sources groups the 
sequences of sources and noise, both of bounded convex support, 

  
 
 

n mk
k

k
s

s
w

 
 
    
  

. (6.11) 

Thus, (6.9) can be rewritten as 

          
1

n mH

i i
i

e k k g s kg s






     . (6.12) 

As a BCA method, the supervised source extraction algorithm is based on the 
concepts of geometry presented in Chapter 4. Indeed, we are going to quantify 
the estimation error using its convex support. 
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By minimizing the convex support Se , we are minimizing the error ( )e t  itself 
and, therefore, making the estimate ( )y t  closer to the desired signal 1ˆ ( )s t . This 
is similar to the idea behind the MMSE method, in which the estimation 
becomes more accurate by minimizing the power or the variance of the training 
error. 

This time, the main assumptions of BCA operates on the vector of extended 
sources. Thus, the Theorem 4.2 states that the Cartesian decomposition of the 
joint convex support of this extended vector of sources, i.e., 

 
1 n ms sS S Ss 

     , (6.13) 

implies the direct decomposition of the convex hull of the error: 

 
   1 1 n m n mg s g s

S S Se  
    

   , (6.14) 

where the operator   denotes the Minkowski sum between sets. 

6.4.1 The convex perimeter functional as a cost function 

This section introduces a convenient measure of error that will be used as a cost 
function in the next sections. The convex perimeter of the training error is 
defined in the way shown in Section 4.5. It is the perimeter of the convex hull of 
the support set of the random variable, i.e.,        e kL e k S . 

Also, it has the same properties of additivity, homogeneity and invariance 
under translations and rotations presented in Theorem 4.4. By applying these 
properties to (6.14), we obtain the expression that relates the perimeter of the 
error with the perimeter of the extended sources, 

        
1

m n

i i
i

L e k g L s k




   b  . (6.15) 

So, the optimization problem is 

    arg minopt L e k
b

b . (6.16) 

After rewriting the result in terms of the sources and the noise, we obtain 

           
1 1

n m

i j ji
i j

L e k L s k b L q k1δ g
 

    . (6.17) 

This reveals that the convex perimeter of the error is a weighted 1-norm of the 
mismatch vector  1δ g , plus a nuisance term coming from the convex 
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perimeter of the components of the noise. 

6.4.2 Structure of the convex perimeter 

Suppose that D  is a diagonal matrix whose elements are   iL s k , for
1,..., ,i m n   

 
  

  

1 0

0 m n

L s k
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 
 

  
 
 






D



  



. (6.18) 

We define the auxiliary affine function of the extraction vector, 
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. (6.19) 

Using this, we can rewrite the convex perimeter (6.17) as the composition of the 
1-norm function and the auxiliary affine function, i.e., 

     
1

L e k G b . (6.20) 

The 1-norm and  G   are both continuous and piece-wise affine functions of 
their arguments, thus, these properties are inherited by   L e k . Moreover, this 
means that the convex perimeter   L e k  is a convex function of the extraction 
vector (see (Boyd, 2009)). 

The 1-norm minimization subject to linear/affine constraints is one of the 
preferred approaches in the field of Compressed Sensing for the pursuit of sparse 
solutions of under-determined systems of linear equations. See (Donoho, 2006) 
for an introduction on this promising area. 

The properties of the 1-norm are responsible for most of the features of the 
solutions obtained by the minimum convex perimeter criterion. At this point, 
we are able to present a convenient algorithm that minimizes the cost function. 
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6.5 The Supervised BCA Extraction Algorithm 
In this section, we present the gradient descent algorithm used to minimize the 
criterion of minimum convex perimeter (6.16). 

6.5.1 The gradient of the convex perimeter 

The criterion for the supervised extraction of a bounded source is the 
minimization of the convex perimeter of the training error. The proposed 
descent algorithm needs the derivation of the gradient of the cost function. One 
can apply the rules of Wirtinger Calculus to  

  
1

V

i
i

e


 b , (6.21) 

where ie  are the edges between samples of the convex hull of the error, 

    1i i ie e e     , (6.22) 

with  0 , , =conv .V e     

Theorem 6.1 (Gradient of the convex perimeter) 

Given the cost function (6.21), the gradient needed for the update of the gradient 
descent algorithm is computed as 

  
1 2

V
i i

i i

e
e






 
  

b

x
b . (6.23) 

The segments ie  and ix  are computed from (6.22) and    1 ,i i i    x x x  
respectively. Note how the only convex hull needed is  conv e . 

Proof: We start with the expression 

          He k d k y k d k k    b x . (6.24) 

The gradient of the cost function is 

    
1

V

i
i

L e e  



     b b b
b . (6.25) 

The gradients of the edges ie  and ie  are 
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    H
i i ie       

b b
b x x , (6.26) 

    T
i ie 
      

b b
b x 0 . (6.27) 

By applying Wirtinger Calculus on the moduli ie , 
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 (6.28) 

The first term is zero because of (6.27). By substituting the gradient 

   2i
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 (6.29) 

 into (6.28), we obtain 

   2
i i

i
i

e
e

e

 
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u

x
. (6.30) 

Finally, the summation of all the gradients of the segments results in (6.23). 

∎ 

In Table 6.1, the pseudo-code of supervised BCA extraction algorithm is shown. 

6.5.2 The step size 

As in the previous chapter, it is important to select a proper step size. The 
derivation of the expressions for the step size follows the same method that for 
the blind criterion. That is, the first and second order approximations of the local 
behavior of the cost function. 

The Newton-Raphson step size 

The Newton-Raphson (NR) step size is very similar to the blind version, 

  
  2

,
2








b

b

b
 (6.31) 
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Inputs 
 kx : whitened observations 

 d k : training reference 

Repeat until 
convergence 

     He k d k k b x : training error 

Computation of 
the gradient 

 0 , , =convV e     

Repeat for 
1, ,i V   

   1i i i    x z z
 

   1i i ie y y      

 
1 2

V
i i

i i

e
e






 
  

b

x
b  

 : adaptive step size 

    
b

b b b : update 

/b b b : normalization 

increase the iteration index 

Outputs 
b : extraction vector 

   Hy k k b x : estimate of the source 

Table 6.1: Pseudo-code of a supervised BCA extraction algorithm. 

where the gradient is computed from (6.23). The only difference comes from the 
fact that min 0   for the supervised version, because we aim to cancel out the 
error sequence in a perfect separation. 

A step size that uses the second order information 

This step size for the supervised gradient descent algorithm is given by the 
same expression that for the blind version (5.16), but taking again min 0  . 
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, (6.32) 
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Figure 6.2 – This figure shows, in logarithmic scale, the comparison of the value of the cost 
function   b , when the Newton-Raphson (blue) and the step size that uses the second-
order information (green) are used in a supervised extraction. We study two different 
cases: having 6 QPSK sources (dotted) and having 20 QPSK sources (solid). 

where  

   2 2 ,m m 
 

 
  
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b b
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H HH b
H H


  (6.33) 

is the augmented Hessian. To obtain practical expressions, we use the following 
complex derivatives: 
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x
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 . (6.35) 

The sub-matrices of (6.33) are computed by applying the operators   /  b  and 
  /   b  to the transpose of the gradient of the cost function (6.23): 
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In the Figure 6.2, the value of the cost function   u  in a computer simulation 
is shown for the two step sizes proposed in this section. 

The parameters are the same used in the simulations of Section 5.3 in the 
previous chapter. We used 6n m   QPSK sources of length 1000T  , and 

20n m   QPSK sources of length 5000T  . It can be seen that the gain 
between both step sizes is greater for high dimensionality problems. 

As in the blind case, the step size that uses the second order information 
achieves a faster convergence than the Newton-Raphson step size (in the sense 
of the number of iterations), although the computational complexity is greater in 
the former case. 

6.6 Structural Similitudes and Differences with the Mean 
Square Error 

The convex perimeter of the training error is a good measure of the accuracy of 
the estimation. In this section, we compare the structure of (6.17) with a well-
known approach used in signal processing. 

For sources and noises which are spatially uncorrelated and mutually 
uncorrelated, it is well known that the Mean Square Error of the linear estimate 
is given by 

     
2 22 2 2

1 1
i j

n m

s j qi
i j

E e k b1δ g  
 

    , (6.38) 

where    2
is iE s k  and   2

iq iE q k   are the variances or the sources and 
the noise sequences, respectively. This is a weighted 2-norm of the mismatch 
vector  1δ g , with the variances acting as weighting coefficients, and a 
second nuisance term due to the noise. 

Let us compare the structure and properties of both functions, the minimum 
convex perimeter   L e k  and the variance   2E e k . First, the main 
similitudes are: 
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Figure 6.3 - This figure shows the shape of the MSE (upper row) and minimum convex 
perimeter (lower row) cost functions. On the left column, the 3D representation of the 
surface   is shown. On the right column, a cenital view of the same function is shown. 

 Both functions are composed of weighted norms, and has a term 
corresponding to the residual mixture of the sources and another term 
corresponding to the noise. 

 Both functions are continuous, convex, and free of local minima. 

In spite of these similitudes, there are also some key differences: 

 There is a closed-form solution for the extraction vector which 
minimizes the MSE criterion (6.38), which is given by the Wiener 
solution, presented in Section 3.2. However, there is no closed-form 
solution for the minimum of the convex perimeter (6.17). 

 The convex perimeter function is composed of 1-norms, and the 
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weights are the perimeters of the sources and the noise. On the other 
hand, the MSE function is composed of 2-norms, and the weights are 
the variances of the sources and the noise. The type of the norms 
involved is key to analyze the behavior of the proposed criterion. 

 The criterion of minimum convex perimeter enforces the exact 
cancellation of some of the interferences, while the MMSE criterion tries 
to reduce the overall contribution of all of them. 

 The function (6.17) pursues a sparse structure on the coefficients of the 
extended vector of coefficients 'g , while the function (6.38) minimizes 
the value of all of them but without cancelling completely no one of 
them. 

In the Figure 6.3, examples of the shape of both cost functions are shown, versus 
the value of the coefficients of the global transfer vector 1g  and 2g . Note that 
the minimum of the cost function is reached at the point  1,0 . These properties 
will be highlighted in the rest of the chapter, and most of them will be further 
explained in the next sections. 

6.7 Geometry of the Norms 
The 1-norm and 2-norm are important operators in the definition of practical 
cost functions. In this section we explain the geometry of these norms, and why 
the cost functions based on them have such interesting behaviors (Elad, 2004). 

6.7.1 The 1-norm 

As it is well known, the 1-norm of a vector g  is defined as 

 
11

n
ii

g


 g  . (6.39) 

The absolute value produces points where the function is non-differentiable.  

The goal is to minimize the cost function (6.15), subject to the linear model (6.12). 
Without loss of generality, the following analysis is done with 2m n   and 

     1 2 iL s k L s k L    to simplify the explanations. 

Let us analyze the structure of the problem, 

      
1 2 1 2

1 2, ,
min min i ig g g g

L e k g L g L
   

   , (6.40) 

          1 1 2 2s.t. e k g s k g s k
 

     . (6.41) 
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Figure 6.4 - This figure shows the geometry of the 1-norm discussed in this section. The 
surfaces of equally norm are rhombus. The axes are the coefficients 1g   and 2g . 

At each iteration, the values of   L e k ,   1L s k ,   2L s k ,  1s k , and  2s k  
are fixed. The variables to minimize the cost function are 1g   and 2g . 

The constraint (6.41) is an affine function on the plane  1 2,g g  . Also, the 
function 

 
  

1 2
i

L e k
g g

L
   , (6.42) 

defines a family of level curves on the plane  1 2,g g  . 

In Figure 6.4, a representation of this plane is shown. The dashed line represents 
the constraint (6.41). The solution to this problem, namely  1 2,

opt
g g  , must be a 

point over this line. The family of rhombus on the plane is the geometry locus of 
the points that satisfy (6.42). The radius of these rhombus are defined by the 
value of    / iL e k L . 

The solution to the optimization problem is marked by a red dot, and is given 
by the point of the dashed line that belongs to the rhombus of minimum 
normalized perimeter. No other point of the constraint line is nearer to the 
origin, in 1-norm sense. 

The figure explains graphically why the 1-norm pursues sparse solutions for the 
extended vector of coefficients. A point that belongs to the constraint line and 
simultaneously to the rhombus of minimum normalized perimeter must be on 
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one of the axes. 

This means that one of the coefficients of the vector 'g  is zero and the other is 
non-zero, thus providing a sparse solution. In general, all norms 

p
g , with 

0 1p  , pursue sparse solutions because the point of minimum norm is 
located on an axis. 

6.7.2 The 2-norm 

It is time to analyze the 2-norm in the same way as we did for the 1-norm. The 2-
norm of a vector g  is defined as 

 
2

12

n
ii

g


 g  . (6.43) 

Unlike in the previous case, the 2-norm is differentiable in all its points. We 
follow the same procedure that for the analysis of the structure of the 2-norm. 

The goal is to minimize the MSE cost function, given by (6.38), subject to the 
linear model (6.12). We make the same suppositions that in the previous section. 
To simplify the notation, the variances 2

i  are the same for all the extended 
sources, without loss of generality. The optimization problem now results 

      
1 2 1 2

2 2 2
1 2, ,

2min min i ig g g g
E e k g g 

   
   , (6.44) 

           1 1 2 2s.t. e k g s k g s k
 

     . (6.45) 

The constraint (6.45) is the same that for the previous analysis, so represents an 
affine function on the plane  1 2,g g  . However, the level curves defined by 

 
  2

2 2

2 1 2
i

E e k
g g


   , (6.46) 

are now circles on the plane  1 2,g g  . 

In Figure 6.5, a representation of this plane is shown. The dashed line represents 
the constraint (6.45). The solution to this problem is  1 2,

opt
g g  , and must be a 

point over this line. The family of circles on the plane is the geometry locus of 
the points that satisfy (6.46). The radius of these circles are defined by the value 
of   2 2/ iE e k  . 



6 – Bounded Component Analysis of the Training Error  

 

 

188 

1g

P=1

   1 1 2 2e g s g s
     

1g

2g

 1 opt
g 

 2 opt
g

 

Figure 6.5 - This figure shows the geometry of the 2-norm discussed in this section. The 
surfaces of equally norm are circles. The axes are the coefficients 1g   and 2g . 

The solution to the optimization problem is marked by a red dot, and is given 
by the point of the dashed line that belongs to the circle of minimum radius. No 
other point of the constraint line is nearer to the origin, in Euclidean distance. 

With this figure, we can see why the solution given by the minimization of the 
2-norm has not sparse coefficients. The solution point 'optg  has no zero 
coefficients because it is not located on one of the coordinate axis. 

6.7.3 Geometry of the norms in under-determined problems 

As we presented before in this Section, the understanding of the geometry of the 
norms is crucial to study the solutions given by minimum perimeter of the 
training error and the MMSE criteria. At this point, we aim to do a similar 
graphical interpretation of Section 6.7.1 and 6.7.2 when the problem is under-
determined. 

Suppose a 3-dimensional extension of the study of the norms done before. The 
cost function  

 
  

1 2 3
i

L e k
g g g

L
      (6.47) 

defines a family of concentric octahedrons, in a 3D space whose coordinate axes 
are defined by the coefficients of the extended vector of coefficients. This is  



 Theory and Applications of BCA in Complex-Valued Signal Processing 

 

189

 

Figure 6.6 – Geometry of the discussion presented in Section 6.7.3. This time, the axes are 
the coefficients 1g  , 2g , and 3g  . (left) Geometry of the 1-norm in under-determined 
problems. (right) Geometry of the 2-norm in under-determined problems. 

shown in Figure 6.6 (left) for a certain octahedron, which is supposed to be the 
one that minimizes the cost function. The subspace defined by 

              1 1 2 2 3 3e k g s k g s k g s k
  

         (6.48) 

is the dashed line. The dimension of this subspace is the degree of freedom 
available in the system. Observe how at the contact point of the octahedron and 
the subspace, only one of the three coordinates is zero ( 3g  ). This means that the 
solution  1 2 3,,

opt
g g g    given by the 1-norm may not have all the coefficients but 

one set to zero, thus leading to non-exact solutions but cancelling completely 
some of the interferences. 

However, for the MMSE criterion, this is not the case. The cost function 

 
  2

2

1

2 2

32 2
i

E e k
g g g


      (6.49) 

defines a family of spheres in the 3D space. This is also shown in Figure 6.6 
(right) for the sphere that corresponds to the minimum of the cost function. 
Again, the subspace defined by 

              1 1 2 2 3 3e k g s k g s k g s k
  

         (6.50) 

contains the candidates for the solution. The geometry of the 2-norm places the 
solution  1 2 3,,

opt
g g g    in a point where the dashed line touches tangentially the 
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sphere. In general, this point does not have any coefficients set to zero, so we 
can conclude that the MMSE criterion does not forces the exact cancellation of 
any of the interferences. 

In general, all norms 
p

g , with 1p , does not pursue sparse solutions due to 
the fact that the point of minimum norm is not located on an axis. This 
discussion explains many of the differences found in Section 6.6  between the 
minimum convex perimeter criterion and the minimum MSE criterion. 

The study of optimization problems that pursues sparse solutions is one of the 
most active problems in signal processing, with the recent advances in the field 
of Compressed Sensing. There have been many theoretical and practical 
advances in the last few years. For more information of this topic, see (Eldar, 
2012). 

The cost functions presented in this chapter have a noise term that has an 
influence in the minimization process. This leads to a structural problem that we 
aim to solve in the next section. 

6.8 A Partial Zero-Forcing Criterion 
The presence of noise in the cost function (6.17) leads to the following 
discussion. We may think about minimizing directly this convex perimeter, but 
there is a high risk of cancelling the second term if the noise is strong enough. 
This would mean that the extraction vector b  goes to zero and, therefore, the 
estimated signal (6.5) is null. This is not what we want, so we have to force that 
b  will not go to zero. 

6.8.1 Constraints on the optimization problem 

Therefore, it is a good idea to modify this minimum convex perimeter criterion 
to enforce the joint minimization of the filtered noise while cancelling the 
number of signals that interfere with our desired source. This is usually known 
as a Partial Zero-Forcing (PZF) behavior, because it tries to cancel as much 
coefficients of the residual transfer vector g  as possible, but keeping strong the 
coefficient corresponding to the desired source. See (Johnson Jr, 1995) for an 
introduction to Zero Forcing. 

This PZF-like solution is obtained by the constrained optimization problem 

     0 arg min ,L e k
b

b  (6.51) 
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 1ˆ. . 1,Hs t b a   (6.52) 

where 1â  is an estimate of the column of the mixture matrix A  that 
corresponds with the desired signal. The simplest estimate is given by the 
solution of the MMSE criterion17, but other good estimates can be used instead. 

Let us take a look on the dimensions involved here. The proposed PZF-like 
criterion is able to cancel the contribution of 1m  of the interference signals 
and, simultaneously, to preserve the desired source in  y k . Note that the 
system has only m  degrees of freedom given by the sensors, so unfortunately 
there will be n m  remaining sources that cannot be cancelled by using linear 
techniques. 

The 1m  cancelled sources will be the strongest ones, depending on the 
criterion used. In this case, they are the ones with the largest convex perimeter 

iL . 

The same analysis can be done for the MSE cost function, yielding to the 
optimization problem: 

    2

0 arg min ,E e k
        b

b  (6.53) 

 1ˆ. . 1.Hs t b a   (6.54) 

However, as stated before, the PZF-like solution to this problem does not 
guarantee the exact cancellation of any of the sources. This is only due to the 
characteristics of the 2-norm presented in the MMSE criterion. 

6.8.2 The exact Partial Zero-Forcing solution 

In order to set a theoretical reference and upper-bound in the performance of 
the proposed method with PZF behavior, by using the exact knowledge of the 
mixing matrix A  we compute the exact PZF solution that is closets to the one 
obtained optimizing (6.51)-(6.52). A natural measure of proximity between the 
PZF solutions is the Euclidean distance in the transformed domain of the 
coefficients of the residual mixture. 

In a situation of sufficient high Signal to Noise Ratio (SNR), the strongest 
interference does not come from the noise, but from the undesired sources. 
Thus, we identify the indexes 1 1,..., m    of the 1m  sources that the PZF 

                                                        
17 This estimate is given by the quotient between spatial correlations    2

1 1 1ˆ /E s E sa x . 
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criterion tries to cancel out. These are the sources with the strongest contribution 
to the output    0

Hy k k b z . 

With the help of the estimate of the spatial signature of the desired source 1â , 
we form the matrix 

 
1 11ˆ , ,...,

md   
   a aA a , (6.55) 

where 
1 1
,...,

m  
a a  are the columns of A  corresponding to these indexes. 

The desired exact PZF solution is defined by the following minimum distance 
problem under linear constraints 

    0 2
arg min ,H

E b
b A b b   (6.56) 

 . . .H
ds t 1A b δ  (6.57) 

Theorem 6.2 (The exact Partial Zero-Forcing solution) 

Given the optimization problem (6.56)-(6.57), the extraction vector that gives the 
exact PZF solution closest (in the space of the coefficients of the residual 
mixture) to 0b  is 

       
11 1

0 0
H H H H

E d d d d

 
  1b b AA A A AA A δ A b , (6.58) 

where 0b  is the solution to the minimum convex perimeter criterion with PZF, 
given by the optimization of (6.51)-(6.52), and dA  is the mixture matrix with 
sorted columns given by (6.55). 

Proof: With the help of Lagrange multipliers (see (Bertsekas, 1999)), we form 
the following function that represents the unconstrained optimization 
problem from (6.56)-(6.57), 

        0 0

H

H H H H H
dF



    1

bb

b b b AA b b δ b A λ


. (6.59) 

To find the solution Eb , we minimize this cost function with respect to the 
parameters. First, the conjugate gradient related to the extraction vector, 

   ,
E

H
E dF


    

b b b
0 b AA b λA  (6.60) 

obtaining the relation 
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   1H
E d


 b AA A λ . (6.61) 

On the other hand, by minimizing with respect to the Lagrange multipliers 
and by using 0E E  b b b , we obtain: 

  
00

E

H H H H H
E d E d d

F




      

 1 1

b b

b
δ b A δ b A b A

λ
. (6.62) 

Using the Hermitian of (6.61) in (6.62), one gets the relation 

   1

0
H H H H H

d d d


 1δ b A λ A AA A . (6.63) 

By solving for λ , 

     
11

0
H H H
d d d


 1λ A AA A δ A b . (6.64) 

Finally, by substituting (6.64) in (6.61), and by adding 0b , we obtain the 
exact PZF solution, 

       
11 1

0 0 .H H H H
E d d d d

 
  1b b AA A A AA A δ A b  (6.65) 

∎ 

6.8.3 The gradient of the convex perimeter with PZF 

As we have changed the optimization problem to prevent the null values on the 
extraction vector, the gradient of the cost function must be adapted to this new 
situation. For that, we first reformulate the constrained optimization problem to 
have the structure of an unconstrained optimization problem. Thus, the 
problem (6.51)-(6.52) can be seen as 

    0 arg min ,
b

b b  (6.66) 

where the cost function now includes the constraint within: 

      
1

.
ˆ

H

H

k
L d k
 
  
 
 

b x
b

b a
 (6.67) 

The gradient of the convex perimeter with Partial Zero-Forcing is presented in 
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the following Theorem. 

Theorem 6.3 (The gradient of the convex perimeter with PZF) 

Given the cost function (6.67), the gradient needed for the update of the steepest 
descent algorithm  is computed as 

  
  

1

11 11

ˆ
ˆ2 2ˆ

Re1
H

H

V V i ii i

i ii i
H

ee
e e





 

          
 
 b

xx b
b

a
b ab a

, (6.68) 

where 1â  is an estimate of the first column of the mixing matrix. 

Proof: We start with the following expression for the error sequence: 

          
1ˆ

H

H
e k d k y k d k

k
   

b x

b a
. (6.69) 

The gradient of the cost function is 

    
1

V

i
i

L e e  



     b b b
b . (6.70) 

The gradients of the differences ie  and ie  are 

  
    

   11 2
2 1 1

1 1

ˆ
ˆ ˆˆ

,
ˆ

H
H H

H T

HH
ii i

ie  



 
           
 
 
 

b b b
b a

b a b ab a

b

b

b x

a

xx
 (6.71) 

  
    

   11 2
2 1

1 1

,ˆ
ˆˆ ˆ

H

H
H T

TT
ii

ie  






 
         
 
 
 

b b b
b a

b a

x

b a

b x

a

b

b
 (6.72) 

with 

    1 1
1

1

ˆ

2

ˆ
ˆ

ˆ

T
H

H



 
b

a b a
b a

b a
. (6.73) 

By substituting (6.73) into (6.71) and (6.72), 
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    
 

1

1 1

ˆ

ˆ ˆ2
1 ,
H

i
i i H

H

e

 
     
 
 

b

a

b a b a

b x
x  (6.74) 

    
 

1

1 1

1 ˆ

ˆ2
.

ˆH

T
i

i H
e




 
   
 
 

b

a

b a b a

b x
 (6.75) 

The chain rule on the moduli ie  produces 

 

       
    

 
  

 

1

1 1

1

1 1

1 ˆ

2 2

1 ,
2

ˆ ˆ

ˆ Re

ˆ ˆ

ii
i i i e i ie

T H
i i i i

i i
i

H
i

H H

H H

i

i i
i

e e e e e

e e
e

e

e
e

e

   




 







          

            
 
         
 

b b b

a

b a b a

a

b

b x b

x

a

x
x

b

a
x

b

 (6.76) 

where the following gradients have been used: 

   / 2 ,
ie i i ie e e

      (6.77) 

   / 2
i

i i ie
e e e

     . (6.78) 

Finally, the summation of all the gradients (6.76) results in (6.68). 

∎ 

This new gradient can be directly substituted into the algorithm presented in 
Table 6.1, to obtain the supervised BCA extraction algorithm with Partial Zero 
Forcing. 

6.9 Computer Simulations 
In this section, we aim to illustrate the majority of the concepts presented before. 
For that, we run several computer simulations varying different parameters.  

6.9.1 Signal extraction in an under-determined mixture 

Our first experiment is the extraction of the symbols of a desired QPSK source 
from a linear under-determined mixture. In this example, we consider n  
sources interfering, but only m  sensors. All the information that we have 
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available consists in T  pilot symbols of our source of interest. In general, the 
length of the training sequence grows with the number of sources, their 
cardinality and the lack of degrees of freedom in the problem. 

The symbols of the interfering sources are totally unknown, and we only know 
that their supports are bounded (in this case, they are QPSK signals too). The 
mixture is represented by an unknown matrix A  whose coefficients are drawn 
from a Gaussian probability density function. 

Before reaching each one of the m  sensors, the signals are contaminated by a 
complex AWG noise of zero mean and covariance matrix 2

q I . Although this 
kind of noise is not of finite support and, therefore, it does not satisfy the given 
assumptions, the obtained results are still reasonable and improve with the 
increase of the SNR, which is defined by: 

 1

2 2
1

10 2
10 log s

dB
q

SNR
m





 
 
 
 

a
, (6.79) 

where 
1

2
s  is the power of the desired signal. 

We make use of a gradient descent algorithm where the sample convex 
perimeter of the error sequence is minimized, step by step, until convergence. 
After each step, the resulting extraction vector is normalized to force the 
condition (6.52). 

The extended vector of coefficients 

We compare three different approaches to the extraction problem. As the 
system is under-determined, the extraction without residual interferences is not 
possible and all we can hope is to minimize the number of signals that interferes 
with our desired source. This means that the extended vector of coefficients 'g  
should be sparse, as discussed in Section 6.7.3. The three following approaches 
have been studied in the previous sections: 

 The MMSE criterion with PZF, solution to the minimization problem 
given by (6.53) and (6.54). 

 The exact PZF solution, derived in Section 6.8.2, and condensed in 
equation (6.58). It is used only as a reference because it needs the exact 
knowledge of the mixing matrix A , and that information is not 
available in our problem. 

 The criterion of minimum convex perimeter with PZF, proposed in this  
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Figure 6.7 – This figure shows the absolute value of the vector of extended coefficients, for 
three examples of over-determined systems. (upper) n=3 sources and m=5 observations. 
(middle) n=4 sources and m=5 observations. (lower) n=8 sources and m=10 observations. 
The first n coefficients correspond to the sources (1 desired signal and n-1 interference 
signals), and the last m coefficients correspond to noise. The exact and the minimum 
convex perimeter solutions are not normalized. 

chapter and given by the solution of (6.51)-(6.52). 

We raise progressively the complexity of the mixing model, starting by over-
determined systems (n m ) and a training sequence of 500T   symbols,  
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Figure 6.8 – This figure represents the vector of extended coefficients for three examples of 
under-determined systems. (upper) n=5 sources and m=3 observations. (middle) n=6 
sources and m=5 observations. (lower) n=10 sources and m=8 observations. The coefficients 
are sorted in these plots with the following structure: The first coefficient corresponds to the 
extracted source, the next n-m coefficients correspond to the non-avoidable interference. 
The next n-1 coefficients correspond to the interference that can be cancelled, due to the 
available degrees of freedom, while the last m coefficients correspond to m noise signals. The 
exact and the minimum convex perimeter solutions are not normalized. 
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where the proposed solution does not improves the MMSE solution (they both 
cancel the same number of interfering sources). The Figure 6.7 shows the n m  
elements of the magnitude of the extended vector of coefficients. The first n  
coefficients correspond to the sources, and the last m  coefficients correspond to 
noise. A SNR of 30 dB is used. As there are more sensors than sources, all the 
three options achieve the exact cancellation of the interferences. The use of 
determined mixture exhibits a similar response. 

The next experiment uses under-determined mixtures, so we may expect an 
altered response from the three different solutions. The Figure 6.8 shows the 
n m  elements of the magnitude of the extended vector of coefficients. A SNR 
of 30 dB is used again, so the strongest sources of interference do not come from 
the noise but from the undesired sources. 

However, this time there are more sources than sensors, so the different 
approaches behave different when they try to cancel out the interference. It can 
be seen that the proposed solution is quite close to the exact-PZF solution, and 
contrary to the MMSE-PZF, is able to cancel out almost completely the m n  
strongest sources of interference. 

This latter approach clearly does not enforce a sparse behavior and all the 1n  
sources of interference remains attenuated. We remark that the exact PZF 
solution is only presented for comparison and is not feasible in practice because 
it uses the exact knowledge of the mixing matrix A . 

The next concept is a measure on how this sparse interference cancellation is 
achieved for each of the solutions. 

The Performance Index 

Let   be a permutation of the indices 2, ,n , which one can use to sort the 
coefficients of the global transfer vector. We define the following Performance 
Index (PI), a modification of the Amari Index (Amari, 1996) used in the 
simulations of Chapter 4, which takes into account the lack of degrees of 
freedom to cancel all the sources of interference in under-determined mixtures. 

Definition (Performance Index (PI)): is defined from the magnitudes of the residual 
transfer vector. 

    1

1 1

1 min
1

m i

i

g
PI

m g








 
   

  
 
b . (6.80) 

The smaller this index, the better the cancellation of the interference. It can be  
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Figure 6.9 - This figure represents the Performance Index (PI) versus the SNR, for the three 
examples of over-determined systems presented before. (left) n=3 sources and m=5 
observations. (center) n=4 sources and m=5 observations. (right) n=8 sources and m=10 
observations. The curve corresponding to the exact PZF solution is not shown because it is 
always zero, since it uses the perfect knowledge of the mixing matrix. 

seen as a metric for the successful extraction in under-determined mixture.  

The following example illustrates this concept. 

Example 6.1 Suppose 4n   sources, 3m   observations, and the following global 
transference vector at the end of the algorithm, 

 1 0.0001 0.6 0.0001   g . (6.81) 

The perfect extraction of the first source has not been possible, and there is still a 
spurious component related to the third source. The possible permutations are, 

 
2 3 4 ; 2 4 3 ; 4 3 2 ;

4 2 3 ; 3 2 4 ; 3 4 2 ;
a b c

d e f

  

  

             
             

 (6.82) 

The corresponding summations in the Performance Index (PI) are    1 2g g  , and the 
minimum occurs when the third coefficient is the last one in  . That is, for the 
permutations b  or d . Hence, the minimum summation is 

      2 41 2min 0.0002g g g g 
    , (6.83) 

which produces the Performance Index   0.0001PI b . 
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Figure 6.10 - This figure represents the Performance Index (PI) versus the SNR, for the 
three examples of under-determined systems presented before. (left) n=5 sources and m=3 
observations. (center) n=6 sources and m=5 observations. (right) n=10 sources and m=8 
observations. The curve corresponding to the exact PZF solution is not shown because it is 
always zero, since it uses the perfect knowledge of the mixing matrix. 

Intuitively, the PI accounts for the magnitudes of the coefficients in 'g  that 
correspond to the 1n  sources of interference that can be cancelled (see the 
avoidable interference Figure 6.8). 

In the Figure 6.9, the Performance Index versus the SNR on three different over-
determined scenarios is shown. As there are more sources than sensors, the PI is 
only limited by the presence of noise, and eventually reaches zero in a noiseless 
situation. 

The next experiment uses under-determined mixtures. In Figure 6.10, the 
Performance Index for three different systems is shown. One can observe that 
the proposed solution exhibits a better cancellation of the interference than the 
MMSE. This improvement also increases with high SNR, behavior that will be 
also observed in further simulations. 

The output signal 

One can examine the shape of the output signal  y k  in the complex plane. 
Ideally, for over-determined and determined mixtures, this output should be 
similar to the original source (in this case, a QPSK constellation). However, in 
under-determined systems, the presence of spurious interference in the output 
signal produces the dispersion of the symbols on the complex plane, like is 
shown in the Figure 6.11 for three different solutions with 20SNR   and 

2000T   samples. 
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Figure 6.11 – This figure shows the outputs of the extraction system in the complex plane, 
for three different under-determined mixtures. (left column) n=5 sources and m=3 
observations. (center column) n=6 sources and m=5 observations. (right column) n=10 
sources and m=8 observations. The first row (blue dots) corresponds to the MMSE 
solution, the second row (red dots) corresponds to the minimum convex perimeter solution, 
and the third row (green dots) corresponds to the exact solution. 

However, it can be seen that the BCA of the training error has condensed most 
of the relevant information of the observations in a linear estimate of the desired 
signal, which can be later used for subsequent refine estimation. It is clear from 
the figure that the proposed PZF criterion groups the samples in few clusters 
than the MMSE-PZF criterion, whose symbols are scattered throughout the 
complex plane. 

This fact can be later exploited by non-linear techniques to perform an 
improved classification of the transmitted symbols. 

6.9.2 Use as a pre-processing step for classification 

We can exploit the property that the residual transfer vector g  is sparse in the 
sense of the number of active components, to simplify the decisor of a  
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Figure 6.12 – This figure shows the block diagram of the complete system of Section 6.9.2. 
After the extraction, the output is passed through a decisor which has been trained with the 
same pilot symbols than the extraction vector. The result is a non-linear estimation of the 
original source. 

communications receiver, which basically implements a classifier18. 

It is well known that non-linear estimates, like those based on the Maximum 
Likelihood (ML) and Maximum A Posteriori (MAP) criteria (Kay, 1993), can 
outperform the accuracy of linear estimates like the supervised BCA extraction 
algorithm. However, as we do not have other prior knowledge of the sources of 
interference than their bounded support, these computations are no longer 
feasible. 

Therefore, we adopt an alternative strategy which leads to a convenient solution 
of the problem. It consists on using first, as a preprocessing step, a linear 
estimate that summarizes the relevant information of the observations by 
preserving the signal of interest while cancelling most of the sources of 
interference. 

This is what we have been doing during this entire chapter. After that, a 
classifier can recover the original symbols from the desired source if the input is 
enough clean of interferences. 

In the Figure 6.12, a block diagram of the complete system is shown. It consists 
on the addition of a classifier at the output of the extraction system shown 
before, so the estimated source can be further refined by non-linear techniques. 
Two different solutions have been tested to solve this problem. 

                                                        
18 A classifier assigns a class to each one of the extracted symbols, based on a certain criterion. 
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Figure 6.13 – The left figure shows the construction of the multimodal p.d.f. used in the 
MAP decisor for the symbol 1  . In the right figure, the output of a BCA extraction 
algorithm is shown, for an under-determined system with n = 6 and m = 5. The blue circles 
are the samples of  y k  for the indices k  that satisfy  1 1s k    . 

Implementing a hard decisor based on the Maximum A Posteriori rule 

Let   denote the alphabet of symbols of the signal of interest. In a QPSK signal 
with power 2 2s  , the alphabet is: 

  1 ,1 , 1 , 1           . (6.84) 

The output of the decisor is given by the maximization of a probabilistic 
criterion. 

Definition (Maximum A Posteriori (MAP) Rule): The Maximum A Posteriori decisor is 
implemented by the following rule, symbol by symbol: 

  
 

     
1

1 1ˆ arg max | , for 1, , .
s k

s k p s k y k k T


    (6.85) 

To implement this in practice, we have to build the contrast     1 |p s k y k  for 
each one of the possible symbols,  1s k  . These functions can be seen as 
mountain landscapes, built from the samples  y k  shown in Figure 6.11. 

The process consists on the clustering of the samples that corresponds to a 
certain symbol, and on the construction of a sum of 35 Gaussian p.d.f.s whose 
means and variances are computed from the samples themselves. 
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Figure 6.14 – In this figure, the four surfaces built for the MAP decision are shown, for the 
three different solutions with PZF discussed during the whole chapter: the MMSE solution 
(upper), the minimum convex perimeter solution (middle) and the exact solution (lower). 
The under-determined mixture uses n = 6 sources and m = 5 observations, and the SNR = 
15 dB. We took T = 2000 symbols for the training stage. 
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Figure 6.15 – SER curves for the three solutions explored in this chapter, and two different 
under-determined experiments. (left) n = 5 sources and m = 3 observations. (right) n = 7 
sources and m = 5 observations. The decision is based on a MAP classifier. 

For example, for the symbol 1  , we construct a multimodal p.d.f. with the 
samples of  y k  that comes from a symbol 1   in  1s k . This is shown in 
Figure 6.13 for an under-determined mixture with  and a training 
sequence of 2000T   symbols. 

We repeat the process for the other three symbols in  , to end the training 
process of the MAP decisor. After that, we can receive unknown samples and 
decide that the correct symbol for each sample of  y k  is the one whose p.d.f. 
value is maximized. 

Figure 6.14 shows the contrast function for each symbol on the alphabet  . It 
can be seen that the MAP surfaces synthetized by the minimum convex 
perimeter and the exact solutions are sparser than the one given by the MMSE 
solution. Thus, the decision is easier on those surfaces and leads to less errors. 

The decision error is usually measured by the Symbol Error Rate (SER) curves, 
which are widely used in all communication standards. We sent 610SERT   
unknown symbols after the training of the extraction and the decisor 
subsystems. The SER curves quantify, for each SNR, the ratio between the 
number of wrong decided points and SERT , 

 

15SNR dB
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Figure 6.16 - This plot shows the result of a classification of symbols by using a SVM. The 
green points are samples of the output  that correspond to the input symbol , 
while the magenta points correspond to the input symbols , and . 
The upper row shows the output of the MMSE criterion, while the lower row shows the 
output of the minimum convex perimeter criterion. The right column zooms into a 
conflictive region on the complex plane. The decision bounds given by the SVM are shown 
as black lines rounding some regions. 

 
# wrong decided symbols

.
SER

SER
T

  (6.86) 

The Figure 6.15 shows the SER curves for two different scenarios. In this 
comparison, we again observe how the proposed criterion outperforms the 
MMSE and stays close to the performance bound of the exact solution (that has 
been computed from the exact knowledge of the mixing system). Thus, after a 
short training stage, the minimum convex perimeter criterion is able to recover 
successfully unknown symbols in under-determined mixtures. 

 y k 1 
1 , 1    1  
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Implementing a Support Vector Machine 

Instead of using a MAP classifier with hard decision, one can implement a 
Support Vector Machine (SVM), which assigns one of the four classes in   to each 
one of the samples in the complex plane received (Cristianini, 2000). The SVM 
selected is based on a Radial Basis Function kernel with a scaling factor of 0’2 (see 
(Bishop, 2006)). 

As in the previous case, the SVM is able to classify unknown symbols of the 
desired source after a short training process. The Figure 6.16 shows the result of 
a classification by using the solution of a MMSE criterion and a minimum 
convex perimeter criterion, both with PZF constraints.  The parameters for this 
simulation were: 5n   sources and 3m   observations, a training length of 

600T   symbols and 25SNR dB . 

It can be seen that the sparse behavior of the proposed method groups the 
points into small portions of the complex plane, while an important number of 
points are misclassified when the MMSE method is used, due to the fact that the 
2-norm does not enforces sparse behaviors. 

After the classification, one can count for the number of errors that happen 
when a sequence of 610SERT   symbols is sent. The Figure 6.17 shows that the 
SVM classifier after the MMSE extracted signal is unable to classify properly the 
symbols of the desired source, while the minimum convex perimeter solution 
improves it rate of success with high SNR. 

6.10 Conclusions 
In this chapter, we presented the Bounded Component Analysis of the training 
error, a supervised or semi-blind method to extract a bounded source from a 
linear mixture. The system model can be under-determined and the presence of 
AWG noise is supposed. After the training stage, further unknown samples of 
the desired signal can be recovered if the mixture does not change over time. 
The main lines of the chapter are emphasized here: 

 The minimum convex perimeter of the training error provides an 
appropriate criterion for the minimization of the error sequence, which 
is the difference between the reference and the estimation. 

 The convex perimeter functional shares some similitudes with the 
Mean Square Error, like the absence of local minima and the 
formulation of the cost function as a weighted sum of norms. However, 
both criteria have important differences, like the lack of an analytic  
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Figure 6.17 – SER curves for the three solutions explored in this chapter, and two different 
under-determined experiments. (left) n = 5 sources and m = 3 observations. (right) n = 6 
sources and m = 5 observations. The decisor is based on a SVM classifier. 

solution for the optimal value of the extraction vector in the proposed 
cost function. In addition, the MSE criterion does not force a sparse 
response on the global transfer vector, in opposition to the convex 
perimeter. 

 The under-determined mixture produces the existence of residual 
components on the recovered signal. The presence of noise in the model 
requires the use of a Partial Zero-Forcing approach, where we 
guarantee that the extraction vector is not driven to zero. 

 The presence of spurious components at the output of the algorithm 
can be solved by a post-processing based on decision criteria like the 
use of SVM or a MAP rule. Unlike the proposed criterion, the MMSE is 
not able to prepare the signals to this process. 

To illustrate the performance of the minimum convex perimeter, we ran several 
computer simulations, changing the parameters to conduct a complete study of 
the behavior of the methods developed in the chapter. 
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7 CONCLUSIONS 

 

 

 

 

 

 

 

his Thesis started with the study of the calculus with complex variables. 
To work in this framework, we adapted some of the definitions to act 
properly on complex vectors and processes. With Wirtinger calculus, we 

presented the main tools to deal with the problem of non-holomorphic 
functions. 

These tools are based essentially on the independence between the variables and 
its conjugate counterparts. For example, it is important to remark that the 
optimization of a cost function goes on the direction of the gradient with respect 
to the conjugate vector. 

Although the detailed conclusions of this Thesis are summarized at the end of 
each chapter, in this section we give an overview of the key points. At first, we 
showed some of the most important applications in the field of complex-valued 
signal processing. There were both supervised and blind examples, but they do 

T

 

Somewhere, something incredible is waiting to be known. 

- C. Sagan - 
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not work in some special scenarios (dependent sources in BSS, and under-
determined mixtures in supervised source extraction), which we aim to solve 
with the later proposed techniques. 

Also, we have presented some recent advances in the research framework of 
complex-valued signal processing. Specifically, when there are non-circular 
signals in the problem, the use of augmented statistics and widely linear 
modeling provides additional information that can outperform the classical 
techniques. 

Three related lines of research have been conducted in the second part of this 
Thesis, whose main conclusions are outlined below: 

 Many signals that are used in communications standards are complex-
valued, and exhibit a bounded shape (called constellation) in the 
complex plane. To exploit this property in the context of signal 
processing, we studied the theory of Bounded Component Analysis, a 
novel blind technique for the separation, extraction and decomposition 
of linear mixtures. The main assumptions are the bounded nature and 
the Cartesian decomposition of the support of the sources. 

To provide the identifiability of the mixture and the separability of the 
components, we showed the invertibility of the mixture and the 
Minkowski direct decomposability of the convex hull of the 
observations. This result can also be applied when the sources are 
somehow dependent, where techniques like Independent Component 
Analysis fails. 

Experimental simulations with communication signals confirmed the 
advantages of the proposed criterion in high SNR scenarios. We 
showed the use of a gradient descent algorithm in three related 
applications: signal extraction, signal separation and component 
decomposition. 

 When minimizing a cost function via a gradient descent algorithm, it is 
important to analyze the behavior of the iterations. By doing this, one 
can obtain valuable information about the location of the minima, the 
speed of convergence or the reliability of the solutions. For this 
purpose, we analyzed the convergence of a BCA extraction algorithm. 

 The proposed contrast function is based on the normalized convex 
perimeter of the output, and was free of erroneous local minima. We 
started by proposing fast although potentially unstable updates, based 
on the Newton-Raphson step size and a step size that uses the second-
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order information. 

The update equation was studied by using the structure of the gradient. 
After that, a condition for the global convergence of the gradient 
descent algorithm was established, with the proposal of a step size that 
guarantees the stability. 

However, it was shown that it depends on parameters that cannot be 
evaluated in practice, so feasible estimators were proposed too. These 
step sizes are slightly slower than the ones based upon local 
approximations of the cost functions, but they guarantee the stability of 
the algorithm.  

 When the model is more complicated than the determined and 
noiseless system presented in the blind case, the use of a short training 
sequence can help the algorithm to recover the desired signal, even 
when there are not enough degrees of freedom. For this purpose, we 
presented the Bounded Component analysis of the training error, 
which aims at the linear extraction of one signal of interest in an under-
determined mixture. 

As in the blind case, the main assumptions were the bounded nature 
and the Cartesian decomposition of the supports of the sources and of 
the noise. Also, a Partial Zero-Forcing constraint was introduced to help 
to the algorithm to succeed in noisy scenarios, where there exists the 
risk of cancelling the estimated signal if the noise is strong enough. 

The minimum convex perimeter criterion shared some relevant 
structural similitude with the Minimum Mean Square Error criterion, 
which includes the absence of local minima. However, there was also a 
key difference in the sense that the proposed estimate prefers those 
solutions where a small number of sources of interference are active. 

The basis of this property is studied from a geometric point of view. We 
have also shown through simulations that this behavior can be 
exploited to cancel out the dominant sources of interference, and to 
perform a subsequent non-linear refined estimation of the signal of 
interest.  
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8 OPEN RESEARCH LINES 

 

 

 

 

 

 

 

e have planned both theoretical and practical extensions of the main 
contributions of this Thesis. Some of these open research lines have 
already begun to produce results but needs further refinement, and 

others are in an earlier stage of study. 

We have started to work with high dimensional arrays like tensors, aiming to 
describe a richer structure on the mixing models (Crespo, 2013). Tensor 
factorizations have been recently used to solve the problem of blind and 
supervised signal separation (Cichocki, 2009). The additional dimensions of 
these objects allow a deeper description of the intricate relations between inputs 
and outputs of the mixing system, possibly being non-linear and non-stationary. 
However, the extension of BCA to tensors has not been yet addressed. 

Another interesting topic is the adaptation to the widely linear model (Mandic, 

W

 

If a cluttered desk is a sign of a cluttered mind, of what, then, 
is an empty desk a sign? 

- A. Einstein - 
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2009) of the BCA basic linear model for signal extraction. However, the first 
approaches to this topic have not produced significant improvements. The main 
cause is that the direct extension of the model violates the support 
decomposition of the sources, which is a crucial assumption of BCA. 
Nevertheless, we need to investigate if a different approach to this issue may 
circumvent this setback. 

The BCA extraction method can be modified to recover a bounded signal from a 
convolutive channel, thus providing a blind deconvolution scheme for linear 
filters (Haykin, 1994). Under certain conditions, we suspect that our algorithms 
can outperform the solutions given by other classical approaches. 

We also intend to research further into the convergence of the BCA extraction 
algorithm, ensuring the full global convergence of the iterations to a local 
minimum (not only the monotonous convergence). In addition, in order to 
establish some guides for the value of the step size, the stability study of the 
semi-blind BCA extraction algorithm must be done. 

The actual implementations of the BCA algorithms presented in this Thesis uses 
a gradient batch approach, where the convex perimeter is computed from 
scratch at each iteration. This implies the computation of the convex hull by 
taking into account the whole set of samples of the sequence. Our intention is to 
modify the gradient descent algorithm to update the parameters by taking into 
account only the new sample acquired at the present iteration. To do this, we 
need to review the tools provided by computational geometry (Mount, 2002) for 
the efficient computation of the convex perimeter. 

Finally, maybe the research line with more promising future is the extrapolation 
of the convex perimeter functional to high dimensions. The recent use of 
quaternions and Clifford algebra (Via, 2011) in BSS problems suggests that one 
can propose different functionals apart from the well-known convex perimeter. 
Algorithms based on quaternions provide a very fast convergence and allow the 
use of models from the hypercomplex algebra to study real world systems. 
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