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la vida, y por hacerme mejor persona. Siempre estarás en mi corazón.

También quisiera mostrar mi más sincero agradecimiento al Profesor James C. Robin-
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a quien agradezco enormemente sus ánimos, ayuda y paciencia en todo momento.

Finalmente, también quiero dar las gracias a todos los miembros del Departamento
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Introduction

The mathematical theory of fluid dynamics began in the seventeenth century with the
work of Isaac Newton, who was the first to apply the mechanical laws to flow movements.
Afterwards, Leonhard Euler wrote for the first time (1755) the differential equations that
govern the motion of an ideal fluid, that is, in absence of dissipation due to the interaction
between molecules. And finally, Claude-Louis Navier (1822) and, independently, George
Gabriel Stokes (1845) added into the model the viscosity term and reached the so-called
‘Navier–Stokes equations’.

The Navier–Stokes equations are the fundamental partial differential equations that
describe the motion of incompressible fluids (or equivalently, divergence-free fluids). They
may be used to model the weather, ocean currents, water flow in a pipe and air flow around
a wing. Moreover, these equations in their full and simplified forms help with the design of
aircraft and cars, the design of power stations, the analysis of pollution, and many other
things. Actually, they are also of great interest in a purely mathematical sense. As we
will take up again in the next paragraph, although mathematicians have already achieved
many results on the study of the solutions to these equations, somewhat surprisingly,
given their wide range of practical uses, the existence and regularity of global in time
classical solutions (which are required to satisfy the equations in a pointwise sense), when
the space dimension is three, are long standing open problems of fluid dynamics. These
are called the Navier–Stokes existence and smoothness problems. The Clay Mathematics
Institute has called this one of the seven most important open problems in mathematics
and has offered a one million dollar prize for a solution or a counterexample.

The first contribution to the mathematical study of the initial value problem for the
non-stationary Navier–Stokes equations is contained in a series of remarkable papers of
Jean Leray published in 1933 and 1934 (c.f. [57, 58, 59]). Once he obtained the existence
of classical solutions for regular data during a short interval of time (0, T ), Leray found
himself with a problem: he was not able to control a priori the increase of the velo-
city and its derivatives as time goes on, which ruined any chance of coming up with a
global solution. Facing this difficulty, he decided on the procedure already followed by
Hilbert while dealing with the Dirichlet problem for the Laplacian operator, and set out
the problem within the frame of the so-called weak or turbulent solutions (that satisfy
the Navier–Stokes equations in an average sense) in the Sobolev spaces. In fact, Leray
was able to show the global existence of classical (in dimension two) and weak solutions,
but the uniqueness of weak solutions in dimension three remains as an open problem.
Since the first paper by Leray was published, a number of authors have again become
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10 Introduction

interested in these equations and have obtained numerous results with the aid of various
methods from modern functional analysis (see Constantin and Foias [21], Foias et al. [25],
Lions [61], Temam [87], and the references therein).

On the other hand, the asymptotic behaviour of dynamical systems is an interesting
and challenging problem, since it can provide useful information on the future evolution
of the system. To this respect, much attention has been paid over the last few decades to
the theory of attractors, with the aim of going further in the analysis of complex dynami-
cal systems and of dealing with some open problems as the understanding of turbulence.
Actually, much significant information can be obtained with this theory, such as finite
fractal and Hausdorff dimensions, determining modes and nodes, inertial manifolds and
finite-dimensionality behaviour, among others (see [87,25,78] and the references therein).

Although the concept of global attractor has become a powerful tool in the asymp-
totic analysis of autonomous dynamical systems, the appearance of more complex and
realistic models that aimed to deal with terms depending non-trivially on time involved
substantial changes and additional difficulties. Namely, this is the case when the model
is non-autonomous. The theory of global attractors for autonomous partial differential
equations is deeply developed in works of many mathematicians with books like Hale [39],
Temam [87], Ladyzhenskaya [54], Babin and Vishik [4], Vishik [88], Robinson [78] or Sell
and You [83]. Roughly speaking, a global attractor is an invariant compact set in some
metric space, and which attracts all the trajectories of the dynamical system, uniformly
on bounded sets. To show the existence of the global attractor one usually needs to verify
that there exists a bounded attracting set, that is, a bounded set such that the distance
from any orbit to this set tends to zero when the time goes to ∞. Conditions for the
existence of such global attractors and examples can be found in [4, 39, 87,88].

However, as it was pointed out above, most cases need of a non-autonomous model
to describe the system and, consequently, a non-autonomous technique is necessary to
handle the problem. A first and natural approach to extend the notion of global attractor
to the non-autonomous case was that of uniform attractor defined by Chepyzhov and
Vishik (see [15,16] and the references therein). Nevertheless, this kind of attractor is only
valid for some situations and it need not be invariant unlike the global attractor for au-
tonomous systems. Afterwards, other different approaches appeared to allow unbounded
time-depending terms and processes, as random or stochastic models.

Being possible various options to deal with the problem of attractors for non-auto-
nomous systems (kernel sections [16], skew-product formalism [82], etc.), the notions of
pullback and forward attractors seem to be general ways to extend results in this direc-
tion (see [14] for a comparison of these two last concepts). In this work we have chosen
that of pullback (or cocycle) attractor (see Schmalfuß [80,81], Crauel et al. [23], Kloeden
and Schmalfuß [52,53], Langa and Schmalfuß [56]) since it allows to handle more general
non-autonomous terms, and it works under the presence of random environments as well
(e.g. see [24]).
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In connection with the above, it is clear from applications that in order to establish
the existence of pullback attractors of bounded sets for the dynamical system associated
to one problem, it is sometimes useful to go up to a bigger framework, replacing the usual
universe of autonomous bounded sets by a universe of families of time-depending sets,
that we will denote by D. This more general concept of D-attractor is better adapted
to different situations (e.g. see Chueshov [19] and the references therein), and easier
to obtain, even when the existence of the usual attractor is unclear. In examples, this
D-attractor is usually related to a tempered universe, that is, where the families of time-
depending sets are given by a tempered condition on their growth in time. Actually, it
usually happens that the universe of autonomous bounded sets is a subset of the tempered
universe. More precisely, as it was studied in Maŕın-Rubio and Real [70], the existence
of the pullback D-attractor provides a sufficient condition that ensures the existence of
the pullback attractor for fixed bounded sets. Although the cases of an ODE or a PDE
in a bounded domain do not usually require this way of proceeding, in other situations
where compactness of the (semi-)process does not hold or is unknown, this approach is
helpful. Even in the random case, where the relation between both objects is well known
(they coincide, or at least in a probability sense, cf. [22]), it is sometimes useful to study
the previous existence of a random D-attractor in order to obtain a sufficient condition
that ensures the existence of the random attractor in the sense of Crauel, Debussche,
and Flandoli (for fixed bounded sets). In the non-random case, which will be treated
in Chapter 1, in particular we will obtain sufficient conditions that guarantee that these
two objects are in fact the same. Therefore, we can claim that the attractor for fixed
bounded sets, previously considered only the attractor of bounded sets, attracts in fact
more objects.

This work is structured in six chapters. The first chapter is devoted to present the
abstract theory of pullback attractors for non-autonomous dynamical systems within the
framework of universes. In the rest of the chapters, this theory will be applied to several
models based on the incompressible Navier–Stokes equations, in order to analyze the exis-
tence and relationships among different families of minimal pullback attractors for them.

Chapter 1 is divided into two sections. In Section 1.1 we recall some abstract results
in order to construct pullback attractors for a dynamical system or process associated to
a problem via the solution operator. Actually, in Theorem 1.11 and Corollary 1.13, we
provide results on the existence of minimal pullback attractors for the two possible choices
of the attracted universes introduced before, namely, the standard one of fixed bounded
sets, and secondly, one given by a tempered condition. Moreover, based on the paper by
Maŕın-Rubio and Real [70], these two notions of attractors are related in Corollary 1.13,
and in Remark 1.14 we show that under a simple additional assumption they generate
in fact the same object. Finally, in Theorem 1.15 we establish a result comparing two
families of attractors associated to the same process but with different phase spaces and
universes.

On the other hand, as we will also see in Section 1.1, one of the ingredients necessary
for obtaining the pullback attractor is the asymptotic compactness of the corresponding
process. To verify this property one can either proceed directly, or make use of a split-
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ting of the solutions into high and low components. Such a splitting is a very common
technique in the study of the qualitative behaviour of solutions for PDEs problems, in
particular when considering the long-time behaviour of dynamics, as in the construction of
invariant manifolds [17,41] and inertial manifolds [18,28], the squeezing property [26,87],
the notion of ‘determining modes’ [27,42], and the theory of attractors [63]. In the context
of proofs of the existence of attractors it was formalized by Ma, Wang, and Zhong [63] as
their celebrated ‘condition (C)’. A more descriptive terminology, ‘the flattening property’,
was coined by Kloeden and Langa [48], and we will adopt this terminology here. However,
it is worth making the observation that this is not so much a ‘property’ as a (powerful)
technique for obtaining the asymptotic compactness of a flow, be it autonomous or non-
autonomous. With regard to this, in Section 1.2 we will introduce the concept of the
flattening property in a Banach space and, in Proposition 1.18, we will prove that it im-
plies the asymptotic compactness of the corresponding process.

In Chapter 2 we consider the incompressible two-dimensional Navier–Stokes equations

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f(t) ∇ · u = 0

in a bounded domain Ω ⊂ R2. The existence of minimal pullback attractors in H (essen-
tially L2) and in V (essentially H1) is established for both different kinds of universes cited
above, and when the forcing term has the minimal regularity required to obtain solutions
that evolve continuously in these phase spaces, namely, f ∈ L2

loc(R;V ′) and f ∈ L2
loc(R;H)

respectively. In this chapter, the existence of such attractors will be shown by proving the
pullback asymptotic compactness of the process associated to our problem, via an energy
method which relies on the continuity of the solutions. Nevertheless, since the asymptotic
behaviour in H was already established in Caraballo et al. [7], in Section 2.2.1 we only
summarize the main facts in this phase space. Actually, in [7] the authors deal with a
more general case in which the domain is unbounded. However, to our knowledge, a richer
structure on the asymptotic behaviour of the solutions to this non-autonomous problem
when the initial datum also belongs to V has not previously been studied. In Section
2.2.2 we prove the existence of pullback attractors in V norm and, thanks to regularity
properties, the relations between these families of attractors and the corresponding in H
are successfully obtained. Finally, in Sections 2.3 and 2.4, we also study some regularity
properties for the attractors, such as the H2-boundedness and the tempered behaviour in
V and H2, when time goes to −∞.

Chapter 3 is also devoted to analyze the existence of minimal pullback attractors in
H and in V for the same non-autonomous 2D Navier–Stokes model stated in Chapter 2,
but by verifying the flattening property.

On the one hand, in Section 3.1 we show that when f ∈ L2
loc(R;V ′) – which is the

minimum regularity of f consistent with weak solutions that have u ∈ L2
loc(R;V ) and

du/dt ∈ L2
loc(R;V ′) – the process is pullback asymptotically compact. We do this using

again the same energy continuous method developed in the previous chapter, and also
show as a consequence that the process satisfies ‘Condition (C)’. With only a little more
regularity of f , namely f ∈ Lploc(R;V ′) for some p > 2, in Section 3.1.1 we are able to
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show, using the semigroup approach of Fujita and Kato [29] and ideas from the ε-regularity
theory developed by Arrieta and Carvalho [2], that in fact there is a compact pullback
absorbing family in H. In particular, in the autonomous case it follows that for f ∈ V ′
there is a compact absorbing set.

On the other hand, in Section 3.2 we treat attractors in V when f ∈ L2
loc(R;H), which

is significantly more straightforward. One can seek to prove asymptotic compactness di-
rectly, as in Lemma 2.14, but this is little easier than the analysis we present here for the
phase space H. In fact in this case use of the Fourier splitting technique (‘the flattening
property’) makes the analysis significantly simpler, and the argument is much shorter
than that in Chapter 2. Finally, in Section 3.2.1, with a little extra regularity (again,
f ∈ Lploc(R;H) for some p > 2) the semigroup approach yields – in this case very quickly
– the existence of a compact pullback absorbing family in V .

In Chapters 4 and 5 we consider the incompressible two-dimensional Navier–Stokes
equations including a finite delay term:

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f(t) + g(t, ut) ∇ · u = 0,

where we denote by ut the function defined on (−h, 0) by the relation ut(s) = u(t + s),
s ∈ (−h, 0), and h is the time of memory effect. Observe that in this problem the external
force term g contains some hereditary features. These situations may appear when we
want to control the system (in a certain sense) by applying a force which takes into account
not only the present state of the system but also the history of the solution.

The importance of physical models for fluid mechanics problems including delay terms
is related, for instance, to real applications where devices to control properties of fluids
(temperature, velocity, etc.) are inserted in domains and make a local influence on the
behaviour of the system (e.g. cf. [64] for a wind-tunnel model).

On the other hand, the study of Navier–Stokes models including delay terms – existen-
ce, uniqueness, stationary solutions, exponential decay, and other asymptotic properties
such as the existence of attractors – was initiated by Caraballo and Real in the references
[9, 10, 11], and after that, many different questions, as dealing with unbounded domains,
and models (for instance in three dimensions for modified terms) have been addressed
(e.g. cf. [38, 65,66,67,69,71,72,76] among others).

However, to our knowledge, in all finite delay frameworks the assumptions for the
delay terms used to involve estimates in L2 spaces, which in turn means some restrictive
conditions on the operators and on the function driving the delayed time. As long as
the solution for the problem (without delay) in dimension two is continuous in time, it
seems natural to develop a theory just considering a phase space only requiring continuity
in time. In Chapter 4 we treat a relaxation on the assumptions for the delay operator
involved, removing a condition on square integrable control of the memory terms, which
allows us to consider a bigger class of delay terms (for instance, just under a measurability
condition on the delay function leading the delayed time). More precisely, in Section 4.1 we
obtain a result of existence and uniqueness of solution to our model under less restrictive
assumptions than in [9, Theorem 2.1]. Our method to prove existence of solution in
this new framework requires more technicalities than in previous papers, namely, an
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energy method for continuous functions. Moreover, in Sections 4.2 and 4.3, we deal with
dynamical systems in suitable phase spaces within two metrics, the L2 norm and the
H1 norm, respectively. Actually, we prove that, under suitable assumptions, pullback
attractors not only of fixed bounded sets but also of a set of tempered universes do exist.
Finally, from comparison results of attractors we establish relations among them and,
under suitable additional assumptions, we conclude that these families of attractors are
in fact the same object.

Our goal in Section 5 is to keep all usual conditions for the delay operator and to com-
pare both kind of attractors, for both possibilities of phase spaces (continuous in time,
or just square integrable in time). Observe that in the autonomous framework this issue
would be almost immediate since one inclusion is clear by continuous embedding, and the
other is obtained after an elapsed time as long as the memory effect. However, in the
non-autonomous case (that we will treat in this chapter) this is not the case at all. Using
the theory of attraction for universes studied in Chapter 1, we deal with different families
and again under two different metrics, namely, the L2 norm and the H1 norm. Further-
more, we also improve some results previously obtained in Caraballo and Real [11], since
we can consider the phase space V ×L2(−h, 0;V ) and not only H×L2(−h, 0;H). Finally,
and as in the previous chapter, we establish that all these families of attractors coincide.

To conclude, in Chapter 6 we analyze the asymptotic behaviour of the solutions for
the incompressible three-dimensional Navier–Stokes–Voigt equations

∂

∂t
(u− α2∆u)− ν∆u+ (u · ∇)u+∇p = f(t) ∇ · u = 0,

when the initial datum belongs to both V and D(A) phase spaces.
The Navier–Stokes–Voigt (NSV) model of viscoelastic incompressible fluid, introduced

by Oskolkov in [74], gives an approximate description of the Kelvin–Voigt fluid (see [75,
55]), and recently was proposed as a regularization of the three-dimensional Navier–Stokes
equations for the purpose of direct numerical simulations in [5].

The extra regularizing term −α2∆∂u
∂t

changes the parabolic character of the equation,
which makes it so that in 3D the problem is well-posed (forward and backward), but
one does not observe any immediate smoothing of the solution, as expected in parabolic
PDEs. Moreover, the generated semigroup is only asymptotically compact, similarly to
damped hyperbolic systems.

One of the studied topics about the problem is the inviscid question in some different
senses. It is also worth observing that when ν = 0, the inviscid equation that one recovers
is the simplified Bardina subgrid scale model of turbulence. The relationship between the
original and inviscid models was also addressed in [5]. On other hand, some questions on
the inviscid regularization have been recently used for the study of a 2D surface quasi-
geostrophic model (cf. [47]).

The long-time dynamics of the autonomous model was studied by Kalantarov [43]
and Kalantarov and Titi [45]. Namely, the existence of global compact attractor was
proved, and estimates on its fractal and Hausdorff dimensions, and upper bounds on the
number of determining modes were given. Other related results are the Gévrey regularity
of the global attractor (again for the autonomous model) when the force term is analytic
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of Gévrey type, and the establishment of similar statistical properties (and invariant
measures) as the three-dimensional Navier–Stokes equations (cf. [44, 60,77]).

On the other hand, the difference of this model in comparison with the standard two-
dimensional Navier–Stokes (NS) model is that there exists a regularizing effect in the
Navier–Stokes model (in 2D), while not here. For NS a continuous energy method can be
applied thanks to the extra estimates that holds in higher norms (e.g. cf. [71]), which does
not seem to hold for the Navier–Stokes–Voigt model. Some of the proofs in the previously
cited references about NSV (e.g. cf. [45]) rely on splitting the problem in two, one with
exponential decay, and the other with good asymptotic properties in the domain of a
suitable fractional power of the Stokes operator. However, in this chapter we will provide
a simpler proof, which does not require the above-mentioned technicalities, but a sharp
use of the energy equality, and the energy method used by Rosa in [79]. Moreover, it is
worth pointing out that our results in Section 6.2 do not use the regularity assumption
on the boundary of the domain at all, and the force term may take values in V ′ instead
of in L2 as appears in [45].

We may also cite in this non-autonomous framework the paper [89], where the existence
of uniform attractor for a Navier–Stokes–Voigt model is studied. However, there appears
the same treatment with the fractional powers of the Stokes operator, and they require
more regularity in the non-autonomous case that we need here.

Our main goal in this chapter is to obtain sufficient conditions such that the minimal
pullback attractors for the process associated to our Navier–Stokes–Voigt problem do
exist. As we pointed out above, in order to prove the asymptotic compactness of this
process we will apply an energy method used by Rosa in [79]. As a second goal, we
analyze some additional properties of the obtained attractors. Namely, in Section 6.3,
extra regularity is deduced by using a bootstrapping argument, which now does rely on
fractional powers of the Stokes operator, similarly as done in [45] for the autonomous
case. Finally, the attraction in D(A) norm is also proved in Section 6.4 by using the same
energy method as before and previous results on strong solutions.





Spanish Summary

Una de las ramas de la F́ısica más interesantes y complicadas de investigar es la Mecánica
de Fluidos, que estudia el comportamiento de los fluidos en reposo (Estática de Fluidos)
o en movimiento (Dinámica de Fluidos), aśı como las aplicaciones y mecanismos de inge-
nieŕıa que utilizan fluidos. La Mecánica de Fluidos es primordial en campos tan diversos
como la aeronáutica, la ingenieŕıa qúımica, civil e industrial, la meteoroloǵıa, las cons-
trucciones navales y la oceanograf́ıa.

Las ecuaciones fundamentales de la Dinámica de Fluidos son las ecuaciones de Navier–
Stokes, las cuales describen el movimiento de fluidos incompresibles. En el último siglo
y medio, estas ecuaciones han sido aplicadas por f́ısicos e ingenieros con apreciable éxito
en muy variados campos, entre ellos la hidráulica, la meteoroloǵıa y la aeronáutica, y
sin ellas resultaŕıa matemáticamente imposible describir, por ejemplo, los flujos de aire
turbulento o los remolinos que se forman cuando el agua discurre por una tubeŕıa.

Por otra parte, en las últimas décadas también se ha prestado una considerable
atención a la teoŕıa de atractores, la cual se ha convertido en una interesante y eficaz
herramienta en el estudio del comportamiento asintótico de los sistemas dinámicos, tanto
autónomos como no autónomos. Por ejemplo, dado un problema diferencial autónomo
para el que tengamos asegurada, para cada dato inicial, unicidad de solución definida
para todo instante futuro, cabe preguntarse cómo evoluciona en el tiempo dicha solución.
La teoŕıa de atractores para sistemas dinámicos autónomos nos permite garantizar, bajo
ciertas condiciones mı́nimas, la existencia de atractor global, que de forma muy general
viene a ser un conjunto compacto e invariante, tal que atrae todas las trayectorias del
sistema dinámico, uniformemente en conjuntos acotados.

No obstante, la aplicación práctica de modelos basados en ecuaciones diferenciales,
tanto ordinarias como en derivadas parciales, revela que las fuerzas externas utilizadas
para su modelización han de depender expĺıcitamente del tiempo. Mientras que dicho fac-
tor no supone un cambio esencial en el estudio en intervalos finitos de tiempo, śı ocurre que
aparecen diferencias sustanciales al examinar la evolución del modelo para todo tiempo.
De esta manera, los sistemas dinámicos no autónomos han generalizado el tipo de respues-
tas posibles, dando lugar a nuevos conceptos tales como el de atractor pullback (desde
atrás). La teoŕıa de atractores pullback ha progresado profundamente en los últimos años
y ha sido aplicada para intentar dar solución a una amplia variedad de problemas prove-
nientes de distintas ramas de la Ciencia como Qúımica, F́ısica y Bioloǵıa, y por supuesto
para abordar varios modelos relacionados con las ecuaciones de Navier–Stokes.
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Este trabajo está dividido en seis caṕıtulos. En el Caṕıtulo 1 presentamos algunos
resultados abstractos que garantizan la existencia de atractores pullback minimales para
sistemas dinámicos no autónomos en un marco teórico que puede depender de distintos
universos como ‘campos de fase’. Esta teoŕıa será aplicada en el resto de los caṕıtulos
a diversos modelos basados en las ecuaciones de Navier–Stokes no autónomas, con la fi-
nalidad de obtener la existencia de distintas familias de atractores pullback para dichos
modelos.

En el Caṕıtulo 1 generalizamos la teoŕıa sobre atractores globales para sistemas diná-
micos autónomos al marco no autónomo. Más concretamente, en la Sección 1.1 definimos
algunos conceptos básicos y estudiamos varios resultados abstractos relativos a la teoŕıa de
atractores pullback, los cuales nos permitirán garantizar, bajo ciertas hipótesis mı́nimas,
la existencia de dichos atractores para un proceso evolutivo asociado a un determinado
problema y para dos tipos diferentes de universos, el de los conjuntos acotados fijos y otro
universo formado por familias parametrizadas en tiempo y definido en términos de una
condición temperada. Dicho resultado sobre la existencia de atractores pullback minima-
les corresponde al Teorema 1.11. Además, en el Teorema 1.15 establecemos también un
resultado que nos permitirá comparar atractores pullback en distintos espacios de fase y
universos. Finalmente, en la Sección 1.2 definimos el concepto de propiedad flattening y
probamos que la compacidad asintótica del correspondiente proceso evolutivo, necesaria
para la existencia de atractor pullback, puede obtenerse a partir de esta propiedad (véase
la Proposición 1.18).

En el Caṕıtulo 2 consideramos las ecuaciones de Navier–Stokes bidimensionales y no
autónomas en un dominio acotado y estudiamos el comportamiento asintótico de las solu-
ciones cuando el dato inicial del problema pertenece a distintos espacios de fase. Haciendo
uso de la teoŕıa desarrollada en el caṕıtulo anterior, en la Sección 2.2 probamos la existen-
cia de atractores pullback minimales en los espacios H y V , para varios universos de los
dos tipos citados anteriormente y bajo condiciones mı́nimas de regularidad sobre el campo
de fuerzas f , que aseguren la existencia de soluciones débiles y fuertes respectivamente.
Cabe señalar que la compacidad asintótica en V del proceso asociado a nuestro modelo
se obtiene mediante un método de enerǵıa basado en la continuidad de las soluciones y
en ciertas funciones no crecientes (véase el Lema 2.14). Asimismo, aplicando de nuevo
la teoŕıa dada en el Caṕıtulo 1, establecemos algunas relaciones entre los atractores pull-
back definidos en H y en V . Finalmente, en las Secciones 2.3 y 2.4, analizamos algunas
propiedades de regularidad para dichos atractores, tales como la acotación en H2 y su
comportamiento temperado en los espacios V y H2.

A continuación, en el Caṕıtulo 3 establecemos nuevamente la existencia de atractores
pullback minimales en H y en V para el mismo modelo considerado en el Caṕıtulo 2,
pero mediante la propiedad flattening (aplastamiento). Cabe destacar que, mientras que
en el caso del espacio de fase H, una prueba directa de la compacidad asintótica del
proceso conlleva el mismo esfuerzo que verificar la propiedad flattening, en el caso del
espacio V , es notablemente más inmediato obtener la compacidad asintótica a partir de
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la propiedad flattening que mediante el método de enerǵıa utilizado en el Lema 2.14.
Además, en la Sección 2.2.1, exigiendo más regularidad sobre el campo de fuerzas (en
concreto, suponiendo que f ∈ Lploc(R;V ′) para algún p > 2), y basándonos en el enfoque
sobre la teoŕıa de semigrupos llevado a cabo por Fujita y Kato [29] y en algunas ideas
sobre la teoŕıa de la ε-regularidad desarrollada por Arrieta y Carvalho [2], obtenemos la
existencia de una familia compacta y pullback absorbente en H. Análogamente, en la
Sección 2.2.2, también probamos la existencia de una familia compacta y pullback ab-
sorbente en V , imponiendo que f ∈ Lploc(R;H) para algún p > 2.

Por otro lado, en los Caṕıtulos 4 y 5 consideramos las ecuaciones de Navier–Stokes
no autónomas cuando el problema contiene términos con retardo finito, en un dominio
acotado de R2. En ambos caṕıtulos obtenemos resultados similares relativos a la exis-
tencia de atractores pullback minimales y algunas relaciones entre ellos. No obstante,
las hipótesis que suponemos sobre el término que contiene el retardo son distintas y es
por ese motivo por el que llevamos a cabo el estudio de este modelo en dos caṕıtulos por
separado.

En el Teorema 4.5 de la Sección 4.1 probamos un resultado sobre existencia, unicidad
y regularidad de solución para el modelo considerado, pero bajo hipótesis menos restric-
tivas sobre el operador con retardo que en Caṕıtulo 5. Más concretamente, eliminamos
hipótesis relacionadas con estimaciones en la norma del espacio L2 sobre el término que
contiene el retardo. No obstante, esto nos obliga a restringirnos al espacio de fase de las
funciones continuas en tiempo. En contraposición, como una ventaja a tener en cuenta,
podemos considerar una mayor clase de operadores con retardo. De hecho, en esta sección
exponemos también un ejemplo en el que sólo exigimos medibilidad sobre el término con
retado, sin necesidad de que sea de clase C1 con derivada acotada, tal y como se impone
en algunos art́ıculos previos que tratan el mismo problema. Por otro lado, y de nuevo ha-
ciendo uso de la teoŕıa desarrollada en el Caṕıtulo 1, en las Secciones 4.2 y 4.3 probamos la
existencia de atractores pullback minimales en los espacios H y V respectivamente, para
el universo de los conjuntos acotados fijos y para diversos universos temperados (véanse
los Teoremas 4.14 y 4.25). Para ello, en la Proposición 4.13 y en el Lema 4.24, probare-
mos previamente la compacidad asintótica del correspondiente proceso en ambos espacios
de fase, de nuevo mediante el mismo método de enerǵıa ya usado en el Lema 2.14. Por
último, en la Sección 4.3 establecemos también algunas propiedades de regularidad para
dichos atractores y, bajo determinadas hipótesis, veremos que todos ellos coinciden.

En el Caṕıtulo 5 mantenemos todas las condiciones usuales sobre el término con re-
tardo, incluidas aquellas relativas a estimaciones en norma L2. En las Secciones 5.2 y
5.3 establecemos de nuevo la existencia de atractores pullback minimales en H y en V
respectivamente, tanto para el espacio de fase de las funciones continuas en tiempo como
para el de las funciones de cuadrado integrable en tiempo (véanse los Teoremas 5.10, 5.19
y 5.21). Además, bajo determinadas hipótesis, obtenemos algunos resultados de regulari-
dad para estos atractores, tales como la atracción en el espacio de las funciones continuas
(en tiempo) con valores en V , y analizamos las relaciones existentes entre dichas familias
de atractores, lo que nos conduce finalmente (véase el Teorema 5.23) a relaciones con los
atractores obtenidos en el Caṕıtulo 4.
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Por último, en el Caṕıtulo 6 consideramos el modelo de Navier-Stokes-Voigt para
fluidos viscoelásticos e incompresibles, el cual fue introducido por Oskolkov en [74] para
describir de manera aproximada un fluido del tipo Kelvin–Voigt. Más concretamente,
analizamos el comportamiento asintótico de las soluciones de un problema no autónomo
para las ecuaciones de Navier-Stokes-Voigt en un dominio acotado de R3, cuando el dato
inicial pertenece a distintos espacios de fase. En la Sección 6.1 probamos un resultado
sobre existencia, unicidad y regularidad de solución, haciendo uso de las aproximaciones de
Galerkin y algunos resultados de compacidad. Una vez más, el principal objetivo de este
caṕıtulo es obtener condiciones suficientes con las que podamos garantizar la existencia
de atractores pullback minimales para el proceso evolutivo asociado a nuestro modelo.
Estos resultados serán expuestos en las Secciones 6.2 y 6.4. Dicho análisis se llevará a
cabo en el espacio V y en el dominio del operador de Stokes D(A), de nuevo para dos
tipos de universos distintos. Debido a que dicho modelo no posee efecto regularizante
(al contrario que en las ecuaciones de Navier–Stokes bidimensionales), para probar la
compacidad asintótica del proceso no podemos utilizar el método de enerǵıa aplicado en
los caṕıtulos anteriores, pues necesitaŕıamos mejores estimaciones para las soluciones del
problema. En su lugar hacemos uso de otro método de enerǵıa, desarrollado por Rosa
en [79] (véanse los Lemas 6.14 y 6.26). Finalmente, en el Teorema 6.20 de la Sección 6.3
analizamos algunas propiedades de regularidad para estos atractores usando un argumento
de bootstrapping, el cual se basa en las potencias fraccionarias del operador de Stokes.



Chapter 1

Abstract Results on Minimal
Pullback Attractors. Pullback
Flattening Property

The theory of pullback attractors for non-autonomous dynamical systems has been ex-
tensively developed in the last years in a vast range of problems (e.g. cf. [20, 50]). This
approach studies under minimal requirements not only the future of the dynamical sys-
tem but what are the current attracting sections when the initial data come from −∞.
Namely, it has been applied in many different situations as for instance those coming from
chemical, physical, and biological motivations, and also for several models related to the
Navier–Stokes system (e.g. cf. [23, 24,36,69,70,73]).

Recent advances in the theory of non-autonomous dynamical systems include the con-
sideration of universes of initial data changing in time (usually in terms of a tempered
growth condition), instead of the universe of autonomous bounded sets, accordingly to
the intrinsically non-autonomous model (e.g. cf. [8,19]). Nevertheless, it usually happens
that the universe of autonomous bounded sets is a subset of the tempered universe. How-
ever, many questions remained open in this direction, as for instance a proper comparison
between pullback attractors in the classical sense and the so-called pullback D-attractors
(this problem was addressed in [70]).

In this chapter we present some definitions and abstract results in order to ensure the
existence of minimal pullback attractors in a general universe. Moreover, we point out
some relations between two possible families of attractors, each of them associated with
the two cited types of universes, that of fixed bounded sets, and another one given by a
tempered condition. An abstract result comparing two families of attractors associated to
the same process but with different phase spaces and/or universes will be also established.
Finally, we will recall the concept of the flattening property in a Banach space, and we
will show that the asymptotic compactness of a dynamical process can be obtained via
the Fourier splitting method, that is, by verifying the flattening property.

All the above results can be found in [31,35,70].
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1.1 Existence and comparison of minimal pullback

attractors

The results in this section are a slight modification and generalization of those presented
in [70] (see also [8] and [7]). In particular, we consider the process U being closed (cf. [62],
see below Definition 1.1). The proofs are not difficult, but some of them are given explicitly
for the sake of completeness.

Consider given a metric space (X, dX), and let us define R2
d = {(t, τ) ∈ R2 : τ ≤ t}.

A process U on X is a mapping R2
d×X 3 (t, τ, x) 7→ U(t, τ)x ∈ X such that U(τ, τ)x =

x for any (τ, x) ∈ R×X, and U(t, r)U(r, τ)x = U(t, τ)x for any τ ≤ r ≤ t and all x ∈ X.

Definition 1.1. Let U be a process on X.

a) U is said to be continuous if for any pair τ ≤ t, the mapping U(t, τ) : X → X is
continuous.

b) U is said to be strong-weak continuous if for any pair τ ≤ t, the mapping U(t, τ) :
X → X transforms sequences converging in the strong topology into sequences converging
in the weak topology.

c) U is said to be closed if for any τ ≤ t, and any sequence {xn} ⊂ X, if xn → x ∈ X
and U(t, τ)xn → y ∈ X, then U(t, τ)x = y.

Remark 1.2. It is clear that every continuous process is strong-weak continuous, and
that every strong-weak continuous process is closed.

Let us denote by P(X) the family of all nonempty subsets of X, and consider a family

of nonempty sets D̂0 = {D0(t) : t ∈ R} ⊂ P(X) (observe that we do not require any
additional condition on these sets as compactness or boundedness).

Definition 1.3. We say that a process U on X is pullback D̂0-asymptotically compact if
for any t ∈ R and any sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying τn → −∞ and
xn ∈ D0(τn) for all n, the sequence {U(t, τn)xn} is relatively compact in X.

Denote the omega-limit set of D̂0 by

Λ(D̂0, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)D0(τ)
X

∀ t ∈ R, (1.1)

where {· · · }
X

is the closure in X.

Given two subsets of X, O1 and O2, we denote by distX(O1,O2) the Hausdorff semi-
distance in X between them, defined as

distX(O1,O2) = sup
x∈O1

inf
y∈O2

dX(x, y).

The following result is standard, and it does not use any continuity assumption on U
(e.g. cf. [8, 70]).
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Proposition 1.4. If the process U on X is pullback D̂0-asymptotically compact, then for
any t ∈ R, the set Λ(D̂0, t) given by (1.1) is a nonempty compact subset of X, and

lim
τ→−∞

distX(U(t, τ)D0(τ),Λ(D̂0, t)) = 0. (1.2)

Moreover, the family {Λ(D̂0, t) : t ∈ R} is minimal in the sense that if Ĉ = {C(t) : t ∈
R} ⊂ P(X) is a family of closed sets such that

lim
τ→−∞

distX(U(t, τ)D0(τ), C(t)) = 0,

then Λ(D̂0, t) ⊂ C(t).

Proof. Let us fix t ∈ R, and consider two sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X

satisfying τn → −∞ and xn ∈ D0(τn) for all n. Since the process U is pullback D̂0-
asymptotically compact, there exist two subsequences {τn′} and {xn′}, and an element

y ∈ X, such that U(t, τn′)xn′ converges to y in X. Then, y ∈ Λ(D̂0, t) and therefore

Λ(D̂0, t) is a nonempty subset of X.

On the other hand, by construction it is evident that the set Λ(D̂0, t) is closed. Then,
in order to prove that this set is compact, it is sufficient to prove that it is relatively
compact in X. To this end, let us consider a sequence {yn} ⊂ Λ(D̂0, t). We must prove
that it is possible to extract a convergent subsequence of {yn} in X.

From the characterization of Λ(D̂0, t), for each integer n there exist τn ≤ t − n and
xn ∈ D0(τn), such that dX(yn, U(t, τn)xn) ≤ 1/n. Again, since the process U is pullback

D̂0-asymptotically compact, from the sequence {U(t, τn)xn} we can extract a convergent
subsequence in X. Thus, it is clear that the corresponding subsequence of {yn} also
converges to the same element in X.

Now, we prove (1.2) by a contradiction argument. Suppose that there exists t ∈ R
such that (1.2) does not hold. Then, there exist ε > 0, and two sequences {τn} ⊂ (−∞, t]
and {xn} ⊂ X satisfying τn → −∞ and xn ∈ D0(τn) for all n, such that

dX(U(t, τn)xn,Λ(D̂0, t)) ≥ ε ∀n ≥ 1. (1.3)

Since U is pullback D̂0-asymptotically compact, from the sequence {U(t, τn)xn} we can

extract a subsequence that converges to an element x ∈ Λ(D̂0, t). And this is a contra-
diction at light of (1.3).

Finally, consider a family Ĉ = {C(t) : t ∈ R} ⊂ P(X) of closed sets such that

lim
τ→−∞

distX(U(t, τ)D0(τ), C(t)) = 0. (1.4)

Let x ∈ Λ(D̂0, t) be given. Then, there exist sequences {τn} ⊂ (−∞, t] with τn → −∞,
and xn ∈ D0(τn) for all n, such that U(t, τn)xn converges to x in X. By (1.4) we have

x ∈ C(t) = C(t), and therefore Λ(D̂0, t) ⊂ C(t).

Assuming also that U is closed, we obtain the invariance of the family of sets {Λ(D̂0, t) :
t ∈ R}.
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Proposition 1.5. If the process U on X is pullback D̂0-asymptotically compact and closed,
then the family of sets {Λ(D̂0, t) : t ∈ R}, defined by (1.1), is invariant for U , that is

Λ(D̂0, t) = U(t, τ)Λ(D̂0, τ) ∀ τ ≤ t.

Proof. Consider τ < t and y ∈ Λ(D̂0, τ). Then, there exist sequences {τn} ⊂ (−∞, τ ]
and {xn} ⊂ X satisfying τn → −∞ and xn ∈ D0(τn) for all n, such that U(τ, τn)xn → y.

On the one hand, from the pullback D̂0-asymptotic compactness of the process U , the
sequence {U(t, τn)xn} is relatively compact, so there exists a subsequence U(t, τn′)xn′ →
z ∈ Λ(D̂0, t). Since U(t, τn) = U(t, τ)U(τ, τn) for all n, from the fact that U is closed, we

deduce that z = U(t, τ)y. The inclusion U(t, τ)Λ(D̂0, τ) ⊂ Λ(D̂0, t) is thus proved.

On the other hand, consider z ∈ Λ(D̂0, t), and {τn} ⊂ (−∞, τ ] with τn → −∞
and xn ∈ D0(τn) for all n, such that U(t, τn)xn → z. By using the concatenation
property of the process, it holds that U(t, τn) = U(t, τ)U(τ, τn) for all n. Now, since
the sequence {U(τ, τn)xn} is also relatively compact, for a subsequence we deduce that

U(τ, τn′)xn′ → y ∈ Λ(D̂0, τ). Again, since U is closed, it holds that z = U(t, τ)y. Thus,

we have proved the inclusion Λ(D̂0, t) ⊂ U(t, τ)Λ(D̂0, τ).

Let D be a nonempty class of families parameterized in time D̂ = {D(t) : t ∈ R} ⊂
P(X). The class D will be called a universe in P(X).

Definition 1.6. It is said that D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback D-absorbing for

the process U on X if for any t ∈ R and any D̂ ∈ D, there exists τ0(D̂, t) ≤ t such that

U(t, τ)D(τ) ⊂ D0(t) ∀ τ ≤ τ0(D̂, t).

Observe that, in the definition above, D̂0 does not belong necessarily to the class D.

Proposition 1.7. If D̂0 is pullback D-absorbing for the process U on X, then

Λ(D̂, t) ⊂ Λ(D̂0, t) ∀ D̂ ∈ D, t ∈ R.

In addition, if D̂0 ∈ D, then

Λ(D̂0, t) ⊂ D0(t)
X
∀ t ∈ R.

Proof. Let D̂ ∈ D and t ∈ R be fixed. If Λ(D̂, t) is nonempty, for any y ∈ Λ(D̂, t) there
exist two sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X, with τn → −∞ and xn ∈ D(τn) for
all n, such that U(t, τn)xn → y.

Since D̂0 is pullback D-absorbing for the process U , for each integer k ≥ 1 there exists
τnk ∈ {τn} with τnk ≤ t− k, and ynk = U(t− k, τnk)xnk ∈ D0(t− k). As U(t, t− k)ynk =

U(t, τnk)xnk → y, then y ∈ Λ(D̂0, t).

Finally, let t ∈ R be given, and suppose that D̂0 ∈ D. If Λ(D̂0, t) is nonempty, observe

that for any y ∈ Λ(D̂0, t), there exist sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X, with

τn → −∞ and xn ∈ D0(τn) for all n, such that U(t, τn)xn → y. Since D̂0 is pullback

D-absorbing for the process U , from certain n ∈ N, U(t, τn)xn ∈ D0(t). Thus, y ∈ D0(t)
X

.
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Definition 1.8. A process U on X is said to be pullback D-asymptotically compact if it
is pullback D̂-asymptotically compact for any D̂ ∈ D.

As a consequence of Propositions 1.4 and 1.5, we have the following result.

Proposition 1.9. Assume that the process U on X is closed and pullback D-asymptotically
compact. Then, for each D̂ ∈ D and any t ∈ R, the set Λ(D̂, t) is a nonempty compact

subset of X, invariant for U , and attracts D̂ in the pullback sense, that is

lim
τ→−∞

distX(U(t, τ)D(τ),Λ(D̂, t)) = 0. (1.5)

Moreover, for each D̂ ∈ D, the family {Λ(D̂, t) : t ∈ R} is minimal amongst all the
families of closed sets that satisfy (1.5).

Proposition 1.10. Assume that D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback D-absorbing

for the process U on X, and U is pullback D̂0-asymptotically compact. Then, the process
U is also pullback D-asymptotically compact.

Proof. Consider fixed t ∈ R, D̂ ∈ D, and sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X, with
τn → −∞ and xn ∈ D(τn) for all n. We must prove that from the sequence {U(t, τn)xn}
we can extract a subsequence converging in X.

Observing that D̂0 is pullback D-absorbing for the process U on X, we deduce that
for any integer k ≥ 1 there exists τnk ∈ {τn} such that τnk ≤ t − k, and ynk =

U(t − k, τnk)xnk ∈ D0(t − k). As U is pullback D̂0-asymptotically compact, from the
sequence {U(t, t − k)ynk} we can extract a subsequence {U(t, t − k′)ynk′} converging in
X. But U(t, t− k′)ynk′ = U(t, t− k′)U(t− k′, τnk′ )xnk′ = U(t, τnk′ )xnk′ . This finishes the
proof.

With the above definitions and results, we obtain the main result of this section.

Theorem 1.11. Consider a closed process U : R2
d×X → X, a universe D in P(X), and

a family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) that is pullback D-absorbing for U , and assume

also that U is pullback D̂0-asymptotically compact.
Then, the family AD = {AD(t) : t ∈ R} defined by

AD(t) =
⋃
D̂∈D

Λ(D̂, t)
X

t ∈ R,

has the following properties:

(a) for any t ∈ R, the set AD(t) is a nonempty compact subset of X, and AD(t) ⊂
Λ(D̂0, t),

(b) AD is pullback D-attracting, i.e., limτ→−∞ distX(U(t, τ)D(τ),AD(t)) = 0 for all

D̂ ∈ D, and any t ∈ R,

(c) AD is invariant, i.e., U(t, τ)AD(τ) = AD(t) for all (t, τ) ∈ R2
d,
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(d) if D̂0 ∈ D, then AD(t) = Λ(D̂0, t) ⊂ D0(t)
X

for all t ∈ R.

The family AD is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is a family of

closed sets such that for any D̂ = {D(t) : t ∈ R} ∈ D,

lim
τ→−∞

distX(U(t, τ)D(τ), C(t)) = 0,

then AD(t) ⊂ C(t).

Proof. As D̂0 is pullbackD-absorbing for U , from Proposition 1.7 we know that Λ(D̂, t) ⊂
Λ(D̂0, t) for any t ∈ R and D̂ ∈ D, and if moreover D̂0 ∈ D, then Λ(D̂0, t) ⊂ D0(t)

X
for

all t ∈ R.
Since U is pullback D̂0-asymptotically compact, by Proposition 1.4, the set Λ(D̂0, t)

is a nonempty compact set for any t ∈ R.
By Proposition 1.10, U is also pullback D-asymptotically compact. Thus, by Propo-

sition 1.9, for any t ∈ R and D̂ ∈ D, the set Λ(D̂, t) is nonempty and compact.
These considerations prove (a) and (d).
Moreover, as evidently

distX(U(t, τ)D(τ),AD(t)) ≤ distX(U(t, τ)D(τ),Λ(D̂, t))

for any D̂ ∈ D, (b) is also a consequence of Proposition 1.9.
Now, in order to prove (c) we observe that by Proposition 1.5, it also holds

U(t, τ)Λ(D̂, τ) = Λ(D̂, t) ∀ τ ≤ t, D̂ ∈ D. (1.6)

If y ∈ AD(t), there exist two sequences {D̂n} ⊂ D and {yn} ⊂ X, such that yn ∈ Λ(D̂n, t)

and yn → y. But by (1.6), yn = U(t, τ)xn, with xn ∈ Λ(D̂n, τ) ⊂ AD(τ). By the
compactness of this last set, there exists a subsequence {xn′} ⊂ {xn} such that xn′ → x ∈
AD(τ). But then, as U is closed, y = U(t, τ)x, and this proves that AD(t) ⊂ U(t, τ)AD(τ).
The reverse inclusion can be proved analogously.

Finally, the minimality is also easy to obtain taking into account Proposition 1.9 and
the definition of AD.

Remark 1.12. A family AD that satisfies properties (a)–(c) in Theorem 1.11 is called a
minimal pullback D-attractor for the process U .

If AD ∈ D then it is the unique family of closed subsets in D that satisfies (b) and (c).
Sufficient conditions in order to have AD ∈ D are

(i) D̂0 ∈ D,

(ii) the set D0(t) is closed for all t ∈ R, and

(iii) the universe D is inclusion-closed, i.e., if D̂ ∈ D, and D̂′ = {D′(t) : t ∈ R} ⊂ P(X)

with D′(t) ⊂ D(t) for all t, then D̂′ ∈ D.
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We will denote by DF (X) the universe of fixed nonempty bounded subsets of X, i.e.,

the class of all families D̂ of the form D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty
bounded subset of X. In the particular case of the universe DF (X), the corresponding
minimal pullback DF (X)-attractor for the process U is the pullback attractor defined by
Crauel, Debussche, and Flandoli [23, Theorem 1.1, p. 311], and will be denoted byADF (X).

Now, it is easy to conclude the following result.

Corollary 1.13. Under the assumptions of Theorem 1.11, if the universe D contains the
universe DF (X), then both attractors, ADF (X) and AD, exist, and the following relation
holds:

ADF (X)(t) ⊂ AD(t) ∀ t ∈ R.

Remark 1.14. It can be proved (see [70]) that, under the assumptions of the preceding
corollary, if for some T ∈ R, the set ∪t≤TD0(t) is a bounded subset of X, then

ADF (X)(t) = AD(t) ∀ t ≤ T.

Now, we establish an abstract result that allows us to compare two attractors for a
process under appropriate assumptions.

Theorem 1.15. Let {(Xi, dXi)}i=1,2 be two metric spaces such that X1 ⊂ X2 with con-
tinuous injection, and for i = 1, 2, let Di be a universe in P(Xi), with D1 ⊂ D2. Assume
that we have a map U that acts as a process in both cases, i.e., U : R2

d × Xi → Xi for
i = 1, 2 is a process.

For each t ∈ R, let us denote

Ai(t) =
⋃

D̂i∈Di

Λi(D̂i, t)
Xi

i = 1, 2,

where the subscript i in the symbol of the omega-limit set Λi is used to denote the depen-
dence of the respective topology.

Then, A1(t) ⊂ A2(t) for all t ∈ R.

If in addition

(i) A1(t) is a compact subset of X1 for all t ∈ R, and

(ii) for any D̂2 ∈ D2 and any t ∈ R, there exist a family D̂1 ∈ D1 and t∗
D̂1
≤ t (both

possibly depending on t and D̂2), such that U is pullback D̂1-asymptotically compact,
and for any s ≤ t∗

D̂1
there exists τs ≤ s such that

U(s, τ)D2(τ) ⊂ D1(s) ∀ τ ≤ τs,

then A1(t) = A2(t) for all t ∈ R.
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Proof. Since the omega-limit set is characterized as

Λi(D̂i, t) = {x ∈ Xi : ∃τn → −∞, xn ∈ Di(τn), x = Xi − lim
n
U(t, τn)xn},

by the continuous injection of X1 into X2 it holds that Λ1(D̂1, t) ⊂ Λ2(D̂1, t), for all

D̂1 ∈ D1 and any t ∈ R. This implies that⋃
D̂1∈D1

Λ1(D̂1, t) ⊂
⋃

D̂1∈D1

Λ2(D̂1, t) ⊂
⋃

D̂2∈D2

Λ2(D̂2, t).

Again from the continuous injection of X1 into X2, we obtain one inclusion:

A1(t) =
⋃

D̂1∈D1

Λ1(D̂1, t)
X1

⊂
⋃

D̂2∈D2

Λ2(D̂2, t)
X2

= A2(t).

For the opposite inclusion, assuming (i) and (ii), consider D̂2 ∈ D2 and t ∈ R given.

For any x ∈ Λ2(D̂2, t) there exist two sequences {τn} and {xn} with τn ≤ t for all n,
satisfying τn → −∞, xn ∈ D2(τn), and x = X2 − limn U(t, τn)xn. By assumption (ii),

there exist a D̂1 ∈ D1 and an integer kD̂1
≥ 1 such that U is pullback D̂1-asymptotically

compact, and for any k ≥ kD̂1
there exist xnk ∈ {xn} and τnk ≤ t− k such that

ynk = U(t− k, τnk)xnk ∈ D1(t− k).

As U is pullback D̂1-asymptotically compact, there exists a subsequence of the sequence
{xnk} (relabelled the same) such that

X1 − lim
k
U(t, t− k)ynk = z ∈ Λ1(D̂1, t).

But taking into account that U(t, t− k)ynk = U(t, τnk)xnk , by the continuous injection of

X1 into X2, we deduce that z = x. Thus, x ∈ Λ1(D̂1, t).
Consequently, ⋃

D̂2∈D2

Λ2(D̂2, t) ⊂
⋃

D̂1∈D1

Λ1(D̂1, t) ⊂ A1(t).

As A1(t) is compact in X1, from the continuous injection, it is also compact in X2, and
in particular, closed. Taking closure in X2 in the above inclusion, we conclude that
A2(t) ⊂ A1(t). The proof is finished.

Remark 1.16. In the preceding theorem, if instead of assumption (ii) we consider the
following condition:

(ii’) for any D̂2 ∈ D2 and any sequence τn → −∞, there exist another family D̂1 ∈ D1

and another sequence τ ′n → −∞ with τ ′n ≥ τn for all n, such that U is pullback

D̂1-asymptotically compact, and

U(τ ′n, τn)D2(τn) ⊂ D1(τ ′n) ∀n,

then, with a similar proof, one can obtain that the equality A1(t) = A2(t) also holds for
all t ∈ R.

Observe that a sufficient condition for (ii’) is that for each t ∈ R, there exists T =

T (t) > 0 such that for any D̂2 ∈ D2, there exists a D̂1 ∈ D1 satisfying that U is pullback

D̂1-asymptotically compact, and U(τ + T, τ)D2(τ) ⊂ D1(τ + T ) for all τ < t− T .
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1.2 Pullback D̂0-flattening property

Now, we introduce a notion which is a slight modification of Ma, Wang, and Zhong’s
“Condition (C)” [63] (renamed the “flattening property” by Kloeden and Langa [48]),
after Definition 2.24 in the book by Carvalho, Langa, and Robinson [12], where Pε need
not be a projection operator.

Definition 1.17. Assume that X is a Banach space with norm ‖ · ‖X , and D̂0 = {D0(t) :
t ∈ R} ⊂ P(X) is a given family. We will say that the process U on X satisfies the

pullback D̂0-flattening property if for any t ∈ R, and ε > 0, there exist τε < t, a finite
dimensional subspace Xε of X, and a mapping Pε : X → Xε, all depending on D̂0, t and
ε, such that

{PεU(t, τ)uτ : τ ≤ τε, u
τ ∈ D0(τ)} is bounded in X

and
‖(I − Pε)U(t, τ)uτ‖X < ε for any τ ≤ τε, u

τ ∈ D0(τ).

Similarly to the results in [63] and [48] (see also [12]) we will see that to show that

a process U is pullback D̂0-asymptotically compact, it is enough to verify the pullback
D̂0-flattening property given in the definition above.

Proposition 1.18. Assume that X is a Banach space and D̂0 = {D0(t) : t ∈ R} ⊂ P(X)

is a given family such that the process U on X satisfies the pullback D̂0-flattening property.
Then the process U is pullback D̂0-asymptotically compact.

Proof. Let t ∈ R, a sequence {τn} ⊂ (−∞, t] such that τn → −∞, and a sequence
{xn} ⊂ X such that xn ∈ D0(τn) for all n, be fixed.

For a fixed integer k ≥ 1, by the pullback D̂0-flattening property, there exist Nk ≥
1, a finite dimensional subspace Xk of X, and a mapping Pk : X → Xk, such that
{PkU(t, τn)xn : n ≥ Nk} is a bounded subset of Xk, and therefore a relatively compact
subset of X, and ‖(I − Pk)U(t, τn)xn‖X ≤ 1/(2k) for all n ≥ Nk. Thus, {U(t, τn)xn :
n ≥ 1} can be covered by a finite number of balls in X of radius 1/k. As k is arbitrary,
it is not difficult to check that {U(t, τn)xn : n ≥ 1} possesses a Cauchy subsequence in
X. Since X is complete, this subsequence is convergent, whence {U(t, τn)xn : n ≥ 1} is
relatively compact in X.

Remark 1.19. It can be proved (see [12, Theorem 2.25, p. 37] or [35]) that, reciprocally,

when X is a uniformly convex Banach space, if the process U is pullback D̂0-asymptotically
compact, then it satisfies the pullback D̂0-flattening property.





Chapter 2

Pullback Attractors for
Non-Autonomous 2D Navier–Stokes
Equations

The Navier–Stokes equations have received very much attention over the last decades due
to their importance in the understanding of fluids motion and turbulence. These equa-
tions have been the object of numerous works since the first paper by Leray was published
in 1933 (e.g. cf. [21, 25,51,61,87] and the references therein).

The main aim of this chapter is to analyze the asymptotic behaviour of the solutions
to a non-autonomous 2D Navier–Stokes model in a bounded domain, when the initial
datum belongs to H or V (defined below precisely). We will prove the existence of min-
imal pullback attractors in these two different phase spaces, when the non-autonomous
forcing term is taken with the minimal regularity required for the existence of weak and
strong solutions, namely, in L2

loc(R;V ′) and L2
loc(R;H) respectively. Actually, we will be

able to obtain these pullback attractors not only of fixed bounded sets but also of a set
of universes given by a tempered condition.

Moreover, we will present a study on the regularity of these different families of pull-
back attractors. On the one hand, in Section 2.3 we will show a general result about the
(H2(Ω))2∩V -boundedness of invariant sets for the associated evolution process. Then, as
a consequence, we will deduce that, under suitable assumptions, the pullback attractors
for our non-autonomous 2D Navier–Stokes problem are bounded not only in V but also in
(H2(Ω))2. On the other hand, in Section 2.4, two results about the tempered behaviour
in V and (H2(Ω))2 of the pullback attractors, when time goes to −∞, will be obtained.

The results in this chapter can be found in [7, 30,31,61,78,87].

31
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2.1 Statement of the problem

Let Ω ⊂ R2 be an open bounded set with smooth enough boundary ∂Ω, and consider an
arbitrary initial time τ ∈ R, and the following Navier–Stokes problem:

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f(t) in Ω× (τ,∞),

divu = 0 in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),

u(x, τ) = uτ (x), x ∈ Ω,

(2.1)

where ν > 0 is the kinematic viscosity, u = (u1, u2) is the velocity field of the fluid, p is the
pressure, uτ is the initial velocity field, and f is the external force term depending on time.

To set our problem in the abstract framework, we consider the following usual function
spaces in the variational theory of Navier–Stokes equations:

V =
{
u ∈ (C∞0 (Ω))2 : divu = 0

}
,

H = the closure of V in (L2(Ω))2 with the norm | · |, and inner product (·, ·), where for
u, v ∈ (L2(Ω))2,

(u, v) =
2∑
j=1

∫
Ω

uj(x)vj(x) dx,

V = the closure of V in (H1
0 (Ω))2 with the norm ‖ · ‖ associated to the inner product

((·, ·)), where for u, v ∈ (H1
0 (Ω))2,

((u, v)) =
2∑

i,j=1

∫
Ω

∂uj
∂xi

∂vj
∂xi

dx.

We will use ‖ · ‖∗ for the norm in V ′ and 〈·, ·〉 for the duality between V ′ and V . We
consider every element h ∈ H as an element of V ′, given by the equality 〈h, v〉 = (h, v)
for all v ∈ V . It follows that V ⊂ H ⊂ V ′, where the injections are dense and compact.

Now, define the operator A : V → V ′ as

〈Au, v〉 = ((u, v)) ∀u, v ∈ V.

Let us denote by D(A) = {u ∈ V : Au ∈ H} the domain of A. By the regularity of ∂Ω,
one has D(A) = (H2(Ω))2 ∩ V , and Au = −P∆u for all u ∈ D(A) is the Stokes operator
(P is the ortho-projector from (L2(Ω))2 onto H). On D(A) we consider the norm | · |D(A)

defined by |u|D(A) = |Au|. Observe that on D(A) the norms ‖ · ‖(H2(Ω))2 and | · |D(A) are
equivalent (see [13] or [86]), and D(A) is compactly and densely injected in V .
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Let us also define

b(u, v, w) =
2∑

i,j=1

∫
Ω

ui
∂vj
∂xi

wj dx,

for all functions u, v, w : Ω→ R2 for which the right-hand side is well defined.
In particular, b makes sense for all u, v, w ∈ V , and is a continuous trilinear form on

V × V × V .
Some useful properties concerning b that we will use throughout the following chapters

are (see [78] or [87]):

b(u, v, w) = −b(u,w, v) ∀u, v, w ∈ V, (2.2)

b(u, v, v) = 0 ∀u, v ∈ V, (2.3)

|b(u, v, w)| ≤ 2−1/2|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2 ∀u, v, w ∈ V, (2.4)

and there exists a constant C1 > 0, depending only on Ω, such that

|b(u, v, w)| ≤ C1|u|1/2|Au|1/2‖v‖|w| ∀u ∈ D(A), v ∈ V, w ∈ H, (2.5)

and
|b(u, v, w)| ≤ C1|Au|‖v‖|w| ∀u ∈ D(A), v ∈ V, w ∈ H. (2.6)

In fact, (2.4) is a slight improvement of Lemma 3.3 in [86, p. 291] (see [36]).

For any u, v ∈ V, we will also denote by B(u, v) the operator of V ′ given by

〈B(u, v), w〉 = b(u, v, w) ∀w ∈ V

and B(u) = B(u, u).

Assume that uτ ∈ H and f ∈ L2
loc(R;V ′).

Definition 2.1. A weak solution to (2.1) is a function u that belongs to L2(τ, T ;V ) ∩
L∞(τ, T ;H) for all T > τ , with u(τ) = uτ , and such that for all v ∈ V ,

d

dt
(u(t), v) + ν〈Au(t), v〉+ b(u(t), u(t), v) = 〈f(t), v〉, (2.7)

where the equation must be understood in the sense of D′(τ,∞).

Note that for the right-hand side to be defined we certainly require f(t) ∈ V ′ for
almost every (a.e. for short) t > τ ; we choose f ∈ L2

loc(R;V ′) so that we can interpret
the initial condition and obtain an energy equality for solutions. Indeed, if u is a weak
solution to (2.1) and f ∈ L2

loc(R;V ′) then from (2.7) we deduce that for any T > τ , one
has u′ ∈ L2(τ, T ;V ′), and so u ∈ C([τ,∞);H), whence the initial datum has full sense.
Moreover, in this case the following energy equality holds:

|u(t)|2 + 2ν

∫ t

s

‖u(r)‖2 dr = |u(s)|2 + 2

∫ t

s

〈f(r), u(r)〉 dr ∀ τ ≤ s ≤ t.
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In Section 2.2.1 we will prove the existence of pullback attractors in H with this
(minimal) regularity requirement on f , coupled with the boundedness condition∫ 0

−∞
eµs‖f(s)‖2

∗ ds <∞ (2.8)

for some µ ∈ (0, 2νλ1), where λ1 = infv∈V \{0} ‖v‖2/|v|2 > 0 is the first eigenvalue of the
Stokes operator A.

A notion of more regular solution is also suitable for problem (2.1).

Definition 2.2. A strong solution to problem (2.1) is a weak solution u to (2.1) such that
u belongs to L2(τ, T ;D(A)) ∩ L∞(τ, T ;V ) for all T > τ .

If f ∈ L2
loc(R;H) and u is a strong solution to (2.1), then u′ ∈ L2(τ, T ;H) for all

T > τ , and so u ∈ C([τ,∞);V ). In this case the following energy equality holds:

‖u(t)‖2 + 2ν

∫ t

s

|Au(r)|2 dr + 2

∫ t

s

b(u(r), u(r), Au(r)) dr

= ‖u(s)‖2 + 2

∫ t

s

(f(r), Au(r)) dr ∀ τ ≤ s ≤ t. (2.9)

We study pullback attractors in the space V in Section 2.2.2, again taking the minimal
regularity requirement on f for the existence of such solutions, along with a condition
parallel to (2.8), namely ∫ 0

−∞
eµs|f(s)|2 ds <∞ (2.10)

for some µ ∈ (0, 2νλ1).

2.2 Existence of minimal pullback attractors

In this section we define a suitable process U associated to problem (2.1), and, by ap-
plying the abstract theory studied in Chapter 1, we are able to obtain the existence of
minimal pullback attractors in both H and V spaces for several universes, under suitable
assumptions. Furthermore, some relations among these attractors will be also analyzed.

2.2.1 Pullback attractors in H norm

Results concerning existence and uniqueness of weak solutions for problem (2.1), and
continuity with respect to the initial condition, summarized in the following theorem and
proposition, are well known (see [61,78,87], for example).

Theorem 2.3. Let f ∈ L2
loc(R;V ′) be given. Then, for each τ ∈ R and uτ ∈ H, there

exists a unique weak solution u(·) = u(·; τ, uτ ) to (2.1).
Moreover, if f ∈ L2

loc(R;H), then
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(a) u ∈ C([τ + ε, T ];V ) ∩ L2(τ + ε, T ;D(A)) for all T > τ + ε > τ .

(b) If uτ ∈ V , u is in fact a strong solution to (2.1).

Therefore, when f ∈ L2
loc(R;V ′), we can define a process U : R2

d ×H → H as

U(t, τ)uτ = u(t; τ, uτ ) ∀ (t, τ) ∈ R2
d, u

τ ∈ H, (2.11)

and if f ∈ L2
loc(R;H), the restriction of this process to R2

d × V is a process on V .

Proposition 2.4. If f ∈ L2
loc(R;V ′), for any pair (t, τ) ∈ R2

d, the map U(t, τ) is contin-
uous from H into H. Moreover, if f ∈ L2

loc(R;H), then U(t, τ) is also continuous from
V into V .

The following result guarantees the existence of a pullback absorbing family for the
process U on H.

Lemma 2.5. Let f ∈ L2
loc(R;V ′) be given and consider any fixed µ ∈ (0, 2νλ1). Then,

for any τ ∈ R, and uτ ∈ H, the solution u(·) = u(·; τ, uτ ) to (2.1) satisfies

|u(t)|2 ≤ e−µ(t−τ)|uτ |2 +
e−µt

2ν − µλ−1
1

∫ t

τ

eµθ‖f(θ)‖2
∗ dθ ∀ t ≥ τ. (2.12)

Proof. By the energy equality we have

d

dθ
|u(θ)|2 + 2ν‖u(θ)‖2 = 2〈f(θ), u(θ)〉, a.e. θ > τ,

and therefore,

d

dθ
(eµθ|u(θ)|2) + 2νeµθ‖u(θ)‖2 = µeµθ|u(θ)|2 + 2eµθ〈f(θ), u(θ)〉, a.e. θ > τ.

Observing that by Young’s inequality,

2|〈f(θ), u(θ)〉| ≤ 1

2ν − µλ−1
1

‖f(θ)‖2
∗ + (2ν − µλ−1

1 )‖u(θ)‖2,

from above we deduce

d

dθ
(eµθ|u(θ)|2) ≤ eµθ

2ν − µλ−1
1

‖f(θ)‖2
∗, a.e. θ > τ,

and thus, integrating in time,

eµt|u(t)|2 ≤ eµτ |uτ |2 +
1

2ν − µλ−1
1

∫ t

τ

eµθ‖f(θ)‖2
∗ dθ ∀ t ≥ τ.

So, from this last inequality we obtain (2.12).

Once the above estimate has been established, we introduce the following universe in
P(H).
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Definition 2.6. For any µ > 0, we will denote by Dµ(H) the class of all families of

nonempty subsets D̂ = {D(t) : t ∈ R} ⊂ P(H) such that

lim
τ→−∞

(
eµτ sup

v∈D(τ)

|v|2
)

= 0.

Accordingly to the notation introduced in the previous chapter, DF (H) will denote

the class of families D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty bounded subset
of H.

Observe that for any µ > 0, DF (H) ⊂ Dµ(H), and that the universe Dµ(H) is
inclusion-closed.

Corollary 2.7. Suppose that f ∈ L2
loc(R;V ′) satisfies∫ 0

−∞
eµs‖f(s)‖2

∗ ds <∞ for some µ ∈ (0, 2νλ1). (2.13)

Then, the family D̂0,µ = {D0,µ(t) : t ∈ R} defined by D0,µ(t) = BH(0, RH(t)), the closed
ball in H of center zero and radius RH(t), where

R2
H(t) = 1 +

e−µt

2ν − µλ−1
1

∫ t

−∞
eµs‖f(s)‖2

∗ ds,

is pullback Dµ(H)-absorbing for the process U on H given by (2.11) (and thus pullback

DF (H)-absorbing too), and D̂0,µ ∈ Dµ(H).

The asymptotic behaviour in H is also well known, and again we only summarize
the main facts (e.g. cf. [8, 7]). Actually, the results in this case can be obtained in an
analogous way, but simpler, to that which we will use later for the asymptotic behaviour
in V .

Lemma 2.8. Under the assumptions of Corollary 2.7, the process U defined by (2.11) is
pullback Dµ(H)-asymptotically compact.

Combining all the above statements, we obtain the existence of minimal pullback
attractors for the process U : R2

d ×H → H defined by (2.11).

Theorem 2.9. Suppose that f ∈ L2
loc(R;V ′) satisfies the condition (2.13). Then, there

exist the minimal pullback DF (H)-attractor ADF (H) and the minimal pullback Dµ(H)-
attractor ADµ(H) for the process U on H given by (2.11). The family ADµ(H) belongs to
Dµ(H), and it holds that

ADF (H)(t) ⊂ ADµ(H)(t) ⊂ BH(0, RH(t)) ∀ t ∈ R. (2.14)

Proof. The existence of ADµ(H) and ADF (H) is a direct consequence of the abstract results
given in Theorem 1.11 and Corollary 1.13 respectively, since all the assumptions, closed
process (continuous in fact, by Proposition 2.4), pullback absorbing family (Corollary 2.7)
and pullback asymptotic compactness (Lemma 2.8), are satisfied.

Then, the claim that ADµ(H) belongs to Dµ(H) follows from Theorem 1.11 and Remark

1.12, since the universe Dµ(H) is inclusion-closed, the family D̂0,µ belongs to Dµ(H), and
the set D0,µ(t) is closed in H for all t ∈ R.

Finally, the first inclusion in (2.14) is a consequence of Corollary 1.13, since DF (H) ⊂
Dµ(H). The last inclusion in (2.14) follows again from Theorem 1.11.
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2.2.2 Pullback attractors in V norm

The goal of this Section is to prove analogous results to those given above, but concerning
to the map U defined as a process on V .

From now on we assume that f ∈ L2
loc(R;H), and satisfies∫ 0

−∞
eµs|f(s)|2 ds <∞ for some µ ∈ (0, 2νλ1). (2.15)

Now, we have the following result in which we establish several estimates in finite
intervals of time when the initial time is sufficiently shifted in a pullback sense.

Lemma 2.10. Suppose that f ∈ L2
loc(R;H) satisfies the condition (2.15). Then, for any

t ∈ R and D̂ ∈ Dµ(H), there exists τ1(D̂, t) < t − 3, such that for any τ ≤ τ1(D̂, t) and
any uτ ∈ D(τ), it holds

|u(r; τ, uτ )|2 ≤ ρ1(t) ∀ r ∈ [t− 3, t],

‖u(r; τ, uτ )‖2 ≤ ρ2(t) ∀ r ∈ [t− 2, t],∫ r

r−1

|Au(θ; τ, uτ )|2 dθ ≤ ρ3(t) ∀ r ∈ [t− 1, t],∫ r

r−1

|u′(θ; τ, uτ )|2 dθ ≤ ρ4(t) ∀ r ∈ [t− 1, t],

(2.16)

where

ρ1(t) = 1 +
e−µ(t−3)

2νλ1 − µ

∫ t

−∞
eµθ|f(θ)|2dθ, (2.17)

ρ2(t) = ν−1

(
ρ1(t) + (ν−1λ−1

1 + 2)

∫ t

t−3

|f(θ)|2dθ
)

× exp

[
2ν−1C(ν)ρ1(t)

(
ρ1(t) + ν−1λ−1

1

∫ t

t−3

|f(θ)|2dθ
)]
, (2.18)

ρ3(t) = ν−1

(
ρ2(t) + 2ν−1

∫ t

t−2

|f(θ)|2dθ + 2C(ν)ρ1(t)ρ2
2(t)

)
,

ρ4(t) = νρ2(t) + 2

∫ t

t−2

|f(θ)|2dθ + 2C2
1ρ2(t)ρ3(t), (2.19)

and
C(ν) = 27C4

1(4ν3)−1. (2.20)

Proof. Let τ1(D̂, t) < t− 3 be such that

e−µ(t−3)eµτ |uτ |2 ≤ 1 ∀ τ ≤ τ1(D̂, t), uτ ∈ D(τ).

Consider fixed τ ≤ τ1(D̂, t) and uτ ∈ D(τ).
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First estimate in (2.16) follows directly from (2.12), using the increasing character of
the exponential.

In order to obtain the rest of the estimates, we will proceed with the Galerkin approx-
imations and then passing to the limit.

For each integer m ≥ 1, we denote by um(t) = um(t; τ, uτ ) the Galerkin approximation
of the solution u(t; τ, uτ ) to (2.1), which is given by

um(t) =
m∑
j=1

αm,j(t)wj,

where the upper script m will be used instead of (m) for short, since no confusion is
possible with powers of u, and where the coefficients αm,j are required to satisfy the
system 

d

dt
(um(t), wj) + ν((um(t), wj)) + b(um(t), um(t), wj) = (f(t), wj),

(um(τ), wj) = (uτ , wj), j = 1, . . . ,m,

(2.21)

where {wj : j ≥ 1} ⊂ D(A) is a Hilbert basis of H formed by ortho-normalized eigen-
functions of the Stokes operator A. Observe that by the regularity of Ω, all wj belong to
(H2(Ω))2.

Multiplying in (2.21) by αm,j(t), and summing from j = 1 to m, we obtain

1

2

d

dt
|um(t)|2 + ν‖um(t)‖2 = (f(t), um(t))

≤ 1

2νλ1

|f(t)|2 +
ν

2
λ1|um(t)|2, a.e. t > τ, (2.22)

where we have used Young’s inequality.
Integrating, in particular we deduce that

ν

∫ r

r−1

‖um(θ)‖2 dθ ≤ |um(r − 1)|2 +
1

νλ1

∫ r

r−1

|f(θ)|2 dθ ∀ τ ≤ r − 1. (2.23)

Now, multiplying in (2.21) by λjαm,j(t), where λj is the eigenvalue associated to the
eigenfunction wj, and summing from j = 1 to m, we obtain

1

2

d

dθ
‖um(θ)‖2 + ν|Aum(θ)|2 + b(um(θ), um(θ), Aum(θ)) = (f(θ), Aum(θ)), (2.24)

a.e. θ > τ .
Observe that

|(f(θ), Aum(θ))| ≤ 1

ν
|f(θ)|2 +

ν

4
|Aum(θ)|2,

and by (2.5) and Young’s inequality,

|b(um(θ), um(θ), Aum(θ))| ≤ C1|um(θ)|1/2‖um(θ)‖|Aum(θ)|3/2

≤ ν

4
|Aum(θ)|2 + C(ν)|um(θ)|2‖um(θ)‖4, (2.25)
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where C(ν) is given by (2.20).
Thus, from (2.24) we deduce

d

dθ
‖um(θ)‖2 + ν|Aum(θ)|2 ≤ 2

ν
|f(θ)|2 + 2C(ν)|um(θ)|2‖um(θ)‖4, a.e. θ > τ. (2.26)

From this inequality, in particular we obtain

‖um(r)‖2 ≤ ‖um(s)‖2 +
2

ν

∫ r

r−1

|f(θ)|2 dθ + 2C(ν)

∫ r

s

|um(θ)|2‖um(θ)‖4 dθ

for all τ ≤ r − 1 ≤ s ≤ r, and therefore, by Gronwall’s lemma,

‖um(r)‖2 ≤
(
‖um(s)‖2 +

2

ν

∫ r

r−1

|f(θ)|2 dθ
)

exp
(

2C(ν)

∫ r

r−1

|um(θ)|2‖um(θ)‖2 dθ
)

for all τ ≤ r − 1 ≤ s ≤ r.
Integrating this last inequality for s between r − 1 and r, we obtain

‖um(r)‖2 ≤
(∫ r

r−1

‖um(s)‖2 ds+
2

ν

∫ r

r−1

|f(θ)|2 dθ
)

× exp
(

2C(ν)

∫ r

r−1

|um(θ)|2‖um(θ)‖2 dθ
)

for all τ ≤ r − 1.
From this, jointly with (2.23) and the first estimate in (2.16) for um, we deduce that

for any m ≥ 1,
‖um(r; τ, uτ )‖2 ≤ ρ2(t) ∀ r ∈ [t− 2, t]. (2.27)

So, taking inferior limit when m goes to infinity in (2.27), and using the well-known
facts that um converges to u(·; τ, uτ ) weakly-star in L∞(t−2, t;V ) and u(·; τ, uτ ) ∈ C([t−
2, t];V ), we obtain the second estimate in (2.16).

On other hand, from (2.26) we also have

ν

∫ r

r−1

|Aum(θ)|2 dθ ≤ ‖um(r − 1)‖2 +
2

ν

∫ r

r−1

|f(θ)|2 dθ

+2C(ν)

∫ r

r−1

|um(θ)|2‖um(θ)‖4 dθ ∀ τ ≤ r − 1.

Therefore,

ν

∫ r

r−1

|Aum(θ; τ, uτ )|2 dθ ≤ ρ3(t) ∀ r ∈ [t− 1, t]. (2.28)

Thus, taking inferior limit when m goes to infinity in (2.28), and by the well-known
fact that um converges to u(·; τ, uτ ) weakly in L2(t − 2, t;D(A)), we obtain the third
inequality in (2.16).

Finally, multiplying in (2.21) by α′m,j(t), and summing again from j = 1 to m, we
obtain

|(um)′(θ)|2 +
ν

2

d

dθ
‖um(θ)‖2 + b(um(θ), um(θ), (um)′(θ)) = (f(θ), (um)′(θ)), a.e. θ > τ.
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Observing that by Young’s inequality and (2.6),

|(f(θ), (um)′(θ))| ≤ 1

4
|(um)′(θ)|2 + |f(θ)|2,

|b(um(θ), um(θ), (um)′(θ))| ≤ C1|Aum(θ)|‖um(θ)‖|(um)′(θ)|

≤ 1

4
|(um)′(θ)|2 + C2

1 |Aum(θ)|2‖um(θ)‖2,

we obtain that

|(um)′(θ)|2 + ν
d

dθ
‖um(θ)‖2 ≤ 2|f(θ)|2 + 2C2

1 |Aum(θ)|2‖um(θ)‖2, a.e. θ > τ. (2.29)

Integrating above, we conclude∫ r

r−1

|(um)′(θ)|2 dθ ≤ ν‖um(r − 1)‖2 + 2

∫ r

r−1

|f(θ)|2 dθ

+2C2
1

∫ r

r−1

|Aum(θ)|2‖um(θ)‖2 dθ ∀ τ ≤ r − 1.

From the first estimate in (2.16) for um, (2.27) and (2.28), we deduce that∫ r

r−1

|(um)′(θ; τ, uτ )|2 dθ ≤ ρ4(t) ∀ r ∈ [t− 1, t]. (2.30)

Thus, taking inferior limit when m goes to infinity in (2.30), and using the also well-
known fact that (um)′ converges to u′(·; τ, uτ ) weakly in L2(t − 2, t;H), we obtain the
fourth inequality in (2.16).

Now, we introduce the following universe in P(V ).

Definition 2.11. For any µ > 0, we will denote by DVµ (H) the class of all families D̂V

of elements of P(V ) of the form D̂V = {D(t) ∩ V : t ∈ R}, where D̂ = {D(t) : t ∈ R} ∈
Dµ(H).

Again, accordingly to the notation in the previous chapter, we denote by DF (V ) the
universe of families (parameterized in time but constant for all t ∈ R) of nonempty fixed
bounded subsets of V .

Observe that for any µ > 0, DF (V ) ⊂ DVµ (H) ⊂ Dµ(H). It must also be pointed out
that the universe DVµ (H) is inclusion-closed.

We establish now some results on absorbing properties of U : R2
d × V → V . The first

one is a consequence of Corollary 2.7.

Corollary 2.12. Under the assumptions of Lemma 2.10, the family D̂0,µ,V = {D0,µ,V (t) :
t ∈ R} ⊂ P(V ), where

D0,µ,V (t) = BH(0, RH(t)) ∩ V,
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belongs to DVµ (H) and satisfies that for any t ∈ R and any D̂ ∈ Dµ(H), there exists a

τ(D̂, t) < t such that

U(t, τ)D(τ) ⊂ D0,µ,V (t) ∀ τ ≤ τ(D̂, t).

In particular, the family D̂0,µ,V is pullback DVµ (H)-absorbing for the process U : R2
d×V →

V .

Lemma 2.13. Suppose that f ∈ L2
loc(R;H) satisfies the condition (2.15). Then, for any

D̂ ∈ Dµ(H) and any r > 0, the family D̂(r) = {D(r)(τ) : τ ∈ R}, where D(r)(τ) =
U(τ + r, τ)D(τ), for any τ ∈ R, belongs to DVµ (H).

Proof. From (2.12), we deduce

sup
w∈D(r)(τ)

(eµτ |w|2) ≤ e−µr sup
v∈D(τ)

(eµτ |v|2) +
e−µr

2νλ1 − µ

∫ τ+r

τ

eµs|f(s)|2 ds,

which jointly with the regularity property (a) in Theorem 2.3 and (2.15), conclude the
proof.

Now, we apply an energy method with continuous functions (e.g. cf. [46, 68, 71]) in
order to obtain the pullback asymptotic compactness in V for the universe DVµ (H).

Lemma 2.14. Suppose that f ∈ L2
loc(R;H) satisfies the condition (2.15). Then, the

process U : R2
d × V → V is pullback DVµ (H)-asymptotically compact.

Proof. Let us fix t ∈ R, a family D̂ ∈ DVµ (H), a sequence {τn} ⊂ (−∞, t] with τn → −∞,
and a sequence {uτn} ⊂ V with uτn ∈ D(τn) for all n. We must prove that the sequence
{u(t; τn, u

τn)} is relatively compact in V . For short, let us denote by un(s) = u(s; τn, u
τn).

From Lemma 2.10 we know that there exists a τ1(D̂, t) < t − 3, such that the sub-

sequence {un : τn ≤ τ1(D̂, t)} ⊂ {un} is bounded in L∞(t − 2, t;V ) ∩ L2(t − 2, t;D(A))
with {(un)′} also bounded in L2(t − 2, t;H). Then, using in particular the Aubin–Lions
compactness lemma (see [3], [61] or [84]) there exists an element u ∈ L∞(t − 2, t;V ) ∩
L2(t − 2, t;D(A)) with u′ ∈ L2(t − 2, t;H), such that for a subsequence (relabelled the
same) the following convergences hold:

un
∗
⇀ u weakly-star in L∞(t− 2, t;V ),

un ⇀ u weakly in L2(t− 2, t;D(A)),
(un)′ ⇀ u′ weakly in L2(t− 2, t;H),
un → u strongly in L2(t− 2, t;V ),
un(s)→ u(s) strongly in V, a.e. s ∈ (t− 2, t).

(2.31)

Observe that u ∈ C([t − 2, t];V ), and due to (2.31), u satisfies the equation (2.7) in the
interval (t− 2, t).

From (2.31) we also deduce that {un} is equi-continuous on [t− 2, t] with values in H.
Thus, taking into account that the sequence {un} is bounded in C([t − 2, t];V ), by the
compactness of the injection of V into H, and the Ascoli–Arzelà theorem, we obtain that

un → u strongly in C([t− 2, t];H). (2.32)
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Again by the boundedness of {un} in C([t−2, t];V ), we have that for all sequence {sn} ⊂
[t− 2, t] with sn → s∗, it holds that

un(sn) ⇀ u(s∗) weakly in V, (2.33)

where we have used (2.32) to identify the weak limit.
Actually, we claim that

un → u strongly in C([t− 1, t];V ), (2.34)

which in particular will imply the relative compactness.
Indeed, if (2.34) does not hold, there exist ε > 0, a sequence {tn} ⊂ [t− 1, t], without

loss of generality converging to some t∗ ∈ [t− 1, t], and such that

‖un(tn)− u(t∗)‖ ≥ ε ∀n ≥ 1. (2.35)

From (2.33) we already have

‖u(t∗)‖ ≤ lim inf
n→∞

‖un(tn)‖. (2.36)

On the other hand, using the energy equality (2.9) for u and all un, and reasoning as
for the obtention of (2.26), it holds that for all t− 2 ≤ s1 ≤ s2 ≤ t,

‖un(s2)‖2 + ν

∫ s2

s1

|Aun(r)|2 dr

≤ ‖un(s1)‖2 + 2C(ν)

∫ s2

s1

|un(r)|2‖un(r)‖4 dr +
2

ν

∫ s2

s1

|f(r)|2 dr,

and

‖u(s2)‖2 + ν

∫ s2

s1

|Au(r)|2 dr

≤ ‖u(s1)‖2 + 2C(ν)

∫ s2

s1

|u(r)|2‖u(r)‖4 dr +
2

ν

∫ s2

s1

|f(r)|2 dr.

In particular we can define the functions

Jn(s) = ‖un(s)‖2 − 2C(ν)

∫ s

t−2

|un(r)|2‖un(r)‖4 dr − 2

ν

∫ s

t−2

|f(r)|2 dr,

J(s) = ‖u(s)‖2 − 2C(ν)

∫ s

t−2

|u(r)|2‖u(r)‖4 dr − 2

ν

∫ s

t−2

|f(r)|2 dr.

It is clear from the regularity of u and all un that these functions are continuous on [t−2, t],
and from the corresponding inequalities above, both Jn and J are non-increasing.

Observe now that by the last convergence in (2.31), and (2.32), ‖un(s)‖ → ‖u(s)‖ and
|un(s)|2‖un(s)‖4 → |u(s)|2‖u(s)‖4, a.e. s ∈ (t − 2, t). Moreover, as the sequence {un} is
bounded in L∞(t−2, t;V ) ⊂ L∞(t−2, t;H), it holds that the sequence {|un(s)|2‖un(s)‖4}
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is bounded in L∞(t−2, t). Therefore, from the Lebesgue’s dominated convergence theorem
we deduce that∫ s

t−2

|un(r)|2‖un(r)‖4 dr →
∫ s

t−2

|u(r)|2‖u(r)‖4 dr ∀ s ∈ [t− 2, t].

Thus,
Jn(s)→ J(s) a.e. s ∈ (t− 2, t).

Hence, there exists a sequence {t̃k} ⊂ (t− 2, t∗) such that t̃k → t∗ when k →∞, and

lim
n→∞

Jn(t̃k) = J(t̃k) ∀ k.

Fix an arbitrary value δ > 0. From the continuity of J , there exists kδ such that

|J(t̃k)− J(t∗)| < δ/2 ∀ k ≥ kδ.

Now consider n(kδ) such that for all n ≥ n(kδ) it holds

tn ≥ t̃kδ and |Jn(t̃kδ)− J(t̃kδ)| < δ/2.

Then, since all Jn are non-increasing, we deduce that for all n ≥ n(kδ)

Jn(tn)− J(t∗) ≤ Jn(t̃kδ)− J(t∗)

≤ |Jn(t̃kδ)− J(t∗)|
≤ |Jn(t̃kδ)− J(t̃kδ)|+ |J(t̃kδ)− J(t∗)| < δ.

This yields that
lim sup
n→∞

Jn(tn) ≤ J(t∗),

and therefore, by (2.31),
lim sup
n→∞

‖un(tn)‖ ≤ ‖u(t∗)‖,

which joined to (2.36) and (2.33) implies that un(tn)→ u(t∗) strongly in V , in contradic-
tion with (2.35). Thus, (2.34) holds and the relatively compactness of {u(t; τn, u

τn)} in V
is proved.

As a consequence of the previous results, we obtain the existence of minimal pullback
attractors for the process U on V .

Theorem 2.15. Suppose that f ∈ L2
loc(R;H) satisfies the condition (2.15). Then, there

exist the minimal pullback DF (V )-attractor ADF (V ) and the minimal pullback DVµ (H)-
attractor ADVµ (H) for the process U : R2

d × V → V defined by (2.11), and the following
relations hold:

ADF (V )(t) ⊂ ADF (H)(t) ⊂ ADµ(H)(t) = ADVµ (H)(t) ∀ t ∈ R. (2.37)

In particular, for any D̂ ∈ Dµ(H), the following pullback attraction result in V holds:

lim
τ→−∞

distV (U(t, τ)D(τ),ADµ(H)(t)) = 0 ∀ t ∈ R. (2.38)



44 Chapter 2. Pullback Attractors for 2D Navier–Stokes Equations

Finally, if moreover f satisfies

sup
s≤0

(
e−µs

∫ s

−∞
eµθ|f(θ)|2 dθ

)
<∞, (2.39)

then

ADF (V )(t) = ADF (H)(t) = ADµ(H)(t) = ADVµ (H)(t) ∀ t ∈ R. (2.40)

Proof. Since the process U is continuous on V by Proposition 2.4, there exists a pullback
absorbing family D̂0,µ,V ∈ DVµ (H) by Corollary 2.12, and the process U is pullbackDVµ (H)-
asymptotically compact by Lemma 2.14, the existence of ADVµ (H) and ADF (V ) follows from
Theorem 1.11 and Corollary 1.13 respectively.

In (2.37), the inclusions follow from Corollary 1.13, Theorem 1.15, and the fact that
DF (V ) ⊂ DF (H). The equality is a consequence of Theorem 1.15 and Remark 1.16, by
using Lemma 2.13 with T = r = 1.

The property (2.38) is a consequence of Lemma 2.13, since for any D̂ ∈ Dµ(H) and
any τ < t− 1,

distV (U(t, τ)D(τ),ADµ(H)(t)) = distV (U(t, τ + 1)(U(τ + 1, τ)D(τ)),ADµ(H)(t))

= distV (U(t, τ + 1)D(1)(τ),ADVµ (H)(t)).

If moreover f satisfies (2.39), then the equalityADF (H)(t) = ADµ(H)(t) is a consequence
of Remark 1.14, and the equality ADF (V )(t) = ADF (H)(t) holds by applying once more
Theorem 1.15, and the second estimate in (2.16), since (2.39) is equivalent to

sup
s≤0

∫ s

s−1

|f(θ)|2 dθ <∞. (2.41)

Remark 2.16. Observe that if f ∈ L2
loc(R;H) satisfies the condition (2.15), then it also

satisfies ∫ 0

−∞
eσs|f(s)|2 ds <∞ ∀σ ∈ (µ, 2νλ1).

Thus, for any σ ∈ (µ, 2νλ1) there exists the corresponding minimal pullback Dσ(H)-
attractor ADσ(H).

By Theorem 1.15, since Dµ(H) ⊂ Dσ(H), it is evident that, for any t ∈ R,

ADµ(H)(t) ⊂ ADσ(H)(t) ∀σ ∈ (µ, 2νλ1).

Moreover, if f also satisfies (2.39), then by (2.40), for any σ ∈ (µ, 2νλ1),

ADF (H)(t) = ADµ(H)(t) = ADσ(H)(t) ∀ t ∈ R.



2.3. H2-boundedness of the pullback attractors 45

2.3 H2-boundedness of the pullback attractors

In this section we prove that, under suitable assumptions, any family of bounded subsets
of H which is invariant for the process U , is in fact bounded in (H2(Ω))2 ∩ V . In partic-
ular, we will obtain that any pullback attractor A for U satisfies that A(t) is a bounded
subset of (H2(Ω))2∩V , for every t ∈ R (for similar results for reaction-diffusion equations
see [1], and for related results for Navier–Stokes equations see [37]).

First, we recall a result (cf. [78]) which will be used below.

Lemma 2.17. Let X, Y be Banach spaces such that X is reflexive, and the inclusion
X ⊂ Y is continuous. Assume that {un} is a bounded sequence in L∞(t0, T ;X) such that
un ⇀ u weakly in Lq(t0, T ;X) for some q ∈ [1,∞), and u ∈ C([t0, T ];Y ).

Then, u(t) ∈ X and ‖u(t)‖X ≤ lim inf
n→∞

‖un‖L∞(t0,T ;X), for all t ∈ [t0, T ].

Let us consider again the Galerkin approximations defined by (2.21), already used in
Lemma 2.10. For short, denote by um(·) = um(·; τ, uτ ) the Galerkin approximation of the
solution u(·; τ, uτ ) to problem (2.1).

We first prove the following result.

Proposition 2.18. Assume that f ∈ L2
loc(R;H). Then, for any bounded set B ⊂ H, any

τ ∈ R, any ε > 0 and any t > τ + ε, the following three properties are satisfied:

i) The set {um(r; τ, uτ ) : r ∈ [τ + ε, t], uτ ∈ B, m ≥ 1} is a bounded subset of V .

ii) The set of functions {um(·; τ, uτ ) : uτ ∈ B, m ≥ 1} is a bounded subset of L2(τ +
ε, t;D(A)).

iii) The set of time derivative functions {(um)′(·; τ, uτ ) : uτ ∈ B, m ≥ 1} is a bounded
subset of L2(τ + ε, t;H).

Proof. Let us fix a bounded set B ⊂ H, τ ∈ R, ε > 0, t > τ + ε, and uτ ∈ B.
Integrating in (2.22) between τ and r, we obtain

|um(r)|2 + ν

∫ r

τ

‖um(θ)‖2 dθ ≤ |uτ |2 +
1

νλ1

∫ t

τ

|f(θ)|2 dθ ∀ r ∈ [τ, t], m ≥ 1. (2.42)

On the other, from (2.26) in particular we deduce

‖um(r)‖2 ≤ ‖um(s)‖2 +
2

ν

∫ t

τ

|f(θ)|2 dθ + 2C(ν)

∫ r

s

|um(θ)|2‖um(θ)‖4 dθ

for all τ ≤ s ≤ r ≤ t, and therefore, by Gronwall’s lemma,

‖um(r)‖2 ≤
(
‖um(s)‖2 +

2

ν

∫ t

τ

|f(θ)|2 dθ
)

exp

(
2C(ν)

∫ t

τ

|um(θ)|2‖um(θ)‖2 dθ

)
for all τ ≤ s ≤ r ≤ t.
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Integrating this last inequality for s between τ and r, we obtain

(r − τ)‖um(r)‖2 ≤
(∫ t

τ

‖um(s)‖2 ds+
2(t− τ)

ν

∫ t

τ

|f(θ)|2 dθ
)

× exp

(
2C(ν)

∫ t

τ

|um(θ)|2‖um(θ)‖2 dθ

)
for all τ ≤ r ≤ t, and in particular,

‖um(r)‖2 ≤ 1

ε

(∫ t

τ

‖um(s)‖2 ds+
2(t− τ)

ν

∫ t

τ

|f(θ)|2 dθ
)

× exp

(
2C(ν)

∫ t

τ

|um(θ)|2‖um(θ)‖2 dθ

)
(2.43)

for all τ + ε ≤ r ≤ t, for any m ≥ 1.
From (2.42) and (2.43), the assertion in i) holds. Moreover, by (2.26),

ν

∫ t

τ+ε

|Aum(θ)|2 dθ ≤ ‖um(τ + ε)‖2 +
2

ν

∫ t

τ

|f(θ)|2 dθ

+2C(ν)

∫ t

τ+ε

|um(θ)|2‖um(θ)‖4 dθ,

and therefore, by i), the assertion in ii) holds.
Finally, integrating in (2.29), we deduce that∫ t

τ+ε

|(um)′(θ)|2 dθ ≤ ν‖um(τ + ε)‖2 + 2

∫ t

τ

|f(θ)|2 dθ

+2C2
1 sup
θ∈[τ+ε,t]

‖um(θ)‖2

∫ t

τ+ε

|Aum(θ)|2 dθ,

and therefore iii) follows from i) and ii).

Corollary 2.19. Assume that f ∈ L2
loc(R;H). Then, for any bounded set B ⊂ H, any

τ ∈ R, any ε > 0, and any t > τ + ε, the set
⋃

r∈[τ+ε,t]

U(r, τ)B is a bounded subset of V .

Proof. This is a straightforward consequence of Lemma 2.17, assertion i) in Propo-
sition 2.18, and the well-known fact (e.g. cf. [61, 78, 87, 86]) that for all uτ ∈ B the
Galerkin approximations um(·; τ, uτ ) converge weakly to u(·; τ, uτ ) in L2(τ, t;V ), and
u(·; τ, uτ ) ∈ C([τ, t];H).

Assuming additional regularity for the time derivative of f , we can improve the above
results.

Proposition 2.20. Assume that f ∈ W 1,2
loc (R;H). Then, for any bounded set B ⊂ H,

any τ ∈ R, any ε > 0, and any t > τ + ε, the following two properties are satisfied:
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iv) The set of time derivatives {(um)′(r; τ, uτ ) : r ∈ [τ + ε, t], uτ ∈ B, m ≥ 1} is a
bounded subset of H.

v) The set {um(r; τ, uτ ) : r ∈ [τ + ε, t], uτ ∈ B, m ≥ 1} is a bounded subset of D(A).

Proof. Let us fix a bounded set B ⊂ H, τ ∈ R, ε > 0, t > τ + ε, and uτ ∈ B.

As we are assuming that f ∈ W 1,2
loc (R;H), we can differentiate with respect to time in

(2.21), and then, multiplying by α′m,j(t), and summing from j = 1 to m, we obtain

1

2

d

dθ
|(um)′(θ)|2 + ν‖(um)′(θ)‖2 + b((um)′(θ), um(θ), (um)′(θ)) = (f ′(θ), (um)′(θ)),

a.e. θ > τ .

From this inequality, taking into account that

|(f ′(θ), (um)′(θ))| ≤ ν

2
‖(um)′(θ)‖2 +

1

2νλ1

|f ′(θ)|2,

and that by (2.4)

|b((um)′(θ), um(θ), (um)′(θ))| ≤ 2−1/2|(um)′(θ)|‖(um)′(θ)‖‖um(θ)‖

≤ ν

2
‖(um)′(θ)‖2 +

1

4ν
|(um)′(θ)|2‖um(θ)‖2,

we deduce

d

dθ
|(um)′(θ)|2 ≤ 1

νλ1

|f ′(θ)|2 +
1

2ν
|(um)′(θ)|2‖um(θ)‖2, a.e. θ > τ. (2.44)

Integrating in the last inequality,

|(um)′(r)|2 ≤ |(um)′(s)|2 +
1

νλ1

∫ t

τ

|f ′(θ)|2 dθ +
1

2ν

∫ r

s

|(um)′(θ)|2‖um(θ)‖2 dθ

for all τ ≤ s ≤ r ≤ t.

Thus, again by Gronwall’s lemma,

|(um)′(r)|2 ≤
(
|(um)′(s)|2 +

1

νλ1

∫ t

τ

|f ′(θ)|2 dθ
)

exp

(
1

2ν

∫ t

τ+ε/2

‖um(θ)‖2 dθ

)
for all τ + ε/2 ≤ s ≤ r ≤ t.

Now, integrating this inequality with respect to s between τ + ε/2 and r, we obtain

(r − τ − ε/2)|(um)′(r)|2 ≤
(∫ t

τ+ε/2

|(um)′(s)|2 ds+
t− τ
νλ1

∫ t

τ

|f ′(θ)|2 dθ
)

× exp

(
1

2ν

∫ t

τ+ε/2

‖um(θ)‖2 dθ

)
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for all τ + ε/2 ≤ r ≤ t, and any m ≥ 1. Thus, in particular,

|(um)′(r)|2 ≤ 2

ε

(∫ t

τ+ε/2

|(um)′(s)|2 ds+
t− τ
νλ1

∫ t

τ

|f ′(θ)|2 dθ
)

× exp

(
1

2ν

∫ t

τ+ε/2

‖um(θ)‖2 dθ

)
for all τ + ε ≤ r ≤ t, and any m ≥ 1.

From this inequality and properties i) and iii) in Proposition 2.18, we obtain iv).
On the other hand, multiplying again in (2.21) by λjαm,j(t), and summing once more

from j = 1 to m, we obtain

((um)′(r), Aum(r)) + ν|Aum(r)|2 + b(um(r), um(r), Aum(r)) = (f(r), Aum(r)) (2.45)

for all r > τ . But

|((um)′(r), Aum(r))| ≤ 2

ν
|(um)′(r)|2 +

ν

8
|Aum(r)|2,

and

|(f(r), Aum(r))| ≤ 2

ν
|f(r)|2 +

ν

8
|Aum(r)|2.

Therefore, taking into account (2.25), we deduce from (2.45) that

ν

2
|Aum(r)|2 ≤ 2

ν

(
|(um)′(r)|2 + |f(r)|2

)
+ C(ν)|um(r)|2‖um(r)‖4 ∀ r ≥ τ. (2.46)

Finally, since in particular f ∈ C(R;H), from i) in Proposition 2.18, iv) and inequality
(2.46), we deduce v).

As a direct consequence of the above, we can now establish our main results.

Theorem 2.21. Assume that f ∈ W 1,2
loc (R;H). Then, for any bounded set B ⊂ H, any

τ ∈ R, any ε > 0, and any t > τ + ε, the set
⋃

r∈[τ+ε,t]

U(r, τ)B is a bounded subset of

D(A) = (H2(Ω))2 ∩ V .

Proof. This follows from Lemma 2.17, Proposition 2.20, and the well-known facts that
um(·; τ, uτ ) converges weakly to u(·; τ, uτ ) in L2(τ, t;V ), and u(·; τ, uτ ) belongs to C([τ +
ε, t];V ).

Theorem 2.22. Assume that f ∈ L2
loc(R;H), and A = {A(t) : t ∈ R} is a family of

bounded subsets of H, such that U(t, τ)A(τ) = A(t) for any τ ≤ t. Then:

i) For any T1 < T2, the set
⋃

t∈[T1,T2]

A(t) is a bounded subset of V .

ii) If moreover f ′ ∈ L2
loc(R;H), then for any T1 < T2, the set

⋃
t∈[T1,T2]

A(t) is a bounded

subset of (H2(Ω))2 ∩ V .

Proof. It is enough to observe that if τ < T1 − 1 is fixed, then⋃
t∈[T1,T2]

A(t) ⊂
⋃

t∈[τ+1,T2]

U(t, τ)A(τ).

Now, apply Corollary 2.19 and Theorem 2.21.
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2.4 Tempered behaviour of the pullback attractors

The tempered behaviour in H of the pullback attractor ADµ(H) is given by Theorem 2.9.
Indeed, under the assumptions of that result, ADµ(H) ∈ Dµ(H), i.e. one has

lim
t→−∞

(
eµt sup

v∈ADµ(H)(t)

|v|2
)

= 0.

In this section we obtain two results about the tempered behaviour of ADµ(H), in V
and (H2(Ω))2, when time goes to −∞. In fact, we will obtain the tempered behaviour
for any invariant family belonging to Dµ(H).

Proposition 2.23. Suppose that f ∈ L2
loc(R;H) satisfies the assumption (2.39) in Theo-

rem 2.15, and let D̂ ∈ Dµ(H) be invariant with respect to the process U defined by (2.11)
(i.e. such that D(t) = U(t, τ)D(τ) for all τ ≤ t). Then,

lim
t→−∞

(
eµt sup

v∈D(t)

‖v‖2

)
= 0.

Proof. The result is a consequence of the invariance of D̂, the second estimate in (2.16) in
Lemma 2.10, and the tempered character of the expression (2.18), since for f ∈ L2

loc(R;H),
the condition (2.39) is equivalent to (2.41).

Assuming now that f ′ ∈ L2
loc(R;H), we can obtain the tempered behaviour in (H2(Ω))2

for any invariant family belonging to Dµ(H). We first prove the following result, which
completes the estimates obtained in Lemma 2.10.

Proposition 2.24. If f ∈ W 1,2
loc (R;H) and satisfies (2.15), then for each t ∈ R and

D̂ ∈ Dµ(H), there exists τ1(D̂, t) < t− 3 such that

|AU(r, τ)uτ |2 ≤ ρ6(t) ∀ r ∈ [t− 1, t], τ ≤ τ1(D̂, t), uτ ∈ D(τ),

where
ρ6(t) = 4ν−2

(
ρ5(t) + max

r∈[t−1,t]
|f(r)|2

)
+ 2ν−1C(ν)ρ1(t)ρ2

2(t), (2.47)

with ρ5(t) defined by

ρ5(t) =

(
ρ4(t) + ν−1λ−1

1

∫ t

t−2

|f ′(θ)|2 dθ
)

exp

(
1

2ν
ρ2(t)

)
, (2.48)

and where the ρi(t), i = 1, 2, 4, are given in Lemma 2.10.

Proof. We consider again the Galerkin approximations used in the proofs of Lemma
2.10, and Propositions 2.18 and 2.20.

Integrating in (2.44), we obtain

|(um)′(r)|2 ≤ |(um)′(s)|2 +
1

νλ1

∫ r

r−1

|f ′(θ)|2 dθ +
1

2ν

∫ r

s

|(um)′(θ)|2‖um(θ)‖2 dθ
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for all τ ≤ r − 1 ≤ s ≤ r.
Thus, by Gronwall’s inequality,

|(um)′(r)|2 ≤
(
|(um)′(s)|2 +

1

νλ1

∫ r

r−1

|f ′(θ)|2 dθ
)

exp

(
1

2ν

∫ r

r−1

‖um(θ)‖2 dθ

)
for all τ ≤ r − 1 ≤ s ≤ r.

Now, integrating this inequality with respect to s between r − 1 and r, we obtain

|(um)′(r)|2 ≤
(∫ r

r−1

|(um)′(s)|2 ds+
1

νλ1

∫ r

r−1

|f ′(θ)|2 dθ
)

× exp

(
1

2ν

∫ r

r−1

‖um(θ)‖2 dθ

)
for all τ ≤ r − 1 and any m ≥ 1, and therefore, by (2.27) and (2.30) we deduce that for
any m ≥ 1,

|(um)′(r; τ, uτ )|2 ≤ ρ5(t) ∀ r ∈ [t− 1, t], τ ≤ τ1(D̂, t), uτ ∈ D(τ), (2.49)

where ρ5(t) is given by (2.48).

Finally, since in particular f ∈ C(R;H), from inequality (2.46), the first estimate in
(2.16) for um, (2.27), and (2.49), we deduce that for any m ≥ 1,

|Aum(r; τ, uτ )|2 ≤ ρ6(t) ∀ r ∈ [t− 1, t], τ ≤ τ1(D̂, t), uτ ∈ D(τ), (2.50)

where ρ6(t) is given by (2.47).

The result now is a consequence of Lemma 2.17 and (2.50), taking into account the
well-known facts that um(·; τ, uτ ) converges weakly to u(·; τ, uτ ) in L2(t − 1, t;V ), and
u(·; τ, uτ ) ∈ C([t− 1, t];V ).

Now, we may conclude a result about the tempered behaviour in (H2(Ω))2.

Proposition 2.25. Suppose that f ∈ W 1,2
loc (R;H) satisfies the assumption (2.39) in The-

orem 2.15, and moreover

lim
t→−∞

(
eµt
∫ t

t−1

|f ′(θ)|2 dθ
)

= 0, (2.51)

and

lim
t→−∞

(
eµt|f(t)|2

)
= 0. (2.52)

Then, for every family D̂ ∈ Dµ(H) invariant with respect to the process U defined by
(2.11), one has

lim
t→−∞

(
eµt sup

v∈D(t)

‖v‖2
(H2(Ω))2

)
= 0.
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Proof. Observe that

|f(r)| ≤ |f(t− 1)|+
(∫ t

t−1

|f ′(θ)|2 dθ
)1/2

∀ r ∈ [t− 1, t].

Thus, taking into account (2.51) and (2.52), the result follows from the invariance of D̂,
Proposition 2.24, (2.17), (2.18), (2.19), and again the fact that, as we observed in the
proofs of Theorem 2.15 and Proposition 2.23, the condition (2.39) is equivalent to (2.41).





Chapter 3

Pullback Flattening Property for
Non-Autonomous 2D Navier–Stokes
Equations

Our goal in this chapter is to obtain the flattening property for the non-autonomous
2D Navier–Stokes model stated in the previous chapter, in different norms, namely in
H and V , when the forcing has again the minimal regularity for generating weak and
strong solutions, respectively. As a consequence of such flattening property, we will also
obtain the asymptotic compactness of the associated evolution process, and therefore the
existence of minimal pullback attractors in these two different spaces.

While in the case of H a direct proof of asymptotic compactness is no harder than a
proof of the flattening property, in V a proof of asymptotic compactness via the flattening
property is significantly shorter than the one given in Lemma 2.14, which was based on
more involved inequalities. This is due to the fact that there are stronger estimates
available for the nonlinear term in V than in H:

|b(u, u, q)| ≤ c|u|‖u‖‖q‖, |b(u, u,Aq)| ≤ c‖u‖|u|1/2‖∇u‖1/2‖∇q‖,

(see properties (2.4) and (2.5) in Chapter 2).

The analysis in the space H for uτ ∈ H and f ∈ L2
loc(R;V ′) is carried out in Section

3.1. Furthermore, by using the semigroup approach of Fujita and Kato [29] and ideas from
the ε-regularity theory developed by Arrieta and Carvalho [2], we obtain the existence
of a compact pullback absorbing family in H if we strengthen the regularity of f to
f ∈ Lploc(R;V ′) for some p > 2.

We then establish additional regularity results in Section 3.2, under the assumption
that f ∈ L2

loc(R;H) and the integrability condition (2.10). We obtain the flattening
property in the V norm, which implies the asymptotic compactness of the corresponding
process in this norm. Again, in this section we are able to show the existence of a compact
pullback absorbing family in V if we strengthen the regularity of f to f ∈ Lploc(R;H) for
some p > 2.

The main results in this chapter can be found in [35].

53
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3.1 Pullback flattening property in H norm

In this section we prove that the process U on H defined by (2.11) satisfies the pullback
flattening property. As already pointed out, the proofs of the flattening property and the
asymptotic compactness of this process in this space are in fact very similar (indeed, we
will obtain both from Lemma 3.2, the asymptotic compactness following almost immedi-
ately).

First, we establish several estimates for the process U in finite intervals of time when
the initial time is sufficiently shifted in a pullback sense.

Lemma 3.1. Assume that f ∈ L2
loc(R;V ′) satisfies (2.13). Then, for any t ∈ R and

D̂ ∈ Dµ(H), there exists τ1(D̂, t) < t − 2, such that for any τ ≤ τ1(D̂, t) and any
uτ ∈ D(τ),

|u(r; τ, uτ )|2 ≤ ρ2
1(t) ∀ r ∈ [t− 2, t], (3.1)

ν

∫ r

r−1

‖u(θ; τ, uτ )‖2 dθ ≤ ρ2
2(t) ∀ r ∈ [t− 1, t], (3.2)∫ r

r−1

‖u′(θ; τ, uτ )‖2
∗ dθ ≤ ρ2

3(t) ∀ r ∈ [t− 1, t], (3.3)

where

ρ2
1(t) = 1 + e−µ(t−2)(2ν − µλ−1

1 )−1

∫ t

−∞
eµθ‖f(θ)‖2

∗ dθ,

ρ2
2(t) = ρ2

1(t) + ν−1

∫ t

t−2

‖f(θ)‖2
∗ dθ,

ρ2
3(t) = 3νρ2

2(t) +
3

2
ρ2

1(t)
ρ2

2(t)

ν
+ 3

∫ t

t−2

‖f(θ)‖2
∗ dθ.

Proof. Let τ1(D̂, t) < t− 2 be such that

e−µ(t−2)eµτ |uτ |2 ≤ 1 ∀ τ ≤ τ1(D̂, t), uτ ∈ D(τ).

Consider fixed τ ≤ τ1(D̂, t) and uτ ∈ D(τ).
The estimate (3.1) follows directly from (2.12), using the increasing character of the

exponential.
Now, observing that

d

dθ
|u(θ)|2 + 2ν‖u(θ)‖2 ≤ ν−1‖f(θ)‖2

∗ + ν‖u(θ)‖2, a.e. θ > τ, (3.4)

and using (3.1), we obtain (3.2).
Finally, from (2.2), (2.4), (2.7), and the fact that A is an isometric isomorphism, we

have
‖u′(θ)‖∗ ≤ ν‖u(θ)‖+ 2−1/2|u(θ)|‖u(θ)‖+ ‖f(θ)‖∗, a.e. θ > τ,
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and therefore,

‖u′(θ)‖2
∗ ≤ 3ν2‖u(θ)‖2 +

3

2
|u(θ)|2‖u(θ)‖2 + 3‖f(θ)‖2

∗, a.e. θ > τ,

whence, using (3.1) and (3.2), the estimate (3.3) follows.

Now, in order to prove the pullback D̂0,µ-flattening property for the process U on H,

where the family D̂0,µ was defined in Corollary 2.7, we need the following auxiliary result.
The proof is similar to that in Lemma 2.14.

Lemma 3.2. Under the assumptions of Lemma 3.1, for any t ∈ R, D̂ ∈ Dµ(H), and
sequences {τn} ⊂ (−∞, t − 1] and {uτn} ⊂ H such that τn → −∞ and uτn ∈ D(τn) for
all n, the sequence {u(·; τn, uτn)} is relatively compact in C([t− 1, t];H).

Proof. Consider fixed t ∈ R, a family D̂ ∈ Dµ(H), and sequences {τn} ⊂ (−∞, t − 1]
with τn → −∞, and {uτn} with uτn ∈ D(τn) for all n. For simplicity of notation we write
un(·) = u(·; τn, uτn).

From Lemma 3.1 and compactness arguments, there exist a value τ1(D̂, t) < t− 2 and
a function u ∈ C([t − 2, t];H) ∩ L2(t − 2, t;V ) with u′ ∈ L2(t − 2, t;V ′), such that for

a subsequence of {un : τn ≤ τ1(D̂, t)} ⊂ {un}, which we relabel the same, it holds that

un
∗
⇀ u weakly-star in L∞(t − 2, t;H), un ⇀ u weakly in L2(t − 2, t;V ), and (un)′ ⇀ u′

weakly in L2(t − 2, t;V ′). Therefore, again up to a subsequence (relabelled the same),
un → u strongly in L2(t− 2, t;H), and un(s)→ u(s) strongly in H a.e. s ∈ (t− 2, t).

From these convergences, the function u satisfies (2.7) in the interval (t− 2, t).
By the Ascoli–Arzelà Theorem, we deduce that un → u in C([t− 2, t];V ′), and so, for

any sequence {sn} ⊂ [t− 2, t] with sn → s∗, we have

un(sn) ⇀ u(s∗) weakly in H. (3.5)

We claim that

un → u in C([t− 1, t];H), (3.6)

which in particular will imply the relative compactness. If this were not true, there would
exist a subsequence {un} (relabelled the same), ε > 0, and {tn} ⊂ [t− 1, t] with tn → t∗
such that

|un(tn)− u(t∗)| ≥ ε ∀n ≥ 1. (3.7)

Recall that by (3.5) we already have

|u(t∗)| ≤ lim inf
n→∞

|un(tn)|. (3.8)

On the other hand, applying the energy equality to z = un and z = u, and reasoning as
in (3.4), we obtain in particular that

|z(s2)|2 ≤ |z(s1)|2 + ν−1

∫ s2

s1

‖f(θ)‖2
∗ dθ ∀ t− 2 ≤ s1 ≤ s2 ≤ t.
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We may now define the functions

Jn(s) = |un(s)|2 − ν−1

∫ s

t−2

‖f(θ)‖2
∗ dθ,

J(s) = |u(s)|2 − ν−1

∫ s

t−2

‖f(θ)‖2
∗ dθ.

Observe that J and all Jn are continuous functions on [t − 2, t], non-increasing, and
Jn(s)→ J(s) a.e. s ∈ (t− 2, t).

Take now {t̃k} ⊂ (t− 2, t∗) such that t̃k ↑ t∗ and limn→∞ Jn(t̃k) = J(t̃k) for all k ≥ 1.
Fix an arbitrary value η > 0. There exists kη such that |J(t̃k) − J(t∗)| < η/2 for all

k ≥ kη. Now consider n(kη) such that for any n ≥ n(kη) it holds that

tn ≥ t̃kη and |Jn(t̃kη)− J(t̃kη)| < η/2.

Then, since all Jn are non-increasing, we deduce that for all n ≥ n(kη),

Jn(tn)− J(t∗) ≤ Jn(t̃kη)− J(t∗)

≤ |Jn(t̃kη)− J(t∗)|
≤ |Jn(t̃kη)− J(t̃kη)|+ |J(t̃kη)− J(t∗)| < η.

Thus, we conclude that lim supn→∞ |un(tn)| ≤ |u(t∗)|, with joined to (3.5) and (3.8),
proves that (3.7) is absurd, and so claim (3.6) is true. This finishes the proof.

Note that the asymptotic compactness of U is an immediate corollary of this result.
However, in order to prove the pullback flattening property directly (it is known that

it is equivalent to asymptotic compactness in any uniformly convex Banach space, see
[12,35]) we need to do a little more, beginning with the next corollary of Lemma 3.2.

Corollary 3.3. Under the assumptions of Lemma 3.1, for any ε > 0, t ∈ R, and D̂ ∈
Dµ(H), there exists δ = δ(ε, t, D̂) ∈ (0, 1), such that

ν−1
∣∣|u(t; τ, uτ )|2 − |u(t− s; τ, uτ )|2

∣∣ < ε/2 ∀ s ∈ [0, δ], τ ≤ τ1(D̂, t), uτ ∈ D(τ), (3.9)

where τ1(D̂, t) is given in Lemma 3.1.
In particular, ∫ t

t−δ
‖u(θ; τ, uτ )‖2 dθ < ε ∀ τ ≤ τ1(D̂, t), uτ ∈ D(τ). (3.10)

Proof. First at all, observe that if we consider t ∈ R and D̂ ∈ Dµ(H), for any δ ∈ (0, 1)
and τ ≤ t− 1, an integration in (3.4) with any uτ ∈ D(τ) yields

ν

∫ t

t−δ
‖u(θ; τ, uτ )‖2 dθ ≤ |u(t− δ; τ, uτ )|2 − |u(t; τ, uτ )|2 + ν−1

∫ t

t−δ
‖f(θ)‖2

∗ dθ.

Therefore, since f ∈ L2
loc(R;V ′), (3.10) is a consequence of (3.9).
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We prove now (3.9) by a contradiction argument. If (3.9) were not true, there would

exist ε > 0, t ∈ R, a family D̂ ∈ Dµ(H), and sequences {τn} ⊂ (−∞, t−1] with τn → −∞,
{sn} with 0 ≤ sn ≤ 1/n, and {uτn} with uτn ∈ D(τn) for all n, such that

ν−1
∣∣|u(t; τn, u

τn)|2 − |u(t− sn; τn, u
τn)|2

∣∣ ≥ ε/2 ∀n ≥ 1,

which is absurd, since from (3.6) we know that for a subsequence (which we relabel the
same) it holds that u(t; τn, u

τn) and u(t− sn; τn, u
τn) converge to u(t).

We will also use the following result, whose proof is analogous to that of [49, Lemma
12].

Lemma 3.4. If f ∈ L2
loc(R;V ′) satisfies the condition (2.13), then, for any t ∈ R,

lim
ρ→∞

e−ρt
∫ t

−∞
eρs‖f(s)‖2

∗ ds = 0.

Now, we are able to prove the pullback D̂0,µ-flattening property for the process U on

H defined by (2.11). Actually, we will prove that U satisfies the pullback D̂-flattening

property for any D̂ ∈ Dµ(H).

Proposition 3.5. Under the assumptions of Lemma 3.1, for any ε > 0, t ∈ R, and
D̂ ∈ Dµ(H), there exists m = m(ε, t, D̂) ∈ N, such that the projection Pm : H →
Hm :=span[w1, . . . , wm] (where {wj}j≥1 is a Hilbert basis of H formed by ortho-normalized
eigenfunctions of the Stokes operator A) satisfies the following properties:

{PmU(t, τ)D(τ) : τ ≤ τ1(D̂, t)} is bounded in H, (3.11)

|(I − Pm)U(t, τ)uτ | < ε for any τ ≤ τ1(D̂, t), uτ ∈ D(τ), (3.12)

where τ1(D̂, t) is given in Lemma 3.1.

In particular, the process U on H satisfies the pullback D̂-flattening property for any
D̂ ∈ Dµ(H).

Proof. Let ε > 0, t ∈ R, and D̂ ∈ Dµ(H) be fixed.
Since Pm is non-expansive and taking into account (3.1), property (3.11) is automati-

cally satisfied for any m ∈ N. Therefore, we concentrate on proving (3.12).

Consider fixed τ ≤ τ1(D̂, t), uτ ∈ D(τ), and let us define u(r) = U(r, τ)uτ and
qm(r) = u(r)− Pmu(r).

Then, using the energy equality, for each m ≥ 1 we have

1

2

d

dr
|qm(r)|2 + ν‖qm(r)‖2 + b(u(r), u(r), qm(r)) = 〈f(r), qm(r)〉, a.e. r > τ.

Observing that by (2.2), (2.4), and Young’s inequality,

|b(u(r), u(r), qm(r))| ≤ 2−1/2|u(r)|‖u(r)‖‖qm(r)‖

≤ ν

4
‖qm(r)‖2 +

1

2ν
|u(r)|2‖u(r)‖2,
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we obtain

d

dr
|qm(r)|2 + ν‖qm(r)‖2 ≤ ν−1|u(r)|2‖u(r)‖2 + 2ν−1‖f(r)‖2

∗, a.e. r > τ.

Consequently, as ‖qm(r)‖2 ≥ λm+1|qm(r)|2, where λm+1 is the eigenvalue associated to the
eigenfunction wm+1, we deduce that

d

dr
|qm(r)|2 + νλm+1|qm(r)|2 ≤ ν−1|u(r)|2‖u(r)‖2 + 2ν−1‖f(r)‖2

∗, a.e. r > τ.

Thus, multiplying this last inequality by eνλm+1r, integrating in [t−1, t], and again taking
into account (3.1), we obtain

eνλm+1t|qm(t)|2 ≤ eνλm+1(t−1)|qm(t− 1)|2 + ν−1ρ2
1(t)

∫ t

t−1

eνλm+1r‖u(r)‖2 dr

+2ν−1

∫ t

t−1

eνλm+1r‖f(r)‖2
∗ dr.

Therefore, from Lemma 3.4, and since |qm(t− 1)|2 ≤ |u(t− 1)|2 ≤ ρ2
1(t) and λm →∞ as

m → ∞, in order to have (3.12), it suffices to check that for the previously fixed ε > 0,

t ∈ R, and D̂ ∈ Dµ(H), there exists m = m(ε, t, D̂) ∈ N, such that for any τ ≤ τ1(D̂, t)
and uτ ∈ D(τ),

e−νλm+1t

∫ t

t−1

eνλm+1r‖u(r; τ, uτ )‖2 dr <
εν

3ρ2
1(t)

. (3.13)

Take δ = δ
(

εν
6ρ21(t)

, t, D̂
)
∈ (0, 1) as in Corollary 3.3. Then, using (3.2), for each m ≥ 1 we

have

e−νλm+1t

∫ t

t−1

eνλm+1r‖u(r)‖2 dr

= e−νλm+1t

∫ t−δ

t−1

eνλm+1r‖u(r)‖2 dr + e−νλm+1t

∫ t

t−δ
eνλm+1r‖u(r)‖2 dr

≤ e−νλm+1δ

∫ t−δ

t−1

‖u(r)‖2 dr +

∫ t

t−δ
‖u(r)‖2 dr

≤ e−νλm+1δν−1ρ2
2(t) +

∫ t

t−δ
‖u(r)‖2 dr.

By taking now m = m(ε, t, D̂) such that e−νλm+1δν−1ρ2
2(t) < εν

6ρ21(t)
, jointly with (3.10) in

Corollary 3.3, we conclude (3.13).

As a consequence of the above result and Proposition 1.18, we obtain the asymptotic
compactness of the process U defined by (2.11) in the H norm, and therefore the same
statements claimed in Theorem 2.9 about the existence of minimal pullback attractors in
H, are also satisfied.
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3.1.1 A compact pullback absorbing family using semigroup the-
ory

With only a slightly more stringent requirement on the forcing function f , namely that

f ∈ Lploc(R;V ′) for some p > 2

we can in fact use the semigroup approach of Fujita and Kato [29] (see also [41]) to show,
using Corollary 3.3 again (and hence Lemma 3.2 once more) that in fact there is a compact
pullback absorbing family in H. Our analysis is inspired by the paper by Arrieta and
Carvalho [2] on the ε-regularity method for proving existence and uniqueness of semilinear
problems.

In order to state the result precisely we need to define the fractional power spaces
D(Aα) (α > 0) as the domains of the operators Aα, where

Aαu :=
∞∑
j=1

λαj (u,wj)wj,

where as usual λj and wj are the eigenvalues and eigenfunctions of the Stokes operator.
We recall the key estimate

|Aγe−Atx| ≤ cγt
−γ|x| (3.14)

for any 0 ≤ γ < 1 (e.g., see Henry [41]). In the proof we write

‖u‖s = |Asu|,

and in particular we have ‖ · ‖0 = | · |, ‖ · ‖1/2 = ‖ · ‖, and ‖ · ‖−1/2 = ‖ · ‖∗.

Theorem 3.6. Suppose that f ∈ Lploc(R;V ′) for some p > 2 and that∫ 0

−∞
eµs‖f(s)‖2

∗ ds <∞ for some µ ∈ (0, 2νλ1).

Choose ε < 1
2
− 1

p
. Then there exists a function ρε : R → R such that for any t ∈ R and

D̂ ∈ Dµ(H),

|Aεu(t; τ, uτ )| ≤ ρε(t) for all uτ ∈ D(τ), τ ≤ τ1(D̂, t),

where τ1(D̂, t) is the same as in Lemma 3.1; hence there is a compact pullback absorbing
family in H. In particular if f ∈ L∞loc(R;V ′) then we obtain a bounded absorbing family
in D(Aε) for any ε < 1/2; this holds therefore in the autonomous case when f ∈ V ′.

Proof. Given the improved regularity assumption on f , any weak solution u to (2.1)
satisfies the variation of constants formula

u(t) = e−A(t−s)u(s) +

∫ t

s

e−A(t−r)[B(u(r)) + f(r)] dr
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for all τ ≤ s ≤ t (see [41]). We use this formulation to find estimates on u in D(Aε). The
key observation (after [2]) is that B : D(Aε)→ D(A−(1−2ε)), which can be seen by taking
w ∈ D(A1−2ε) and using Hölder’s inequality to obtain

|〈B(u), w〉| = |〈B(u,w), u〉|
≤ ‖u‖2

L2/(1−2ε)‖∇w‖L1/(2ε)

≤ c̃ε‖u‖2
ε‖w‖1−2ε,

from which it follows that
‖B(u)‖−(1−2ε) ≤ c̃ε‖u‖2

ε . (3.15)

Lemma 3.1 guarantees that for any D̂ ∈ Dµ(H) and any t ∈ R there exists a τ1(D̂, t) <
t− 2 such that for any r ∈ [t− 2, t],

|u(r; τ, uτ )| ≤ ρ1(t) ∀uτ ∈ D(τ), τ ≤ τ1(D̂, t). (3.16)

Fix t ∈ R, D̂ ∈ DHµ , τ ≤ τ1(D̂, t), and uτ ∈ D(τ) and write

uσ(s) = u(σ + s; τ, uτ ) and fσ(s) = f(σ + s).

We can now rewrite the variation of constants formula in the notationally convenient form
(for σ ≥ τ)

uσ(s) = e−Asuσ(0) +

∫ s

0

e−A(s−r)[B(uσ(r)) + fσ(r)] dr ∀ s ∈ [0, t− σ], (3.17)

noting from (3.16) that

|uσ(s)| ≤ ρ1(t) ∀σ ∈ [t− 1, t], s ∈ [0, t− σ]. (3.18)

Pick σ ∈ [t− 1, t], let s ≤ t− σ, then take the norm of (3.17) in D(Aε) and multiply
by sε to obtain

sε‖uσ(s)‖ε ≤ sε‖e−Asuσ(0)‖ε + sε
∫ s

0

∥∥e−A(s−r)[B(uσ(r)) + fσ(r)]
∥∥
ε
dr

≤ cε|uσ(0)|+ c1−εs
ε

∫ s

0

(s− r)−(1−ε)‖B(uσ(r))‖−(1−2ε) dr

+ c1/2+εs
ε

∫ s

0

(s− r)−1/2−ε‖fσ(r)‖∗ dr

≤ cερ1(t) + c̃εc1−εs
ε

∫ s

0

(s− r)−(1−ε)‖uσ(r)‖2
ε dr

+ c1/2+εs
ε

∫ s

0

(s− r)−1/2−ε‖fσ(r)‖∗ dr,

using (3.14), (3.15), and (3.18). The second term on the right-hand side can be bounded
by

c̃εc1−εs
ε

∫ s

0

(s− r)−(1−ε)‖uσ(r)‖3/2
ε |uσ(r)|1/2−ε‖uσ(r)‖ε dr

≤ R(s)sε
(∫ s

0

(s− r)−(1−ε)/(1−ε/2)‖uσ(r)‖3/(2−ε)
ε dr

)1−ε/2

,
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where

R(s) = c̃εc1−ε

(
sup

0≤r≤s
|uσ(r)|

)1/2−ε(∫ s

0

‖uσ(r)‖2 dr

)ε/2
≤ c̃εc1−ερ1(t)1/2−ε

(∫ t

σ

‖u(r)‖2 dr

)ε/2
=: P (σ, t).

Setting X(s) = sε‖uσ(s)‖ε we obtain an integral inequality for X(s):

X(s) ≤ δ(s) + P (σ, t)sε
(∫ s

0

(s− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε)X(r)3/(2−ε) dr

)1−ε/2

, (3.19)

where1

δ(s) = cερ1(t) + c1/2+εs
ε

∫ s

0

(s− r)−1/2−ε‖fσ(r)‖∗ dr

≤ cερ1(t) + c1/2+εs
ε

(∫ s

0

(s− r)−p(1/2+ε)/(p−1) dr

)1−(1/p)(∫ s

0

‖fσ(r)‖p∗ dr
)1/p

≤ cερ1(t) + Cε,p

(∫ t

t−1

‖f(r)‖p∗ dr
)1/p

=: Φ(t),

using Hölder’s inequality and the choice of ε which ensures that p(1/2 + ε)/(p− 1) < 1.
In order to find an upper bound on X(s) it suffices to find a continuous function Y (t)

with X(0) < Y (0) that is a supersolution of (3.19), i.e. that satisfies

Y (s) ≥ Φ(t) + P (σ, t)sε
(∫ s

0

(s− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε)Y (r)3/(2−ε) dr

)1−ε/2

(3.20)

for all s ∈ [0, t − σ], to conclude that X(s) ≤ Y (s) for all s ∈ [0, t − σ]. Indeed, if
it were not true, there would exists ŝ ∈ (0, t − σ] with Y (ŝ) < X(ŝ) and so we may
define 0 < s̃ = sup{s ∈ [0, t − σ] : X(r) − Y (r) < 0 ∀r ∈ [0, s)}. Then, we would have
X(s) < Y (s) for all s ∈ [0, s̃) and X(s̃) = Y (s̃) (by continuity), but therefore

Y (s̃) ≥ Φ(t) + P (σ, t)s̃ε
(∫ s̃

0

(s̃− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε)Y (r)3/(2−ε) dr

)1−ε/2

> Φ(t) + P (σ, t)s̃ε
(∫ s̃

0

(s̃− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε)X(r)3/(2−ε) dr

)1−ε/2

≥ X(s̃),

i.e. Y (s̃) > X(s̃), a contradiction.

1Note that in fact δ(s) is simply a bound on sεŨ(s + σ, σ) in D(Aε), where Ũ(s, σ) is a solution of
the linear equation ut + Au = f(t) with initial data u(σ) = uσ(0); this where we require the additional
regularity for f , so it has nothing to do with the nature of the nonlinear term. We return briefly to this
issue in the Conclusion.
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Now, we will prove that Y (s) = 2Φ(t) satisfies (3.20) for s ∈ [0, t− σ], i.e. we need to
ensure that

2Φ(t) ≥ Φ(t) + 2
√

2P (σ, t)Φ3/2(t)sε
(∫ s

0

(s− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε) dr

)1−ε/2

for all s ∈ [0, t− σ]. This holds if

2
√

2P (σ, t)Φ1/2(t)sε
(∫ s

0

(s− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε) dr

)1−ε/2

≤ 1 ∀ s ∈ [0, t− σ].

By substituting r = sθ one can see that

sε
(∫ s

0

(s− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε) dr

)1−ε/2

= sε
(∫ 1

0

s−(1−ε)/(1−ε/2)(1− θ)−(1−ε)/(1−ε/2)s−3ε/(2−ε)θ−3ε/(2−ε)s dθ

)1−ε/2

=

(∫ 1

0

(1− θ)−(1−ε)/(1−ε/2)θ−3ε/(2−ε) dθ

)1−ε/2

=: Cε.

So in order to guarantee that X(s) ≤ 2Φ(t) for s ∈ [0, t− σ] it suffices to ensure that

2
√

2P (σ, t)Φ1/2(t) ≤ C−1
ε . (3.21)

Now, recall that

P (σ, t) = c̃εc1−ερ1(t)1/2−ε
(∫ t

σ

‖u(r)‖2 dr

)ε/2
,

and that it follows from Corollary 3.3 that for any ε > 0, t ∈ R, and D̂ ∈ Dµ(H), there

exists a σ = σ(ε, t, D̂) ∈ (t− 1, t), such that∫ t

σ

‖u(θ; τ, uτ )‖2 dθ < ε ∀ τ ≤ τ1(D̂, t), uτ ∈ D(τ),

(this was (3.10)). We can therefore satisfy the condition (3.21), and deduce that

|Aεu(t; τ, uτ )| = (t−σ)−εX(t−σ) ≤ 2(t−σ)−εΦ(t) =: ρε(t) ∀uτ ∈ D(τ), τ ≤ τ1(D̂, t).

Since D(Aε) is compactly embedded in H, the existence of a compact pullback absorbing
family in H follows immediately.

3.2 Pullback flattening property in V norm

The goal of this section is to show a sharper conclusion than above. More precisely, we
will prove the flattening property for the process U defined on V , and as a consequence,
we will obtain the pullback asymptotic compactness for this process in V , which was
already proved by using an energy method in Lemma 2.14, but here with a shorter proof.

We have the following result, which is similar to Lemma 2.10.
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Lemma 3.7. Suppose that f ∈ L2
loc(R;H) satisfies (2.15). Then, for any t ∈ R and

D̂ ∈ Dµ(H), there exists τ1(D̂, t) < t− 2 (the one given in Lemma 3.1), such that for any

τ ≤ τ1(D̂, t) and any uτ ∈ D(τ),

|u(r; τ, uτ )|2 ≤ R2
1(t) ∀ r ∈ [t− 2, t], (3.22)

‖u(r; τ, uτ )‖2 ≤ R2
2(t) ∀ r ∈ [t− 1, t], (3.23)

ν

∫ t

t−1

|Au(θ; τ, uτ )|2 dθ ≤ R2
3(t), (3.24)

where

R2
1(t) = 1 + e−µ(t−2)(2νλ1 − µ)−1

∫ t

−∞
eµθ|f(θ)|2 dθ,

R2
2(t) = ν−1

(
R2

1(t) + (ν−1λ−1
1 + 2)

∫ t

t−2

|f(θ)|2 dθ
)

× exp

[
2ν−1C(ν)R2

1(t)

(
R2

1(t) + ν−1λ−1
1

∫ t

t−2

|f(θ)|2 dθ
)]

,

R2
3(t) = R2

2(t) + 2ν−1

∫ t

t−1

|f(θ)|2 dθ + 2C(ν)R2
1(t)R4

2(t),

with C(ν) defined by (2.20).

Proof. The first estimate (3.22) follows immediately from (3.1).
On the other hand, the estimates (3.23) and (3.24) can be obtained analogously as the

second and third estimates in (2.16). In fact, thanks to the regularity result (a) in The-
orem 2.3, and by applying the energy equality (2.9), we do not need to use the Galerkin
approximations.

Now, we will prove that the process U : R2
d × V → V satisfies the pullback D̂0,µ,V -

flattening property. In fact, we will prove that U satisfies the pullback D̂-flattening
property for any D̂ ∈ Dµ(H).

Analogously to Lemma 3.4, we have the following result.

Lemma 3.8. If f ∈ L2
loc(R;H) satisfies (2.15), then, for any t ∈ R,

lim
ρ→∞

e−ρt
∫ t

−∞
eρs|f(s)|2 ds = 0.

Proposition 3.9. Under the assumptions of Lemma 3.7, for any ε > 0 and t ∈ R, there
exists m = m(ε, t) ∈ N such that for any D̂ ∈ Dµ(H), the projection Pm : V → Vm :=
span[w1, . . . , wm] satisfies the following properties:

{PmU(t, τ)D(τ) : τ ≤ τ1(D̂, t)} is bounded in V,
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and
‖(I − Pm)U(t, τ)uτ‖ < ε for any τ ≤ τ1(D̂, t), uτ ∈ D(τ),

where τ1(D̂, t) is given in Lemma 3.1.

In particular, the process U on V satisfies the pullback D̂-flattening property for any
D̂ ∈ Dµ(H).

Proof. Let ε > 0, t ∈ R, and D̂ ∈ Dµ(H) be fixed.
Since {wj}j≥1 is a special basis, Pm is non-expansive in V . From this and (3.23), we

deduce the boundedness in V of the set {PmU(t, τ)D(τ) : τ ≤ τ1(D̂, t)}, for all m ≥ 1.

On the other hand, let us fix τ ≤ τ1(D̂, t), uτ ∈ D(τ), and let us define again u(r) =
U(r, τ)uτ and qm(r) = u(r)− Pmu(r).

Then, by (2.5) and Lemma 3.7, for each m ≥ 1 one has

1

2

d

dr
‖qm(r)‖2 + ν|Aqm(r)|2 = −b(u(r), u(r), Aqm(r)) + (f(r), Aqm(r))

≤ ν

2
|Aqm(r)|2 +

1

ν
|f(r)|2 +

C2
1

ν
R1(t)R2

2(t)|Au(r)|

a.e. t− 1 < r < t.
Consequently, as |Aqm(r)|2 ≥ λm+1‖qm(r)‖2, from above we deduce that

d

dr
‖qm(r)‖2 + νλm+1‖qm(r)‖2 ≤ 2ν−1|f(r)|2 + 2C2

1ν
−1R1(t)R2

2(t)|Au(r)|

a.e. t− 1 < r < t.
Thus, multiplying this last inequality by eνλm+1r, integrating from t−1 to t, and taking

into account Lemma 3.7, we obtain

eνλm+1t‖qm(t)‖2 ≤ eνλm+1(t−1)‖qm(t− 1)‖2 + 2ν−1

∫ t

t−1

eνλm+1r|f(r)|2 dr

+2C2
1ν
−1R1(t)R2

2(t)

∫ t

t−1

eνλm+1r|Au(r)| dr

≤ eνλm+1(t−1)‖u(t− 1)‖2 + 2ν−1

∫ t

t−1

eνλm+1r|f(r)|2 dr

+2C2
1ν
−1R1(t)R2

2(t)

(∫ t

t−1

e2νλm+1r dr

)1/2(∫ t

t−1

|Au(r)|2 dr
)1/2

≤ eνλm+1(t−1)R2
2(t) + 2ν−1

∫ t

t−1

eνλm+1r|f(r)|2 dr

+2C2
1ν
−3/2R1(t)R2

2(t)R3(t)(2νλm+1)−1/2eνλm+1t.

Therefore, from Lemma 3.8 and since λm →∞ as m→∞, we conclude that there exists
m = m(ε, t) ∈ N such that ‖(I − Pm)U(t, τ)uτ‖ < ε for all τ ≤ τ1(D̂, t), uτ ∈ D(τ).

As a consequence of the above result and Proposition 1.18, we obtain the asymptotic
compactness in the V norm. It is worth pointing out that in this way the proof is much
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shorter than that of Lemma 2.14 in Chapter 2. Moreover, observe that, under the as-
sumptions of Lemma 3.7, all the statements asserted in Theorem 2.15 are also true, and
so we obtain again the existence of minimal pullback attractors for the process U on V .

In light of the fact that our analysis in H required a similar amount of work to obtain
asymptotic compactness or the flattening property, one might ask if one could ‘simplify’
the direct proof of asymptotic compactness in V from [31] by using some ideas from the
above ‘flattening’ analysis. It then becomes apparent that the idea of ‘direct’ proof in this
case simply means trying to prove asymptotic compactness with resorting to a splitting
of the solution into high and low modes; this serves to emphasize that the ‘flattening
property’ can more rightly be thought of as a technique (splitting) that is always available
should we require it.

3.2.1 Compactness of the process in V via semigroups

Finally we show that in V , too, a little more regularity of f yields the existence of a
compact pullback absorbing family. To this end we assume that

f ∈ Lploc(R;H) for some p > 2.

With this assumption we show that there is a bounded absorbing family in D(A1/2+δ) for
an appropriately chosen δ > 0.

Theorem 3.10. Suppose that f ∈ Lploc(R;H) for some p > 2 and that∫ 0

−∞
eµs|f(s)|2 ds <∞ for some µ ∈ (0, 2νλ1).

Fix δ < 1
2
− 1

p
. Then, for any t ∈ R and D̂ ∈ Dµ(H), there exists τ1(D̂, t) (the one given

in Lemma 3.1), such that for any τ ≤ τ1(D̂, t) and any uτ ∈ D(τ),

|A1/2+δu(t; τ, uτ )| ≤ Rδ(t),

where Rδ(t) is given below.

Proof. The analysis in V is significantly simpler than in H. Indeed, for any ε > 0 the
nonlinear term maps V into D(A−ε): taking the inner product of B(u) with w ∈ D(Aε)
we obtain

|〈B(u), w〉| ≤ ‖u‖L1/ε‖∇u‖L2‖w‖L2/(1−2ε)

≤ c̃ε‖u‖2‖w‖L2/(1−2ε)

≤ c̃ε‖u‖2‖w‖ε,

since D(As) ⊂ (L2/(1−2s)(Ω))2. Thus

‖B(u)‖−ε ≤ c̃ε‖u‖2.
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Given a solution u(t) = u(t; τ, uτ ) we write

u(t) = e−Au(t− 1) +

∫ t

t−1

e−A(t−s)(B(u(s)) + f(s)) ds.

Take the norm in D(A1/2+δ), using (3.14) and choosing ε so that δ + ε < 1/2, we obtain

|A1/2+δu(t)| ≤ cδ‖u(t− 1)‖+ c̃εc1/2+δ+ε

∫ t

t−1

(t− s)−(1/2+δ+ε)‖u(s)‖2 ds

+ c1/2+δ

∫ t

t−1

(t− s)−(1/2+δ)|f(s)| ds

≤ cδR2(t) +
c̃εc1/2+δ+ε

1/2− δ − ε
R2

2(t) + Cp,δ

(∫ t

t−1

|f(s)|p ds
)1/p

=: Rδ(t);

the first term is bounded using Lemma 3.7; the second since (t− s)−(1/2+δ+ε) is integrable
and ‖u(s)‖2 ≤ R2

2(t) uniformly for s ∈ [t−1, t] (Lemma 3.7 again); and for the third term
we can argue as in the proof of Theorem 3.6 using Hölder’s inequality since δ < 1

2
− 1

p
.

We note in particular that in the autonomous case this gives a very quick method of
proving the existence of a compact absorbing set in V when we assume only f ∈ H. As
in the more complicated case in H, the higher regularity of f is the same as would be
required to obtain a similar result for the linear problem ut + Au = f(t).

Conclusion

We have shown the existence of pullback attractors in H and V under minimal regularity
assumptions on the forcing f , proving asymptotic compactness of the dynamical process
via the Fourier splitting method, i.e. a proof of ‘Condition (C)’/‘the flattening property’.
With a little additional regularity we have been able to use the semigroup approach to
prove the existence of a compact pullback absorbing family in both cases.

It is interesting that in order to obtain the compact pullback absorbing family we
require the same regularity of f as we would in the purely linear problem. One can see
that this is to be expected if we consider solutions given by the variation of constants
formula

u(t) = e−A(t−s)u(s) +

∫ t

s

e−A(t−r)[B(u(r)) + f(r)] dr,

noting that the expression

Ũ(t, s) := e−A(t−s)u(s) +

∫ t

s

e−A(t−r)f(r) dr

is simply the solution of the linear equation

vt + Av = f(t), v(s) = u(s)
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at time t. So we could write the following variation on the variation-of-constants formula,

u(t) = Ũ(t, s) +

∫ t

s

e−A(t−r)B(u(r)) dr.

For the analysis in H, the key step was the estimate (3.19), which we can write as

X(s) ≤ sε|AεŨ(s+σ, σ)|+P (σ, t)sε
(∫ s

0

(s− r)−(1−ε)/(1−ε/2)r−3ε/(2−ε)X(r)3/(2−ε) dr

)1−ε/2

.

Conclusion of the argument requires a bound on |AεŨ(s+ σ, σ)| uniform for σ ∈ [t− 1, t],
s ∈ [0, t− σ], i.e. relies on solutions of the linear equation.

Similarly, if we estimate u in D(A1/2+δ) as in Section 3.2.1 then we obtain

|A1/2+δu(t)| ≤ |A1/2+δŨ(t, t− 1)|+ c̃εc1/2+δ+ε

∫ t

t−1

(t− s)−(1/2+δ+ε)‖u(s)‖2 ds

≤ |A1/2+δv(t)|+
c̃εc1/2+δ+ε

1/2− δ − ε
R2

2(t),

and the key point is again an estimate on Ũ , i.e. smoothness for the linear equation.





Chapter 4

Pullback Attractors for 2D
Navier–Stokes Equations with Finite
Delay

In this chapter we consider a bounded domain Ω ⊂ R2 with smooth enough boundary
∂Ω, and the following non-autonomous functional Navier–Stokes problem:

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f(t) + g(t, ut) in Ω× (τ,∞),

divu = 0 in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),

u(x, τ + s) = φ(x, s), x ∈ Ω, s ∈ [−h, 0],

(4.1)

where f is a non-delayed external force field, g is another external force containing some
hereditary characteristics, and φ(x, s − τ) is the initial datum in the interval of time
[τ − h, τ ], where h > 0 is the time of memory effect. For each t ≥ τ, we denote by ut the
function defined on [−h, 0] by the relation ut(s) = u(t+ s), s ∈ [−h, 0].

As it was pointed out in the Introduction, to our knowledge, in all finite delay frame-
works the assumptions for the delay terms used to involve estimates in L2 spaces. The
goal of this chapter is to generalize the conditions on the delay terms in the model by
allowing just continuous (in time) spaces, which will require less restrictive conditions on
the involved operators. Although this implies to restrict the phase space to continuous
functions instead of square integrable in time, the delay functions driving the delayed
time within this theory can be taken just measurable, without any additional assumption
as continuity nor C1 with bounded derivative, as usual in the literature. Actually, we
will provide a simple example where the delay function leading the delayed time is just
measurable (cf. Example 4.1 and Remark 4.2 below, for more details).

In Section 4.1 we obtain a result on the existence, uniqueness, and regularity of the
solution to (4.1). Section 4.2 is devoted to prove the existence of pullback attractors in the
H norm, with respect to two different universes, via asymptotic compactness, and using an
energy method which relies strongly on the energy equality associated to the problem. The

69
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main results of the chapter are given in Section 4.3. There, we strengthen the regularity of
solutions and a second energy equality for them, in order to obtain additional attraction,
namely, in the V norm instead of H. Different families of universes (tempered and non-
tempered) are introduced. Now, a second (and more involved) energy method is employed
to prove asymptotic compactness in the new metric. We finish analyzing the relationships
among all these families. Actually, we are able to prove that, under suitable assumptions,
in fact all these objects coincide. The results can be found in [33].

4.1 Existence and uniqueness of solution

In this section we prove existence, uniqueness, and regularity of solution to problem (4.1).

To start, we establish some appropriate assumptions on the term in (4.1) containing
the delay.

Let us denote by CH = C([−h, 0];H), the space of continuous functions from [−h, 0]
into H, with the norm

|ϕ|CH = max
s∈[−h,0]

|ϕ(s)|.

Let us consider over the delay operator from (4.1) that is well defined as g : R×CH →
(L2(Ω))2, and it satisfies the following assumptions:

(I) for all ξ ∈ CH , the function R 3 t 7→ g(t, ξ) ∈ (L2(Ω))2 is measurable,

(II) g(t, 0) = 0, for all t ∈ R,

(III) there exists Lg > 0 such that for all t ∈ R, and for all ξ, η ∈ CH ,

|g(t, ξ)− g(t, η)| ≤ Lg|ξ − η|CH .

Observe that (I)− (III) imply that given T > τ and u ∈ C([τ − h, T ];H), the function
gu : [τ, T ] → (L2(Ω))2 defined by gu(t) = g(t, ut) for all t ∈ [τ, T ], is measurable and, in
fact, belongs to L∞(τ, T ; (L2(Ω))2).

It is worth pointing out that any condition involving L2 norms of the memory term
in g is assumed (e.g. cf. conditions (IV) and (V) in the following chapter).

Example 4.1. Consider a globally Lipschitz function G : H → (L2(Ω))2, with Lipschitz
constant LG > 0, and such that G(0) = 0, and a measurable function ρ : R→ [0, h].

Then, it is not difficult to check that the operator g : R× CH → (L2(Ω))2, defined by

R× CH 3 (t, ξ) 7→ g(t, ξ) := G(ξ(−ρ(t)))

satisfies the assumptions (I)–(III) given above.

Remark 4.2. (a) Observe that the only assumption on ρ is that it is measurable, in
contrast with the usual conditions appearing in the previous literature, i.e. C1, with
derivative ρ′(t) ≤ ρ∗ < 1 (e.g. cf. [36]).
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(b) The example above can be generalized in several senses. The most immediate gener-
alization is to take into account more than one delay term in the problem. Namely,
consider measurable functions ρi : R → [0, h] for i = 1, . . . ,m, a measurable map-
ping G : R × Hm → (L2(Ω))2 such that G(t, ·) is globally Lipschitz in Hm uni-
formly with respect to time, and with G(t, 0) = 0 for all t ∈ R. Then, consider
g : R × CH → (L2(Ω))2 given by g(t, ξ) := G(t, ξ(−ρ1(t)), . . . , ξ(−ρm(t))). This
operator g also satisfies conditions (I)–(III).

Assume that φ ∈ CH , and f ∈ L2
loc(R;V ′).

Definition 4.3. A weak solution to (4.1) is a function u ∈ C([τ − h,∞);H) such that
u ∈ L2(τ, T ;V ) for all T > τ, with u(t) = φ(t− τ) for all t ∈ [τ − h, τ ], and such that for
all v ∈ V,

d

dt
(u(t), v) + ν〈Au(t), v〉+ b(u(t), u(t), v) = 〈f(t), v〉+ (g(t, ut), v), (4.2)

where the equation must be understood in the sense of D′(τ,∞).

Observe that if u is a weak solution to (4.1), then from (4.2) we deduce that for any
T > τ , one has u′ ∈ L2(τ, T ;V ′), and the following energy equality holds:

|u(t)|2 + 2ν

∫ t

s

‖u(r)‖2 dr

= |u(s)|2 + 2

∫ t

s

[
〈f(r), u(r)〉+ (g(r, ur), u(r))

]
dr ∀ τ ≤ s ≤ t. (4.3)

As in Chapter 2, we can also define a notion of more regular solution for problem
(4.1).

Definition 4.4. A strong solution to (4.1) is a weak solution u to (4.1) such that u ∈
L2(τ, T ;D(A)) ∩ L∞(τ, T ;V ) for all T > τ .

Note that if f ∈ L2
loc(R; (L2(Ω))2) and u is a strong solution to (4.1), then u′ ∈

L2(τ, T ;H) for all T > τ, and so u ∈ C([τ,∞);V ). In this case the following energy
equality holds:

‖u(t)‖2 + 2ν

∫ t

s

|Au(r)|2 dr + 2

∫ t

s

b(u(r), u(r), Au(r)) dr

= ‖u(s)‖2 + 2

∫ t

s

(f(r) + g(r, ur), Au(r)) dr ∀ τ ≤ s ≤ t. (4.4)

Concerning the existence and uniqueness of weak solution for (4.1), we have the fol-
lowing result, which improves, in the case of initial datum φ ∈ CH and dimension two,
Theorem 2.1 in [9] (see also [36, Theorem 2.3]). In fact, in the theorem below, we neither
assume hypotheses (IV) nor (V) of [9].
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Theorem 4.5. Let f ∈ L2
loc(R;V ′), and g : R × CH → (L2(Ω))2 satisfying (I)–(III), be

given. Then, for each τ ∈ R and φ ∈ CH , there exists a unique weak solution u(·) =
u(·; τ, φ) to (4.1).

Moreover, if f ∈ L2
loc(R; (L2(Ω))2), then

(a) u ∈ C([τ + ε, T ];V ) ∩ L2(τ + ε, T ;D(A)) for all T > τ + ε > τ .

(b) If φ(0) ∈ V , u is in fact a strong solution to (4.1).

Proof. The uniqueness of solution can be obtained in the following way. Consider two
weak solutions for (4.1), u and v, with the same initial data, and denote w = u − v. We
note that by (2.4),

|b(u(s), u(s), w(s))− b(v(s), v(s), w(s))| = |b(w(s), u(s), w(s))|
≤ 2−1/2|w(s)|‖w(s)‖‖u(s)‖.

Then, from the equation satisfied by w and the energy equality, we obtain for all t ≥ τ
that

|w(t)|2 + 2ν

∫ t

τ

‖w(s)‖2 ds

= −2

∫ t

τ

b(w(s), u(s), w(s)) ds+ 2

∫ t

τ

(g(s, us)− g(s, vs), w(s)) ds

≤ 21/2

∫ t

τ

|w(s)|‖w(s)‖‖u(s)‖ ds+ 2Lg

∫ t

τ

|ws|CH |w(s)| ds. (4.5)

Observe that w(θ) = 0 if τ − h ≤ θ ≤ τ, and therefore,

|ws|CH = max
r∈[τ,s]

|w(r)| for τ ≤ s.

So, from (4.5), using Young’s inequality, we deduce

|w(t)|2 + 2ν

∫ t

τ

‖w(s)‖2ds

≤ 21/2

∫ t

τ

|w(s)|‖w(s)‖‖u(s)‖ ds+ 2Lg

∫ t

τ

max
r∈[τ,s]

|w(r)||w(s)| ds

≤ ν

∫ t

τ

‖w(s)‖2 ds+
1

2ν

∫ t

τ

‖u(s)‖2|w(s)|2 ds+ 2Lg

∫ t

τ

max
r∈[τ,s]

|w(r)|2 ds

for all t ≥ τ, and therefore,

max
r∈[τ,t]

|w(r)|2 ≤
(

1

2ν
+ 2Lg

)∫ t

τ

(
1 + ‖u(s)‖2

)
max
r∈[τ,s]

|w(r)|2 ds

for all t ≥ τ. Thus, using Gronwall’s lemma, we finish the proof of uniqueness.

For the existence, we split the proof in two steps.
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Step 1: Galerkin scheme. A priori estimates. Let us consider again {wj}j≥1 ⊂
D(A), a Hilbert basis of H formed by ortho-normalized eigenfunctions of the Stokes
operator A. Denote Vm =span[w1, . . . , wm] and consider the projector Pm of H onto Vm
given by Pmv =

∑m
j=1(v, wj)wj, for all v ∈ H. Observe that by the choice of the basis

{wj}j≥1, the restriction Pm|V of Pm to V belongs to L(V ), and ‖Pm|V ‖L(V ) ≤ 1 for all
m ≥ 1.

Define also

um(t) =
m∑
j=1

γm,j(t)wj,

where the coefficients γm,j are required to satisfy the system

d

dt
(um(t), wj) + ν((um(t), wj)) + b(um(t), um(t), wj)

= 〈f(t), wj〉+ (g(t, umt ), wj), a.e. t > τ , 1 ≤ j ≤ m, (4.6)

and the initial condition

um(τ + s) = Pmφ(s) ∀ s ∈ [−h, 0]. (4.7)

The above system of ordinary functional differential equations with finite delay fulfills
the conditions for existence and uniqueness of local solution (see for example [40]).

Next, we will deduce a priori estimates that in particular assure that the solutions um

do exist for all time t ∈ [τ − h,∞).

Multiplying in (4.6) by γm,j(t), summing from j = 1 to j = m, we obtain

d

dt
|um(t)|2 + 2ν‖um(t)‖2 = 2〈f(t), um(t)〉+ 2(g(t, umt ), um(t))

≤ ν‖um(t)‖2 + ν−1‖f(t)‖2
∗ + 2Lg|umt |2CH , a.e. t > τ.

Hence,

|um(t)|2 + ν

∫ t

τ

‖um(s)‖2 ds

≤ |φ(0)|2 +

∫ t

τ

(
ν−1‖f(s)‖2

∗ + 2Lg|ums |2CH
)
ds ∀ t ≥ τ. (4.8)

From this inequality, in particular one deduces that

|umt |2CH ≤ |φ|
2
CH

+

∫ t

τ

(
ν−1‖f(s)‖2

∗ + 2Lg|ums |2CH
)
ds ∀ t ≥ τ,

and therefore, by Gronwall’s lemma we have

|umt |2CH ≤ e2Lg(t−τ)

(
|φ|2CH + ν−1

∫ t

τ

‖f(s)‖2
∗ ds

)
for all t ≥ τ, and any m ≥ 1.
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Then, by (4.8), we deduce that for each T > τ and R > 0, there exists a positive
constant C(τ, T,R), depending on the constants of the problem ν, Lg and f , and on τ, T
and R, such that for all m ≥ 1

|umt |2CH + ‖um‖2
L2(τ,T ;V ) ≤ C(τ, T,R) ∀ t ∈ [τ, T ], |φ|CH ≤ R. (4.9)

In particular, this implies that

{um} is bounded in L∞(τ − h, T ;H) ∩ L2(τ, T ;V ) ∀T > τ. (4.10)

From (2.4), (4.6), and because of the choice of the basis, we obtain

‖(um)′(t)‖∗ ≤ ν‖um(t)‖+ 2−1/2|um(t)|‖um(t)‖+ ‖f(t)‖∗ + λ
−1/2
1 |g(t, umt )|, a.e. t > τ,

which combined with (II), (III), (4.9) and (4.10), implies that

{(um)′} is bounded in L2(τ, T ;V ′) ∀T > τ. (4.11)

Step 2: Energy method and compactness results. Now, we combine some well-
known compactness results with an energy method (already used in Lemmas 2.14 and
3.2) to pass to the limit in a subsequence of {um} to obtain a solution for (4.1).

First we observe that
um|[τ−h,τ ] = Pmφ→ φ in CH . (4.12)

From the assumptions on the operator g and Step 1 we deduce, using the compactness
result [61, Theorem 5.1, p. 58] and [86, Lemma 1.2, p. 260], that there exist a subsequence
(which we relabel the same) {um}, a function u ∈ C([τ − h,∞);H), with u|[τ−h,τ ] = φ,

u ∈ L2(τ, T ;V ) and u′ ∈ L2(τ, T ;V ′) for all T > τ, and an element ξ ∈ L∞(τ, T ; (L2(Ω))2)
for all T > τ, such that

um
∗
⇀ u weakly-star in L∞(τ, T ;H),

um ⇀ u weakly in L2(τ, T ;V ),
(um)′ ⇀ u′ weakly in L2(τ, T ;V ′),
um → u strongly in L2(τ, T ;H),

g(·, um· )
∗
⇀ ξ weakly-star in L∞(τ, T ; (L2(Ω))2),

(4.13)

for all T > τ.
Using (4.13) we can also assume that

um(t)→ u(t) strongly in H a.e. t ∈ (τ,∞), (4.14)

which nevertheless is not enough to deduce that ξ(·) = g(·, u·).
However, we can obtain convergence for all t ≥ τ with a little more effort and in a

more general sense. Observe that

um(t)− um(s) =

∫ t

s

(um)′(r) dr in V ′ ∀ s, t ∈ [τ,∞),

and by (4.11) we have that {um} is equi-continuous on [τ, T ] with values in V ′, for all
T > τ.
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Since the injection of V into H is compact, the injection of H into V ′ is compact too.
So, from (4.10) and the equi-continuity in V ′, by the Ascoli–Arzelà theorem and (4.13),
we have that (again, up to a subsequence)

um → u in C([τ, T ];V ′) ∀T > τ. (4.15)

This, jointly with (4.10), allows us to claim that for any sequence {tm} ⊂ [τ,∞), with
tm → t, one has

um(tm) ⇀ u(t) weakly in H, (4.16)

where we have used (4.15) in order to identify which is the weak limit.

Our goal now is to prove that in fact

um → u in C([τ, T ];H) ∀T > τ. (4.17)

If it were not so, then taking into account that u ∈ C([τ,∞);H), there would exist T > τ,
ε0 > 0, a value t0 ∈ [τ, T ], and subsequences (relabelled the same) {um} and {tm} ⊂ [τ, T ],
with limm→∞ tm = t0, such that

|um(tm)− u(t0)| ≥ ε0 ∀m ≥ 1.

To prove that this is absurd, we will use an energy method.
Observe that the following energy inequality holds for all um:

1

2
|um(t)|2 +

ν

2

∫ t

s

‖um(r)‖2 dr

≤ 1

2
|um(s)|2 +

∫ t

s

〈f(r), um(r)〉 dr + C(t− s) ∀ τ ≤ s ≤ t ≤ T, (4.18)

where C = D
2νλ1

and D corresponds to the upper bound∫ t

s

|g(r, umr )|2 dr ≤ D(t− s) ∀ τ ≤ s ≤ t ≤ T,

by (II), (III) and (4.9). On the other hand, observe that by (4.13), passing to the limit
in (4.6), we have that u ∈ C([τ, T ];H) is a solution of a similar problem to (4.1), namely,

d

dt
(u(t), v) + ν((u(t), v)) + b(u(t), u(t), v) = 〈f(t), v〉+ (ξ(t), v) ∀ v ∈ V,

fulfilled with the initial datum u(τ) = φ(0). Therefore, it satisfies the energy equality

|u(t)|2 + 2ν

∫ t

s

‖u(r)‖2 dr

= |u(s)|2 + 2

∫ t

s

(
〈f(r), u(r)〉+ (ξ(r), u(r))

)
dr ∀ τ ≤ s ≤ t ≤ T.
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On other hand, from the last convergence in (4.13) we deduce that∫ t

s

|ξ(r)|2 dr ≤ lim inf
m→∞

∫ t

s

|g(r, umr )|2 dr

≤ D(t− s) ∀ τ ≤ s ≤ t ≤ T.

So, u also satisfies inequality (4.18) with the same constant C.
Now, consider the functions Jm, J : [τ, T ]→ R defined by

Jm(t) =
1

2
|um(t)|2 −

∫ t

τ

〈f(r), um(r)〉 dr − Ct,

J(t) =
1

2
|u(t)|2 −

∫ t

τ

〈f(r), u(r)〉 dr − Ct,

with C the constant given in (4.18). From (4.18) and the analogous inequality for u, it is
clear that Jm and J are non-increasing (and continuous) functions. Moreover, by (4.13)
and (4.14),

Jm(t)→ J(t) a.e. t ∈ (τ, T ). (4.19)

Now we are ready to prove that

um(tm)→ u(t0) strongly in H. (4.20)

Firstly, recall from (4.16) that

um(tm) ⇀ u(t0) weakly in H. (4.21)

So, we have that
|u(t0)| ≤ lim inf

m→∞
|um(tm)|.

Therefore, if we show that
lim sup
m→∞

|um(tm)| ≤ |u(t0)|, (4.22)

we obtain that limm→∞ |um(tm)| = |u(t0)|, which jointly with (4.21) implies (4.20).
Now, observe that the case t0 = τ follows directly from (4.12) and (4.18) with s = τ.

So, we may assume that t0 > τ. This is important, since we will approach this value t0
from the left by a sequence {t̃k}, i.e., limk→∞ t̃k ↗ t0, being {t̃k} values where (4.19)
holds. Since J(·) is continuous at t0, for any ε > 0 there is kε such that

|J(t̃k)− J(t0)| < ε/2 ∀ k ≥ kε.

On other hand, taking m ≥ m(kε) such that tm > t̃kε , as Jm is non-increasing and for all
t̃k the convergence (4.19) holds, one has

Jm(tm)− J(t0) ≤ |Jm(t̃kε)− J(t̃kε)|+ |J(t̃kε)− J(t0)|,

and obviously, taking m ≥ m′(kε), it is possible to obtain |Jm(t̃kε)− J(t̃kε)| < ε/2. It can
also be deduced from (4.13) that∫ tm

τ

〈f(r), um(r)〉 dr →
∫ t0

τ

〈f(r), u(r)〉 dr,



4.1. Existence and uniqueness of solution 77

so we conclude that (4.22) holds. Thus, (4.20) and finally (4.17) are also true, as we
wanted to check.

This also implies, thanks to (4.12), that

umt → ut in CH ∀ t ≥ τ.

Therefore, we identify the weak limit ξ from (4.13), and indeed, from the above conver-
gence and since g satisfies (III), we have

g(·, um· )→ g(·, u·) in L2(τ, T ; (L2(Ω))2) ∀T > τ.

Thus, we can pass to the limit finally in (4.6) concluding that u solves (4.1).

Finally, the regularity in (a) and (b) is a consequence of the well-known regularity
results stated in Theorem 2.3 and the fact that, if f ∈ L2

loc(R; (L2(Ω))2), then the function

f̂ defined by f̂(t) = f(t) + g(t, ut), t > τ , belongs to L2
loc(τ,∞; (L2(Ω))2).

Remark 4.6. Observe that by the uniqueness of the weak solution to (4.1), the conver-
gences in (4.13) hold for the entire sequence {um} of the Galerkin approximations defined
by (4.6) and (4.7).

We also have the following result on continuity of solutions with respect to the initial
datum φ.

Proposition 4.7. Let f ∈ L2
loc(R;V ′), g : R×CH → (L2(Ω))2 satisfying (I)–(III), τ ∈ R,

and φ, ψ ∈ CH , be given.
Let us denote u = u(·; τ, φ) and v = v(·; τ, ψ) the corresponding weak solutions to

(4.1). Then, the following estimate holds:

|ut − vt|2CH ≤ |φ− ψ|
2
CH

exp

{∫ t

τ

(
(2ν)−1‖u(s)‖2 + 2Lg

)
ds

}
for all t ≥ τ.

Proof. Let us denote w = u − v. Analogously to the obtention of (4.5) in the proof of
uniqueness of weak solution to (4.1), we obtain that

|w(t)|2 + 2ν

∫ t

τ

‖w(s)‖2 ds

≤ |φ(0)− ψ(0)|2 + 21/2

∫ t

τ

|w(s)|‖w(s)‖‖u(s)‖ ds+ 2Lg

∫ t

τ

|ws|CH |w(s)| ds

for all t ≥ τ.
So,

|w(t)|2 + 2ν

∫ t

τ

‖w(s)‖2 ds

≤ |φ(0)− ψ(0)|2 + 21/2

∫ t

τ

|ws|CH‖w(s)‖‖u(s)‖ ds+ 2Lg

∫ t

τ

|ws|2CH ds

≤ |φ(0)− ψ(0)|2 + ν

∫ t

τ

‖w(s)‖2 ds+

∫ t

τ

(
(2ν)−1‖u(s)‖2 + 2Lg

)
|ws|2CH ds
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for all t ≥ τ, and in particular

|w(t)|2 ≤ |φ(0)− ψ(0)|2 +

∫ t

τ

(
(2ν)−1‖u(s)‖2 + 2Lg

)
|ws|2CH ds (4.23)

for all t ≥ τ.
Taking into account that

|w(τ + s)|2 ≤ |φ− ψ|2CH ∀ s ∈ [−h, 0],

from (4.23) we deduce

|wt|2CH ≤ |φ− ψ|
2
CH

+

∫ t

τ

(
(2ν)−1‖u(s)‖2 + 2Lg

)
|ws|2CH ds

for all t ≥ τ.
From this inequality and Gronwall’s lemma, we can conclude the result.

4.2 Existence of minimal pullback attractors in H

norm

Now, by the previous results, we are able to define correctly a process U on CH associated
to (4.1), and to obtain the existence of minimal pullback attractors.

Proposition 4.8. Let f ∈ L2
loc(R;V ′), and g : R×CH → (L2(Ω))2 satisfying (I)–(III), be

given. Then, the bi-parametric family of mappings U(t, τ) : CH → CH , with τ ≤ t, given
by

U(t, τ)φ = ut, (4.24)

where u(·) = u(·; τ, φ) is the unique weak solution to (4.1), defines a continuous process
on CH .

Proof. It is a consequence of Theorem 4.5 and Proposition 4.7.

We establish now several estimates for the solution to problem (4.1).

Lemma 4.9. Consider that the assumptions of Proposition 4.8 are satisfied and let µ
be such that 0 < µ < 2νλ1. Then, for any φ ∈ CH , the following estimates hold for the
solution to (4.1) for all t ≥ τ :

|ut|2CH ≤ eµhe−(µ−2eµhLg)(t−τ)|φ|2CH

+eµh(2ν − µλ−1
1 )−1

∫ t

τ

e−(µ−2eµhLg)(t−s)‖f(s)‖2
∗ ds, (4.25)

ν

∫ t

τ

‖u(s)‖2 ds ≤ |u(τ)|2 + ν−1

∫ t

τ

‖f(s)‖2
∗ ds+ 2Lg

∫ t

τ

|us|2CH ds. (4.26)
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Proof. Take a µ such that 0 < µ < 2νλ1. By the energy equality (4.3), one has

d

dt
|u(t)|2 + 2ν‖u(t)‖2

= 2〈f(t), u(t)〉+ 2(g(t, ut), u(t))

≤ 2‖f(t)‖∗‖u(t)‖+ 2Lg|ut|CH |u(t)|
≤ (2ν − µλ−1

1 )‖u(t)‖2 + (2ν − µλ−1
1 )−1‖f(t)‖2

∗ + 2Lg|ut|2CH , a.e. t > τ.

Thus,

d

dt
|u(t)|2 + µ|u(t)|2 ≤ (2ν − µλ−1

1 )−1‖f(t)‖2
∗ + 2Lg|ut|2CH , a.e. t > τ,

and therefore,

eµt|u(t)|2 ≤ eµτ |u(τ)|2 +

∫ t

τ

eµs
(
(2ν − µλ−1

1 )−1‖f(s)‖2
∗ + 2Lg|us|2CH

)
ds ∀ t ≥ τ.

From this inequality, we deduce

eµt|ut|2CH ≤ eµheµτ |φ|2CH + eµh
∫ t

τ

eµs
(
(2ν − µλ−1

1 )−1‖f(s)‖2
∗ + 2Lg|us|2CH

)
ds ∀ t ≥ τ.

Then, by Gronwall’s lemma we obtain that (4.25) holds.
Finally, observing that

d

dt
|u(t)|2 + 2ν‖u(t)‖2

≤ 2‖f(t)‖∗‖u(t)‖+ 2Lg|ut|CH |u(t)|
≤ ν‖u(t)‖2 + ν−1‖f(t)‖2

∗ + 2Lg|ut|2CH , a.e. t > τ,

we conclude (4.26).

From now on we will assume that

there exists 0 < µ < 2νλ1 such that 2eµhLg < µ, (4.27)

and ∫ 0

−∞
e(µ−2eµhLg)s‖f(s)‖2

∗ ds <∞. (4.28)

Remark 4.10. If we assume that f ∈ L2
loc(R;V ′), assumption (4.28) is equivalent to∫ t

−∞
e(µ−2eµhLg)s‖f(s)‖2

∗ ds <∞ ∀ t ∈ R.

Having in mind the estimate (4.25), we define the following universe in P(CH).
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Definition 4.11. For any σ > 0, we will denote by Dσ(CH) the class of all families of

nonempty subsets D̂ = {D(t) : t ∈ R} ⊂ P(CH) such that

lim
τ→−∞

(
eστ sup

v∈D(τ)

|v|2CH

)
= 0.

Once again, accordingly to the notation introduced in Chapter 1, DF (CH) will denote

the class of families D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty bounded subset
of CH .

Observe that for any σ > 0, DF (CH) ⊂ Dσ(CH), and that Dσ(CH) is inclusion-closed.
From now on, for brevity, we will denote

σµ = µ− 2eµhLg. (4.29)

Now, we obtain the existence of a pullback absorbing family for the process U on CH .

Corollary 4.12. Under the assumptions of Proposition 4.8, if moreover conditions (4.27)

and (4.28) are satisfied, then the family D̂1,µ = {D1,µ(t) : t ∈ R}, with D1,µ(t) =
BCH (0, ρµ(t)), the closed ball in CH of center zero and radius ρµ(t), where

ρ2
µ(t) = 1 + eµh(2ν − µλ−1

1 )−1

∫ t

−∞
e−σµ(t−s)‖f(s)‖2

∗ ds,

is pullback Dσµ(CH)-absorbing for the process U defined by (4.24). Moreover, D̂1,µ ∈
Dσµ(CH).

Proof. It follows immediately from Lemma 4.9.

By applying again an energy method, we establish the pullback asymptotic compact-
ness of the process U : R2

d × CH → CH .

Proposition 4.13. Under the assumptions of Corollary 4.12, the process U defined by
(4.24) is pullback D̂1,µ-asymptotically compact.

Proof. Let us fix t0 ∈ R. Let {un} with un = un(·; τn, φn) be a sequence of weak solutions
to (4.1), defined in their respective intervals [τn−h,∞), with initial data φn ∈ D1,µ(τn) =
BCH (0, ρµ(τn)), where {τn} ⊂ (−∞, t0) satisfies that τn → −∞ as n→∞. We will prove
that the sequence {unt0} is relatively compact in CH , i.e., we will see that there exist a
subsequence, relabelled {unt0}, and a function ψ ∈ CH , such that unt0 → ψ in CH .

Consider an arbitrary value T > h.
It follows from (4.25) and (4.28) that there exists n0(t0, T ) such that τn < t0 − T for

n ≥ n0(t0, T ), and

|unt |2CH ≤ R(t0, T ) ∀ t ∈ [t0 − T, t0], n ≥ n0(t0, T ), (4.30)

where

R(t0, T ) = 1 + eµh(2ν − µλ−1
1 )−1e−σµ(t0−T )

∫ t0

−∞
eσµs‖f(s)‖2

∗ ds,
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so that, in particular,

|un(t)|2 ≤ R(t0, T ) ∀ t ∈ [t0 − T, t0], n ≥ n0(t0, T ). (4.31)

Let us denote

yn(t) = un(t+ t0 − T ) ∀ t ∈ [0, T ].

In particular, by (4.31), the sequence {yn}n≥n0(t0,T ) is bounded in L∞(0, T ;H).
On the other hand, for each n ≥ n0(t0, T ), the function yn is a weak solution on [0, T ]

of a problem similar to (4.1), namely with f and g replaced by

f̃(t) = f(t+ t0 − T ) and g̃(t, ·) = g(t+ t0 − T, ·), t ∈ (0, T ),

respectively, and with yn0 = unt0−T and ynT = unt0 . By (4.30), |yn0 |2CH ≤ R(t0, T ) for all
n ≥ n0(t0, T ). From (4.26) we have

‖yn‖2
L2(0,T ;V ) ≤ K(t0, T ) ∀n ≥ n0(t0, T ),

where

K(t0, T ) = ν−1R(t0, T ) + ν−2

∫ T

0

‖f̃(s)‖2
∗ ds+ ν−12LgR(t0, T )T.

Hence, the sequence {yn}n≥n0(t0,T ) is also bounded in L2(0, T ;V ), and the sequence of
time derivatives {(yn)′}n≥n0(t0,T ) is bounded in L2(0, T ;V ′). Thus, up to a subsequence
(relabelled the same), for some function y we have

yn
∗
⇀ y weakly-star in L∞(0, T ;H),

yn ⇀ y weakly in L2(0, T ;V ),
(yn)′ ⇀ y′ weakly in L2(0, T ;V ′),
yn → y strongly in L2(0, T ;H),
yn(t)→ y(t) strongly in H, a.e. t ∈ (0, T ).

Observe also that y ∈ C([0, T ];H), and that for every sequence {tn} ⊂ [0, T ] with
tn → t∗, one has

yn(tn) ⇀ y(t∗) weakly in H, (4.32)

which follows from the boundedness of the sequences {yn}n≥n0(t0,T ) and {(yn)′}n≥n0(t0,T )

in L∞(0, T ;H) and L2(0, T ;V ′) respectively, and the compactness of the injection of H
into V ′ (see the proof of Theorem 4.5 for a similar argument).

Also, by (II), (III), and (4.30), we obtain∫ t

0

|g̃(s, yns )|2 ds ≤ Ct,

where C > 0 does not depend neither on n nor t ∈ [0, T ]. Thus, eventually extracting a
subsequence, there exists ξ ∈ L2(0, T ; (L2(Ω))2) such that

g̃(·, yn· ) ⇀ ξ weakly in L2(0, T ; (L2(Ω))2),
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and therefore ∫ t

s

|g̃(r, ynr )|2 dr ≤ C(t− s),∫ t

s

|ξ(r)|2 dr ≤ lim inf
n→∞

∫ t

s

|g̃(r, ynr )|2 dr ≤ C(t− s),
(4.33)

for all 0 ≤ s ≤ t ≤ T.

Then, in a standard way, one can prove that y(·) is the unique weak solution to the
problem 

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f̃(t) + ξ(t) in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = y(x, 0), x ∈ Ω.

By the energy equality and (4.33), we obtain that

1

2
|z(t)|2 ≤ 1

2
|z(s)|2 +

∫ t

s

〈f̃(r), z(r)〉 dr + C̃(t− s) ∀ 0 ≤ s ≤ t ≤ T,

where C̃ = C(4νλ1)−1, and z = yn or z = y. Then, the maps J̃n, J̃ : [0, T ] → R defined
by

J̃n(t) =
1

2
|yn(t)|2 −

∫ t

0

〈f̃(r), yn(r)〉 dr − Ct,

J̃(t) =
1

2
|y(t)|2 −

∫ t

0

〈f̃(r), y(r)〉 dr − Ct,

are non-increasing and continuous, and satisfy

J̃n(t)→ J̃(t) a.e. t ∈ (0, T ). (4.34)

We can use the functionals J̃n and J̃ to deduce that yn → y in C([δ, T ];H), for any
0 < δ < T. If this is not true, then there exist 0 < δ∗ < T, ε > 0, and subsequences
{ym} ⊂ {yn}n≥n0(t0,T ) and {tm} ⊂ [δ∗, T ], with tm → t∗, such that

|ym(tm)− y(t∗)| ≥ ε ∀m ≥ 1. (4.35)

Let us fix ε > 0. Observe that t∗ ∈ [δ∗, T ], and therefore, by (4.34) and the continuity
and non-increasing character of J̃ , there exists 0 < t̂ε < t∗ such that

lim
m→∞

J̃m(t̂ε) = J̃(t̂ε), (4.36)

and

0 ≤ J̃(t̂ε)− J̃(t∗) ≤ ε. (4.37)
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As tm → t∗, there exists an mε such that t̂ε < tm for all m ≥ mε. Then, by (4.37),

J̃m(tm)− J̃(t∗) ≤ J̃m(t̂ε)− J̃(t∗)

≤ |J̃m(t̂ε)− J̃(t̂ε)|+ |J̃(t̂ε)− J̃(t∗)|
≤ |J̃m(t̂ε)− J̃(t̂ε)|+ ε

for all m ≥ mε, and consequently, by (4.36),

lim sup
m→∞

J̃m(tm) ≤ J̃(t∗) + ε.

Thus, as ε > 0 is arbitrary, we deduce that

lim sup
m→∞

J̃m(tm) ≤ J̃(t∗). (4.38)

Taking into account that tm → t∗, and∫ tm

0

〈f̃(r), ym(r)〉 dr →
∫ t∗

0

〈f̃(r), y(r)〉 dr,

from (4.38) we deduce that

lim sup
m→∞

|ym(tm)| ≤ |y(t∗)|.

This last inequality and (4.32), imply that

ym(tm)→ y(t∗) strongly in H,

which is in contradiction with (4.35).
We have thus proved that yn → y in C([δ, T ];H), for any 0 < δ < T. As T > h, we

obtain in particular that unt0 → ψ in CH , where ψ(s) = y(s+ T ), for s ∈ [−h, 0].

Joining all the above statements we obtain the existence of minimal pullback attractors
for the process U on CH associated to problem (4.1).

Theorem 4.14. Assume that f ∈ L2
loc(R;V ′), and g : R× CH → (L2(Ω))2 satisfying the

assumptions (I)–(III), (4.27) and (4.28), are given. Then, there exist the minimal pullback
DF (CH)-attractor ADF (CH) and the minimal pullback Dσµ(CH)-attractor ADσµ (CH) for the
process U defined by (4.24). The family ADσµ (CH) belongs to Dσµ(CH), and the following
relations hold:

ADF (CH)(t) ⊂ ADσµ (CH)(t) ⊂ BCH (0, ρµ(t)) ∀ t ∈ R. (4.39)

Proof. The existence of ADσµ (CH) is a consequence of Theorem 1.11, since U is continuous
(cf. Proposition 4.8) and therefore closed, the existence of a pullback absorbing family

was given by Corollary 4.12, and in Proposition 4.13 we have proved the pullback D̂1,µ-
asymptotic compactness.

By Corollary 1.13, the case of fixed bounded sets follows immediately since DF (CH) ⊂
Dσµ(CH). Then, we also deduce the first inclusion in (4.39).

Finally, Theorem 1.11 also implies the last inclusion in (4.39) and the fact that
ADσµ (CH) belongs toDσµ(CH), since the sufficient conditions in Remark 1.12 hold. Namely,
Dσµ(CH) is inclusion-closed, by construction D1,µ(t) is closed in CH for all t ∈ R, and

D̂1,µ belongs to Dσµ(CH) (cf. Corollary 4.12).
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Remark 4.15. (i) If, additionally, we assume that

sup
r≤0

∫ r

−∞
e−σµ(r−s)‖f(s)‖2

∗ ds <∞,

where σµ is given by (4.29), then, taking into account Remark 1.14, we deduce that

ADF (CH)(t) = ADσµ (CH)(t) ∀ t ∈ R.

(ii) Observe that a natural question concerning the existence of more families of pullback
attractors is to strengthen the conditions on the parameter µ that satisfies (4.27)
and (4.28). More exactly, if σ < σ′, then Dσ(CH) ⊂ Dσ′(CH). Therefore, in order to
obtain attractors for bigger universes, we would wonder if there exists µ′ ∈ (0, 2νλ1)
such that σµ′ > σµ. In such a case, conditions (4.27) and (4.28) would be satisfied
automatically. The key point for having σµ′ > σµ is to analyze the growth behaviour
of the map µ 7→ σµ. Namely, if the map µ 7→ σµ is non-decreasing, we look for
µ < µ′ < 2νλ1 (this may involve a smallness condition on the delay); otherwise, we
seek for 0 < µ′ < µ. Under any of these conditions, we would obtain new families
of pullback attractors and new relations among them (see Remark 2.16 in Chapter
2 or [6, Remark 5] for similar results in a simpler context).

4.3 Attraction in V norm and some regularity results

for the pullback attractors

Now, we strengthen the regularity of solutions and a second energy equality for them in or-
der to obtain additional attraction, namely, in the H1 norm instead of L2 as in Section 4.2.

For any h̃ ∈ [0, h], let us denote

C h̃,V
H =

{
ϕ ∈ CH : ϕ|[−h̃,0] ∈ B([−h̃, 0];V )

}
,

where B([−h̃, 0];V ) is the space of bounded functions from [−h̃, 0] into V . The space

C h̃,V
H is a Banach space with the norm

‖ϕ‖h̃,V = |ϕ|CH + sup
θ∈[−h̃,0]

‖ϕ(θ)‖.

Observe that the space CV = C([−h, 0];V ) is a Banach subspace of Ch,V
H .

Proposition 4.16. Assume that f ∈ L2
loc(R; (L2(Ω))2), and g : R × CH → (L2(Ω))2

satisfying the assumptions (I)–(III), are given. Then, for any bounded set B ⊂ CH , one
has:

(i) The set of weak solutions to (4.1) {u(·; τ, φ) : φ ∈ B} is bounded in L∞(τ + ε, T ;V ),
for any ε > 0 and any T > τ + ε.
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(ii) Moreover, if {φ(0) : φ ∈ B} is bounded in V, then {u(·; τ, φ) : φ ∈ B} is bounded in
L∞(τ, T ;V ), for all T > τ.

Proof. By (4.4) and the regularity property (a) in Theorem 4.5, we obtain

1

2

d

dθ
‖u(θ)‖2 + ν|Au(θ)|2 + b(u(θ), u(θ), Au(θ))

= (f(θ) + g(θ, uθ), Au(θ))

≤ 2

ν
(|f(θ)|2 + |g(θ, uθ)|2) +

ν

4
|Au(θ)|2, a.e. θ > τ,

where we have used Young’s inequality.
Since the trilinear term b can be estimated using (2.5) as

|b(u(θ), u(θ), Au(θ))| ≤ C1|u(θ)|1/2‖u(θ)‖|Au(θ)|3/2

≤ ν

4
|Au(θ)|2 + C(ν)|u(θ)|2‖u(θ)‖4,

where C(ν) is defined by (2.20), this, combined with the above and the properties of g,
gives

d

dθ
‖u(θ)‖2 + ν|Au(θ)|2

≤ 4

ν
|f(θ)|2 +

4L2
g

ν
|uθ|2CH + 2C(ν)|u(θ)|2‖u(θ)‖4, a.e. θ > τ. (4.40)

Integrating, in particular we deduce that for all τ < s ≤ r

‖u(r)‖2 ≤ ‖u(s)‖2 +
4

ν

∫ r

s

|f(θ)|2 dθ +
4L2

g

ν

∫ r

s

|uθ|2CH dθ

+2C(ν)

∫ r

s

|u(θ)|2‖u(θ)‖4 dθ.

By Gronwall’s lemma we obtain again that for all τ < s ≤ r

‖u(r)‖2 ≤
(
‖u(s)‖2 +

4

ν

∫ r

s

|f(θ)|2 dθ +
4L2

g

ν

∫ r

s

|uθ|2CH dθ
)

×exp

(
2C(ν)

∫ r

s

|u(θ)|2‖u(θ)‖2 dθ

)
. (4.41)

Integrating once more with respect to s ∈ (τ, r), it yields

(r − τ)‖u(r)‖2

≤
(∫ T

τ

‖u(s)‖2 ds+
4(T − τ)

ν

∫ T

τ

|f(θ)|2 dθ +
4L2

g(T − τ)

ν

∫ T

τ

|uθ|2CH dθ
)

×exp

(
2C(ν)

∫ T

τ

|u(θ)|2‖u(θ)‖2 dθ

)
∀ τ < r ≤ T.
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In particular, for τ + ε ≤ r ≤ T, it holds

‖u(r)‖2 ≤ 1

ε

(∫ T

τ

‖u(s)‖2 ds+
4(T − τ)

ν

∫ T

τ

|f(θ)|2 dθ +
4L2

g(T − τ)

ν

∫ T

τ

|uθ|2CH dθ
)

×exp

(
2C(ν)

∫ T

τ

|u(θ)|2‖u(θ)‖2 dθ

)
.

Taking into account (4.25) and (4.26), the claim (i) is proved.

The proof of claim (ii) is simpler. If φ(0) belongs to V, then from (4.40) one deduces
that for all τ ≤ r ≤ T,

‖u(r)‖2 ≤ ‖u(τ)‖2 +
4

ν

∫ r

τ

|f(θ)|2 dθ +
4L2

g

ν

∫ r

τ

|uθ|2CH dθ + 2C(ν)

∫ r

τ

|u(θ)|2‖u(θ)‖4 dθ.

Therefore, one may apply directly Gronwall’s lemma and proceed analogously as before
to conclude (ii).

Corollary 4.17. Under the assumptions of Proposition 4.16, the process U defined by
(4.24) satisfies that U(t, τ) maps bounded sets of CH into bounded sets of CH , for all
t ≥ τ .

Moreover, for any h̃ ∈ [0, h], the family of mappings U(t, τ)|
Ch̃,VH

, with t ≥ τ, is also a

well defined process on C h̃,V
H , and maps bounded sets of C h̃,V

H into bounded sets of C h̃,V
H .

Proposition 4.18. Assume that f ∈ L2
loc(R; (L2(Ω))2), and g : R × CH → (L2(Ω))2

satisfying the assumptions (I)–(III), are given. Let us denote u = u(·; τ, φ) and v =
v(·; τ, ψ) the solutions to (4.1) corresponding to initial data φ and ψ ∈ C0,V

H . Then, the
following estimate holds:

‖u(s)− v(s)‖2

≤
(
‖φ(0)− ψ(0)‖2 +

L2
g

ν

∫ t

τ

|uθ − vθ|2CH dθ
)

× exp

[ ∫ t

τ

(
2C(ν)λ−1

1 ‖u(θ)‖4 +
2C2

1

ν
|v(θ)||Av(θ)|

)
dθ

]
∀ τ ≤ s ≤ t, (4.42)

where C(ν) is given in (2.20).

As a consequence, for all h̃ ∈ [0, h] and any τ ≤ t, the mapping U(t, τ) : C h̃,V
H → C h̃,V

H

given by (4.24), is continuous.

Proof. In order to prove the statement, we only have to check (4.42) and combine it with
Proposition 4.7, and claim (ii) in Proposition 4.16.

Let us denote w = u− v. If we apply the energy equality to w, we obtain

1

2

d

dt
‖w(t)‖2 + ν|Aw(t)|2 + b(u(t), u(t), Aw(t))− b(v(t), v(t), Aw(t))

= (g(t, ut)− g(t, vt), Aw(t))

≤
L2
g

2ν
|wt|2CH +

ν

2
|Aw(t)|2, a.e. t > τ,
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where we have used Young’s inequality and the property (III) of g.
The trilinear terms can be estimated, using (2.5), as follows:

|b(u(t), u(t), Aw(t))− b(v(t), v(t), Aw(t))|
= |b(w(t), u(t), Aw(t)) + b(v(t), w(t), Aw(t))|
≤ C1|w(t)|1/2‖u(t)‖|Aw(t)|3/2 + C1|v(t)|1/2|Av(t)|1/2‖w(t)‖|Aw(t)|

≤ C(ν)|w(t)|2‖u(t)‖4 +
C2

1

ν
|v(t)||Av(t)|‖w(t)‖2 +

ν

2
|Aw(t)|2.

Therefore, from above we obtain that

d

dt
‖w(t)‖2 ≤ 2C(ν)|w(t)|2‖u(t)‖4 +

2C2
1

ν
|v(t)||Av(t)|‖w(t)‖2 +

L2
g

ν
|wt|2CH , a.e. t > τ.

Integrating, it yields for all τ ≤ s ≤ t,

‖w(s)‖2 ≤ ‖w(τ)‖2 +
L2
g

ν

∫ s

τ

|wθ|2CH dθ

+

∫ s

τ

‖w(θ)‖2
(

2C(ν)λ−1
1 ‖u(θ)‖4 +

2C2
1

ν
|v(θ)||Av(θ)|

)
dθ.

From this inequality, using Gronwall’s lemma, we deduce (4.42).

We introduce the following universes in P(C h̃,V
H ).

Definition 4.19. For any σ > 0 and h̃ ∈ [0, h], we will denote by Dh̃,Vσ (CH) the class of

families D̂ = {D(t) : t ∈ R} ∈ Dσ(CH) such that for any t ∈ R and for any ϕ ∈ D(t), it
holds that ϕ|[−h̃,0] ∈ B([−h̃, 0];V ).

Analogously, we will denote by Dh̃,VF (CH) the class of families D̂ = {D(t) = D : t ∈ R}
with D a fixed nonempty bounded subset of CH such that for any ϕ ∈ D, it holds that
ϕ|[−h̃,0] ∈ B([−h̃, 0];V ).

Finally, we will denote by DF (C h̃,V
H ) the class of families D̂ = {D(t) = D : t ∈ R}

with D a fixed nonempty bounded subset of C h̃,V
H .

Remark 4.20. The chain of inclusions for the universes in the above definition and the
universes introduced in Section 4.2, is the following:

DF (C h̃,V
H ) ⊂ Dh̃,VF (CH) ⊂ Dh̃,Vσ (CH) ⊂ Dσ(CH),

and
DF (C h̃,V

H ) ⊂ Dh̃,VF (CH) ⊂ DF (CH) ⊂ Dσ(CH),

for all σ > 0 and any h̃ ∈ [0, h].

It must also be pointed out that the universe Dh̃,Vσ (CH) is inclusion-closed, which will
be important (cf. Remark 1.12).

Finally, it is clear that if 0 ≤ h̃1 < h̃2 ≤ h, then

DF (C h̃2,V
H ) ⊂ DF (C h̃1,V

H ), Dh̃2,VF (CH) ⊂ Dh̃1,VF (CH), Dh̃2,Vσ (CH) ⊂ Dh̃1,Vσ (CH).
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We establish now some results on absorbing properties of U : R2
d × C

h̃,V
H → C h̃,V

H .

Proposition 4.21. Let g satisfying assumptions (I)-(III) be given. Assume that f ∈
L2

loc(R; (L2(Ω))2) satisfies that there exists 0 < µ < 2νλ1 such that µ > 2eµhLg, and∫ 0

−∞
eσµs|f(s)|2 ds <∞, (4.43)

where σµ is given by (4.29).

Then, for any h̃ ∈ [0, h], the family D̂1,µ,h̃ = {D1,µ,h̃(t) : t ∈ R} ⊂ P(C h̃,V
H ), with

D1,µ,h̃(t) = D1,µ(t) ∩ C h̃,V
H ,

where D1,µ(t) is defined in Corollary 4.12, is a family of closed sets of C h̃,V
H , which is

pullback Dh̃,Vσµ (CH)-absorbing for the process U : R2
d × C h̃,V

H → C h̃,V
H given by (4.24).

Moreover, D̂1,µ,h̃ belongs to Dh̃,Vσµ (CH).

Proof. It is a consequence of Corollary 4.12.

Lemma 4.22. Under the assumptions of Proposition 4.21, for any D̂ ∈ Dσµ(CH) and

any r > h, the family D̂(r) = {D(r)(τ) : τ ∈ R}, where D(r)(τ) = U(τ + r, τ)D(τ), for any
τ ∈ R, belongs to Dh,Vσµ (CH).

Proof. From (4.25), we deduce

sup
ψ∈D(r)(τ)

(
eσµτ |ψ|2CH

)
≤ eµh−σµr sup

φ∈D(τ)

(
eσµτ |φ|2CH

)
+(2νλ1 − µ)−1eµh−σµr

∫ τ+r

τ

eσµs|f(s)|2 ds.

From this inequality, property (a) in Theorem 4.5, and assumption (4.43), we deduce
the result.

Now, we establish several estimates in finite intervals of time when the initial time is
sufficiently shifted in a pullback sense (cf. Lemmas 2.10 and 3.7 for similar results in a
context without delays).

Lemma 4.23. Under the assumptions of Proposition 4.21, for any t ∈ R and D̂ ∈
Dσµ(CH), there exist τ1(D̂, t, h) < t− 2h− 2 and functions {ρi}4

i=1 depending on t and h,

such that for any τ ≤ τ1(D̂, t, h) and any φτ ∈ D(τ), it holds

|u(r; τ, φτ )|2 ≤ ρ1(t) ∀ r ∈ [t− 2h− 2, t],

‖u(r; τ, φτ )‖2 ≤ ρ2(t) ∀ r ∈ [t− h− 1, t],

ν

∫ r

r−1

|Au(θ; τ, φτ )|2 dθ ≤ ρ3(t) ∀ r ∈ [t− h, t],∫ r

r−1

|u′(θ; τ, φτ )|2 dθ ≤ ρ4(t) ∀ r ∈ [t− h, t],

(4.44)
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where

ρ1(t) = 1 + eµh(2νλ1 − µ)−1e−σµ(t−2h−2)

∫ t

−∞
eσµs|f(s)|2 ds,

ρ2(t) =

(
ν−1

(
1 + 2ν−1λ−1

1 L2
g + 4L2

g

)
ρ1(t) + ν−1

(
4 + 2ν−1λ−1

1

) ∫ t

t−h−2

|f(θ)|2 dθ
)

×exp

{
2ν−1C(ν)ρ1(t)

[(
1 + 2ν−1λ−1

1 L2
g

)
ρ1(t) + 2ν−1λ−1

1

∫ t

t−h−2

|f(θ)|2 dθ
]}

,

ρ3(t) = ρ2(t) + 2C(ν)ρ1(t)ρ2
2(t) + 4L2

gν
−1ρ1(t) + 4ν−1

∫ t

t−h−1

|f(θ)|2 dθ,

ρ4(t) = νρ2(t) + 4L2
gρ1(t) + 2C2

1ν
−1ρ2(t)ρ3(t) + 4

∫ t

t−h−1

|f(θ)|2 dθ,

and C(ν) is given in (2.20).

Proof. Let τ1(D̂, t, h) < t− 2h− 2 be such that

eµhe−σµ(t−2h−2)eσµτ |φτ |2CH ≤ 1 ∀ τ ≤ τ1(D̂, t, h), φτ ∈ D(τ).

Consider fixed τ ≤ τ1(D̂, t, h) and φτ ∈ D(τ).
First estimate in (4.44) follows directly from (4.25), using the increasing character of

the exponential.
Now, for the rest of the estimates, let us consider again the Galerkin approximations

already used in Theorem 4.5, and denote for short um(r) = um(r; τ, φτ ).
Multiplying in (4.6) by γm,j(t), and summing from j = 1 to m, we have

1

2

d

dt
|um(t)|2 + ν‖um(t)‖2 = (f(t) + g(t, umt ), um(t))

≤ 1

νλ1

(
|f(t)|2 + |g(t, umt )|2

)
+
ν

2
λ1|um(t)|2, a.e. t > τ,

where we have used Young’s inequality. Now, by the assumptions (II) and (III) on g, we
obtain

d

dt
|um(t)|2 + ν‖um(t)‖2 ≤ 2

νλ1

(
|f(t)|2 + L2

g|umt |2CH
)
, a.e. t > τ.

Integrating, in particular we deduce that

ν

∫ r

r−1

‖um(θ)‖2 dθ ≤ |um(r−1)|2 +
2

νλ1

∫ r

r−1

(
|f(θ)|2 +L2

g|umθ |2CH
)
dθ ∀ τ ≤ r−1. (4.45)

Now, observe that the first estimate in (4.44) and the estimates obtained in the proof
of Proposition 4.16 also hold for the um.

From (4.41), integrating with respect to s ∈ (r − 1, r), and using the first estimate in
(4.44), we obtain

‖um(r)‖2 ≤
(∫ r

r−1

‖um(s)‖2 ds+ 4ν−1

∫ r

r−1

|f(θ)|2 dθ + 4L2
gν
−1ρ1(t)

)
×exp

(
2C(ν)ρ1(t)

∫ r

r−1

‖um(θ)‖2 dθ

)
∀ r ∈ [t− h− 1, t].
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From this, jointly with (4.45) and the first estimate in (4.44) for um, one deduces

‖um(r; τ, φτ )‖2 ≤ ρ2(t) ∀ r ∈ [t− h− 1, t]. (4.46)

From this inequality and Remark 4.6, we deduce that

um
∗
⇀ u(·; τ, φτ ) weakly-star in L∞(t− h− 1, t;V ).

So, taking inferior limit when m goes to infinity in (4.46), and using the fact that
u(·; τ, φτ ) ∈ C([t− h− 1, t];V ), we obtain the second estimate in (4.44).

On other hand, from (4.40) we also have

ν

∫ r

r−1

|Aum(θ)|2 dθ

≤ ‖um(r − 1)‖2 + 4ν−1

∫ r

r−1

|f(θ)|2 dθ + 2C(ν)

∫ r

r−1

|um(θ)|2‖um(θ)‖4 dθ

+4L2
gν
−1

∫ r

r−1

|umθ |2CH dθ ∀ τ ≤ r − 1.

Therefore,

ν

∫ r

r−1

|Aum(θ; τ, φτ )|2 dθ ≤ ρ3(t) ∀ r ∈ [t− h, t]. (4.47)

From Remark 4.6 and (4.47), we deduce that

um ⇀ u(·; τ, φτ ) weakly in L2(r − 1, r;D(A)), ∀ r ∈ [t− h, t].

Thus, taking inferior limit when m goes to infinity in (4.47), we obtain the third inequality
in (4.44).

Finally, multiplying in (4.6) by γ′m,j(t), and summing from j = 1 to m, we obtain

|(um)′(θ)|2 +
ν

2

d

dθ
‖um(θ)‖2 + b(um(θ), um(θ), (um)′(θ))

= (f(θ), (um)′(θ)) + (g(θ, umθ ), (um)′(θ)), a.e. θ > τ.

Observing that by Young’s inequality and (2.6),

|(f(θ), (um)′(θ))| ≤ 1

8
|(um)′(θ)|2 + 2|f(θ)|2,

|(g(θ, umθ ), (um)′(θ))| ≤ 1

8
|(um)′(θ)|2 + 2|g(θ, umθ )|2,

|b(um(θ), um(θ), (um)′(θ))| ≤ C1|Aum(θ)|‖um(θ)‖|(um)′(θ)|

≤ 1

4
|(um)′(θ)|2 + C2

1 |Aum(θ)|2‖um(θ)‖2,

we obtain that

|(um)′(θ)|2 +ν
d

dθ
‖um(θ)‖2 ≤ 4|f(θ)|2 +4|g(θ, umθ )|2 +2C2

1 |Aum(θ)|2‖um(θ)‖2, a.e. θ > τ.
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From the properties of g, and integrating above, we conclude∫ r

r−1

|(um)′(θ)|2 dθ

≤ ν‖um(r − 1)‖2 + 4

∫ r

r−1

|f(θ)|2 dθ + 2C2
1

∫ r

r−1

|Aum(θ)|2‖um(θ)‖2 dθ

+4L2
g

∫ r

r−1

|umθ |2CH dθ ∀ τ ≤ r − 1.

From the first estimate in (4.44) for um, (4.46) and (4.47), we deduce that∫ r

r−1

|(um)′(θ; τ, φτ )|2 dθ ≤ ρ4(t) ∀ r ∈ [t− h, t]. (4.48)

From Remark 4.6 and (4.48), we deduce that

(um)′ ⇀ u′(·; τ, φτ ) weakly in L2(r − 1, r;H), ∀ r ∈ [t− h, t].

Thus, taking inferior limit when m goes to infinity in (4.48), we obtain the fourth inequal-
ity in (4.44).

Now, we can prove the Dh̃,Vσµ (CH)-asymptotic compactness of the process U restricted

to the space C h̃,V
H . The proof relies on an energy method with continuous functions, which

is similar to that used in the proof of Proposition 4.13, but starting with the energy
equality (4.4), as in Lemma 2.14; we reproduce it here just for the sake of completeness.

Lemma 4.24. Under the assumptions of Proposition 4.21, and for any h̃ ∈ [0, h], the

process U : R2
d × C

h̃,V
H → C h̃,V

H is pullback Dh̃,Vσµ (CH)-asymptotically compact.

Proof. Let h̃ ∈ [0, h] be fixed. Since, taking into account Proposition 4.2, the asymptotic
compactness in the norm of CH was already established in Proposition 4.13, we only must
care about the sup norm in B([−h̃, 0];V ). So, let us fix t ∈ R, a family D̂ = {D(t) : t ∈
R} ∈ Dh̃,Vσµ (CH), a sequence {τn} ⊂ (−∞, t] with τn → −∞, and a sequence {φτn} ⊂ C h̃,V

H ,
with φτn ∈ D(τn) for all n.

For short, let us denote un(·) = u(·; τn, φτn). It is enough to prove that the sequence
{un(t+ ·)} is relatively compact in CV .

By the asymptotic compactness in the norm of CH and using a recursive argument
in a finite number of steps, we may assume without loss of generality that there exists
ξ ∈ C([−2h− 1, 0];H) such that

un(t+ ·)→ ξ(·) strongly in C([−2h− 1, 0];H). (4.49)

From Lemma 4.23 we know that there exists a value τ1(D̂, t, h) < t−2h−2 such that the

subsequence {un : τn ≤ τ1(D̂, t, h)} is bounded in L∞(t−h−1, t;V )∩L2(t−h−1, t;D(A))
with {(un)′} bounded in L2(t−h−1, t;H). Moreover, using the Aubin–Lions compactness
lemma (e.g. cf. [61]), and taking into account (4.49), we may ensure that if we denote
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u(t+ r) = ξ(r) for all r ∈ [−2h−1, 0], then u ∈ L∞(t−h−1, t;V )∩L2(t−h−1, t;D(A))
with u′ ∈ L2(t − h − 1, t;H), and for a subsequence (relabelled the same) the following
convergences hold:

un
∗
⇀ u weakly-star in L∞(t− h− 1, t;V ),

un ⇀ u weakly in L2(t− h− 1, t;D(A)),
(un)′ ⇀ u′ weakly in L2(t− h− 1, t;H),
un → u strongly in L2(t− h− 1, t;V ),
un(s)→ u(s) strongly in V, a.e. s ∈ (t− h− 1, t).

(4.50)

Indeed, u ∈ C([t − h − 1, t];V ) satisfies, thanks to (4.49) and (4.50), the equation (4.2)
in (t− h− 1, t).

From the boundedness of {un} in C([t − h − 1, t];V ), we have that for any sequence
{sn} ⊂ [t− h− 1, t] with sn → s∗, it holds that

un(sn) ⇀ u(s∗) weakly in V, (4.51)

where we have used (4.49) to identify the weak limit. We will prove that

un → u strongly in C([t− h, t];V ), (4.52)

using an energy method for continuous functions analogous to that employed in the proof
of Proposition 4.13, but starting with the energy equality (4.4) as in Lemma 2.14.

Indeed, if (4.52) is false, there exist ε > 0, a value t∗ ∈ [t − h, t], and subsequences
(which we relabel the same) {un} and {tn} ⊂ [t− h, t], with limn→∞ tn = t∗, such that

‖un(tn)− u(t∗)‖ ≥ ε ∀n ≥ 1. (4.53)

Recall that by (4.51) we have

‖u(t∗)‖ ≤ lim inf
n→∞

‖un(tn)‖. (4.54)

On the other hand, using the energy equality (4.4) for u and all un, and reasoning as for
the obtention of (4.40), we have that for all t− h− 1 ≤ s1 ≤ s2 ≤ t,

‖un(s2)‖2 + ν

∫ s2

s1

|Aun(r)|2 dr

≤ ‖un(s1)‖2 + 2C(ν)

∫ s2

s1

|un(r)|2‖un(r)‖4 dr +
4

ν

∫ s2

s1

|f(r)|2 dr +
4L2

g

ν

∫ s2

s1

|unr |2CH dr,

and

‖u(s2)‖2 + ν

∫ s2

s1

|Au(r)|2 dr

≤ ‖u(s1)‖2 + 2C(ν)

∫ s2

s1

|u(r)|2‖u(r)‖4 dr +
4

ν

∫ s2

s1

|f(r)|2 dr +
4L2

g

ν

∫ s2

s1

|ur|2CH dr.
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In particular, we can define the functions

J̄n(s) = ‖un(s)‖2 − 2C(ν)

∫ s

t−h−1

|un(r)|2‖un(r)‖4 dr − 4

ν

∫ s

t−h−1

|f(r)|2 dr

−
4L2

g

ν

∫ s

t−h−1

|unr |2CH dr,

J̄(s) = ‖u(s)‖2 − 2C(ν)

∫ s

t−h−1

|u(r)|2‖u(r)‖4 dr − 4

ν

∫ s

t−h−1

|f(r)|2 dr

−
4L2

g

ν

∫ s

t−h−1

|ur|2CH dr.

These are continuous functions on [t− h− 1, t], and from the above inequalities, both J̄n
and J̄ are non-increasing. Moreover, by (4.49) and (4.50), we have

J̄n(s)→ J̄(s) a.e. s ∈ (t− h− 1, t).

So, there exists a sequence {t̃k} ⊂ (t− h− 1, t∗) such that t̃k → t∗, when k →∞, and

lim
n→∞

J̄n(t̃k) = J̄(t̃k) ∀ k.

Fix an arbitrary value δ > 0. From the continuity of J̄ , there exists kδ such that

|J̄(t̃k)− J̄(t∗)| < δ/2 ∀ k ≥ kδ.

Now, consider n(kδ) such that for all n ≥ n(kδ) it holds

tn ≥ t̃kδ and |J̄n(t̃kδ)− J̄(t̃kδ)| < δ/2.

Then, since all J̄n are non-increasing, we deduce that for all n ≥ n(kδ)

J̄n(tn)− J̄(t∗) ≤ J̄n(t̃kδ)− J̄(t∗)

≤ |J̄n(t̃kδ)− J̄(t∗)|
≤ |J̄n(t̃kδ)− J̄(t̃kδ)|+ |J̄(t̃kδ)− J̄(t∗)| < δ.

This yields that

lim sup
n→∞

J̄n(tn) ≤ J̄(t∗),

and therefore, by (4.49) and (4.50),

lim sup
n→∞

‖un(tn)‖ ≤ ‖u(t∗)‖,

which joined to (4.54) and (4.51) implies that un(tn)→ u(t∗) strongly in V, in contradic-
tion with (4.53). Thus, (4.52) is proved as desired.

Now, we can establish the main result of this section.
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Theorem 4.25. Consider given g satisfying assumptions (I)-(III). Assume that f ∈
L2

loc(R; (L2(Ω))2) satisfies (4.43) for some 0 < µ < 2νλ1 such that µ > 2eµhLg. Then, for

any h̃ ∈ [0, h], the process U on C h̃,V
H possesses a minimal pullback Dh̃,Vσµ (CH)-attractor

ADh̃,Vσµ (CH)
, a minimal pullback Dh̃,VF (CH)-attractor ADh̃,VF (CH)

, and a minimal pullback

DF (C h̃,V
H )-attractor ADF (Ch̃,VH )

. Besides, the following relations hold:

ADF (Ch̃,VH )
(t) ⊂ ADh̃,VF (CH)

(t)

⊂ ADF (CH)(t)

⊂ ADh̃,Vσµ (CH)
(t) = ADσµ (CH)(t)

⊂ CV ∀ t ∈ R, (4.55)

and for any family D̂ ∈ Dσµ(CH),

lim
τ→−∞

distCV (U(t, τ)D(τ),ADσµ (CH)(t)) = 0 ∀ t ∈ R. (4.56)

Finally, if moreover f satisfies

sup
s≤0

(
e−σµs

∫ s

−∞
eσµθ|f(θ)|2 dθ

)
<∞, (4.57)

then all attractors in (4.55) coincide, and this family is tempered in CV , in the sense that

lim
t→−∞

(
eσµt sup

v∈ADσµ (CH )(t)

‖v‖2
CV

)
= 0, (4.58)

where for v ∈ CV ,
‖v‖CV = max

s∈[−h,0]
‖v(s)‖.

Proof. Let us fix h̃ ∈ [0, h]. The existence of ADh̃,Vσµ (CH)
is a consequence of Theorem 1.11,

since the process U on C h̃,V
H is continuous (cf. Proposition 4.18) and therefore closed, the

existence of a pullback absorbing family was given by Proposition 4.21, and in Lemma
4.24 we have proved the pullback Dh̃,Vσµ (CH)-asymptotic compactness.

The existence of ADh̃,VF (CH)
and ADF (Ch̃,VH )

follows from the above facts, and the inclu-

sions DF (C h̃,V
H ) ⊂ Dh̃,VF (CH) ⊂ Dh̃,Vσµ (CH).

In (4.55), the chain of inclusions follows from Corollary 1.13, Theorem 1.15, and
Remark 4.20. The equality is a consequence of Theorem 1.15 and Remark 1.16, by using
Lemma 4.22 with T = r = h + 1. The last inclusion is a consequence of the regularity
result (a) in Theorem 4.5.

The property (4.56) is a consequence of Lemma 4.22, and the fact that by the regularity

result (a) in Theorem 4.5, for any D̂ ∈ Dσµ(CH) and any τ < t− h− 1,

distCV (U(t, τ)D(τ),ADσµ (CH)(t))

≤ distCh,VH
(U(t, τ + h+ 1)(U(τ + h+ 1, τ)D(τ)),ADσµ (CH)(t))

= distCh,VH
(U(t, τ + h+ 1)D(h+1)(τ),ADh,Vσµ (CH)(t)).
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The coincidence of all attractors in (4.55) under the additional assumption (4.57) holds
by applying once more Theorem 1.15, and the second estimate in (4.44), since (4.57) is
equivalent to (2.41).

The tempered condition (4.58) comes from (4.57) (and therefore (2.41)) and the ex-
pression of ρ2(t) given in Lemma 4.23.

Remark 4.26. (i) Observe that, under the assumptions of Theorem 4.25, one has
ADh̃,Vσµ (CH)

≡ ADh,Vσµ (CH) for any h̃ ∈ [0, h], i.e., the pullback attractor ADh̃,Vσµ (CH)
is

independent of h̃.

Actually, if f also satisfies (4.57), then ADh̃,VF (CH)
≡ ADh,VF (CH), and ADF (Ch̃,VH )

≡
ADF (Ch,VH ).

(ii) Observe that since D̂1,µ,h ∈ Dh,Vσµ (CH), and that for each t ∈ R, D1,µ,h(t) is closed in

Ch,V
H , from Remark 1.12 and Remark 4.20, we deduce that ADh,Vσµ (CH) ∈ D

h,V
σµ (CH).

Remark 4.27. We can also consider, for each 0 ≤ h̃ ≤ h, the class Dσµ(C h̃,V
H ) of all

families D̂ = {D(t) : t ∈ R} ⊂ P(C h̃,V
H ) such that

lim
τ→−∞

(
eσµτ sup

v∈D(τ)

‖v‖2
h̃,V

)
= 0.

For this universe we have the chain of inclusions

DF (C h̃,V
H ) ⊂ Dσµ(C h̃,V

H ) ⊂ Dh̃,Vσµ (CH) ⊂ Dσµ(CH).

Under the assumptions of Theorem 4.25, we deduce the existence of the minimal

pullback Dσµ(C h̃,V
H )-attractor ADσµ (Ch̃,VH )

. Moreover, this pullback attractor satisfies

ADF (Ch̃,VH )
(t) ⊂ ADσµ (Ch̃,VH )

(t) ⊂ ADσµ (CH)(t) ∀ t ∈ R.

In fact, if assumption (4.57) is satisfied, then ADσµ (Ch̃,VH )
≡ ADσµ (CH).





Chapter 5

Regularity of Pullback Attractors for
2D Navier–Stokes Equations with
Finite Delay

In this chapter we strengthen some results on the existence and properties of pullback
attractors for a 2D Navier–Stokes model with finite delay formulated in Caraballo and
Real [11]. Contrary to Chapter 4, here we will keep all usual conditions for the delay
operator of the problem (see conditions (IV) an (V) below).

The chapter is splitted into three sections. In Section 5.1 we will recall some general
definitions and some well-known results on the existence of weak and strong solutions to
our problem. Moreover, we will see some regularity properties for them.

Section 5.2 is devoted to establish several possible pullback attractors for two different
phase spaces (continuous in time, or just square integrable in time) but taking into account
the H norm in space. Moreover, we will be also able to compare both kind of attractors,
for both possibilities of phase spaces.

Finally, our main results, established in the higher norm V (in space), will be given in
Section 5.3. Thanks to regularity results, the attraction from different phase spaces will
also happen in C([−h, 0];V ). In this last section, again an energy method that relies on
the continuity of the solutions and some non-increasing functions will be used to prove
the asymptotic compactness of the associated processes in the respective universes. More-
over, relationships among all these objects will be analyzed and, at the end of the section,
in Theorem 5.23, we will actually establish some relations with the attractors previously
obtained in Chapter 4.

The results presented in this chapter can be found in [9, 10,11,34,69,71].
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5.1 Statement of the problem

Using the same notation as in the previous chapters, consider the following functional
Navier–Stokes problem:

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f(t) + g(t, ut) in Ω× (τ,∞),

divu = 0 in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),

u(x, τ) = uτ (x), x ∈ Ω,

u(x, τ + s) = φ(x, s), x ∈ Ω, s ∈ (−h, 0),

(5.1)

where uτ and φ(x, s − τ) are the initial data in τ and (τ − h, τ) respectively. For each
t ≥ τ , we denote by ut the function defined a.e. on (−h, 0) by the relation ut(s) = u(t+s),
a.e. s ∈ (−h, 0).

Now, let us denote by L2
X = L2(−h, 0;X) for X = H, V . On the delay operator from

(5.1), we consider again that is well defined as g : R×CH → (L2(Ω))2, and it satisfies the
following assumptions (recall that in Chapter 4 we only assumed conditions (I)− (III)):

(I) for all ξ ∈ CH , the function R 3 t 7→ g(t, ξ) ∈ (L2(Ω))2 is measurable,

(II) g(t, 0) = 0, for all t ∈ R,

(III) there exists Lg > 0 such that for all t ∈ R, and for all ξ, η ∈ CH ,

|g(t, ξ)− g(t, η)| ≤ Lg|ξ − η|CH ,

(IV) there exists Cg > 0 such that for all τ ≤ t, and for all u, v ∈ C([τ − h, t];H),∫ t

τ

|g(s, us)− g(s, vs)|2 ds ≤ C2
g

∫ t

τ−h
|u(s)− v(s)|2 ds.

As we pointed out in the previous chapter, given T > τ and u ∈ C([τ − h, T ];H), the
function gu : [τ, T ] → (L2(Ω))2 defined by gu(t) = g(t, ut) for all t ∈ [τ, T ], is measurable
and belongs to L∞(τ, T ; (L2(Ω))2).

Now, thanks to (IV), the mapping

G : u ∈ C([τ − h, T ];H)→ gu ∈ L2(τ, T ; (L2(Ω))2)

has a unique extension to a mapping G̃ which is uniformly continuous from L2(τ−h, T ;H)

into L2(τ, T ; (L2(Ω))2). From now on, we will denote by g(t, ut) = G̃(u)(t) for each
u ∈ L2(τ − h, T ;H), and thus property (IV) will also hold for all u, v ∈ L2(τ − h, T ;H).

Assume that uτ ∈ H, φ ∈ L2
H , and f ∈ L2

loc(R;V ′).
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Definition 5.1. A weak solution to (5.1) is a function u that belongs to L2(τ − h, T ;H)
∩ L2(τ, T ;V ) ∩ L∞(τ, T ;H) for all T > τ , with u(τ) = uτ and u(t) = φ(t − τ) a.e.
t ∈ (τ − h, τ), and such that for all v ∈ V ,

d

dt
(u(t), v) + ν〈Au(t), v〉+ b(u(t), u(t), v) = 〈f(t), v〉+ (g(t, ut), v), (5.2)

where the equation must be understood in the sense of D′(τ,∞).

Once more, if u is a weak solution to (5.1) and f ∈ L2
loc(R;V ′), then we deduce that

u ∈ C([τ,∞);H), whence the initial datum u(τ) = uτ has full sense. Furthermore, in this
case the energy equality (4.3) also holds.

On the other, we define a strong solution to (5.1) in the same way as in the previous
chapters, and again, if u is a strong solution to (5.1) and f ∈ L2

loc(R; (L2(Ω))2), then
u ∈ C([τ,∞);V ), and it satisfies the energy equality (4.4).

Concerning the existence and uniqueness of weak and strong solutions for (5.1), we
have the following result which can be proved similarly as [9, Theorem 2.1] or [10, Theorem
2.5] (see also [36, Theorem 2.3] for a more general case). Actually, as we have proved in
Chapter 4, if we restrict to the phase space of continuous in time functions CH , it is
also possible to obtain existence, uniqueness, and regularity of solutions to our problem
without conditions (IV) or (V) on the delay operator g (see Theorem 4.5 in Section 4.1).

Theorem 5.2. Let us consider uτ ∈ H, φ ∈ L2
H , f ∈ L2

loc(R;V ′), and g : R × CH →
(L2(Ω))2 satisfying (I)–(IV). Then, for each τ ∈ R, there exists a unique weak solution
u(·) = u(·; τ, uτ , φ) to (5.1).

Moreover, if f ∈ L2
loc(R; (L2(Ω))2), then

(a) u ∈ C([τ + ε, T ];V ) ∩ L2(τ + ε, T ;D(A)) for all T > τ + ε > τ .

(b) If uτ ∈ V , u is in fact a strong solution to (5.1).

Before establishing the original results about the regularity of pullback attractors, we
recall the main existence results previously studied in the literature.

5.2 Previous results on processes and pullback at-

tractors in H norm

In this section we recall some known results (cf. [11, 69, 71]) on the existence of minimal
pullback attractors in the H norm for suitable processes associated to problem (5.1).

In order to apply the abstract theory of pullback attractors studied in Chapter 1 (e.g.
see the above cited references), we may consider the Banach space CH , and the Hilbert
space M2

H = H × L2
H with associated norm

‖(uτ , φ)‖2
M2
H

= |uτ |2 +

∫ 0

−h
|φ(s)|2 ds for (uτ , φ) ∈M2

H .
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We can define two processes for problem (5.1).

Proposition 5.3. Assume that f ∈ L2
loc(R;V ′), and g : R × CH → (L2(Ω))2 satisfies

(I)–(IV). Then, the bi-parametric families of mappings U(t, τ) : CH → CH and S(t, τ) :
M2

H →M2
H given respectively by

U(t, τ)φ = ut(·; τ, φ(0), φ) for φ ∈ CH , τ ≤ t, (5.3)

and
S(t, τ)(uτ , φ) = (u(t; τ, uτ , φ), ut(·; τ, uτ , φ)) for (uτ , φ) ∈M2

H , τ ≤ t, (5.4)

where u is the unique weak solution to (5.1), are well defined continuous processes on CH
and M2

H respectively.

Proof. The result follows from Theorem 5.2 above, and from [11, Theorem 9].

Now, in order to establish asymptotic estimates for the solutions to (5.1), we impose
a fifth assumption on g and f .

(V) Assume that νλ1 > Cg, and that there exists a value η ∈ (0, 2(νλ1 −Cg)) such that
for every u ∈ L2(τ − h, t;H),∫ t

τ

eηs|g(s, us)|2 ds ≤ C2
g

∫ t

τ−h
eηs|u(s)|2 ds for any τ ≤ t, and∫ 0

−∞
eηs‖f(s)‖2

∗ ds < ∞.

Lemma 5.4. Suppose that f ∈ L2
loc(R;V ′), and that f and g : R×CH → (L2(Ω))2 satisfy

(I)–(V). Then, for any (uτ , φ) ∈ M2
H , the following estimate holds for the solution u to

(5.1) for all t ≥ τ :

|u(t)|2 ≤ e−η(t−τ) max{1, Cg}‖(uτ , φ)‖2
M2
H

+ β−1e−ηt
∫ t

τ

eηs‖f(s)‖2
∗ ds, (5.5)

where
β = 2ν − (η + 2Cg)λ

−1
1 . (5.6)

Proof. By the energy equality (4.3) and Young’s inequality, we have

d

dt
|u(t)|2 + 2ν‖u(t)‖2

≤ β‖u(t)‖2 + β−1‖f(t)‖2
∗ + Cg|u(t)|2 + C−1

g |g(t, ut)|2, a.e. t > τ.

Thus,

d

dt

(
eηt|u(t)|2

)
+ eηt

(
2ν − β − (η + Cg)λ

−1
1

)
‖u(t)‖2

≤ eηtβ−1‖f(t)‖2
∗ + eηtC−1

g |g(t, ut)|2, a.e. t > τ,



5.2. Previous results on processes and pullback attractors in H norm 101

and therefore, integrating above and using property (V), we obtain

eηt|u(t)|2 +
(
2ν − β − (η + Cg)λ

−1
1

) ∫ t

τ

eηs‖u(s)‖2 ds

≤ eητ |uτ |2 + β−1

∫ t

τ

eηs‖f(s)‖2
∗ ds+ Cg

∫ t

τ−h
eηs|u(s)|2 ds

≤ eητ max{1, Cg}‖(uτ , φ)‖2
M2
H

+ β−1

∫ t

τ

eηs‖f(s)‖2
∗ ds+ Cg

∫ t

τ

eηs|u(s)|2 ds

for all t ≥ τ , and from this last inequality and (5.6), in particular we deduce (5.5).

After the above result, it turns out appropriate the introduction of the following
tempered universe.

Definition 5.5. We will denote by Dη(M2
H) the class of all families of nonempty subsets

D̂ = {D(t) : t ∈ R} ⊂ P(M2
H) such that

lim
τ→−∞

(
eητ sup

(w,ϕ)∈D(τ)

‖(w,ϕ)‖2
M2
H

)
= 0.

Furthermore, we will also consider the universes Dη(CH) and DF (CH) already defined
in Chapter 4 (see Definition 4.11), and DF (M2

H) will denote the universe of fixed bounded
sets in M2

H .

Remark 5.6. (i) The choices of the above universes are right and convenient to keep,
in the sense that, on the one hand, M2

H is more general as phase space for the initial
data of problem (5.1). On the other hand, the regularity of the solution to (5.1) (cf.
Theorem 5.2) makes that, after an elapsed time h, every solution is continuous with
values on H. Indeed, as it was observed in [11], in the case of the universes of fixed
bounded sets, pullback attractors in both spaces do exist, and they are intrinsically
related through the canonical embedding j : CH → M2

H defined by j(ϕ) = (ϕ(0), ϕ)
(see Theorem 5.10 below).

(ii) The universes Dη(CH) and Dη(M2
H), which are inclusion-closed, contain respectively

the universes DF (CH) and DF (M2
H).

Now, we obtain pullback absorbing families for U : R2
d×CH → CH and S : R2

d×M2
H →

M2
H .

Corollary 5.7. Under the assumptions of Lemma 5.4, the family D̂1,η = {D1,η(t) : t ∈
R} ⊂ P(CH) defined by D1,η(t) = BCH (0, rη(t)), the closed ball in CH of center zero and
radius rη(t), where

r2
η(t) = 1 + β−1e−η(t−h)

∫ t

−∞
eηs‖f(s)‖2

∗ ds,

with β given by (5.6), is pullback Dη(CH)-absorbing for the process U on CH defined by

(5.3) (and therefore pullback DF (CH)-absorbing too), and D̂1,η belongs to Dη(CH).
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Analogously, the family D̂2,η = {D2,η(t) : t ∈ R} ⊂ P(M2
H) defined by D2,η(t) =

BM2
H

(0, Rη(t)), the closed ball in M2
H of center zero and radius Rη(t), with

R2
η(t) = 1 + β−1(1 + heηh)e−ηt

∫ t

−∞
eηs‖f(s)‖2

∗ ds,

is pullback Dη(M2
H)-absorbing for the process S on M2

H given by (5.4) (and thus also

pullback DF (M2
H)-absorbing), and D̂2,η belongs to Dη(M2

H).

Since it will be useful in order to compare the pullback attractors defined in the spaces
CH and M2

H , we consider the bi-parametric family of mappings Ũ(t, τ) : M2
H → L2

H defined
as

Ũ(t, τ)(uτ , φ) = ut(·; τ, uτ , φ) for (uτ , φ) ∈M2
H , τ ≤ t.

Remark 5.8. Observe that Ũ(t, τ) maps M2
H into CH if t ≥ τ + h, and therefore we can

write
S(t, τ)(uτ , φ) = j(Ũ(t, τ)(uτ , φ)) for (uτ , φ) ∈M2

H , t ≥ τ + h,

where S(·, ·) is given by (5.4).
Moreover, it is clear that

U(t, τ)φ = Ũ(t, τ)j(φ) for φ ∈ CH , t ≥ τ,

with U(·, ·) defined in (5.3).

Lemma 5.9. Under the assumptions of Lemma 5.4, for any D̂ ∈ Dη(M2
H) and any r ≥ h,

the family D̂(r) = {D(r)(τ) : τ ∈ R}, where D(r)(τ) = Ũ(τ + r, τ)D(τ) for any τ ∈ R,
belongs to Dη(CH).

Proof. From (5.5), we obtain

sup
ψ∈D(r)(τ)

(
eητ |ψ|2CH

)
≤ e−η(r−h) max{1, Cg} sup

(uτ ,φ)∈D(τ)

(
eητ‖(uτ , φ)‖2

M2
H

)
+β−1e−η(r−h)

∫ τ+r

τ

eηs‖f(s)‖2
∗ ds.

From this inequality and assumption (V), we deduce the result.

Now, we are able to establish the main result of this section.

Theorem 5.10. Assume that f ∈ L2
loc(R;V ′), and that f and g : R × CH → (L2(Ω))2

satisfy (I)–(V). Then, there exist the minimal pullback attractors ADF (CH), ADη(CH),
ADF (M2

H), and ADη(M2
H), in CH and M2

H respectively, for the universes of fixed bounded
sets and for those with tempered condition given in Definition 5.5.

Besides, the following relations hold:

ADF (CH)(t) ⊂ ADη(CH)(t), and ADF (M2
H)(t) ⊂ ADη(M2

H)(t) ∀ t ∈ R, (5.7)

j(ADF (CH)(t)) ⊂ ADF (M2
H)(t) ∀ t ∈ R, and (5.8)

j(ADη(CH)(t)) = ADη(M2
H)(t) ∀ t ∈ R, (5.9)
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where the map j is the canonical injection of CH into M2
H defined in Remark 5.6 (i).

Finally, if f also satisfies

sup
s≤0

(
e−ηs

∫ s

−∞
eηθ‖f(θ)‖2

∗ dθ

)
<∞, (5.10)

then, the inclusions in (5.7) and (5.8) are in fact equalities.

Proof. For the existence of the four minimal pullback attractors see [11, Theorem 17,
Remark 18], [69, Theorem 20], and [71, Theorem 4].

The relations in (5.7) follow from Corollary 1.13, and the inclusion in (5.8) can be
proved analogously as in [71, Theorem 5].

Now, we analyze the equality in (5.9). On the one hand, the inclusion j(ADη(CH)(t)) ⊂
ADη(M2

H)(t) can be obtained again in a similar way as in [71, Theorem 5]. On the other

hand, from Remark 5.8 and Lemma 5.9, we have that for any D̂ ∈ Dη(M2
H) and any

τ < t− h,

distM2
H

(S(t, τ)D(τ), j(ADη(CH)(t)))

= distM2
H

(S(t, τ + h)(S(τ + h, τ)D(τ)), j(ADη(CH)(t)))

= distM2
H

(S(t, τ + h)(j(Ũ(τ + h, τ)D(τ))), j(ADη(CH)(t)))

= distM2
H

(j(U(t, τ + h)D(h)(τ)), j(ADη(CH)(t)))

≤ (1 + h)1/2distCH (U(t, τ + h)D(h)(τ),ADη(CH)(t)),

where in the last inequality we have used that j ∈ L(CH ,M
2
H) with ‖j‖L(CH ,M

2
H) ≤

(1 + h)1/2. Therefore, the inclusion ADη(M2
H)(t) ⊂ j(ADη(CH)(t)) follows since ADη(M2

H)(t)

is the minimal closed set in M2
H that attracts any family D̂ ∈ Dη(M2

H) in the pullback
sense.

Finally, if moreover f satisfies (5.10), the coincidences of the pullback attractors in
(5.7) is a consequence of Remark 1.14, and the fact that (5.10) is equivalent to have that
supt≤T rη(t) and supt≤T Rη(t) are bounded for any T ∈ R, with rη(t) and Rη(t) defined in
Corollary 5.7. Now, from these identities and (5.9), the equality in (5.8) follows.

Remark 5.11. Under the assumptions of Theorem 5.10, as a consequence of Remarks
1.12 and 5.6 (ii), and Corollary 5.7, we have that ADη(CH) and ADη(M2

H) belong to the

universes Dη(CH) and Dη(M2
H) respectively.

Actually, if in addition f satisfies (5.10), one can see that for each T ∈ R, the sets
{ADη(CH)(t) : t ≤ T} and {ADη(M2

H)(t) : t ≤ T} are bounded in CH and M2
H respectively.

5.3 Regularity of pullback attractors and attraction

in V norm

Now, we will improve in a certain way the main result of the previous section, Theorem
5.10, in the sense that we will establish the existence of minimal pullback attractors in
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the V norm. Moreover, we will check that under suitable assumptions all these families
of attractors are in fact the same (here Theorem 1.15 will play an essential role).

For each h̃ ∈ [0, h], we consider the Banach space C h̃,V
H already defined in Chapter 4,

and the Hilbert space M2
V = V × L2

V with associated norm

‖(uτ , φ)‖2
M2
V

= ‖uτ‖2 +

∫ 0

−h
‖φ(s)‖2 ds for (uτ , φ) ∈M2

V .

We have the following result.

Proposition 5.12. Suppose that f ∈ L2
loc(R; (L2(Ω))2), and g : R×CH → (L2(Ω))2 satis-

fies (I)–(IV). Then, for any h̃ ∈ [0, h], the bi-parametric families of mappings U(t, τ)|
Ch̃,VH

and S(t, τ)|M2
V

, with τ ≤ t, are well defined continuous processes on C h̃,V
H and M2

V respec-
tively.

Proof. The fact that, for any h̃ ∈ [0, h] and τ ≤ t, U(t, τ)|
Ch̃,VH

and S(t, τ)|M2
V

are well

defined processes follows from Theorem 5.2. The continuity can be proved similarly as
Proposition 4.18, using property (IV) instead of (III).

We introduce the following universes in P(M2
V ).

Definition 5.13. We will denote by DVη (M2
H) the class of families D̂ = {D(t) : t ∈ R} ∈

Dη(M2
H) such that for any t ∈ R and for any (w,ϕ) ∈ D(t), it holds that (w,ϕ) ∈M2

V .

Moreover, we will denote by DF (M2
V ) the class of families D̂ = {D(t) = D : t ∈ R}

with D a fixed nonempty bounded subset of M2
V .

Remark 5.14. The relations among the universes introduced above and those in P(M2
H)

defined in Section 5.2, are the following:

DF (M2
V ) ⊂ DVη (M2

H) ⊂ Dη(M2
H),

and
DF (M2

V ) ⊂ DF (M2
H) ⊂ Dη(M2

H).

Observe also that DVη (M2
H) is inclusion-closed.

Furthermore, for any h̃ ∈ [0, h], we also consider the universes Dh̃,Vη (CH), Dh̃,VF (CH),

and DF (C h̃,V
H ), introduced in Chapter 4 (see Definition 4.19).

Now, we establish the existence of pullback absorbing families for the processes U :

R2
d × C

h̃,V
H → C h̃,V

H and S : R2
d ×M2

V →M2
V .

Proposition 5.15. Assume that f ∈ L2
loc(R; (L2(Ω))2), and that f and g : R × CH →

(L2(Ω))2 satisfy (I)–(V). Then, for any h̃ ∈ [0, h], the family D̂1,η,h̃ = {D1,η,h̃(t) : t ∈
R} ⊂ P(C h̃,V

H ), with

D1,η,h̃(t) = D1,η(t) ∩ C h̃,V
H ,
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where D1,η(t) is defined in Corollary 5.7, is a family of closed sets of C h̃,V
H , which is

pullback Dh̃,Vη (CH)-absorbing for the process U on C h̃,V
H given by (5.3), and D̂1,η,h̃ belongs

to Dh̃,Vη (CH).

Besides, the family D̂2,η,V = {D2,η,V (t) : t ∈ R} ⊂ P(M2
V ), where

D2,η,V (t) = D2,η(t) ∩M2
V ,

with D2,η(t) also given in Corollary 5.7, is a family of closed sets of M2
V , that is pull-

back DVη (M2
H)-absorbing for the process S on M2

V defined by (5.4), and D̂2,η,V belongs to
DVη (M2

H).

Proof. It is a direct consequence of Corollary 5.7.

The following result can be obtained analogously as Lemma 4.23.

Lemma 5.16. Under the assumptions of Proposition 5.15, for any t ∈ R and D̂ ∈
Dη(M2

H), there exist τ1(D̂, t, h) < t− 3h− 2 and functions {ρi}4
i=1 depending on t and h,

such that for any τ ≤ τ1(D̂, t, h) and any (uτ , φ) ∈ D(τ), it holds

|u(r; τ, uτ , φ)|2 ≤ ρ1(t) ∀ r ∈ [t− 3h− 2, t],

‖u(r; τ, uτ , φ)‖2 ≤ ρ2(t) ∀ r ∈ [t− 2h− 1, t],

ν

∫ r

r−1

|Au(θ; τ, uτ , φ)|2 dθ ≤ ρ3(t) ∀ r ∈ [t− 2h, t],∫ r

r−1

|u′(θ; τ, uτ , φ)|2 dθ ≤ ρ4(t) ∀ r ∈ [t− 2h, t],

(5.11)

where

ρ1(t) = 1 + β−1e−η(t−3h−2)

∫ t

−∞
eηs‖f(s)‖2

∗ ds,

ρ2(t) =

(
ν−1

(
1 + 2ν−1λ−1

1 L2
g + 4L2

g

)
ρ1(t) + ν−1

(
4 + 2ν−1λ−1

1

) ∫ t

t−2h−2

|f(θ)|2 dθ
)

×exp

{
2ν−1C(ν)ρ1(t)

[ (
1 + 2ν−1λ−1

1 L2
g

)
ρ1(t) + 2ν−1λ−1

1

∫ t

t−2h−2

|f(θ)|2 dθ
]}

,

ρ3(t) = ρ2(t) + 4ν−1

∫ t

t−2h−1

|f(θ)|2 dθ + 4L2
gν
−1ρ1(t) + 2C(ν)ρ1(t)ρ2

2(t),

ρ4(t) = νρ2(t) + 4

∫ t

t−2h−1

|f(θ)|2 dθ + 4L2
gρ1(t) + 2C2

1ν
−1ρ2(t)ρ3(t),

with β and C(ν) given by (5.6) and (2.20) respectively.

Now, we proceed in a similar way as in Lemma 4.24, by applying the same energy

method, in order to obtain the pullback asymptotic compactness in C h̃,V
H and M2

V for the

universes Dh̃,Vη (CH) and DVη (M2
H) respectively.



106 Chapter 5. Regularity of Pullback Attractors for 2D NSE with Finite Delay

Lemma 5.17. Under the assumptions of Proposition 5.15, for any t ∈ R, any D̂ ∈
Dη(M2

H), and any sequences {τn} ⊂ (−∞, t] and {(uτn , φn)} ⊂ M2
H such that τn → −∞

and (uτn , φn) ∈ D(τn) for all n, the sequence {u(·; τn, uτn , φn)} is relatively compact in
C([t− h, t];V ).

Proof. Let us fix t ∈ R, a family D̂ ∈ Dη(M2
H), and sequences {τn} ⊂ (−∞, t] with

τn → −∞, and {(uτn , φn)} with (uτn , φn) ∈ D(τn) for all n. Denote for short un(·) =
u(·; τn, uτn , φn).

From Lemma 5.16, we have that there exists a τ1(D̂, t, h) < t − 3h − 2 such that the

subsequence {un : τn ≤ τ1(D̂, t, h)} ⊂ {un} is bounded in L∞(t − 2h − 1, t;V ) ∩ L2(t −
2h − 1, t;D(A)) with {(un)′} also bounded in L2(t − 2h − 1, t;H). Therefore, using in
particular the Aubin–Lions compactness lemma (e.g., cf. [61]), there exists a function
u ∈ L∞(t− 2h− 1, t;V )∩L2(t− 2h− 1, t;D(A)) with u′ ∈ L2(t− 2h− 1, t;H) such that,
for a subsequence which we relabel the same, the following convergences hold:

un
∗
⇀ u weakly-star in L∞(t− 2h− 1, t;V ),

un ⇀ u weakly in L2(t− 2h− 1, t;D(A)),
(un)′ ⇀ u′ weakly in L2(t− 2h− 1, t;H),
un → u strongly in L2(t− 2h− 1, t;V ),
un(s)→ u(s) strongly in V, a.e. s ∈ (t− 2h− 1, t).

(5.12)

Observe that u ∈ C([t− 2h− 1, t];V ) satisfies, thanks to (5.12), the equation (5.2) in the
interval (t− h− 1, t).

Moreover, from (5.12) we can also deduce that {un} is equi-continuous on [t−2h−1, t]
with values in H. Thus, since {un} is bounded in C([t − 2h − 1, t];V ) and the injection
of V into H is compact, by the Ascoli–Arzelà theorem, we obtain that (once more, up to
a subsequence)

un → u strongly in C([t− 2h− 1, t];H). (5.13)

Indeed, again from the boundedness of {un} in C([t− 2h− 1, t];V ), one has that for any
sequence {sn} ⊂ [t− 2h− 1, t] with sn → s∗, it holds that

un(sn) ⇀ u(s∗) weakly in V,

where we have used (5.13) to identify the weak limit.
Our goal is to show that

un → u strongly in C([t− h, t];V ),

which in particular will imply the relative compactness.
Now, the proof follows the same lines as the proof of Lemma 4.24, by using a contra-

diction argument and the same continuous and non-increasing functions J̄n and J̄ defined
in that lemma.

As an immediate consequence of the previous lemma, we have the following result.

Corollary 5.18. Under the assumptions of Lemma 5.17, it holds:
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(a) For any h̃ ∈ [0, h], the process U : R2
d × C h̃,V

H → C h̃,V
H is pullback Dh̃,Vη (CH)-

asymptotically compact.

(b) The process S : R2
d ×M2

V →M2
V is pullback DVη (M2

H)-asymptotically compact.

We establish now the following result about the existence of minimal pullback attrac-

tors for the process U on C h̃,V
H , which can be proved in a same way as Theorem 4.25.

Theorem 5.19. Assume that f ∈ L2
loc(R; (L2(Ω))2), and that f and g : R × CH →

(L2(Ω))2 satisfy (I)–(V). Then, for any h̃ ∈ [0, h], the process U on C h̃,V
H possesses a

minimal pullback Dh̃,Vη (CH)-attractor ADh̃,Vη (CH)
, a minimal pullback Dh̃,VF (CH)-attractor

ADh̃,VF (CH)
, and a minimal pullback DF (C h̃,V

H )-attractor ADF (Ch̃,VH )
. Besides, the following

relations hold:

ADF (Ch̃,VH )
(t) ⊂ ADh̃,VF (CH)

(t)

⊂ ADF (CH)(t)

⊂ ADh̃,Vη (CH)
(t) = ADη(CH)(t)

⊂ CV ∀ t ∈ R, (5.14)

and for any family D̂ ∈ Dη(CH),

lim
τ→−∞

distCV (U(t, τ)D(τ),ADη(CH)(t)) = 0 ∀ t ∈ R.

Finally, if moreover f satisfies

sup
s≤0

(
e−ηs

∫ s

−∞
eηθ|f(θ)|2 dθ

)
<∞, (5.15)

then all attractors in (5.14) coincide, and this family is tempered in CV , in the sense that

lim
t→−∞

(
eηt sup

v∈ADη(CH )(t)

‖v‖2
CV

)
= 0.

Remark 5.20. Under the assumptions of Theorem 5.19, since D̂1,η,h belongs to Dh,Vη (CH),

the set D1,η,h(t) is closed in Ch,V
H for all t ∈ R, and the universe Dh,Vη (CH) is inclusion-

closed, from Remark 1.12 and the equality in (5.14), we deduce that ADη(CH) belongs to
Dh,Vη (CH).

In fact, if in addition f satisfies (5.15), then for each T ∈ R, the set {ADη(CH)(t) : t ≤
T} is bounded in Ch,V

H .

We are also able to obtain the existence of minimal pullback attractors for the process
S on M2

V .
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Theorem 5.21. Suppose that f ∈ L2
loc(R; (L2(Ω))2), and that f and g : R × CH →

(L2(Ω))2 satisfy assumptions (I)–(V). Then, there exist the minimal pullback DF (M2
V )-

attractor ADF (M2
V ), and the minimal pullback DVη (M2

H)-attractor ADVη (M2
H) for the process

S on M2
V , and the following relations hold:

ADF (M2
V )(t) ⊂ ADF (M2

H)(t) ⊂ ADη(M2
H)(t) = ADVη (M2

H)(t) ∀ t ∈ R. (5.16)

In particular, for any family D̂ ∈ Dη(M2
H),

lim
τ→−∞

distM2
V

(S(t, τ)D(τ),ADη(M2
H)(t)) = 0 ∀ t ∈ R. (5.17)

Finally, if f also satisfies (5.15), then

ADF (M2
V )(t) = ADF (M2

H)(t) = ADη(M2
H)(t) = ADVη (M2

H)(t) ∀ t ∈ R,

and this family is tempered in M2
V , i.e.,

lim
t→−∞

(
eηt sup

(w,ϕ)∈ADη(M2
H

)
(t)

‖(w,ϕ)‖2
M2
V

)
= 0. (5.18)

Proof. From Proposition 5.12, we know that the process S on M2
V is continuous, and

therefore closed.
From Proposition 5.15, we have that the family D̂2,η,V ⊂ P(M2

V ) is pullback DVη (M2
H)-

absorbing for the process S on M2
V .

From Corollary 5.18, we also have that S is pullback DVη (M2
H)-asymptotically compact.

Therefore, we may apply Theorem 1.11 and Corollary 1.13 to conclude the existence
of ADVη (M2

H) and ADF (M2
V ).

In (5.16), the inclusions follow from Corollary 1.13, Theorem 1.15, and the fact that
DF (M2

V ) ⊂ DF (M2
H) (see Remark 5.14). The equality is a consequence of Theorem 1.15

and Remark 1.16, by using Lemma 5.9 with T = r = h+ 1, since, by the regularity result
(a) in Theorem 5.2, it is clear that the family {j(D(h+1)(τ)) : τ ∈ R} belongs to DVη (M2

H).
The pullback attraction result (5.17) comes from Remark 5.8, Lemma 5.9, and the

fact that by the regularity property (a) in Theorem 5.2, for any D̂ ∈ Dη(M2
H) and any

τ < t− h− 1,

distM2
V

(S(t, τ)D(τ),ADη(M2
H)(t))

= distM2
V

(S(t, τ + h+ 1)(S(τ + h+ 1, τ)D(τ)),ADη(M2
H)(t))

= distM2
V

(S(t, τ + h+ 1)(j(Ũ(τ + h+ 1, τ)D(τ))),ADη(M2
H)(t))

= distM2
V

(S(t, τ + h+ 1)(j(D(h+1)(τ))),ADVη (M2
H)(t)).

If moreover f satisfies (5.15), the equality ADF (M2
H)(t) = ADη(M2

H)(t) follows from Re-
mark 1.14, and the equality ADF (M2

V )(t) = ADF (M2
H)(t) is again a consequence of Theorem

1.15, by using the second estimate in (5.11), since (5.15) is equivalent to (2.41).
Lastly, the tempered property (5.18) comes from (5.15) (and therefore (2.41)) and the

tempered character of ρ2(t) defined in Lemma 5.16.
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Remark 5.22. Under the assumptions of Theorem 5.21, reasoning analogously as in
Remark 5.20, one has that ADη(M2

H) belongs to DVη (M2
H).

To conclude, we relate the minimal pullback attractors obtained in C h̃,V
H and M2

V

through the canonical injection j.

Theorem 5.23. Assume that f ∈ L2
loc(R; (L2(Ω))2), and that f and g : R × CH →

(L2(Ω))2 satisfy (I)–(V). Then, the following relations hold:

j(ADF (Ch,VH )(t)) ⊂ ADF (M2
V )(t) ∀ t ∈ R, and (5.19)

j(ADh̃,Vη (CH)
(t)) = ADVη (M2

H)(t) ∀ h̃ ∈ [0, h], t ∈ R. (5.20)

Actually, if f also satisfies (5.15), then, for any h̃ ∈ [0, h],

j(ADF (Ch̃,VH )
(t)) = j(ADh̃,VF (CH)

(t)) = ADF (M2
V )(t) ∀ t ∈ R. (5.21)

Proof. In order to prove the inclusion in (5.19) we proceed similarly as in [71, Theo-
rem 5], taking into account that the map j is continuous from Ch,V

H into M2
V , and that

j(DF (Ch,V
H )) ⊂ DF (M2

V ).
The equality in (5.20) is a consequence of property (5.9) in Theorem 5.10, using the

equalities in (5.14) and (5.16).
Finally, the equalities in (5.21) follow from (5.20) and the known facts that, under the

additional assumption (5.15), all attractors in (5.14) and (5.16) coincide.





Chapter 6

Pullback Attractors for the
Non-Autonomous 3D
Navier–Stokes–Voigt Equations

In this chapter we consider a non-autonomous 3D Navier–Stokes–Voigt model, to which a
continuous process can be associated. We study the existence and relationships between
minimal pullback attractors for this process again in two different frameworks, namely,
for the universe of fixed bounded sets, and also for another universe given by a tempered
condition.

This model was introduced by Oskolkov in [74] as a model for a viscoelastic incom-
pressible fluid and gives an approximate description of the Kelvin–Voigt fluid. Moreover,
recently it was proposed as a regularization of the three-dimensional Navier–Stokes equa-
tions for the purpose of direct numerical simulations in [5]. It is also worth pointing
out that, since the model does not have a regularizing effect (in contrast to the two-
dimensional Navier–Stokes model), to obtaining asymptotic compactness for the process
is a more involved task. In this chapter we prove this in a relatively simple way just by
using an energy method. Our results simplify – and in some aspects generalize – some
of those previously obtained for the autonomous and non-autonomous cases, since for
example in Section 6.2, regularity is not required for the boundary of the domain and the
force may take values in V ′. Under additional suitable assumptions, regularity results for
these families of attractors are also obtained, via bootstrapping arguments. Finally, we
also conclude some results concerning the attraction in D(A) norm.

The structure of the chapter is the following. In Section 6.1 we state our problem in
an abstract setting, and we prove the existence and uniqueness of weak solution for such
problem, and a regularity property. Two continuous dependence results with respect to
the initial datum, in the weak and strong senses, are also provided. In Section 6.3 we prove
that the conditions in order to ensure the existence of minimal pullback attractors in V
norm are fulfilled. To be more precise, both – pullback absorbing and pullback asymptotic
compactness properties – are obtained from a rather general condition on the V ′ norm of
f , square integrable in (−∞, 0) with an exponential weight. As a consequence two families
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of pullback attractors, and relations among them, are obtained. In Section 6.3 regularity
results for the obtained attractors will be deduced thanks to splitting the solution in sum
of two solutions for two different problems, using carefully a bootstrapping argument that
involves fractional powers of the Stokes operator. Finally, in Section 6.4 the problem
of the attraction in D(A) norm is studied, and indeed under suitable assumptions, all
attractors are proved to coincide. All these results can be found in [32].

6.1 Existence and uniqueness of solution

Let Ω ⊂ R3 be a bounded domain with, unless otherwise indicated, smooth enough (e.g.
C2) boundary ∂Ω.

We consider the following problem for a system of non-autonomous Navier–Stokes–
Voigt equations,

∂

∂t
(u− α2∆u)− ν∆u+ (u · ∇)u+∇p = f(t) in Ω× (τ,∞),

divu = 0 in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),

u(x, τ) = uτ (x), x ∈ Ω,

(6.1)

where as usual u = (u1, u2, u3) is the unknown velocity field of the fluid and p is the un-
known pressure, and we are given the kinematic viscosity ν > 0, a length scale parameter
α > 0, characterizing the elasticity of the fluid (in the sense that the ratio α2/ν describes
the reaction time that is required for the fluid to respond to the applied force), an initial
velocity field uτ at the initial time τ ∈ R, and an external force term f depending on time.

In this section we analyze existence, uniqueness, and regularity properties of the so-
lutions to problem (6.1). At least, part of these results may be found in [74], but for
convenience of the reader, they are developed here. In order to proceed, we need previ-
ously to pose the problem in an abstract setting, recalling some definitions of functional
spaces, operators, and some of their properties.

Throughout this chapter we will consider again the usual function spaces V , H, and
V , the trilinear form b, and the operators A and B, already introduced in Chapter 2, but
taking into account that we are now in dimension three.

Recall that we are denoting by {wj}j≥1 ⊂ D(A) a Hilbert basis of H formed by ortho-
normalized eigenfunctions of the Stokes operator A (Awj = λjwj, and |wj| = 1).

For each β ≥ 0 we define

D(Aβ) =
{
u ∈ H :

∞∑
j=1

λ2β
j (u,wj)

2 <∞
}
,
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and

Aβu =
∞∑
j=1

λβj (u,wj)wj ∀u ∈ D(Aβ).

Observe that wj ∈ D(Aβ), with Aβwj = λβjwj, for all β ≥ 0 and any j ≥ 1.
Endowed with the inner product

(u, v)D(Aβ) = (Aβu,Aβv) ∀u, v ∈ D(Aβ),

D(Aβ) is a Hilbert space. In particular, D(A0) = H, D(A1/2) = V and D(A1) = D(A).
It is also possible to define negative powers of A. For each β > 0 and u ∈ H, we define

|u|D(A−β) =

( ∞∑
j=1

λ−2β
j (u,wj)

2

)1/2

,

and

A−βu =
∞∑
j=1

λ−βj (u,wj)wj.

Then, we define D(A−β) as the completion of H for the norm | · |D(A−β), and we continue
denoting by A−β the continuous extension of this linear operator to D(A−β). The space
D(A−β) is identifiable with the dual of D(Aβ). In particular, D(A−1/2) = V ′.

One has (cf. [87]),

D(Aβ2) ⊂ D(Aβ1) ⊂ H ⊂ D(A−β1) ⊂ D(A−β2) ∀ 0 < β1 < β2,

with compact injections.
Also observe that we have the following inclusions with continuous injection (cf. [85,

Chapter III, Lemmas 2.4.2, 2.4.3])

D(Aβ) ⊂ (L6/(3−4β)(Ω))3 ∀ 0 ≤ β < 3/4, (6.2)

D(A3/4) ⊂ (Lp(Ω))3 ∀ 1 ≤ p <∞, (6.3)

and
D(Aβ) ⊂ (L∞(Ω))3 ∀ 3/4 < β ≤ 1. (6.4)

Important properties concerning b that will be used later are that there exists a con-
stant C2 > 0 such that

|b(u, v, w)| ≤ C2‖u‖‖v‖‖w‖ ∀u, v, w ∈ V, (6.5)

and, using Agmon’s inequality (e.g. cf. [21]), we can assure that there exists a constant
C3 > 0 such that

|b(u, v, w)| ≤ C3|Au|1/2‖u‖1/2‖v‖|w| ∀u ∈ D(A), v ∈ V,w ∈ H. (6.6)

Thus, by (6.5),
‖B(u)‖∗ ≤ C2‖u‖2 ∀u ∈ V, (6.7)
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and in particular, by (6.6) and the identification of H ′ with H, if u ∈ D(A), then B(u) ∈
H, with

|B(u)| ≤ C3|Au|1/2‖u‖3/2 ∀u ∈ D(A). (6.8)

In fact, from (6.4), one also deduces that if u ∈ D(Aβ) with 3/4 < β ≤ 1, then
B(u) ∈ H, and more exactly

|B(u)| ≤ C(β)|Aβu|‖u‖ ∀u ∈ D(Aβ), ∀ 3/4 < β ≤ 1. (6.9)

Analogously, if 0 < β < 3/4, from (6.2) one obtains that if u ∈ D(Aβ) ∩ V , B(u) ∈
D(Aβ−3/4), and more exactly

|Aβ−3/4B(u)| ≤ C(β)|Aβu|‖u‖ ∀u ∈ D(Aβ) ∩ V, ∀ 0 < β < 3/4. (6.10)

Finally, in the case β = 3/4, from (6.3) one can see that if u ∈ D(A3/4), then B(u) ∈
D(A−δ) for all δ > 0, and more exactly

|A−δB(u)| ≤ C(3/4,δ)|A3/4u|‖u‖ ∀u ∈ D(A3/4), ∀ δ > 0.

Before studying (6.1), we treat the autonomous equation u+ α2Au = g.
From Lax–Milgram lemma, we know that for each g ∈ V ′ there exists a unique ug ∈ V

such that
ug + α2Aug = g. (6.11)

The mapping C : u ∈ V 7→ u+ α2Au ∈ V ′ is linear and bijective, with C−1g = ug.
From (6.11), one has

|ug|2 + α2‖ug‖2 = 〈g, ug〉
≤ ‖g‖∗‖ug‖,

and in particular,
‖ug‖ ≤ α−2‖g‖∗,

i.e.,
‖C−1g‖ ≤ α−2‖g‖∗ ∀ g ∈ V ′. (6.12)

Observe that by the definition of D(A), we also have that

C−1(H) = D(A),

and reasoning as for the obtention of (6.12), we deduce that

|Aug| = α−2|g − ug|
≤ 2α−2|g| ∀ g ∈ H. (6.13)

Assume that uτ ∈ V and f ∈ L2
loc(R;V ′).

Definition 6.1. It is said that u is a weak solution to (6.1) if u belongs to L2(τ, T ;V )
for all T > τ, and satisfies

d

dt
(u(t) + α2Au(t)) + νAu(t) +B(u(t)) = f(t), in D′(τ,∞;V ′), (6.14)

and
u(τ) = uτ . (6.15)
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Remark 6.2. If u ∈ L2(τ, T ;V ) for all T > τ and satisfies (6.14), then the function v
defined by

v(t) = u(t) + α2Au(t) t > τ, (6.16)

belongs to L2(τ, T ;V ′) for all T > τ , and by (6.7), v′ =
dv

dt
∈ L1(τ, T ;V ′) for all T > τ .

Consequently, v ∈ C([τ,∞);V ′), and therefore, by (6.12), u ∈ C([τ,∞);V ). In par-
ticular, (6.15) makes a sense.

Moreover, again by (6.7) and (6.14), v′ ∈ L2(τ, T ;V ′) for all T > τ , and therefore, as
u′ = C−1v′, we deduce that u′ ∈ L2(τ, T ;V ) for all T > τ .

From these considerations, it is clear that u is a weak solution to (6.1) if and only if
it is a solution to the problem

u ∈ C([τ,∞);V ), u′ ∈ L2(τ, T ;V ) for all T > τ ,

u(t) + α2Au(t) +

∫ t

τ

(νAu(s) +B(u(s))) ds

= uτ + α2Auτ +

∫ t

τ

f(s) ds (equality in V ′), for all t ≥ τ.

We have the following energy equality for the solutions to (6.1).

Lemma 6.3. If u is a weak solution to (6.1), then

1

2

d

dt
(|u(t)|2 + α2‖u(t)‖2) + ν‖u(t)‖2 = 〈f(t), u(t)〉, a.e. t > τ. (6.17)

Proof. We know from Remark 6.2 that u ∈ W 1,2(τ, T ;V ) and v ∈ W 1,2(τ, T ;V ′) for all
T > τ, where v is given by (6.16). Thus,

d

dt
〈v(t), u(t)〉 = 〈v′(t), u(t)〉+ 〈v(t), u′(t)〉, a.e. t > τ. (6.18)

But observing that C is self-adjoint, and using the fact that v(t) = Cu(t) and v′(t) = Cu′(t),
we have

〈v(t), u′(t)〉 = 〈Cu(t), u′(t)〉
= 〈Cu′(t), u(t)〉
= 〈v′(t), u(t)〉.

Thus, by (6.18), we have

d

dt
〈v(t), u(t)〉 = 2〈v′(t), u(t)〉, a.e. t > τ.

From this identity, taking into account (2.3) and (6.14), we obtain (6.17) .

With respect to the existence and uniqueness of solution to (6.1), we have the following
result.
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Theorem 6.4. Let f ∈ L2
loc(R;V ′) be given. Then, for each τ ∈ R and uτ ∈ V , there

exists a unique weak solution u(·) = u(·; τ, uτ ) to (6.1).
Moreover, if f ∈ L2

loc(R;H) and uτ ∈ D(A), then the weak solution u(·) = u(·; τ, uτ )
to (6.1) satisfies

u ∈ C([τ,∞);D(A)), u′ ∈ L2(τ, T ;D(A)) for all T > τ, (6.19)

and

1

2

d

dt
(‖u(t)‖2 + α2|Au(t)|2) + ν|Au(t)|2 + (B(u(t)), Au(t)) = (f(t), Au(t)), (6.20)

a.e. t > τ .

Proof. We divide the proof in four steps, according to the claims of existence, uniqueness,
regularity, and the energy equality (6.20).

Uniqueness.

Let u(1) and u(2) be two weak solutions to (6.1), corresponding to the same data f , τ
and uτ . Let us denote û = u(1) − u(2), and v̂ = û+ α2Aû.

We have that v̂ ∈ C([τ,∞);V ′), with

v̂(t) = −ν
∫ t

τ

Aû(s) ds−
∫ t

τ

(B(u(1)(s))−B(u(2)(s))) ds ∀ t ≥ τ. (6.21)

Observe that by (6.5),

‖B(u(1)(s))−B(u(2)(s))‖∗
= sup

w∈V,‖w‖=1

|b(u(1)(s)− u(2)(s), u(1)(s), w)− b(u(2)(s), u(2)(s)− u(1)(s), w)|

≤ C2(‖u(1)(s)‖+ ‖u(2)(s)‖)‖u(1)(s)− u(2)(s)‖.

Thus, if we fix an arbitrary T > τ , and denote by RT = C2 maxs∈[τ,T ](‖u(1)(s)‖+‖u(2)(s)‖),
we have

‖B(u(1)(s))−B(u(2)(s))‖∗ ≤ RT‖u(1)(s)− u(2)(s)‖ ∀ s ∈ [τ, T ]. (6.22)

Then, as
‖Aû(s)‖∗ = ‖û(s)‖,

from (6.21) and (6.22) we deduce that

‖v̂(t)‖∗ ≤ (ν +RT )

∫ t

τ

‖û(s)‖ ds ∀ t ∈ [τ, T ],

and therefore, by (6.12),

‖û(t)‖ ≤ α−2(ν +RT )

∫ t

τ

‖û(s)‖ ds ∀ t ∈ [τ, T ].
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From this inequality, by Gronwall’s lemma, we deduce that ‖û(t)‖ = 0 for all t ∈ [τ, T ],
and therefore, the uniqueness of weak solution to (6.1) holds.

Existence.

We can prove the existence of weak solution to (6.1) reasoning as in [5, pp. 844–846],
but then with this method of proof, we do not know how to obtain the regularity result
(6.19). We will proceed by using a Galerkin scheme.

Let f ∈ L2
loc(R;V ′), τ ∈ R, and uτ ∈ V , be given.

For each integer m ≥ 1, let define

um(t) =
m∑
j=1

αm,j(t)wj,

where the coefficients αm,j are required to satisfy the system

d

dt
(um(t) + α2Aum(t), wj)

= −〈νAum(t) +B(um(t))− f(t), wj〉, a.e. t > τ, 1 ≤ j ≤ m, (6.23)

and the initial condition
um(τ) = Pmu

τ ,

where recall that Pmu
τ =

∑m
j=1(uτ , wj)wj, is the orthogonal (in H and in V ) projection

of uτ onto the space Vm =span[w1, . . . , wm].
The above system of ordinary differential equations fulfills the conditions of the Pi-

card’s theorem for existence and uniqueness of local solution.
Next, we will deduce a priori estimates that assure that the solutions um do exist for

all time t ∈ [τ,∞).
Multiplying in (6.23) by αm,j(t), summing from j = 1 to m, and taking into account

(2.3), we obtain that a.e. t > τ ,

d

dt
(|um(t)|2 + α2‖um(t)‖2) + 2ν‖um(t)‖2 = 2〈f(t), um(t)〉

≤ ν‖um(t)‖2 + ν−1‖f(t)‖2
∗,

and in particular,

|um(t)|2 + α2‖um(t)‖2 ≤ |Pmuτ |2 + α2‖Pmuτ‖2 + ν−1

∫ t

τ

‖f(s)‖2
∗ ds

for all t ≥ τ , and any m ≥ 1.
Observe that as uτ ∈ V , one has that |Pmuτ | ≤ |uτ |, ‖Pmuτ‖ ≤ ‖uτ‖, and lim

m→∞
‖uτ −

Pmu
τ‖ = 0. Thus, the sequence {um} is bounded in C([τ, T ];V ) for all T > τ .

Now, observe that by (6.23), vm = Cum satisfies

d

dt
(vm(t)) = P̃m(−νAum(t)−B(um(t)) + f(t)), a.e. t > τ, (6.24)
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where
〈P̃mg, w〉 = 〈g, Pmw〉 ∀ g ∈ V ′, w ∈ V.

Consequently, as ‖P̃m‖L(V ′) ≤ 1 for all m ≥ 1, we deduce that the sequence {dvm/dt}
is bounded in L2(τ, T ;V ′) for all T > τ , and therefore, taking into account that dum/dt =
C−1 (dvm/dt), we have that the sequence {dum/dt} is bounded in L2(τ, T ;V ) for all T > τ .

Thus, by the compactness of the injection of V into H and the Ascoli–Arzelà theorem,
we deduce that there exist a subsequence {um′} ⊂ {um} and a function u ∈ W 1,2(τ, T ;V )
for all T > τ, such that

um
′ ∗
⇀ u weakly-star in L∞(τ, T ;V ),

um
′ → u strongly in C([τ, T ];H),

um
′ → u a.e. in Ω× (τ, T ),

dum
′

dt
⇀

du

dt
weakly in L2(τ, T ;V ),

dvm
′

dt
= C

(
dum

′

dt

)
⇀ C

(
du

dt

)
weakly in L2(τ, T ;V ′),

(6.25)

for all T > τ.
As in particular H1

0 (Ω) ⊂ L4(Ω) with continuous injection, for each 1 ≤ i, j ≤ 3, the
product um

′
i u

m′
j of the corresponding components of um

′
is bounded in L∞(τ, T ;L2(Ω)),

for all T > τ, and by (6.25), um
′

i u
m′
j → uiuj a.e. in Ω × (τ, T ). So, by [61, Chapter 1,

Lemma 1.3], we deduce that um
′

i u
m′
j ⇀ uiuj weakly in L2(Ω× (τ, T )), for all T > τ.

Therefore, taking into account (2.2), if w ∈ L2(τ, T ;V ),∫ T

τ

〈B(um
′
(t)), w(t)〉 dt = −

∫ T

τ

b(um
′
(t), w(t), um

′
(t)) dt

= −
3∑

i,j=1

∫ T

τ

∫
Ω

um
′

i (x, t)um
′

j (x, t)
∂wj
∂xi

(x, t) dx dt

→ −
3∑

i,j=1

∫ T

τ

∫
Ω

ui(x, t)uj(x, t)
∂wj
∂xi

(x, t) dx dt

=

∫ T

τ

〈B(u(t)), w(t)〉 dt.

Hence, B(um
′
) ⇀ B(u) weakly in L2(τ, T ;V ′), for all T > τ.

From all the convergences above, and (6.24), we can take limits and we obtain that u
satisfies (6.14).

Observe that u(τ) = lim
m′→∞

um
′
(τ) = lim

m′→∞
Pm′u

τ = uτ . Thus, u is the weak solution to

(6.1).

Regularity.
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Assume now that uτ ∈ D(A) and f ∈ L2
loc(R;H).

Multiplying in (6.23) by λjαm,j(t), and summing from j = 1 to m, we obtain that

d

dt
(‖um(t)‖2 + α2|Aum(t)|2) + 2ν|Aum(t)|2

= −2(B(um(t)), Aum(t)) + 2(f(t), Aum(t)), a.e. t > τ. (6.26)

But by (6.8) and Young’s inequality,

2|(B(um(t)), Aum(t))| ≤ 2C3‖um(t)‖3/2|Aum(t)|3/2

≤ Cν‖um(t)‖6 + ν|Aum(t)|2,

where Cν = 27C4
3(16ν3)−1.

Also,

2|(f(t), Aum(t))| ≤ ν|Aum(t)|2 + ν−1|f(t)|2.

Thus, observing that |APmuτ | ≤ |Auτ | and ‖Pmuτ‖ ≤ ‖uτ‖, from (6.26) we deduce in
particular that

α2|Aum(t)|2 ≤ ‖uτ‖2 + α2|Auτ |2 + ν−1

∫ t

τ

|f(s)|2 ds+ Cν(t− τ) sup
s∈[τ,t]

‖um(s)‖6

for all t ≥ τ , and any m ≥ 1.

Consequently, as {um} is bounded in C([τ, T ];V ), we have that {um} is bounded
in C([τ, T ];D(A)), for all T > τ , and therefore, extracting a subsequence weakly-star
convergent in L∞(τ, T ;D(A)), we see that u ∈ L∞(τ, T ;D(A)), for all T > τ .

But then, v = u + α2Au ∈ L∞(τ, T ;H), with v′ = −νAu − B(u) + f ∈ L2(τ, T ;H),
for all T > τ , and therefore, v ∈ C([τ,∞);H).

Thus, Au = α−2(v − u) ∈ C([τ,∞);H), i.e., u ∈ C([τ,∞);D(A)).

Moreover, as v′ ∈ L2(τ, T ;H), by (6.13), then u′ = C−1v′ ∈ L2(τ, T ;D(A)), for all
T > τ .

Identity (6.20).

If uτ ∈ D(A) and f ∈ L2
loc(R;H), we have seen that u ∈ W 1,2(τ, T ;D(A)) and

v = Cu ∈ W 1,2(τ, T ;H), for all T > τ. Then,

d

dt
|v(t)|2 = 2(v′(t), v(t)), a.e. t > τ,

and

d

dt
(u(t), v(t)) =

d

dt
(u(t), Cu(t))

= 2(u(t), Cu′(t))
= 2(u(t), v′(t)), a.e. t > τ.
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Thus,

d

dt
(Au(t), v(t)) = α−2 d

dt
(v(t)− u(t), v(t))

= 2α−2(v′(t), v(t))− 2α−2(v′(t), u(t))

= 2(v′(t), Au(t)), a.e. t > τ.

From this equality, we have (6.20).

Remark 6.5. Observe that in the above proof, using the uniqueness of solution for the
problem, for any T > τ the whole sequence of the Galerkin approximations satisfies that
um converges to u in C([τ, T ];H), and actually, all convergences in (6.25), except the third
one, hold for the whole sequence. Analogously, one also deduces that for any t ∈ [τ, T ],
um(t) ⇀ u(t) weakly in V .

Moreover, if uτ ∈ D(A) and f ∈ L2
loc(R;H), then in fact for any T > τ the se-

quence um converges to u in C([τ, T ];V ), and weakly-star in L∞(τ, T ;D(A)), for any
t ∈ [τ, T ], um(t) ⇀ u(t) in D(A), and the sequence dum/dt converges to du/dt weakly in
L2(τ, T ;D(A)).

Now, we establish a result on the sequential weak continuity of the solutions to (6.1)
with respect to the initial datum uτ .

Theorem 6.6. Let f ∈ L2
loc(R;V ′) and τ < t be given. Consider a sequence {uτ,n} ⊂ V

weakly converging to uτ in V. Then, the following convergences hold for the sequence of
solutions u(·; τ, uτ,n) towards the solution u(·; τ, uτ ):

u(·; τ, uτ,n)
∗
⇀ u(·; τ, uτ ) weakly-star in L∞(τ, t;V ),

u(·; τ, uτ,n)→ u(·; τ, uτ ) strongly in C([τ, t];H),

u(t; τ, uτ,n) ⇀ u(t; τ, uτ ) weakly in V.

Moreover, if f ∈ L2
loc(R;H) and the sequence {uτ,n} ⊂ D(A) converges weakly to uτ

in D(A), then, in fact,

u(·; τ, uτ,n)
∗
⇀ u(·; τ, uτ ) weakly-star in L∞(τ, t;D(A)),

u(·; τ, uτ,n)→ u(·; τ, uτ ) strongly in C([τ, t];V ),

u(t; τ, uτ,n) ⇀ u(t; τ, uτ ) weakly in D(A).

Proof. The proof can be done analogously to that of Theorem 6.4, since the a priori
estimates follow exactly the same. The fact that the whole sequence satisfies the above
convergences is a consequence of the uniqueness of solution for the problem (cf. Remark
6.5).

Remark 6.7. Although the above result will be enough for our purposes, let us observe
that the solution also depends continuously of the initial datum in the strong topology
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of V . Moreover, when f ∈ L2
loc(R;H), the solution depends continuously of the initial

datum in the strong topology of D(A). Indeed, this can be proved similarly to the proof of
uniqueness of weak solution to (6.1), considering the difference of two solutions and using
Gronwall’s lemma.

Remark 6.8. Observe that actually in the existence and uniqueness part of Theorem 6.4
and also in the first part of Theorem 6.6 we do not need any regularity assumption on the
boundary of the domain. This assumption is only required for the additional regularity
results.

6.2 Existence of minimal pullback attractors in V

norm

Now, by the previous results, we are able to define a process U on V associated to (6.1),
and under suitable assumptions on f , we can obtain the existence of minimal pullback
attractors. As pointed out at the beginning of the chapter, in the results of this section
we do not require any regularity assumption on ∂Ω, and the force term may take values
in V ′ instead of in L2 as appears in [45].

Proposition 6.9. Assume that f ∈ L2
loc(R;V ′) is given. Then, the bi-parametric family

of mappings U(t, τ) : V → V , with τ ≤ t, given by

U(t, τ)uτ = u(t; τ, uτ ), (6.27)

where u = u(·; τ, uτ ) is the unique weak solution to (6.1), defines a closed process on V .

Proof. It is a consequence of Theorem 6.4 and Theorem 6.6.

Remark 6.10. Observe that, by Remark 6.7, U is in fact a continuous process on V .

For the obtention of a pullback absorbing family for the process U , we have the
following result.

Lemma 6.11. Assume that f ∈ L2
loc(R;V ′) and uτ ∈ V . Then, for any

0 < σ < 2ν(λ−1
1 + α2)−1, (6.28)

the solution u = u(·; τ, uτ ) to (6.1) satisfies

‖u(t)‖2 + εα−2

∫ t

τ

eσ(s−t)‖u(s)‖2 ds

≤ (1 + α−2λ−1
1 )eσ(τ−t)‖uτ‖2 + α−2ε−1

∫ t

τ

eσ(s−t)‖f(s)‖2
∗ ds (6.29)

for all t ≥ τ , where

ε = ν − σ

2
(λ−1

1 + α2). (6.30)
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Proof. By (6.17), for all ε > 0,

d

dt
(eσt|u(t)|2 + α2eσt‖u(t)‖2)

= σeσt|u(t)|2 + α2σeσt‖u(t)‖2 − 2νeσt‖u(t)‖2 + 2eσt〈f(t), u(t)〉
≤ {σ(λ−1

1 + α2)− 2ν + ε}eσt‖u(t)‖2 + ε−1eσt‖f(t)‖2
∗, a.e. t > τ.

Thus, if σ satisfies (6.28), then ε given by (6.30) is positive, and for this ε we have

d

dt
(eσt|u(t)|2 + α2eσt‖u(t)‖2) + εeσt‖u(t)‖2 ≤ ε−1eσt‖f(t)‖2

∗, a.e. t > τ.

From this inequality we obtain (6.29).

Taking into account the estimate (6.29), we define the following universe.

Definition 6.12. For any σ > 0, we will denote by Dσ(V ) the class of all families of

nonempty subsets D̂ = {D(t) : t ∈ R} ⊂ P(V ) such that

lim
τ→−∞

(
eστ sup

v∈D(τ)

‖v‖2

)
= 0.

Once more, accordingly to the notation introduced in Chapter 1, DF (V ) will denote

the class of families D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty bounded subset
of V .

Observe that for any σ > 0, DF (V ) ⊂ Dσ(V ), and that the universe Dσ(V ) is inclusion-
closed.

As an evident consequence of Lemma 6.11, we have the following result.

Corollary 6.13. Assume that f ∈ L2
loc(R;V ′) satisfies that∫ 0

−∞
eσs‖f(s)‖2

∗ ds <∞ for some 0 < σ < 2ν(λ−1
1 + α2)−1. (6.31)

Then, the family D̂σ = {Dσ(t) : t ∈ R} defined by

Dσ(t) = BV (0, Rσ(t)), (6.32)

the closed ball in V of center zero and radius Rσ(t), where

R2
σ(t) = 1 + α−2ε−1e−σt

∫ t

−∞
eσs‖f(s)‖2

∗ ds, (6.33)

with ε given by (6.30), is pullback Dσ(V )-absorbing for the process U : R2
d×V → V given

by (6.27) (and therefore DF (V )-absorbing too), and D̂σ ∈ Dσ(V ).



6.2. Existence of minimal pullback attractors in V norm 123

In order to prove that the process U is pullback D̂σ-asymptotically compact, we will
apply an energy method used by Rosa (cf. [79], see also [69]), which does not require
any additional estimate on the solutions in higher norms in contrast with the energy
continuous method already used in several results of Chapters 2, 3, 4 and 5 (e.g. cf.
Lemmas 2.14, 3.2, 4.24 or 5.17), or the method used in [45] with the fractional powers
of the operator A. Our proof here relies on a sharp use of the differential equality that
leads to the existence of an absorbing family, the use of weak limits in V in a diagonal
argument, and the fact that the process is sequentially weakly continuous.

Lemma 6.14. Assume that f ∈ L2
loc(R;V ′) satisfies (6.31). Then, the process U defined

by (6.27) is pullback D̂σ-asymptotically compact, where D̂σ = {Dσ(t) : t ∈ R} is defined
in Corollary 6.13.

Proof. Let t ∈ R, and τn → −∞ with τn ≤ t and uτn ∈ Dσ(τn) for all n, be given. We
must prove that the sequence {U(t, τn)uτn} is relatively compact in V . By Corollary 6.13,
for each integer k ≥ 0, there exists τD̂σ(k) ≤ t− k such that

U(t− k, τ)Dσ(τ) ⊂ Dσ(t− k) ∀ τ ≤ τD̂σ(k).

Recall that each Dσ(t), defined in (6.32), is a bounded set of V . From this and a diagonal
argument, we can extract a subsequence {uτn′} ⊂ {uτn} such that

U(t− k, τn′)uτn′ ⇀ w̃k weakly in V, ∀ k ≥ 0, (6.34)

where w̃k ∈ Dσ(t− k).
Now, applying Theorem 6.6 on each fixed interval [t− k, t] we obtain that

w̃0 = V − weak lim
n′→∞

U(t, τn′)u
τn′

= V − weak lim
n′→∞

U(t, t− k)U(t− k, τn′)uτn′

= U(t, t− k)
[
V − weak lim

n′→∞
U(t− k, τn′)uτn′

]
= U(t, t− k)w̃k.

In particular, observe that

‖w̃0‖ ≤ lim inf
n′→∞

‖U(t, τn′)u
τn′‖.

We will prove now that it also holds that

lim sup
n′→∞

‖U(t, τn′)u
τn′‖ ≤ ‖w̃0‖, (6.35)

which combined with (6.34) for k = 0, will imply the convergence in the strong topology
of V , and the asymptotic compactness.

Observe that, as we already used in Lemma 6.11, for any pair (τ, uτ ) with uτ ∈ V , the
solution u(·; τ, uτ ), for short denoted by u(·), satisfies the differential equality

d

dt
(eσt|u(t)|2 + α2eσt‖u(t)‖2)

= σeσt|u(t)|2 + α2σeσt‖u(t)‖2 − 2νeσt‖u(t)‖2 + 2eσt〈f(t), u(t)〉, a.e. t > τ.(6.36)
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Since we have chosen σ satisfying (6.28), observe that [·], with

[v]2 = (2ν − α2σ)‖v‖2 − σ|v|2,

defines an equivalent norm to ‖ · ‖ in V .

We integrate the above expression in the interval [t−k, t] for the solutions U(·, τn′)uτn′
with τn′ ≤ t− k, which yields

|U(t, τn′)u
τn′ |2 + α2‖U(t, τn′)u

τn′‖2

= |U(t, t− k)U(t− k, τn′)uτn′ |2 + α2‖U(t, t− k)U(t− k, τn′)uτn′‖2

= e−σk
(
|U(t− k, τn′)uτn′ |2 + α2‖U(t− k, τn′)uτn′‖2

)
+2

∫ t

t−k
eσ(s−t)〈f(s), U(s, t− k)U(t− k, τn′)uτn′ 〉 ds

−
∫ t

t−k
eσ(s−t)[U(s, t− k)U(t− k, τn′)uτn′ ]2 ds. (6.37)

On other hand, by (6.34) and Theorem 6.6, we deduce that

U(·, t− k)U(t− k, τn′)uτn′ ⇀ U(·, t− k)w̃k weakly in L2(t− k, t;V ).

From this, as eσ(·−t)f(·) ∈ L2(t− k, t;V ′), it yields

lim
n′→∞

∫ t

t−k
eσ(s−t)〈f(s), U(s, t− k)U(t− k, τn′)uτn′ 〉 ds

=

∫ t

t−k
eσ(s−t)〈f(s), U(s, t− k)w̃k〉 ds. (6.38)

Since
∫ t
t−k e

σ(s−t)[v(s)]2ds defines an equivalent norm in L2(t− k, t;V ), we also deduce
from above that ∫ t

t−k
eσ(s−t)[U(s, t− k)w̃k]

2 ds

≤ lim inf
n′→∞

∫ t

t−k
eσ(s−t)[U(s, t− k)U(t− k, τn′)uτn′ ]2 ds. (6.39)

From (6.37)–(6.39), taking into account (6.34) with k = 0, the compactness of the
injection of V into H, (6.32), we conclude that

|w̃0|2 + α2 lim sup
n′→∞

‖U(t, τn′)u
τn′‖2

≤ e−σk(λ−1
1 + α2)R2

σ(t− k) + 2

∫ t

t−k
eσ(s−t)〈f(s), U(s, t− k)w̃k〉 ds

−
∫ t

t−k
eσ(s−t)[U(s, t− k)w̃k]

2 ds.
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Now, taking into account that w̃0 = U(t, t − k)w̃k, integrating again in (6.36), we
obtain

|w̃0|2 + α2‖w̃0‖2 = e−σk(|w̃k|2 + α2‖w̃k‖2) + 2

∫ t

t−k
eσ(s−t)〈f(s), U(s, t− k)w̃k〉 ds

−
∫ t

t−k
eσ(s−t)[U(s, t− k)w̃k]

2 ds.

Comparing the above two expressions, we conclude that in particular

|w̃0|2 + α2 lim sup
n′→∞

‖U(t, τn′)u
τn′‖2 ≤ e−σk(λ−1

1 + α2)R2
σ(t− k) + |w̃0|2 + α2‖w̃0‖2.

But from (6.33) and (6.31), we have that lim
k→∞

e−σkR2
σ(t− k) = 0, so (6.35) holds, and the

proof is finished.

As a consequence of the above results, we obtain the existence of minimal pullback
attractors for the process U : R2

d × V → V defined by (6.27).

Theorem 6.15. Assume that f ∈ L2
loc(R;V ′) satisfies (6.31). Then, there exist the min-

imal pullback DF (V )-attractor ADF (V ) and the minimal pullback Dσ(V )-attractor ADσ(V )

for the process U defined by (6.27), ADσ(V ) belongs to Dσ(V ), and the following relations
hold:

ADF (V )(t) ⊂ ADσ(V )(t) ⊂ BV (0, Rσ(t)) ∀ t ∈ R, (6.40)

where Rσ is given by (6.33).
Finally, if f satisfies the stronger requirement

sup
r≤0

(
e−σr

∫ r

−∞
eσs‖f(s)‖2

∗ ds

)
<∞, (6.41)

then
ADF (V )(t) = ADσ(V )(t) ∀ t ∈ R. (6.42)

Proof. The existence of ADσ(V ) and ADF (V ) is a direct consequence of Theorem 1.11,
Corollary 1.13, Proposition 6.9, Corollary 6.13, and Lemma 6.14.

The inclusions in (6.40) are a consequence of Theorem 1.11 and Corollary 1.13.
Finally, the equality (6.42) is a consequence of Remark 1.14, and the fact that (6.41)

is equivalent to have that supt≤T Rσ(t) is bounded for any T ∈ R.

Remark 6.16. Observe that, as it can be easily proved, in general, if g ∈ L2
loc(R;X), with

X a Banach space with norm ‖ · ‖X , the three following conditions are equivalent:

(1) sup
r≤0

(
e−σr

∫ r

−∞
eσs‖g(s)‖2

X ds

)
<∞, for some σ > 0.

(2) sup
r≤0

∫ r

r−1

‖g(s)‖2
X ds <∞.
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(3) sup
r≤0

(
e−σ̂r

∫ r

−∞
eσ̂s‖g(s)‖2

X ds

)
<∞, for all σ̂ > 0.

In fact, in Chapters 2, 4 and 5, it was already observed the equivalence among (2.39),
(4.57), (5.15), and (2.41).

Remark 6.17. Observe that if f ∈ L2
loc(R;V ′) satisfies (6.31), then it also satisfies∫ 0

−∞
eσ̂s‖f(s)‖2

∗ ds <∞ ∀ σ̂ ∈ (σ, 2ν(λ−1
1 + α2)−1).

So, there exists the corresponding minimal pullback Dσ̂(V )-attractor ADσ̂(V ).
In fact, since Dσ(V ) ⊂ Dσ̂(V ), for any t ∈ R,

ADσ(V )(t) ⊂ ADσ̂(V )(t) ∀ σ̂ ∈ (σ, 2ν(λ−1
1 + α2)−1).

Moreover, if (6.41) also holds, then we conclude by (6.42) and Remark 6.16 that for
any σ̂ ∈ (σ, 2ν(λ−1

1 + α2)−1),

ADF (V )(t) = ADσ(V )(t) = ADσ̂(V )(t) ∀ t ∈ R.

Thus, ADF (V ) is the minimal pullback Dmax(V )-attractor, where

Dmax(V ) =
⋃

0<σ̂<2ν(λ−1
1 +α2)−1

Dσ̂(V ).

6.3 Regularity of the pullback attractors

The main goal of this paragraph is to provide some extra regularity for the attractors
obtained in the previous section. This will be obtained by a bootstrapping argument,
and making the most of a representation of the solutions to the problem splitting it in
two parts, the linear part with an exponential decay, and the nonlinear part with good
enough estimates. In order to achieve these results, we will use the fractional powers of
the Stokes operator, introduced in Section 6.1.

Observe that for every τ ∈ R, any uτ ∈ V, and f ∈ L2
loc(R;V ′), by Theorem 6.4, there

exists a unique weak solution u to problem (6.1). Moreover, let us point out that the
following representation of the solution holds:

u(t) = U(t, τ)uτ = Y (t, τ)uτ + Z(t, τ)uτ ∀ t ≥ τ,

where y = Y (·, τ)uτ and z = Z(·, τ)uτ , are solutions of
y ∈ C([τ,∞);V ),

d

dt
(y(t) + α2Ay(t)) + νAy(t) = 0, in D′(τ,∞;V ′),

y(τ) = uτ ,

(6.43)
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and 
z ∈ C([τ,∞);V ),

d

dt
(z(t) + α2Az(t)) + νAz(t) = f(t)−B(u(t)), in D′(τ,∞;V ′),

z(τ) = 0,

(6.44)

respectively.
The existence and uniqueness of weak solution to (6.43) and to (6.44) can be obtained

reasoning as in the proof of Theorem 6.4.

For the problem (6.43) we have the following result.

Lemma 6.18. For any τ ∈ R, uτ ∈ V , and σ fulfilling the assumption (6.28), the solution
y = Y (·, τ)uτ to (6.43) satisfies

‖Y (t, τ)uτ‖2 ≤ (1 + α−2λ−1
1 )eσ(τ−t)‖uτ‖2 ∀ t ≥ τ. (6.45)

Proof. It is analogous to the proof of (6.29), and we omit it.

For the study of the problem (6.44), we will make use of the following lemma.

Lemma 6.19. Assume that g ∈ L2
loc(R;D(A−β)) with 0 ≤ β ≤ 1/2. Then, for each τ ∈ R

and σ satisfying the assumption (6.28), the unique solution z to the problem
z ∈ C([τ,∞);V ),

d

dt
(z(t) + α2Az(t)) + νAz(t) = g(t), in D′(τ,∞;V ′),

z(τ) = 0,

(6.46)

satisfies
z ∈ C([τ,∞);D(A1−β)), (6.47)

and

|A1−βz(t)|2 ≤ α−2ε−1

∫ t

τ

eσ(s−t)|A−βg(s)|2 ds ∀ t ≥ τ, (6.48)

where ε is given by (6.30).

Proof. We give a formal proof, the rigorous one should be made using the Galerkin ap-
proximations constructed with the basis {wj}j≥1 of eigenfunctions of the Stokes operator
A.

Multiplying in (6.46) by A1−2βz(t), we obtain

1

2

d

dt

(
|A(1−2β)/2z(t)|2 + α2|A1−βz(t)|2

)
+ ν|A1−βz(t)|2 = (A−βg(t), A1−βz(t)),

a.e. t > τ.
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Thus,

d

dt

{
eσt
(
|A(1−2β)/2z(t)|2 + α2|A1−βz(t)|2

)}
+ 2νeσt|A1−βz(t)|2

= σeσt
(
|A(1−2β)/2z(t)|2 + α2|A1−βz(t)|2

)
+ 2eσt(A−βg(t), A1−βz(t)), (6.49)

a.e. t > τ.
Now, using that

2eσt|(A−βg(t), A1−βz(t))| ≤ εeσt|A1−βz(t)|2 + ε−1eσt|A−βg(t)|2,

and

|A1−βz(t)|2 = |A1/2(A(1−2β)/2z(t))|2

≥ λ1|A(1−2β)/2z(t)|2,

from (6.49) and the fact that z(τ) = 0, we obtain (6.48).
Now, from (6.48) we have v = z+α2Az and its derivative v′ belong to L2(τ, T ;D(A−β))

for any T > τ . So, it holds that v ∈ C([τ,∞);D(A−β)), whence using the mapping C,
(6.47) follows.

Now, we can prove the following regularity result for the pullback attractors in V
norm.

Theorem 6.20. Assume that f ∈ L2
loc(R;D(A−β)) for some 0 ≤ β ≤ 1/2, and that

sup
r≤0

∫ r

r−1

‖f(s)‖2
∗ ds <∞. (6.50)

Then:

(1) If f also satisfies∫ 0

−∞
eσs|A−βf(s)|2 ds <∞ for some 0 < σ < 2ν(λ−1

1 + α2)−1, (6.51)

and 
sup
r≤0

∫ r

r−1

|A−1/4−βf(s)|2 ds <∞, if 0 < β < 1/4,

sup
r≤0

∫ r

r−1

|A−δf(s)|2 ds <∞ for some 0 < δ < 1/4, if β = 0,
(6.52)

then the pullback attractor ADmax(V ) = ADF (V ) fulfills that for any t1 < t2,⋃
t1≤t≤t2

ADmax(V )(t)=
⋃

t1≤t≤t2

ADF (V )(t) is a bounded subset of D(A1−β). (6.53)
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(2) If f also satisfies

sup
r≤0

∫ r

r−1

|A−βf(s)|2 ds <∞, (6.54)

then for any t2 ∈ R,⋃
t≤t2

ADmax(V )(t) =
⋃
t≤t2

ADF (V )(t) is a bounded subset of D(A1−β). (6.55)

Proof. Let us fix t ∈ R and v ∈ ADσ(V )(t) = ADF (V )(t). By (6.40), (6.50) and Remark
6.16, we see that ⋃

r≤t

ADσ(V )(r) ⊂ BV (0, R̃σ(t)), (6.56)

where

R̃2
σ(t) = 1 + α−2ε−1 sup

r≤t

(
e−σr

∫ r

−∞
eσs‖f(s)‖2

∗ ds

)
,

with ε given by (6.30).
Let {τn} ⊂ (−∞, t] be a sequence with τn → −∞ as n → ∞. By the invariance

of ADσ(V ), for each n ≥ 1 there exists uτn ∈ ADσ(V )(τn) such that v = U(t, τn)uτn , and
therefore,

v = Y (t, τn)uτn + Z(t, τn)uτn .

From (6.45) and (6.56) we deduce that ‖Y (t, τn)uτn‖ → 0 as n→∞. Thus,

lim
n→∞

‖Z(t, τn)uτn − v‖ = 0. (6.57)

Let us denote

un(r) = U(r, τn)uτn , r ≥ τn, n ≥ 1.

By (6.56) and the invariance of ADσ(V ),

un(r) ∈ ADσ(V )(r) ⊂ BV (0, R̃σ(t)) ∀ τn ≤ r ≤ t, ∀n ≥ 1. (6.58)

Now we distinguish three cases.

Case 1. If 1/4 ≤ β ≤ 1/2.
In this case, from (6.10), the continuous injection of V in D(A3/4−β) and (6.58), we

deduce that

|A−βB(un(r))| ≤ C(3/4−β)|A3/4−βun(r)|‖un(r)‖
≤ C̃(3/4−β)‖un(r)‖2

≤ C̃(3/4−β)R̃
2
σ(t) ∀ τn ≤ r ≤ t, ∀n ≥ 1.

Thus, if we assume (6.51), from Lemma 6.19 we obtain that

|A1−βZ(t, τn)uτn|2 ≤M2
σ,β(t), (6.59)
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where

M2
σ,β(t) = 2α−2ε−1

(∫ t

−∞
eσ(s−t)|A−βf(s)|2 ds+ σ−1C̃2

(3/4−β)R̃
4
σ(t)

)
.

From (6.57), (6.59) and the weak lower semi-continuity of the norm, we deduce that

v ∈ BD(A1−β)(0,Mσ,β(t)),

and therefore (6.53) holds.
Moreover, if f satisfies (6.54), then (6.55) holds, and more exactly,⋃

t≤t2

ADσ(V )(t) ⊂ BD(A1−β)(0, M̃σ,β(t2)) ∀ t2 ∈ R, (6.60)

where

M̃2
σ,β(t2) = 2α−2ε−1

(
sup
t≤t2

∫ t

−∞
eσ(s−t)|A−βf(s)|2 ds+ σ−1C̃2

(3/4−β)R̃
4
σ(t2)

)
.

Case 2. If 0 < β < 1/4.
In this case, if f satisfies (6.52), as 1/4 < 1/4 + β < 1/2, from (6.60) we have⋃

r≤t

ADσ(V )(r) ⊂ BD(A3/4−β)(0, M̃σ,1/4+β(t)).

Thus, by (6.10) and (6.58), we obtain that

|A−βB(un(r))| ≤ C(3/4−β)|A3/4−βun(r)|‖un(r)‖
≤ C(3/4−β)M̃σ,1/4+β(t)R̃σ(t) ∀ τn ≤ r ≤ t, ∀n ≥ 1.

Thus, if we assume (6.51), from Lemma 6.19 we deduce that

|A1−βZ(t, τn)uτn|2 ≤ R2
σ,β(t), (6.61)

where

R2
σ,β(t) = 2α−2ε−1

(∫ t

−∞
eσ(s−t)|A−βf(s)|2 ds+ σ−1C2

(3/4−β)M̃
2
σ,1/4+β(t)R̃2

σ(t)

)
.

Again, from (6.57), (6.61) and the weak lower semi-continuity of the norm, we deduce
that

v ∈ BD(A1−β)(0, Rσ,β(t)),

and therefore (6.53) holds.
Moreover, if f satisfies (6.54), then (6.55) holds, and more exactly,⋃

t≤t2

ADσ(V )(t) ⊂ BD(A1−β)(0, R̃σ,β(t2)) ∀ t2 ∈ R, (6.62)
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where

R̃2
σ,β(t2) = 2α−2ε−1

(
sup
t≤t2

∫ t

−∞
eσ(s−t)|A−βf(s)|2 ds+ σ−1C2

(3/4−β)M̃
2
σ,1/4+β(t2)R̃2

σ(t2)

)
.

Case 3. If β = 0.
In this case, if f satisfies (6.52), as 0 < δ < 1/4, from (6.62) we see that⋃

r≤t

ADσ(V )(r) ⊂ BD(A1−δ)(0, R̃σ,δ(t)).

So, by (6.9) and (6.58), we deduce that

|B(un(r))| ≤ C(1−δ)|A1−δun(r)|‖un(r)‖
≤ C(1−δ)R̃σ,δ(t)R̃σ(t) ∀ τn ≤ r ≤ t, ∀n ≥ 1.

Thus, if we assume (6.51), from Lemma 6.19 we deduce that

|AZ(t, τn)uτn|2 ≤ R2
σ,δ,0(t), (6.63)

where

R2
σ,δ,0(t) = 2α−2ε−1

(∫ t

−∞
eσ(s−t)|f(s)|2 ds+ σ−1C2

(1−δ)R̃
2
σ,δ(t)R̃

2
σ(t)

)
.

Again, from (6.57), (6.63) and the weak lower semi-continuity of the norm, we deduce
that

v ∈ BD(A)(0, Rσ,δ,0(t)),

and therefore (6.53) holds.
Moreover, if f satisfies (6.54), then (6.55) holds, and more exactly,⋃

t≤t2

ADσ(V )(t) ⊂ BD(A)(0, R̃σ,δ,0(t2)) ∀ t2 ∈ R,

where

R̃2
σ,δ,0(t2) = 2α−2ε−1

(
sup
t≤t2

∫ t

−∞
eσ(s−t)|f(s)|2 ds+ σ−1C2

(1−δ)R̃
2
σ,δ(t2)R̃2

σ(t2)

)
.

6.4 Attraction in D(A) norm

By the previous results, when f ∈ L2
loc(R;H), the restriction to D(A) of the process U

defined by (6.27) is a process onD(A). Now, we will prove that under suitable assumptions
on f , we can obtain the existence of minimal pullback attractors for U on D(A).

Proposition 6.21. Assume that f ∈ L2
loc(R;H) is given. Then, the restriction to D(A)

of the bi-parametric family of mappings U(t, τ), with τ ≤ t, given by (6.27), is a closed
process on D(A).
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Proof. It is a consequence of Theorem 6.4 and Theorem 6.6.

Remark 6.22. Observe that, by Remark 6.7, U restricted to D(A) is in fact a continuous
process on D(A).

In order to obtain a pullback absorbing family for the process U restricted to D(A),
we first establish the following result.

Lemma 6.23. Assume that f ∈ L2
loc(R;H) satisfies (6.50). Then, for any τ ∈ R,

uτ ∈ D(A),
0 < σ < 2ν(λ−1

1 + α2)−1, and 0 < σ < σ/3, (6.64)

the solution u = u(·; τ, uτ ) to (6.1) satisfies

‖u(t)‖2 + α2|Au(t)|2 ≤ eσ(τ−t)(‖uτ‖2 + α2|Auτ |2) + 2ε−1

∫ t

τ

eσ(s−t)|f(s)|2 ds

+4CεC
3
σ(σ − 3σ)−1

(
e−3σ(t−τ)‖uτ‖6 +M3

t,σ

)
(6.65)

for all t ≥ τ , where ε > 0 is given by (6.30),

Cε = 27C4
3(2ε3)−1, (6.66)

Cσ = α−2 max

{
(α2 + λ−1

1 ),
(
ν − σ

2
(λ−1

1 + α2)
)−1
}
, (6.67)

and

Mt,σ = sup
r≤t

∫ r

−∞
eσ(s−r)‖f(s)‖2

∗ ds. (6.68)

Proof. Let τ ∈ R, uτ ∈ D(A), σ and σ satisfying (6.64) be fixed. From Lemma 6.11 we
deduce in particular that u = u(·; τ, uτ ) satisfies

‖u(s)‖2 ≤ Cσ

(
eσ(τ−s)‖uτ‖2 +Mt,σ

)
∀ τ ≤ s ≤ t. (6.69)

On the other hand, by (6.20),

d

dt
(eσt‖u(t)‖2 + α2eσt|Au(t)|2) + 2νeσt|Au(t)|2 + 2eσt(B(u(t)), Au(t))

= σeσt‖u(t)‖2 + α2σeσt|Au(t)|2 + 2eσt(f(t), Au(t)), a.e. t > τ.

Thus, taking into account that ‖u(t)‖2 ≤ λ−1
1 |Au(t)|2,

2|(B(u(t)), Au(t))| ≤ 2C3‖u(t)‖3/2|Au(t)|3/2

≤ Cε‖u(t)‖6 +
ε

2
|Au(t)|2,

and

2|(f(t), Au(t))| ≤ 2

ε
|f(t)|2 +

ε

2
|Au(t)|2,
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we deduce that

‖u(t)‖2 + α2|Au(t)|2 ≤ eσ(τ−t)(‖uτ‖2 + α2|Auτ |2) + 2ε−1

∫ t

τ

eσ(s−t)|f(s)|2 ds

+Cε

∫ t

τ

eσ(s−t)‖u(s)‖6 ds ∀ t ≥ τ.

From this inequality and (6.69), we easily obtain (6.65).

We introduce now the following tempered universe in P(D(A)).

Definition 6.24. For any σ, σ > 0, we will consider the universe Dσ(D(A)) ∩ Dσ(V )

formed by the class of all families of nonempty subsets D̂ = {D(t) : t ∈ R} ⊂ P(D(A))
such that

lim
τ→−∞

(
eστ sup

v∈D(τ)

|Av|2
)

= lim
τ→−∞

(
eστ sup

v∈D(τ)

‖v‖2

)
= 0.

Moreover, DF (D(A)) will denote the class of families D̂ = {D(t) = D : t ∈ R} with
D a fixed nonempty bounded subset of D(A).

Note that for any σ, σ > 0, DF (D(A)) ⊂ Dσ(D(A)) ∩ Dσ(V ), and that the universe
Dσ(D(A)) ∩ Dσ(V ) is inclusion-closed.

As a consequence of Lemma 6.23, we have the following result.

Corollary 6.25. Assume that f ∈ L2
loc(R;H) satisfies (6.50) and∫ 0

−∞
eσs|f(s)|2 ds <∞ for some 0 < σ < 2ν(λ−1

1 + α2)−1. (6.70)

Then, for any 0 < σ < σ/3, the family D̂σ,σ = {Dσ,σ(t) : t ∈ R} defined by

Dσ,σ(t) = BD(A)(0, Rσ,σ(t)), (6.71)

the closed ball in D(A) of center zero and radius Rσ,σ(t), where

R2
σ,σ(t) = α−2

(
1 + 2ε−1

∫ t

−∞
eσ(s−t)|f(s)|2 ds+ 4CεC

3
σ(σ − 3σ)−1M3

t,σ

)
, (6.72)

with ε, Cε, Cσ and Mt,σ, given by (6.30), (6.66), (6.67) and (6.68), respectively, is pullback
Dσ(D(A))∩Dσ(V )-absorbing for the restriction to D(A) of the process U given by (6.27)
(and therefore DF (D(A))-absorbing too).

Now, we prove that the process U is pullback Dσ(D(A))∩Dσ(V )-asymptotically com-
pact. We will apply, with obvious necessary changes, the same energy method used in the
proof of Lemma 6.14.

Lemma 6.26. Assume that f ∈ L2
loc(R;H) satisfies (6.50) and (6.70). Then, for any

0 < σ < σ/3, the restriction to D(A) of the process U defined by (6.27) is pullback
Dσ(D(A)) ∩ Dσ(V )-asymptotically compact.



134 Chapter 6. Pullback Attractors for 3D Navier–Stokes–Voigt Equations

Proof. Let us fix 0 < σ < σ/3. Let D̂ ∈ Dσ(D(A))∩Dσ(V ), t ∈ R, τn → −∞ with τn ≤ t
and uτn ∈ D(τn) for all n, be given. We must prove that the sequence {U(t, τn)uτn} is
relatively compact in D(A). By Corollary 6.25, for each integer k ≥ 0, there exists
τD̂(k) ≤ t− k such that

U(t− k, τ)D(τ) ⊂ Dσ,σ(t− k) ∀ τ ≤ τD̂(k). (6.73)

From this and a diagonal argument, we can extract a subsequence {uτn′} ⊂ {uτn} such
that

U(t− k, τn′)uτn′ ⇀ ŵk weakly in D(A), ∀ k ≥ 0, (6.74)

where ŵk ∈ Dσ,σ(t− k).
Now, applying Theorem 6.6 on each fixed interval [t− k, t] we obtain that

ŵ0 = D(A)− weak lim
n′→∞

U(t, τn′)u
τn′

= D(A)− weak lim
n′→∞

U(t, t− k)U(t− k, τn′)uτn′

= U(t, t− k)
[
D(A)− weak lim

n′→∞
U(t− k, τn′)uτn′

]
= U(t, t− k)ŵk.

In particular, observe that

|Aŵ0| ≤ lim inf
n′→∞

|AU(t, τn′)u
τn′ |.

We will prove now that it also holds that

lim sup
n′→∞

|AU(t, τn′)u
τn′ | ≤ |Aŵ0|, (6.75)

which combined with (6.74) for k = 0, will imply the convergence in the strong topology
of D(A), and the asymptotic compactness.

Observe that, as we already used in Lemma 6.23, for any pair (τ, uτ ) with uτ ∈ D(A),
the solution u(·; τ, uτ ), for short denoted by u(·), satisfies the differential equality (6.20).

Since 0 < σ < 2ν(λ−1
1 + α2)−1, we observe that [[·]], with

[[v]]2 = (2ν − α2σ)|Av|2 − σ‖v‖2,

defines an equivalent norm to | · |D(A) in D(A).
We integrate (6.20) in the interval [t− k, t] for the solutions U(·, τn′)uτn′ , which yields

‖U(t, τn′)u
τn′‖2 + α2|AU(t, τn′)u

τn′ |2

= ‖U(t, t− k)U(t− k, τn′)uτn′‖2 + α2|AU(t, t− k)U(t− k, τn′)uτn′ |2

= e−σk
(
‖U(t− k, τn′)uτn′‖2 + α2|AU(t− k, τn′)uτn′ |2

)
+2

∫ t

t−k
eσ(s−t)(f(s), AU(s, t− k)U(t− k, τn′)uτn′ ) ds

−2

∫ t

t−k
eσ(s−t)(B(U(s, t− k)U(t− k, τn′)uτn′ ), AU(s, t− k)U(t− k, τn′)uτn′ ) ds

−
∫ t

t−k
eσ(s−t)[[U(s, t− k)U(t− k, τn′)uτn′ ]]2 ds. (6.76)
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From (6.74) and Theorem 6.6, we have

U(·, t− k)U(t− k, τn′)uτn′ → U(·, t− k)ŵk strongly in C([t− k, t];V ),

and also

U(·, t− k)U(t− k, τn′)uτn′ ⇀ U(·, t− k)ŵk weakly in L2(t− k, t;D(A)).

Then, it is not difficult to see that

lim
n′→∞

∫ t

t−k
eσ(s−t)(B(U(s, t− k)U(t− k, τn′)uτn′ ), AU(s, t− k)U(t− k, τn′)uτn′ ) ds

=

∫ t

t−k
eσ(s−t)(B(U(s, t− k)ŵk), AU(s, t− k)ŵk) ds. (6.77)

Also, as eσ(·−t)f(·) ∈ L2(t− k, t;H), it yields

lim
n′→∞

∫ t

t−k
eσ(s−t)(f(s), AU(s, t− k)U(t− k, τn′)uτn′ ) ds

=

∫ t

t−k
eσ(s−t)(f(s), AU(s, t− k)ŵk) ds. (6.78)

Finally, as
∫ t
t−k e

σ(s−t)[[v(s)]]2ds defines an equivalent norm in L2(t− k, t;D(A)), we also
deduce from above that∫ t

t−k
eσ(s−t)[[U(s, t− k)ŵk]]

2 ds

≤ lim inf
n′→∞

∫ t

t−k
eσ(s−t)[[U(s, t− k)U(t− k, τn′)uτn′ ]]2 ds. (6.79)

From (6.73), (6.74) with k = 0, the compactness of the injection of D(A) into V , and
(6.76), (6.77)–(6.79), we conclude that

‖ŵ0‖2 + α2 lim sup
n′→∞

|AU(t, τn′)u
τn′ |2

≤ e−σk(λ−1
1 + α2)R2

σ,σ(t− k) + 2

∫ t

t−k
eσ(s−t)(f(s), AU(s, t− k)ŵk) ds

−2

∫ t

t−k
eσ(s−t)(B(U(s, t− k)ŵk), AU(s, t− k)ŵk) ds

−
∫ t

t−k
eσ(s−t)[[U(s, t− k)ŵk]]

2 ds.

Now, taking into account that ŵ0 = U(t, t− k)ŵk, integrating again in (6.20), we obtain

‖ŵ0‖2 + α2|Aŵ0|2 = e−σk(‖ŵk‖2 + α2|Aŵk|2) + 2

∫ t

t−k
eσ(s−t)(f(s), AU(s, t− k)ŵk) ds

−2

∫ t

t−k
eσ(s−t)(B(U(s, t− k)ŵk), AU(s, t− k)ŵk) ds

−
∫ t

t−k
eσ(s−t)[[U(s, t− k)ŵk]]

2 ds.
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Comparing the above two expressions, we conclude that

‖ŵ0‖2 + α2 lim sup
n′→∞

|AU(t, τn′)u
τn′ |2

≤ e−σk(λ−1
1 + α2)R2

σ,σ(t− k) + ‖ŵ0‖2 + α2|Aŵ0|2 − e−σk(‖ŵk‖2 + α2|Aŵk|2).

But from (6.72), we have that lim
k→∞

e−σkR2
σ,σ(t− k) = 0, so (6.75) holds.

In general, the pullback absorbing family D̂σ,σ defined by (6.71) does not belong to

Dσ(D(A)) ∩ Dσ(V ), and we do not know if U is pullback D̂σ,σ-asymptotically compact.

Thus, we cannot apply Theorem 1.11 to the family D̂σ,σ. Nevertheless we can prove the
following result.

Theorem 6.27. Assume that f ∈ L2
loc(R;H) satisfies (6.50) and (6.70). Then, for any

0 < σ < σ/3, the family of sets

Xσ,σ(t) =
⋃

D̂∈Dσ(D(A))∩Dσ(V )

ΛD(A)(D̂, t)
D(A)

t ∈ R, (6.80)

has the following properties:

(a) lim
τ→−∞

distD(A)(U(t, τ)D(τ), Xσ,σ(t)) = 0 for all t ∈ R and any D̂ ∈ Dσ(D(A)) ∩
Dσ(V ) (pullback attraction).

(b) It is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(D(A)) is a family of
closed subsets of D(A) such that lim

τ→−∞
distD(A)(U(t, τ)D(τ), C(t)) = 0 for all t ∈ R

and any D̂ ∈ Dσ(D(A)) ∩ Dσ(V ), then Xσ,σ(t) ⊂ C(t) for all t ∈ R.

(c) U(t, τ)Xσ,σ(τ) = Xσ,σ(t) for all τ ≤ t (invariance).

Proof. The assertion (a) is an easy consequence of Proposition 1.4 and Lemma 6.26.

For the proof of (b), assume that Ĉ = {C(t) : t ∈ R} ⊂ P(D(A)) is a family of closed
subsets of D(A) such that lim

τ→−∞
distD(A)(U(t, τ)D(τ), C(t)) = 0 for all t ∈ R and any

D̂ ∈ Dσ(D(A)) ∩ Dσ(V ). Now, let us fix t ∈ R. In this case, it is easy to see that, for

any x ∈ ΛD(A)(D̂, t), with D̂ ∈ Dσ(D(A)) ∩ Dσ(V ), one has that distD(A)(x,C(t)) = 0.

Thus, as C(t) is closed in D(A), we deduce that ΛD(A)(D̂, t) ⊂ C(t), and therefore,
Xσ,σ(t) ⊂ C(t).

Finally, let τ ≤ t be fixed. In order to prove (c) we observe that by Proposition 1.5,
we also have that

U(t, τ)ΛD(A)(D̂, τ) = ΛD(A)(D̂, t) for any D̂ ∈ Dσ(D(A)) ∩ Dσ(V ). (6.81)

If y ∈ Xσ,σ(t), there exist two sequences {D̂n} ⊂ Dσ(D(A)) ∩ Dσ(V ) and {yn} ⊂ D(A),

such that yn ∈ ΛD(A)(D̂n, t) and y = D(A) − lim
n→∞

yn. But by (6.81), yn = U(t, τ)xn,

with xn ∈ ΛD(A)(D̂n, τ) ⊂ Xσ,σ(τ). By Corollary 6.25, we can also deduce that Xσ,σ(τ) ⊂
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BD(A)(0, Rσ,σ(τ)), and therefore, by the compactness of the injection of D(A) into V ,
Xσ,σ(τ) is a compact subset of V . Thus, there exists a subsequence {xn′} ⊂ {xn} such
that xn′ → x ∈ Xσ,σ(τ) in V . But then, as U is a closed process on V , y = U(t, τ)x,
and this proves that Xσ,σ(t) ⊂ U(t, τ)Xσ,σ(τ). The reverse inclusion can be proved anal-
ogously.

Under the additional assumption

sup
r≤0

∫ r

r−1

|f(s)|2 ds <∞, (6.82)

the pullback absorbing family D̂σ,σ defined by (6.71) does belong to Dσ(D(A)) ∩ Dσ(V ),
whence we can apply Theorem 1.11, and actually we have the following result.

Theorem 6.28. Assume that f ∈ L2
loc(R;H) satisfies (6.82). Then, for any 0 < σ <

2ν(λ−1
1 + α2)−1 and 0 < σ < σ/3, we have that:

(a) The family of sets Xσ,σ(t) defined by (6.80) is the minimal pullback Dσ(D(A)) ∩
Dσ(V )-attractor, and in fact is a family of compact subsets of D(A).

(b) Xσ,σ(t) = ADF (V )(t) for all t ∈ R.

(c) Indeed, ADF (V ) is the unique family of closed subsets for the norm of D(A) in any
universe of the form Dσ(D(A)) ∩ Dσ(V ) that is invariant for U and attracts any

D̂ ∈ Dσ(D(A)) ∩ Dσ(V ) in the pullback sense.

Proof. Let us fix 0 < σ < 2ν(λ−1
1 + α2)−1 and 0 < σ < σ/3.

Observe that under the above assumptions on f , the family D̂σ,σ = {Dσ,σ(t) : t ∈ R}
defined by (6.71)–(6.72) belongs to Dσ(D(A)) ∩ Dσ(V ).

Therefore, the assertion (a) is a direct consequence of Theorem 1.11, Proposition 6.21,
Corollary 6.25, and Lemma 6.26.

Now, let us fix t ∈ R. It is evident that by (6.82),

Xσ,σ(t) ⊂
⋃

D̂∈Dσ(V )

ΛD(A)(D̂, t)
D(A)

⊂
⋃

D̂∈Dσ(V )

ΛD(A)(D̂, t)
V

= ADσ(V )(t)

= ADF (V )(t).

On the other hand, again by (6.82), from Theorem 6.20 we have that
⋃
r≤t

ADF (V )(r) is a

bounded subset of D(A), and therefore,

distD(A)

(
U(t, τ)

⋃
r≤t

ADF (V )(r), Xσ,σ(t)
)

≤ distD(A)

(
U(t, τ)

⋃
r≤t

ADF (V )(r),ΛD(A)

(⋃
r≤t

ADF (V )(r), t
))
.
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From this inequality, Proposition 1.4, Lemma 6.26, and the invariance of ADF (V ), we
deduce that

distD(A)(ADF (V )(t), Xσ,σ(t)) = 0,

and therefore
ADF (V )(t) ⊂ Xσ,σ(t).

Thus, (b) is proved.
Finally, (c) is a direct consequence of Remark 1.12.

Remark 6.29. Observe that in particular, if f ∈ L2
loc(R;H) satisfies (6.82), by Remark

1.14 the minimal attractor ADF (D(A)) does exist, and it also coincides with the family
ADF (V ). Moreover, this last family attracts in the pullback sense in the norm of D(A) to
all the families of the universe

Dmax(D(A), V ) =
⋃

0<σ<2ν(λ−1
1 + α2)−1

0<σ<σ/3

Dσ(D(A)) ∩ Dσ(V ).
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[71] P. Maŕın-Rubio and J. Real, Pullback attractors for 2D-Navier–Stokes equations
with delays in continuous and sub-linear operators, Discrete Contin. Dyn. Syst. 26
(2010), 989–1006.
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