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Existence of internal modes of sine-Gordon kinks
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We study whether or not sine-Gordon kinks exhibit internal modes or “quasimodes.” By considering the
response of the kinks to ac forces and initial distortions, we show that neither intrinsic internal modes nor
“quasimodes” exist in contrast to previous reports. However, we do identify a different kind of internal mode
bifurcating from the bottom edge of the phonon band which arises from the discretization of the system in the
numerical simulations, thus confirming recent predictions.
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I. INTRODUCTION Rice approach, that the internal mode of the SG and¢the

Solitons, which were originally a concept arising in the !(Il’lkS could be excited by a constant external force or by an

study of integrable systenfd], have rapidly become a key initial distortion; however, no numerical evidence was pre-
paradigm in perturbed non'integrable systems describin ented to confirm these results. Therefore, we decided to re-

many physical application]. A very successful picture of isit the is_sue of the ex.istence qf t.he internal mod_e of the SG
soliton dynamics under different perturbations has resulte§duation in order to give a definitive answer to it. Our ap-
from the use of collective coordinat€C) techniqueg3]: In  Proach, based in part on our earlier findirig4, overcomes
many instances, solitons behave basically like pointlike parthe difficulty that the internal “quasimode™ would lie within
ticles, and therefore their time evolution can be predicted byhe phonon band by allowing us to look at driving frequen-
equations of motion which are ordinary differential equa-cies well in the gap. As we will show below, this permits us
tions. Nevertheless, along the last decade it has been progrds-€establish clearly that this putative internal mode does not
sively realized that internal degrees of freedom of the soli€xist. Furthermore, we do observe the excitation of a dis-
tons play a crucial role in a number of problems: Theycreteness induced internal mode?,13, whose frequency is
govern resonant solitofor solitary wave collisions[4], give in excellent agreement with recent predictions by Kevrekidis
rise to nontrivial soliton-impurity interactiori§], and can be and Joneg14]. We substantiate these claims by briefly re-
excited both by ac forcg$] and by thermal noisg7]. There- calling our main analytical results in Sec. I, collecting our
fore, it is very important to assess whether or not physicallyyumerical results in Sec. ll, and discussing our conclusions
relevant solitons possess internal modes. in Sec. IV.

In this Rapid Communication we study solitons of the
sine-Gordon(SG) equation, which arises in a diverse range
of areas of physics, covering from crystal dislocation theory
to Josephson junctiorfd-3]. In spite of the fact that linear We begin by considering the perturbed SG equation
stability analysis leads to only one eigenvalue in the discrete
spectrum, corresponding to a zero frequency Goldstone
mode[2], Boesch and Willig8] claimed that they found an
internal “quasimode” above but close to the lower phonon
band edge. They described this “quasimode” as a long-livedvheree, &, and §, are the amplitude, frequency, and phase
oscillation of the width of the SG kink. The possibility of of the external periodic force. [16] we analyzed analytically
such a mode had been suggested earlier by R3deby  and numerically the above problem in the more general con-
means of a variational approach that reproduced with greaext of nonlinear(possibly dampedKlein-Gordon systems,
accuracy the internal mode frequency of #é& model[1]  which includes Eq(1) as well as thep* model. Particular-
and predicted the existence of a similar mode for the SGzing our results, obtained by means of the generalized trav-
problem. To our knowledge, Reff8] is the only paper re- eling waveAnsatz[15] combined with the Ricénsatz[9],
porting the observation of this mode, although hints of itswe find that the momenturR(t) and the width of the kink
existence are scattered all over the soliton literafd. A I(t) (of a general nonlinear Klein-Gordon equation; specific
few years later, it was theoretically fourd1], within the  constants for the SG case will be given belombey the

equations

Il. RESONANCES DUE TO ac FORCES

Pri— Pyx= —SiNd+ e sin(St+ &), (1)
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where X(t) is the kink position. For SGg=2m, My=38,
lo=1 anda = 7%/12. The equation for the momentum is lin- 820
ear and can be solved exactly, yielding
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P(t)= 5

P(0)—

8.10

We thus see that the term(t)? in Eq. (3) involves two
frequenciesg and 25. As shown in[6], for the ¢* kink this 8.05 ¢
leads to dramatic resonance effects when the ac driving fre

quency § is half the frequency); of the internal mode. 8.00 . . . . .
Without resonant excitation of kink modes, the kink oscil- 045 048 050 053 055 058 060
lates around its initial position as a pure pointlike particle, as )

zﬂgxg i?]rﬁgay;g:raltlgea:t()joyeum;rr;icrﬁg)tle:’glﬁ]ﬁ ?a()s,vge;\/r?rin?esmal FIG. 1. Mean energy of the SG system, in dimensionless units,
de i ited in th E ¢ t’h t when § is close to€)/2. Points have been calculated from numeri-

mode is excited as in the)” system, the system energy .., qmjations for 10008t<25000, with e=0.01, 5o= /2,

grows and eventually leads to chaotic motion of the kink. '”u(0)=0 X(0)=0. The parameters of the discretization e

addition, the resonance &%/2 turns out to be much stronger _g g5 At=0.005 and. = 100.

than that at(};, which makes it a convenient way to probe

those modes: In case the SG kink would possess such a dgp ity them with half of the values of the first frequencies

gree of freedom, we should observe similar phenomena. I8¢ the phonon bandy,,, which are given by

[8], the frequency of the numerically observed “quasimode” n

was ws=1.004+0.001 in our units, whereas Rice’s theoret- w,=V1+[(27n)/L]3 n=1,23... N=L/Ax. (5
ical analysis leads tf@] Qg=1.103. In both cases, the cor-

responding half frequencies lie well within the gap; we canp comparison of the third and fourth columns of Table I,

thus force the system at the predicted resonances withoWihere we list the half values of the frequencies correspond-
exciting much radiation which could mask any internal modejng 1 the first eight radiational modes and the numerical

effects. peak frequenciess,, in Fig. 1, counting from the second

maximum from the left, allows us to verify that these values
are nearly identical in all casdsee also the relative differ-

In this section, we present the results of our numericaences w,/2— w;,| in Table ). We stress that identification of
search for internal modes or “quasimodes” of the SG equatadiation modes as the origin of these resonances makes per-
tion. We have computed the numerical solution of the perfect physical sense: Indeed, an extended CC approach in-
turbed SG equatiofil) by using the Strauss-Vguez scheme cluding radiation modes leads to the conclusion that the ra-
[17], the total length of the system beihg=100, the steps diation modes should also be excited parametrically by ac
beingAx=0.05At=0.005(or other values when indicated drivings. In view of all this, the main conclusion we can
Free boundary conditions were also used, and the final timgraw from Fig. 1 is the absence of any resonance due to the
in the simulations was 25 000, enough to detect any possibl@ternal quasimode in the phonon band reported by Boesch
resonanceé6]. and Willis[8], which, in view of the frequency they reported,

would lead to an extra peak located between the two right-

IIl. NUMERICAL RESULTS

A. ac force . i . .
TABLE |. Comparison of the half of the first eight frequencies

First, we have perturbed our system with an ac force of, /> of radiational modes with the computed frequendigsrom

a.mplitudeEZO.Ql_ gnd pha_s.éoz w/2. We have used a SG  nymerical simulations of Eq1) at which peaks irE,, arise (see
kink at rest as initial condition. We have computed the en-ig, 7).

ergy (as defined if17]) during the evolution, and then the
mean value of the energy in the time interval 10€Q0 Mode(n) wn wy/2
<25000, studying a range of values &faround half of the
possible internal mode frequencies. Figure 1 collects our re-
sults for the mean energy as a function of the frequency. We
clearly see that the mean energy rapidly increases for some
values ofé which do not coincide with any of the proposed
internal modes or “quasimodes.” The firdeftmos) maxi-

mum lies below half the frequency of the lower phonon band
edge; therefore, this one cannot be associated with a phonon
mode and we will discuss its origin in detail below. As for
the other peaks, Table | shows that we have been able te

Z)n |wn/2— Z)n|

1.0019 0.5009 0.5009 8x610 °
1.0079 0.5039 0.5040 X105
1.0176 0.5088 0.5090 1:010™*
1.0311 0.5155 0.5161 5x510 4
1.0482 0.5241 0.5250 9x110™ 4
1.0687 0.5343 0.5356 131073
1.0924 0.5462 0.5479 171073
1.1192 0.5596 0.5618 2103
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most ones in Fig. 1. In this regard, it is important to note that 1.3

the accuracy of our simulations in detecting every radiation

mode rules out the possibility that we have missed this quasi-

mode (at eitherwg or QR). 1.2
Interestingly, we do observe an internal mode: Let us re-

call that the first maximum of the energy occurséat wgy

=0.4999, i.e., 24=0.9998 is below the lower phonon fre- 11

quencyw,,=1 as we mentioned above. The reason for thisE

peak is a different internal mode of the SG kink, that appears

as a bifurcation from the lowest phonon of the continuum

equation, of frequency,,=1, due to the effect of discrete-

ness[12-14. As has been recently showi4], the fre-

quency of this internal mode is;~ \1— (4/2025) (Ax)* [the

(Ax)* dependence was already observed[12]]. In our

simulations,Ax=0.05, hencew;=0.999 998, approximately 0.8 . , ; ;

equal to 2vy4. Therefore, the first peak in Fig. 1 corresponds 0 500 1000 1500 2000 2500

to the parametric resonance at half the value of the discrete t

ness induced internal mode, very much like the resonance

with the ¢* kink internal mode reported earli¢®].

FIG. 2. Evolution of the kink width, in dimensionless units,
obtained from numerical simulations starting from a free, deformed
N kink, with u(0)=0, 1(0)=1 andi(0)=0.3. The parameters of the
B. Deformed initial kink discretization aré. =100, Ax=0.1, andAt=0.01.
In view of our negative result about the internal quasi-
mode of the SG kink, we carried out more numerical simu-to the excitation of the internal mode, exhibiting oscillations
lations specifically designed to find it. Followir@], we in the kink width very close to those predicted by the CC
chose initial conditions given by approach. We then turned to the SG case, and we found that
the oscillations are not correctly described by the CC equa-
X—X(0) tions. In Fig. 2 we can see the evolution of the kink width
P(x,0=4 arctar€ exp{ 1(0) D computed from numerical simulation of the SG system, with
[(0)=1, u(0)=0, andi (0)=0.3. It is clear that(t) is not a
u(0) x—X(0). simple oscillatory function as in the* case, and Fourier
1(0) W (0) analysis yields the following frequenciesiy=0.9983, w,
X—X(0) : (6) =1.0034,~202:1.008?i, w3=1.0184, ©,=1.0335, ws
0 =1.0511,ws=1.0712,w,=1.0963. As before, all these fre-
(0) . : | .
- quencies are very close to the discreteness induced internal
mode and the first few radiational modes, with no evidence

which correspond tq a_deformed kink "(0)#,1 or 1(0) . supporting the existence of the internal quasimode above the
#0. By starting their simulations with such initial condi- phonon band edge.

tions, Boesch and Willis claimed that they were able to ex-
cite the internal quasimode, and hence we hope that, if it is
indeed present, we should find it.

At this point, we have to recall the work of Majékova, The first conclusion of this work is that the existence of
Gaididei, and Braufil1], who, as mentioned in the Introduc- the proposed internal quasimode of the SG kink above the
tion, theoretically considered the problem of a deformed kinkphonon band edgg8] is very unlikely. We have found nei-
given by the expressions above driven by a external constatfier resonances nor long-lived kink width oscillations arising
force. When applied to this problem, our CC approach yieldgrom such a mode when the kink is subject to ac driving or to
the same two ordinary differential equations ad1d] for  inijtial deformations, respectively. We are confident that we
X(t) andl(t) [Egs.(2)—(3) without the sine term, i.e., with have carefully explored all the range of relevant frequencies,
only a constant forces]. We have solved these equations as we have accurately detected all possible resonances within
exactly for arbitrary initial conditiong18] in terms of the  that range. In addition, the comparison with the phenomenol-
Whittaker functions, concluding that the kink width oscil- ogy observed for they* kink, which possesses a true internal
lates only if1(0)#1 [the natural width of the undistorted mode, shows that if the SG kink would have such an internal
kink, 1/A/1—u(0)?] or 1(0)#0 in Eq.(6), whereas external mode, we would have detected its influence through numeri-
force and dissipatiofif presenj only damp out those oscil- cal simulations as for the¥* equation[6,18]. In fact, now
lations. Hence, kink width oscillations should be easiest tdhat we have seen that radiation modes are parametrically
detect without force and damping and, consequently, here wexcited by their corresponding half-frequency drivings, we
consider only free propagation of an initially distorted kink believe we can suggest an explanation for the results of
(a general analysis of the constant force problem will beBoesch and Willis. Notice that they used E§) to calculate
presented elsewhef&8]). As a check of the validity of this the lower phonon frequency, obtaining that,
procedure to probe internal modes, we have numerically=\1+ (27/1000F=1.000 02, whereas the internal “quasi-
verified that theg* kink indeed behaves in this fashion due mode” frequency that they found in the numerical simula-

hi(X,0)=2
cosh

IV. CONCLUSIONS
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tions waswg=1.004. As those two values were largely dif- with the one predicted ifhl4]. Therefore, our research fully
ferent, they concluded that the quasimode was well aboveonfirms the results of those papers and, in addition, shows
the lowest phonon frequency and different from it. However that these perturbation induced internal modes behave very
as we have discussed in the preceding sections, they useslich like intrinsic ones. Our result, along with the finding of
initial conditions in which the initial kink velocity was not similar internal modes in other nonintegrable SG systems
zero; in this case, it can be easily shown that the correspongl19], strongly supports the generality of the phenomenon

ing frequencies of the phonons are given by predicted in[13]. Finally, the fact that we are able to detect
this mode reinforces our previous conclusion of the nonex-
;k: wk—ku(O)’ W= m istence of the internal quasimode, as indeed the SG kink

JV1-u?(0) responds to the ac driving or to deformations as it should if it

_ had an internal mode, but for the discreteness induced one
If we now insert the parameters used [B] to perform a  only. We thus believe that the present work definitely rules
numerical experiment similar to the one discussed here, WgBut the poss|b|||ty of internal modes or “quasimodes” of SG

find @, =1.004, i.e., the resonance observed by Boesch anginks close to and above the lower phonon band edge.
Willis took place in fact with the lowest frequency phorion

the presence of a moving kirdnd not with any internal
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